RT9232B

更新时间:2024-09-18 06:39:41
品牌:RICHTEK
描述:Programmable Frequency Synchronous Buck PWM Controller

RT9232B 概述

Programmable Frequency Synchronous Buck PWM Controller 可编程频率同步降压PWM控制器

RT9232B 数据手册

通过下载RT9232B数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
RT9232B  
Programmable Frequency Synchronous Buck PWM Controller  
General Description  
Features  
Single IC Supply Voltage : 12V  
Single phase DC/DC Buck Converter with  
`High Output Current (up to 25A )  
`Low Output Voltage (down to 0.8V )  
`High Input Voltage (up to 12V )  
The RT9232B is a single-phase synchronous buck PWM  
DC-DC converter controller designed to drive two  
N- MOSFETs. It provides a highly accurate, programmable  
output voltage precisely regulated to low voltage  
requirement with an internal 0.8V ± ±1% reference.  
Operate from 12V, 5V or 3.3V Input  
0.8V ± 1% Internal Reference  
The RT9232B uses an external compensated, single  
feedback loop voltage mode PWM control for fast transient  
response. An oscillator with Programmable frequency  
(50kHz to 800kHz) reduces the external inductor and  
capacitor component size for saving PCB board area.  
Adaptive Non-Overlapping Gate Drivers  
Integrated High-Current, HV Gate Drivers  
External Programmable Soft Start  
External Programmable Frequency  
(Range : 50kHz to 800kHz, 200kHz Free Run )  
Provide Over Current Protection by Sensing  
MOSFET RDS(ON)  
The RT9232B provides fast transient response to satisfy  
high current output applications (up to 25A) while  
minimizing external components. It is suitable for high-  
performance graphic processors, DDR and VTT power.  
On/Off Control by Enable Pin  
Drives Two N-MOSFET  
The RT9232B integrates complete protect functions such  
as Soft Start, Output Enable, UVLO(under-voltage lockout)  
and OCP into a small 14-pin package.  
Full 0 to 100% Duty Cycle  
Fast Transient Response  
Voltage Mode PWM Control with External  
Feedback Loop Compensation  
Applications  
RoHS Compliant and 100% Lead (Pb)-Free  
System (Graphic, MB) with 12V Power.  
Graphic Cards (AGP 8X, 4X, PCI Express*16) :  
`High-Current for High-PerformanceGraphic Processors  
(GPU, VPU)  
Ordering Information  
RT9232B  
Package Type  
S : SOP-14  
`Middle Current for High-PerformanceGraphic Memory  
Power (DDR, DDR II)  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
`Low Current with Sink Capacity for High-Performance  
Graphic Memory Power (DDR/VTT)  
3.3V to 12V InputDC-DC Regulators  
Low VoltageDistributed Power Supplies  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Pin Configurations  
(TOP VIEW)  
14  
13  
12  
11  
10  
9
RT  
OCSET  
SS  
COMP  
FB  
VCC  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
2
3
4
PVCC  
LGATE  
PGND  
BOOT  
UGATE  
PHASE  
5
6
7
EN  
GND  
8
SOP-14  
DS9232B-03 March 2007  
www.richtek.com  
1
RT9232B  
Typical Application Circuit  
V
IN  
3.3V - 12V  
L1  
V
CC  
1uH  
CE0  
+
470uF  
R4  
3.01k  
D1  
R1  
1N4148  
C1  
2.2  
0.22uF  
14  
10  
2
C6  
10uF  
CE2  
C5  
CE1  
1000uF  
VCC  
BOOT  
OCSET  
0.1uF  
1000uF  
C3  
1nF  
13  
PVCC  
R5  
C2 0.22uF  
C
Q1  
9
0
UGATE  
IPD09N03LA  
3
1
0.1uF  
SS  
C4  
0.1uF  
L2  
2.2uH  
SS  
