RT9214 [RICHTEK]

5V/12V Synchronous Buck PWM DC-DC Controller; 5V / 12V同步降压PWM DC- DC控制器
RT9214
型号: RT9214
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

5V/12V Synchronous Buck PWM DC-DC Controller
5V / 12V同步降压PWM DC- DC控制器

控制器
文件: 总17页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9214  
5V/12V Synchronous Buck PWM DC-DC Controller  
General Description  
Features  
z Operating with 5V or 12V Supply Voltage  
z Drives All Low Cost N-Channel MOSFETs  
z Voltage Mode PWM Control  
z 300kHz Fixed Frequency Oscillator  
z Fast Transient Response :  
The RT9214 is a high efficiency synchronous buck PWM  
controllers that generate logic-supply voltages in PC based  
systems. These high performance , single output devices  
include internal soft-start, frequency compensation  
networks and integrates all of the control, output  
adjustment, monitoring and protection functions into a  
single package.  
`High-Speed GM Amplifier  
`Full 0 to 100% Duty Ratio  
z Internal Soft-Start  
The device operating at fixed 300kHz frequency provides  
an optimum compromise between efficiency, external  
component size, and cost.  
z Adaptive Non-Overlapping Gate Driver  
z Over-Current Fault Monitor on MOSFET, No  
Current Sense Resistor Required  
Adjustable over-current protection (OCP) monitors the  
voltage drop across the RDS(ON) of the lower MOSFET for  
synchronous buck PWM DC-DC controller. The over-  
current function cycles the soft-start in 4-times hiccup  
mode to provide fault protection, and in an always hiccup  
mode for under-voltage protection.  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z Graphic Card  
z Motherboard, Desktop Servers  
z IA Equipments  
z Telecomm Equipments  
z High PowerDC-DC Regulators  
Ordering Information  
RT9214  
Pin Configurations  
Package Type  
S : SOP-8  
(TOP VIEW)  
SP : SOP-8 (Exposed Pad-Option 1)  
BOOT  
UGATE  
GND  
PHASE  
OPS  
FB  
8
7
6
5
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
2
3
4
LGATE  
VCC  
Note :  
SOP-8  
Richtek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
BOOT  
UGATE  
GND  
PHASE  
OPS  
FB  
8
7
6
5
2
3
4
NC  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
9
LGATE  
VCC  
SOP-8 (Exposed Pad)  
www.richtek.com  
1
DS9214-13 September 2007  
RT9214  
Typical Application Circuit  
V
IN  
+3.3V/+5V/+12V  
+5V to +12V  
D1  
1N4148  
R
BOOT  
2.2  
C3  
1uF  
C4  
470uF  
C2  
0.1uF  
R1  
10  
R
1
5
6
3
UGATE  
Q1  
2
8
BOOT  
UGATE  
MU  
2.2  
V
L1  
3uH  
VCC  
FB  
PHASE  
RT9214  
OUT  
C1  
1uF  
ROCSET  
7
4
OPS  
R
Q2  
ML  
GND  
LGATE  
C
C6 to C8  
1000uFx3  
Q3  
3904  
Disable  
>
R3  
68  
R3  
R2  
R2  
32  
VOUT = VREF ×(1+  
)
VREF :Internal reference voltage  
C5  
R4  
200-1k 0.1-0.33uF  
(0.8V ± 2%)  
Functional Pin Description  
BOOT (Pin 1)  
FB (Pin 6)  
Bootstrap supply pin for the upper gate driver. Connect  
the bootstrap capacitor between BOOT pin and the PHASE  
pin. The bootstrap capacitor provides the charge to turn  
on the upper MOSFET.  
Switcher feedback voltage. This pin is the inverting input  
of the error amplifier. FB senses the switcher output  
through an external resistor divider network.  
OPS (OCSET, POR and Shut-Down) (Pin 7)  
UGATE (Pin 2)  
This pin provides multi-function of the over-current setting,  
UGATE turn-on POR sensing, and shut-down features.  
Connecting a resistor (ROCSET) between OPS and  
PHASE pins sets the over-current trip point.  
Upper gate driver output. Connect to the gate of high-  
side powerN-Channel MOSFET. This pin is monitored by  