RT  
8
V
PHASE  
OUT  
R2  
51k  
R6  
V
R7  
2.2  
CE3 CE4  
C8  
C9  
C10  
CC  
0
6
7
4
12  
11  
EN  
Q2  
LGATE  
PGND  
FB  
R3  
10k  
C7  
1nF  
IPD06N03LA  
GND  
COMP  
5
0.1uF  
10uF  
2200uF 510uF 22uF  
RT9232B  
R9  
1k  
C11  
33pF  
R8  
15k  
R11  
1k  
C13  
C12  
10nF  
10nF  
R10  
562  
Functional Pin Description  
Pin No. Pin Name  
Pin Function  
Oscillator Frequency Setting  
1
2
3
4
5
6
7
RT  
OCSET  
SS  
Set Over Current Protection Triggering Level  
Soft Start Time Interval Setting  
Feedback Compensation  
COMP  
FB  
Voltage Feedback  
EN  
Chip Enable (Active High)  
GND  
IC Signal Reference Ground  
8
PHASE  
UGATE  
BOOT  
PGND  
LGATE  
PVCC  
VCC  
Return Path for Upper MOSFET  
Upper MOSFET Gate Drive  
Input Supply for Upper Gate Drive  
Power Ground  
9
10  
11  
12  
13  
14  
Lower MOSFET Gate Drive  
Input Supply for Lower Gate Drive  
Internal IC Supply (12V Bias)  
www.richtek.com  
2
DS9232B-03 March 2007  
RT9232B  
Function Block Diagram  
VCC EN  
Power-On  
Reset (POR)  
OCSET  
-
+
POR  
10uA  
Soft Start  
and  
Fault Logic  
SS  
200uA  
UV  
0.6V  
+
-
BOOT  
UGATE  
INHIBIT  
PHASE  
+
+
-
+
PWM  
Driver Logic  
EA  
FB  
-
+
0.8V  
Reference  
PVCC  
LGATE  
PGND  
GND  
COMP  
Oscillator  
RT  
Operation  
Startup  
OCP  
RT9232B initializes automatically after receiving both VCC  
and VIN power. Special power-on sequence is not  
necessary. The Power-On Reset (POR) function  
continually monitors input supply voltages and enable  
voltage. POR function monitors IC power via VCC pin and  
external MOSFET power via OCSET pin. Voltage on  
OCSET pin is a fixed voltage drop less than VIN. When  
voltages on VCC, OCSET, and EN pins exceed their  
thresholds, POR function initializes soft-start operation.  
POR inhibits driver operation while EN pin pulls low.  
Transitioning ENpin high after input supply voltages ready  
initializes soft-start operation.  
The OCP function monitors output current by using upper  
MOSFET RDS(ON). The OCP function cycles soft-start  
function in a hiccup mode. Overcurrent triggering level  
can be arbitrarily set by adjusting ROCSET.An Internal 200μA  
current sink makes a voltage drop across ROCSET from  
VIN. When VPHASE is lower than VOCSET, OCP function  
initializes soft-start cycles. The soft-start function  
discharges CSS with 10μAcurrent sink and disable PWM  
function. Then soft-start function recharges Css and PWM  
operation resumes. The soft-start hiccup restarts after  
SS voltage fully charges to 4V if the output short event  
still remains. The converter is shutdown permanently after  
3 times hiccup and only restarting supply voltages can  
enable the converter. The OCP funcion will be triggered  
as inductor current reach :  
Soft-Start  
After POR function releases soft-start operation, an internal  
10uAcurrent source charges an external capacitor on SS  
pin (Css) to 5V. Soft-start function clamps both COMP &  
FB pins to SS pin voltage & a fixed voltage drop less than  
SS pin voltage respectively. Thus upper MOSFET turns  
on at a limited duty and output current overshoot can be  
reduced. This method provides a rapid and controlled  
output voltage rise.  
IOCSET ×ROCSET  
IL(MAX)  
=
RDS(ON)  
DS9232B-03 March 2007  
www.richtek.com  
3
RT9232B  
To prevent OC form tripping in normal operation, ROCSET  
must be carefully chosen with :  
1. Maximum RDS(ON) at highest junction temperature  
2. MInimum IOCSET from specification table  
Δ
3. IL(MAX) > IOUT(MAX)  
+
IL /2  
Δ
IL = inductor ripple current  
Under Voltage Protection  
The under voltage protection function protects the converter  
from an shorted output by detecting the voltage on FB pin  
to monitor the output voltage. The UVP function cycles  
soft-start function in a hiccup mode. When output voltage  
lower than 75% of designated voltage, UVP function  
initializes soft-start cycles. The soft-start function  
discharges Css with 10μAcurrent sink and disable PWM  
operation. Then soft-start function recharges Css and  
PWM operation resumes. The soft-start hiccup restarts  
after SS voltage fully charges to 4V if the output short  
event still remains. The converter is shutdown permanently  
after 3 times hiccup and only restarting supply voltages  
can enable the converter.  
www.richtek.com  
4
DS9232B-03 March 2007  
RT9232B  
Absolute Maximum Ratings (Note 1)  
Supply Input Voltage, VCC, PVCC--------------------------------------------------------------------------- 15V  
PHASE to GND  
DC------------------------------------------------------------------------------------------------------------------- 5V to 15V  
< 200ns ------------------------------------------------------------------------------------------------------------ 10V to 30V  
BOOT to PHASE ------------------------------------------------------------------------------------------------ 15V  
BOOT toGND  
DC------------------------------------------------------------------------------------------------------------------- 0.3V to VCC+15V  
< 200ns ------------------------------------------------------------------------------------------------------------ 0.3V to 42V  
SS, FB, COMP, RT --------------------------------------------------------------------------------------------- 6V  
Input, Output or I/O Voltage ----------------------------------------------------------------------------------- GND0.3V to VCC+ 0.3V  
Package Thermal Resistance (Note 4)  
SOP-14, θJA ----------------------------------------------------------------------------------------------------- 100°C/W  
Lead Temperature (Soldering, 10 sec.) -------------------------------------------------------------------- 260°C  
Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
Storage Temperature Range---------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 150V  
Recommended Operating Conditions (Note 3)  
Supply Input Voltage, VCC ------------------------------------------------------------------------------------ 12V ± 10%  
Supply Voltage to Drain of Upper MOSFETs, VIN ------------------------------------------------------- 3.3V, 5V to 12V ± 10%  
Ambient Temperature Range --------------------------------------------------------------------------------- 40°C to 85°C  
Junction Temperature Range --------------------------------------------------------------------------------- 40°C to 125°C  
Electrical Characteristics  
(VCC = 12V, TA = 25°C, Unless otherwise specified.)  
Parameter  
Supply Current  
Symbol  
Min Typ. Max Units  
Test Conditions  
V
CC  
Nominal Supply Current  
--  
3
--  
mA  
I
EN = V , UGATE, LGATE open  
CC  
CC  
Power-On Reset (POR)  
V
Rising Threshold  
8.4  
--  
10.4  
V
V
V
V
V
V
V
V
= 4.5V  
= 4.5V  
CC_ON  
OCSET  
CC  
Power On Reset Hysteresis  
0.3  
--  
0.7  
1.5  
--  
--  
2
OCSET  
OCSET Rising Threshold for start up  