the adaptive shoot-through protection circuitry to  
determine when the upper MOSFET has turned off.  
Pulling the pin to ground resets the device and all external  
MOSFETs are turned off allowing the output voltage power  
rails to float.  
GND (Pin 3)  
Both signal and power ground for the IC. All voltage levels  
are measured with respect to this pin. Ties the pin directly  
to the low-side MOSFET source and ground plane with  
the lowest impedance.  
This pin is also used to detect VIN in power on stage and  
issues an internal POR signal.  
PHASE (Pin 8)  
Connect this pin to the source of the upper MOSFET and  
the drain of the lower MOSFET.  
LGATE (Pin 4)  
Lower gate drive output. Connect to the gate of low-side  
power N-Channel MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the lower MOSFET has turned off.  
NC [Exposed Pad (9)]  
No Internal Connection.  
VCC (Pin 5)  
Connect this pin to a well-decoupled 5V or 12V bias  
supply. It is also the positive supply for the lower gate  
driver, LGATE.  
DS9214-13 September 2007  
www.richtek.com  
2
RT9214  
Function Block Diagram  
VCC  
+
-
EN  
0.1V  
1.5V  
+
-
PH_M  
Power On  
Reset  
Bias & Regulators  
(3V_Logic & 3VDD_Analog)  
Reference  
0.8VREF  
3V  
+
-
Soft-Start  
&
Fault Logic  
40uA  
0.6V  
UV_S  
OPS  
-
+
OC  
0.4V  
+
-
BOOT  
UGATE  
PHASE  
+
EO  
+
-
Gate  
Control  
Logic  
GM  
-
FB  
VCC  
LGATE  
Oscillator  
(300kHz)  
GND  
www.richtek.com  
3
DS9214-13 September 2007  
RT9214  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------- 16V  
z BOOT, VBOOT - VPHASE------------------------------------------------------------------------------------ 16V  
z PHASE to GND  
DC------------------------------------------------------------------------------------------------------------- 5V to 15V  
< 200ns ------------------------------------------------------------------------------------------------------ 10V to 30V  
z BOOT to PHASE ------------------------------------------------------------------------------------------ 15V  
z BOOT toGND  
DC------------------------------------------------------------------------------------------------------------- 0.3V to VCC+15V  
< 200ns ------------------------------------------------------------------------------------------------------ 0.3V to 42V  
z UGATE ------------------------------------------------------------------------------------------------------- VPHASE - 0.3V to VBOOT + 0.3V  
z LGATE ------------------------------------------------------------------------------------------------------- GND - 0.3V to VVCC + 0.3V  
z Input, Output or I/O Voltage ----------------------------------------------------------------------------- GND-0.3V to 7V  
z Power Dissipation, PD @ TA = 25°C (Note 4)  
SOP-8 -------------------------------------------------------------------------------------------------------- 0.625W  
SOP-8 (Exposed Pad) ----------------------------------------------------------------------------------- 1.33W  
z Package Thermal Resistance  
SOP-8, θJA -------------------------------------------------------------------------------------------------- 160°C/W  
SOP-8 (Exposed Pad), θJA ------------------------------------------------------------------------------ 75°C/W  
z Junction Temperature ------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------- 260°C  
z Storage Temperature Range ---------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------ 2kV  
MM (Machine Mode) -------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------- 5V 5%,12V 10%  