Enable Input Threshold (ON)  
Enable Input Threshold (OFF)  
Oscillator  
V
OCSET_ON  
--  
2
V
V
V
= 4.5V  
= 4.5V  
EN_ON  
OCSET  
0.8  
--  
--  
V
EN,_OFF  
OCSET  
RT9232B  
Free Running Frequency  
Variation  
170  
20  
--  
200  
--  
230  
20  
--  
kHz  
%
f
OSC  
6k < (RT to GND) < 200k  
Ramp Amplitude  
1.5  
ΔV  
V
P-P  
OSC  
To be continued  
DS9232B-03 March 2007  
www.richtek.com  
5
RT9232B  
Parameter  
Symbol  
Test Conditions  
Min  
Typ Max Units  
Reference  
Error Amplifier Reference Voltage  
0.792 0.8 0.808  
V
V
REF  
Error Amplifier  
DC gain  
--  
--  
--  
88  
15  
6
--  
--  
--  
dB  
Gain-Bandwidth product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP=10pF  
Soft Start  
External SS Source Current  
PWM Controller Gate Driver  
I
7
10  
--  
μA  
SS  
V
V
= 12V  
= 1V  
BOOT PHASE  
Upper Drive Source  
R
--  
5.2  
--  
Ω
UG_SC  
BOOT UGATE  
Upper Drive Sink  
Lower Drive Source  
Lower Drive Sink  
Driving Capability  
Upper Drive Source  
Upper Drive Sink  
Lower Drive Source  
Lower Drive Sink  
Protection  
R
R
R
V
V
V
= 1V  
= 1V  
--  
--  
--  
2.7  
3.5  
1.7  
--  
--  
--  
Ω
Ω
Ω
UG_SK  
LG_SC  
LG_SK  
BOOT PHASE  
PVCC LGATE  
= 1V  
LGATE  
I
I
I
I
V
V
V
V
= 12V  
--  
--  
--  
--  
1.0  
2.0  
1.6  
3.2  
--  
--  
--  
--  
A
A
A
A
UG_SC  
UG_SK  
LG_SC  
LG_SK  
BOOT UGATE  
= 12V  
= 12V  
UGATE PHASE  
PVCC LGATE  
= 12V  
LGATE GND  
OCSET Current Source  
I
V
= 11.5V  
170  
0.5  
--  
200  
0.6  
30  
230  
0.7  
--  
μA  
V
OCSET  
OCSET  
Under-Voltage Protection  
Under-Voltage Protection Delay  
FB Falling  
μs  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
www.richtek.com  
6
DS9232B-03 March 2007  
RT9232B  
Typical Operating Characteristics  
RRT vs. Oscillator Frequency  
Efficiency vs. Output Current  
10000  
1000  
100  
10  
100  
VOUT = 1.6V  
Pull high to VCC 12  
f = 300kHz  
90  
VIN = 3.3V  
VIN = 5V  
80  
VIN = 12V  
Pull down to GND  
70  
60  
50  
1
0
100  
200  
300  
400  
500  
600  
700  
0
5
10  
15  
20  
25  
Frequency (kHz)  
Output Current (A)  
Power On  
Power On  
SS  
SS  
(2V/Div)  
(2V/Div)  
VOUT  
VOUT  
(2V/Div)  
(2V/Div)  
EN  
EN  
(10V/Div)  
(10V/Div)  
IL  
COMP  
(1A/Div)  
(500mV/Div)  
Time (10ms/Div)  
Time (10ms/Div)  
Power On  
Power Off  
UGATE  
(20V/Div)  
LGATE  
(10V/Div)  
SS  
(2V/Div)  
VOUT  
(2V/Div)  
VOUT  
(500mV/Div)  
EN  
(10V/Div)  
IL  
IL  
(10A/Div)  
(1A/Div)  
Time (25ms/Div)  
Time (10μs/Div)  
DS9232B-03 March 2007  
www.richtek.com  
7
RT9232B  
Load Transient Response  
Load Transient Response  
UGATE  
UGATE  
(20V/Div)  
(20V/Div)  
LGATE  
LGATE  
(10V/Div)  
(10V/Div)  
VOUT  
(100mV/Div)  
VOUT  
(100mV/Div)  
IL  
IL  
(10A/Div)  
(10A/Div)  
Falling  
Rising  
Time (5μs/Div)  
Time (25μs/Div)  
Load Transient Response  
OCP  
UGATE  
(20V/Div)  
VOUT  
UGATE  
(5V/Div)  
(500mV/Div)  
VOUT  
(500mV/Div)  
LGATE  
(10V/Div)  
SS  
(5V/Div)  
IL  
IL  
(20A/Div)  
(10A/Div)  
Time (1ms/Div)  
Time (25ms/Div)  
Dead Time  
Dead Time  
Falling  
UGATE  
Rising  
UGATE  
PHASE  
PHASE  
UGATEPHASE  
LGATE  
UGATEPHASE  
(5/Div)  
(5/Div)  
LGATE  
Time (25ns/Div)  
Time (25ns/Div)  
www.richtek.com  
8
DS9232B-03 March 2007  
RT9232B  
VREF vs. Temperature  
FSW vs. Temperature  
230  
220  
210  
200  
190  
180  
170  
160  
150  
0.804  
0.803  
0.802  
0.801  
0.800  
0.799  
0.798  
0.797  
0.796  
0.795  
0.794  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
(°C)  
Temperature  
DS9232B-03 March 2007  
www.richtek.com  
9
RT9232B  
Application Information  
whichever is smaller dominates the behavior of the devices.  
During T0~T1, since SS is smaller than the sawtooth valley,  
the PWM comparator outputs low no matter what the  
COMP voltage is.  
The RT9232B is a single-phase synchronous buck PWM  
DC-DC controller designed to drive two N-MOSFETs. It  
provides a highly accurate, programmable output voltage  
precisely regulated to low voltage requirement with an  
internal 0.8V ± 1% reference.  
T1~T2  
SSE ramps up and dominates the behavior of EA during  
T1~T2. EA regulates COMP appropriately so that FB  
ramps up along the SSE curve. The output voltage ramps  
up accordingly. Thus upper MOSFET turns on at a limited  
duty and output current overshoot can be reduced.  
Initialization  
The RT9232B automatically initiates its softstart cycle  
only after VCC and VIN power and chip enabling signals  
are ready. There is no special power-on sequence should  
be took care especially while implement the chip in. The  
internal Power-On Reset (POR) logic continually monitors  
the voltage level of input power and enabling pin; in which  
the IC supply power is monitored via VCC pin and input  
power VIN is via OCSET pin. An internal current source  
with driving capability of 200uA causes a fixed voltage  
drop across the resistor connecting VIN to OCSET pin.  
The RT9232B internal logic will deem the input voltage  
ready once the voltage of OCSET pin is high than 1.5V.  
The preferred VIN ready level could be set by selecting an  
appropriate resistor ROCSET as :  
It is noted that lower MOSFET keeps off before the upper  
MOSFET starts switching. This method provides smooth  
start up when there is residual voltage on output capacitors.  
The output voltage delay time and ramp up time are  
calculated as Equation (1) and (2) respectively.  
0.8V × CSS  
(1)  
(2)  
T1T0 =  
T2 T1=  
(s)  
(s)  
10μA  
0.8V × CSS  
10μA  
V
1.5V  
200μA  
IN_READY  
R
<
Ω
SENSE  
SSE  
SS  
Once all voltages of VCC, OCSET, and EN pins ramp  
higher than the internal specific thresholds. The internal  
POR logic will initialize the softstart operation then.  
Moreover, the POR inhibits driver operation while pulling  
the ENpin low. Transitioning ENpin high after input supply  
voltages ready to initialize soft-start operation.  
FB  
COMP  
EA  
PWM  
0.8V  
SS  
Soft-Start  
5V  
SSE  
The behavior of RT9232B Soft-Start can be simply  
described as shown in Figure.1 below; and the Soft-Start  
can be sliced to several time-frames with specific operation  
respectively.  
COMP  
FB  
T0~T1  
0.8V  
T0  
T1  
T2  
The RT9232B initiates the softstart cycle as shown in  
Figure 1 when POR function is OK.An internal 10uAcurrent  
source charges an external capacitor on SS pin (Css) to  
5V. The softstart function produces an SSE signal that is  
equal to SS0.8V. Error Amplifier (EA) and PWM  
comparator are triple-input devices. The non-inverting input  
Figure 1. Timing diagram of softstart  
www.richtek.com  
10  
DS9232B-03 March 2007  
RT9232B  
Switching Frequency Setting  
Output Inductor Selection  
The default switching frequency is 200kHz when RT pin  
left open.Aresistor connected (RRT) from RT pin to ground  
increases the switching frequency as Equation (3).  