z Junction Temperature Range---------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range---------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 5V/12V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max Units  
V
CC  
Supply Current  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
UGATE and LGATE Open  
--  
6
15  
mA  
I
CC  
--  
4.1  
0.5  
4.5  
--  
V
V
V
V
Rising  
= 12V  
CC  
CC  
CCRTH  
Hysteresis  
0.35  
V
CCHYS  
Switcher Reference  
Reference Voltage  
0.784 0.8 0.816  
V
V
V
REF  
To be continued  
DS9214-13 September 2007  
www.richtek.com  
4
RT9214  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max Units  
Oscillator  
Free Running Frequency  
Ramp Amplitude  
250  
--  
300  
1.5  
350  
--  
kHz  
f
V
V
= 12V  
OSC  
CC  
ΔV  
V
P-P  
= 12V  
OSC  
CC  
Error Amplifier (GM)  
E/A Transconductance  
Open Loop DC Gain  
--  
--  
0.2  
90  
--  
--  
ms  
dB  
g
m
A
O
PWM Controller Gate Drivers (VCC = 12V)  
V
V
V
V
V  
= 12V,  
= 6V  
BOOT  
PHASE  
Upper Gate Source  
0.6  
--  
1
4
--  
8
A
I
UGATE  
V  
UGATE  
PHASE  
PHASE  
V  
= 12V,  
= 1V  
BOOT  
Upper Gate Sink  
R
Ω
UGATE  
V  
UGATE  
PHASE  
Lower Gate Source  
Lower Gate Sink  
Dead Time  
0.6  
--  
1
3
--  
5
A
Ω
I
V
= 12V, V  
= 6V  
= 1V  
LGATE  
CC  
CC  
LGATE  
R
V
= 12V, V  
LGATE  
LGATE  
--  
--  
100  
ns  
T
DT  
Protection  
FB Under-Voltage Trip  
OC Current Source  
Soft-Start Interval  
FB Falling  
= 0V  
70  
35  
--  
75  
40  
80  
45  
--  
%
Δ
FBUVT  
SS  
I
V
μA  
ms  
OC  
PHASE  
3.5  
T
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
www.richtek.com  
5
DS9214-13 September 2007  
RT9214  
Typical Operating Characteristics  
(VOUT = 2.5V, unless otherwise specified )  
Efficiency vs. Output Current  
1
Efficiency vs. Output Current  
1
0.95  
0.9  
0.95  
0.9  
0.85  
0.8  
0.85  
0.8  
0.75  
0.7  
0.75  
0.7  
0.65  
0.65 VCC = 5V  
VCC = 12V  
V
IN = 5V  
VIN = 5V  
0.6  
0.6  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
Reference Voltage vs. Temperature  
Frequency vs. Temperature  
0.812  
0.81  
350  
330  
310  
290  
270  
250  
VCC = 12V  
VIN = 5V  
0.808  
0.806  
0.804  
0.802  
0.8  
0.798  
-40  
-10  
20  
50  
80  
110  
140  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
(°C)  
Temperature  
Temperature  
(°C)  
POR vs. Temperature  
VCC Switching  
4.75  
4.5  
Rising  
(100mV/Div)  
(10A/Div)  
VOUT  
IOUT  
4.25  
4
UGATE  
VCC  
Falling  
(20V/Div)  
(10V/Div)  
3.75  
3.5  
VCC = 12Vto 5V  
IOUT= 10A  
VIN = 5V  
-40  
-10  
20  
50  
80  
110  
140  
Time (10ms/Div)  
Temperature  
(°C)  
DS9214-13 September 2007  
www.richtek.com  
6
RT9214  
Power On  
VCC Switching  
(100mV/Div)  
(10A/Div)  
VOUT  
IOUT  
(500mV/Div)  
VOUT  
UGATE  
VCC  
(2A/Div)  
IOUT  
(20V/Div)  
(10V/Div)  
UGATE  
VCC = 5V to 12V  
IOUT= 10A, VIN = 5V  
(10V/Div)  
Time (500us/Div)  
Time (10ms/Div)  
Power Off  
Dead Time (Rising)  
VCC = VIN = 5V  
IOUT = 25A  
VCC  
(10V/Div)  
VOUT  
UGATE  
(2V/Div)  
(2V/Div)  
VIN  
PHASE  
LGATE  
(5V/Div)  
UGATE  
(10V/Div)  
IOUT = 2A  
Time (5ms/Div)  
Time (25ns/Div)  
Dead Time (Falling)  
Transient Response (Rising)  
VCC = 12V  
VIN = 5V  
IOUT= 25A  
UGATE  
(10V/Div)  
UGATE  
VOUT  
(100mV/Div)  
PHASE  
VCC = VIN = 12V  
IOUT= 0A to 15A  
(5V/Div)  
LGATE  
IL  
L = 2.2uH  
C = 2000uF  
(10A/Div)  
Freq. = 1/20ms, SR = 2.5A/us  
Time (10ns/Div)  
Time (5us/Div)  
www.richtek.com  
7
DS9214-13 September 2007  
RT9214  