The selection of output inductor is based on the  
considerations of efficiency, output power and operating  
frequency. For a synchronous buck converter, the ripple  
current of inductor (ΔIL) can be calculated as follows :  
2.9×106  
RRT(Ω)  
(3) (RRT to GND)  
kHz  
fOSC = 200kHz +  
VOUT  
IN × fOSC ×L  
ΔIL = (VIN VOUT )×  
(5)  
V
Conversely, connecting a pull-up resistor (RRT) from RT pin  
reduces the switching frequency according to Equation (4)  
Generally, an inductor that limits the ripple current between  
20% and 50% of output current is appropriate. Make sure  
that the output inductor could handle the maximum output  
current and would not saturate over the operation  
temperature range.  
33×106  
RRT(Ω)  
(4) (RRT to VCC = 12V)  
kHz  
fOSC = 200kHz −  
Under Voltage Protection  
Output Capacitor Selection  
The under voltage protection is enabled when the RT9232B  
is activated and SS voltage is higher than 4V. The UVP  
function is specified for protecting the converter from an  
instant output short circuit during normal operation. The  
RT9232B continuously monitors the output voltage by  
detecting the voltage on FB pin. The UVP function is  
triggered and initiates the hiccup cycles when output  
voltage lower than 75% of designated voltage with a 30us  
delay.  
The output capacitors determine the output ripple voltage  
(ΔVOUT) and the initial voltage drop after a high slew-rate  
load transient. The selection of output capacitor depends  
on the output ripple requirement. The output ripple voltage  
is described as Equation (6).  
V
OUT  
1
8
(6)  
ΔV  
= ΔI ×ESR +  
×
(1D)  
OUT  
L
f2 ×L×C  
OUT  
OSC  
For electrolytic capacitor application, typically 90~95%  
of the output voltage ripple is contributed by the ESR of  
output capacitors. Paralleling lower ESR ceramic capacitor  
with the bulk capacitors could dramatically reduce the  
equivalent ESR and consequently the ripple voltage.  
Hiccup cycle turns off both upper and lower MOSFET first.  
An internal 10uA current sink discharges the softstart  
capacitor CSS. SS pin voltage ramps down linearly. When  
SS pin voltage touches 0V, hiccup cycle releases and  
normal softstart cycle takes over. When SS voltage is  
higher than 4V, the UVP function is enabled again. The  
hiccup cycle restarts if the output short event still remains.  
The converter is shutdown permanently after 3 times hiccup  
and only restarting supply voltages can enable the  
converter.  
Input Capacitor Selection  
Use mixed types of input bypass capacitors to control  
the input voltage ripple and switching voltage spike across  
the MOSFETs. The buck converter draws pulsewise  
current from the input capacitor during the on time of upper  
MOSFET. The RMS value of ripple current flowing through  
the input capacitor is described as :  
Note that triggering the POR function or EN will reset the  
hiccup counter. Make sure that VCC, EN and OCSET pin  
voltages are higher than their respective trip level when  
output short circuit occurs or the UVP function may not  
latch up the converter causing permanent damage to the  
converter.  
(7)  
IIN(RMS) = IOUT × D×(1D)  
The input bulk capacitor must be cable of handling this  
ripple current. Sometime, for higher efficiency the low ESR  
capacitor is necessarily. Appropriate high frequency  
ceramic capacitors physically near the MOSFETs  
effectively reduce the switching voltage spikes.  
Component Selection  
Components should be appropriately selected to ensure  
stable operation, fast transient response, high efficiency,  
minimum BOM cost and maximum reliability.  
DS9232B-03 March 2007  
www.richtek.com  
11  
RT9232B  
MOSFET Selection  
The break frequency FLC and FESR are expressed as  
Equation (10) and (11) respectively.  