Transient Response (Falling)  
L = 2.2uH  
C = 2000uF  
UGATE  
(10V/Div)  
VOUT  
(100mV/Div)  
VCC = VIN = 12V  
IOUT= 15A to 0A  
Freq. = 1/20ms  
SR = 2.5A/us  
IL  
(10A/Div)  
Time (25us/Div)  
DS9214-13 September 2007  
www.richtek.com  
8
RT9214  
Application Information  
Inductor Selection  
According to Figure 1 the ripple current of inductor can be  
calculated as follows :  
The selection of output inductor is based on the  
considerations of efficiency, output power and operating  
frequency. Low inductance value has smaller size, but  
results in low efficiency, large ripple current and high output  
ripple voltage. Generally, an inductor that limits the ripple  
current (ΔIL) between 20% and 50% of output current is  
appropriate. Figure 1 shows the typical topology of  
synchronous step-down converter and its related  
waveforms.  
ΔI  
VOUT  
D
V VOUT = L L ; Δt = ; D =  
IN  
Δt  
fs  
VOUT  
V × fs× ΔIL  
V
IN  
(1)  
L = (V VOUT )×  
IN  
IN  
Where :  
VIN = Maximum input voltage  
VOUT = Output Voltage  
Δt = S1 turn on time  
i
I
S1  
L
L
+
-
V
ΔIL = Inductor current ripple  
fS = Switching frequency  
D = Duty Cycle  
L
I
i
OUT  
C
i
S2  
+
S1  
V
+
r
OR  
-
C
V
R
V
S2  
IN  
L
OUT  
+
OC  
-
V
rC = Equivalent series resistor of output capacitor  
-
C
OUT  
Output Capacitor  
The selection of output capacitor depends on the output  
ripple voltage requirement. Practically, the output ripple  
voltage is a function of both capacitance value and the  
equivalent series resistance (ESR) rC. Figure 2 shows  
the related waveforms of output capacitor.  
T
S
T
V
V
T
g1  
ON OFF  
g2  
V
- V  
IN  
OUT  
di  
di  
L
dt  
V
-V  
V
L
IN OUT  
OUT  
L
i
L
=
=
L
dt  
V
L
I
- V  
OUT  
OUT  
T
S
i
i
L
C
I = I  
L
OUT  
1/2ΔI  
ΔI  
L
L
0
ΔI  
L
i
V
S1  
OC  
ΔV  
OC  
i
S2  
V
OR  
ΔI x r  
L
c
0
Figure 1. The waveforms of synchronous step-down  
converter  
t1  
t2  
Figure 2. The related waveforms of output capacitor  
www.richtek.com  
9
DS9214-13 September 2007  
RT9214  
The AC impedance of output capacitor at operating  
frequency is quite smaller than the load impedance, so  
the ripple current (ΔIL) of the inductor current flows mainly  
through output capacitor. The output ripple voltage is  
described as :  
ZOUT is the shut impedance at the output node to ground  
(see Figure 3 and Figure 4),  
V
GM  
OUT  
C
R
1
(2)  
(3)  
ΔVOUT = ΔVOR + ΔVOC  
C
2
1
t2  
1
ΔVOUT = ΔIL ×rc +  
ic dt  
t1  
CO  
1 VOUT  
8 COL  
ΔVOUT = ΔIL × ΔIL ×rc +  
(1D)TS2  
(4)  
Figure 3. A Type 2 error-amplifier with shut network to  
ground  
where ΔVOR is caused by ESR and ΔVOC by capacitance.  
For electrolytic capacitor application, typically 90 to 95%  
of the output voltage ripple is contributed by the ESR of  
output capacitor. So Equation (4) could be simplified as :  
V
OUT  
+
R
O
+
EA+  
EA-  
GM  
-
(5)  
ΔVOUT = ΔIL x rc  
Users could connect capacitors in parallel to get calculated  
ESR.  
Figure 4. Equivalent circuit  
Pole and Zero :  
1
Input Capacitor  
1
2π ×R C  
1 1  
The selection of input capacitor is mainly based on its  
maximum ripple current capability. The buck converter  
draws pulsewise current from the input capacitor during  
the on time of S1 as shown in Figure 1. The RMS value of  
ripple current flowing through the input capacitor is  
described as :  
F =  
P
; F =  
Z
2π ×R C  
1
2
We can see the open loop gain and the Figure 3 whole  
loop gain in Figure 5.  
(6)  
Irms = IOUT D(1D) (A)  
Open Loop, Unloaded Gain  
The input capacitor must be cable of handling this ripple  
current. Sometime, for higher efficiency the low ESR  
capacitor is necessarily.  
A
Closed Loop, Unloaded Gain  
F
F
Z
P
Gain = GMR1  
PWM Loop Stability  
B
RT9214 is a voltage mode buck converter using the high  
gain error amplifier with transconductance (OTA,  
Operational TransconductanceAmplifier).  
100  
1000 10k  
100k  
Frequency (Hz)  
The transconductance :  
Figure 5. Gain with the Figure 2 circuit  
dI  
OUT  
GM =  
dVm  
RT9214 internal compensation loop :  
The mid-frequency gain :  
GM = 0.2ms, R1=75kΩ, C1 = 2.5nF, C2 = 10pF  
dVOUT = dIOUTZOUT = GMdVINZOUT  
dVOUT  
G =  
= GMZOUT  
dV  
IN  
DS9214-13 September 2007  
www.richtek.com  
10  
RT9214  
OPS (Over Current Setting, VIN_POR and Shutdown)  
1.OCP  
Sense the low-side MOSFETs RDS(ON) to set over-current trip point.  
Connecting a resistor (ROCSET) from this pin to the source of the upper MOSFET and the drain of the lower MOSFET  
sets the over-current trip point. ROCSET, an internal 40μAcurrent source, and the lower MOSFET on resistance, RDS(ON)  
,
set the converter over-current trip point (IOCSET) according to the following equation :  
40uA × ROCSET 0.4V  
IOCSET =  
RDS(ON) of the lower MOSFET  
OPS pin function is similar to RC charging or discharging circuit, so the over-current trip point is very sensitive to  
parasitic capacitance (ex. shut-down MOSFET) and the duty ratio.  
Below Figures say those effect. And test conditions are Rocset = 15kΩ (over -current trip point = 20.6A), Low-side  
MOSFET is IR3707.  
OCP  
OCP  
UGATE  
(10V/Div)  
UGATE (10V/Div)  
I
(10A/Div)  
L
I
(10A/Div)  
L
OPS (200mV/Div)  
= 5V, VCC = 12V  
V
V
= 5V, VCC = 12V  
= 1.5V  
V
V
IN  
OUT  
IN  
OUT  
= 1.5V  
Time (5μs/Div)  
Time (5μs/Div)  
OCP  
OCP  
OPS  
(200mV/Div)  
UGATE (10V/Div)  
UGATE  
(10V/Div)  
I
(10A/Div)  
L
I
(10A/Div)  
L
V
= 12V, VCC = 12V  
= 1.5V  
IN  
V
V
= 12V, VCC = 12V  
IN  
V
OUT  
= 1.5V  
OUT  
Time (2.5μs/Div)  
Time (2.5μs/Div)  
www.richtek.com  
11  
DS9214-13 September 2007  
RT9214  
2. VIN_POR  
1) Mode 1 (SS< Vramp_valley)  
UGATE will continuously generate a 10kHz clock with  
1% duty cycle before VIN is ready. VIN is recognized ready  
by detecting VOPS crossing 1.5V four times (rising &  
falling). ROCSET must be kept lower than 37.5kΩ for large  
ROCSET will keep VOPS always higher than 1.5V. Figure 6  
shows the detail actions of OCP and POR. It is highly  
recommend-ed that ROCSET be lower than 30kΩ.  
Initially the COMP stays in the positive saturation. When  
SS< VRAMP_Valley, there is no non-inverting input available  
to produce duty width. So there is no PWM signal and  
VOUT is zero.  
2) Mode 2 (VRAMP_Valley< SS< Cross-over)  
When SS>VRAMP_Valley, SS takes over the non-inverting  
input and produce the PWM signal and the increasing  
duty width according to its magnitude above the ramp  
signal. The output follows the ramp signal, SS. However  
while VOUT increases, the difference between VOUT and  
SSE (SS VGS) is reduced and COMP leaves the  
saturation and declines. The takeover of SS lasts until it  
meets the COMP. During this interval, since the feedback  
path is broken, the converter is operated in the open loop.  
3V  
40uA  
R
OCSET  
PHASE  
-
+
OPS  
OC  
0.4V  
10pF  
Q2  
DISABLE  
+
-
Cparasitic  
1st 2nd3rd 4th  
OPS  
waveform  
3) Mode3 ( Cross-over< SS < VGS + VREF  
)
V
POR_H  
+
-
IN  
UGATE  
PHASE_M  
(1) Internal Counter will count (V  
> 1.5V)  
1.5V  
OPS  
When the Comp takes over the non-inverting input for PWM  
Amplifier and when SSE (SS VGS) < VREF, the output of  
the converter follows the ramp input, SSE (SS VGS).  
Before the crossover, the output follows SS signal. And  
when Comp takes over SS, the output is expected to follow  
SSE (SS VGS). Therefore the deviation of VGS is  
represented as the falling of VOUT for a short while. The  
COMP is observed to keep its decline when it passes the  
cross-over, which shortens the duty width and hence the  
falling of VOUT happens.  
four times (rising & falling) to recognize  
V
is ready.  
IN  
(2) R  
canbe set too large. Or canꢀ  
OCSET  
detect V is ready (counter = 1, not equal 4)  
IN  
Figure 6. OCP and VIN_POR actions  
3. Shutdown  
Pulling low the OPS pin by a small single transistor can  
shutdown the RT9214 PWM controller as shown in typical  
application circuit.  
Soft Start  
Since there is a feedback loop for the error amplifier, the  
outputs response to the ramp input, SSE (SS VGS) is  
lower than that in Mode 2.  
A built-in soft-start is used to prevent surge current from  
power supply input during power on. The soft-start voltage  
is controlled by an internal digital counter. It clamps the  
ramping of reference voltage at the input of error amplifier  
and the pulse-width of the output driver slowly. The typical  
soft-start duration is 3ms.  
4) Mode 4 (SS > VGS + VREF  
)
When SS > VGS + VREF, the output of the converter follows  
the desired VREF signal and the soft start is completed  
now.  
COMP  
V
RAMP_Valley  
Cross-over  
SS_Internal  
VCORE  
SSE_Internal  
DS9214-13 September 2007  
www.richtek.com  
12  
RT9214  
Under Voltage Protection  
placement layout and printed circuit design can minimize  
the voltage spikes induced in the converter. Consider, as  
an example, the turn-off transition of the upper MOSFET  
prior to turn-off, the upper MOSFET was carrying the full  
load current. During turn-off, current stops flowing in the  
upper MOSFET and is picked up by the low side MOSFET  
or schottky diode. Any inductance in the switched current  
path generates a large voltage spike during the switching  
interval. Careful component selections, layout of the  
critical components, and use shorter and wider PCB traces  
help in minimizing the magnitude of voltage spikes.  
The voltage at FB pin is monitored and protected against  
UV (under voltage). The UV threshold is the FB or FBL  
under 80%. UV detection has 15μs triggered delay. When  
OC is trigged, a hiccup restart sequence will be initialized,  
as shown in Figure 7 Only 4 times of trigger are allowed  
to latch off. Hiccup is disabled during soft-start interval,  
but UV_FB has some difference from OC, it will always  
trigger VIN power sensing after 4 times hiccup, as shown  
in Figure 8.  
COUNT = 1  
COUNT = 2  
COUNT = 3  
COUNT = 4  
There are two sets of critical components in a DC-DC  
converter using the RT9214. The switching power  
components are most critical because they switch large  
amounts of energy, and as such, they tend to generate  
equally large amounts of noise. The critical small signal  
components are those connected to sensitive nodes or  
those supplying critical bypass current.  
4V  
2V  
0V  
OVERLOAD  
APPLIED  
0A  
T0  
T1  
T2  
T3  
T4  
The power components and the PWM controller should  
be placed firstly. Place the input capacitors, especially  
the high-frequency ceramic decoupling capacitors, close  
to the power switches. Place the output inductor and  
output capacitors between the MOSFETs and the load.  
Also locate the PWM controller near by MOSFETs.  
TIME  
Figure 7. UV and OC trigger hiccup mode  
Power Off  
A multi-layer printed circuit board is recommended.  
UGATE  
FB  
(20V/Div)  
Figure 9 shows the connections of the critical components  
in the converter. Note that the capacitors CIN and COUT  
each of them represents numerous physical capacitors.  
Use a dedicated grounding plane and use vias to ground  
all critical components to this layer. Apply another solid  
layer as a power plane and cut this plane into smaller  
islands of common voltage levels. The power plane should  
support the input power and output power nodes. Use  
copper filled polygons on the top and bottom circuit layers  
for the PHASE node, but it is not necessary to oversize  
this particular island. Since the PHASE node is subjected  
to very high dV/dt voltages, the stray capacitance formed  
between these island and the surrounding circuitry will  
tend to couple switching noise. Use the remaining printed  
circuit layers for small signal routing. The PCB traces  
between the PWM controller and the gate of MOSFET  
and also the traces connecting source of MOSFETs should  
be sized to carry 2A peak currents.  
UV  
VIN Power  
Sensing  
(500mV/Div)  
VOUT  
VIN  
(2V/Div)  
(2V/Div)  
IOUT = 2A  
Time (10ms/Div)  
Figure 8, UV_FB trigger VIN power sensing  
PWM Layout Considerations  
MOSFETs switch very fast and efficiently. The speed with  
which the current transitions from one device to another  
causes voltage spikes across the interconnecting  
impedances and parasitic circuit elements. The voltage  
spikes can degrade efficiency and radiate noise, that results  
in over-voltage stress on devices. Careful component  
www.richtek.com  
13  
DS9214-13 September 2007  
RT9214  
IQ1  
IL  
V
5V/12V  
GND  
OUT  
Q1  
LOAD  
IQ2  
Q2  
VCC  
GND  
RT9214  
FB  
LGATE  
UGATE  
Figure 9. The connections of the critical components in the converter  
Below PCB gerber files are our test board for your reference :  
DS9214-13 September 2007  
www.richtek.com  
14  
RT9214  
According to our test experience, you must still notice two items to avoid noise coupling :  
1.The ground plane should not be separated.  
2.VCC rail adding the LC filter is recommended.  
www.richtek.com  
15  
DS9214-13 September 2007  
RT9214  
Outline Dimension  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.050  
5.791  
0.400  
5.004  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.200  
1.270  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.002  
0.228  
0.016  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
8-Lead SOP Plastic Package  
DS9214-13 September 2007  
www.richtek.com  
16  
RT9214  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
17  
DS9214-13 September 2007  

相关型号:

RT9214GS

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214GSP

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214PS

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9214PSP

5V/12V Synchronous Buck PWM DC-DC Controller
RICHTEK

RT9216B

VFM STEP UP DC/DC CONVERTER
ETC

RT9218

5V/12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218B

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218BGS

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218BPS

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218GS

5V/12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9218PS

5V/12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT922

RobuST, rail-to-rail, high output current dual operational amplifier
STMICROELECTR