The selection of MOSFETs is based upon the  
considerations of RDS(ON), gate driving requirements, and  
thermal management requirements. The power loss of  
upper MOSFET consists of conduction loss and switching  
loss and is expressed as :  
1
(10)  
(11)  
FP_LC  
=
2π LCOUT  
1
FZ_ESR  
=
2π ×ESR× COUT  
The compensation network consists of the error amplifier  
EAand the impedance networks ZIN and ZFB. The goal of  
the compensation network is to provide a closed loop  
transfer function with the highest DC gain, the highest  
0dB crossing frequency (FC) and adequate phase margin.  
Typically, FC in range 1/5~1/10 of switching frequency is  
adequate. The higher FC is, the faster dynamic response  
is.Aphase margin in the range of 45°C~ 60°C is desirable.  
PUPPER = PCOND_UPPER + PSW_UPPER  
(8)  
= I2OUT ×RDS(ON) ×D + IOUT  
1
2
× VIN ×(TRISE + TFALL )× fOSC  
where TRISE and TFALL are rising and falling time of VDS of  
upper MOSFET respectively. RDS(ON) and QG should be  
simultaneously considered to minimize power loss of upper  
MOSFET.  
The equations below relate the compensation network’s  
poles, zeros and gain to the components (R1, R2, R3,  
C1, C2, and C3) in Figure 2.  
The power loss of lower MOSFET consists of conduction  
loss, reverse recovery loss of body diode, and conduction  
loss of body diode and is expressed as :  
P
= P  
+ P + P  
DIODE  
(9)  
LOWER  
COND_LOWER  
RR  
1
(12)  
(13)  
(14)  
FZ1  
FZ2  
=
=
2π ×R2× C1  
= I2  
×R  
×(1-D) + Q × V × f  
OUT  
DS(ON)  
RR  
OSC  
IN  
OSC  
1
1
I
2π ×(R1+ R3)× C3  
+
× V × T  
× f  
OUT  
F
DIODE  
2
1
where TDIODE is the conducting time of lower body diode.  
FP1  
=
=
C1× C2  
C1+ C2  
2π ×R2×  
Special control scheme is adopted to minimize body diode  
conducting time. As a result, the RDS(ON) loss dominates  
the power loss of lower MOSFET. Use MOSFET with  
adequate RDS(ON) to minimize power loss and satisfy  
thermal requirements.  
1
(15)  
FP2  
2π ×R3× C3  
V
IN  
OSC  
Driver  
Driver  
PWM  
Comparator  
L
V
Feedback Compensation  
OUT  
-
ΔV  
OSC  
PHASE  
C
+
Figure 2 highlights the voltage-mode control loop for a  
synchronous buck converter. Figure 3 shows the  
corresponding Bode plot. The output voltage (VOUT) is  
regulated to the reference voltage. The error amplifier EA  
output (COMP) is compared with the oscillator (OSC)  
sawtooth wave to provide a pulse-width modulated (PWM)  
wave with an amplitude of VIN at the PHASE node. The  
PWM wave is smoothed by the output filter (L and COUT).  
OUT  
ESR  
Z
FB  
V
E/A  
-
Z
IN  
EA  
+
REF  
Z
V
FB  
C2  
OUT  
Z
IN  
C1  
C3  
R2  
R3  
The modulator transfer function is the small-signal transfer  
function of VOUT/COMP. This function is dominated by a  
DC gain and the output filter (L and COUT), with a double  
pole break frequency at FP_LC and a zero at FZ_ESR. The  
DC gain of the modulator is simply the input voltage (VIN)  
R1  
COMP  
FB  
-
EA  
+
REF  
divided by the peak-to-peak oscillator voltage ΔVOSC  
.
Figure 2  
www.richtek.com  
12  
DS9232B-03 March 2007  
RT9232B  
of high-side MOSFET. The MOSFETs of linear regulator  
should have wide pad to dissipate the heat. In multilayer  
PCB, use one layer as power ground and have a separate  
control signal ground as the reference of the all signal. To  
avoid the signal ground is effect by noise and have best  
load regulation, it should be connected to the ground  
terminal of output. Furthermore, follows below guidelines  
can get better performance of IC :  
100  
80  
F
F
F
F
P2  
Z1 Z2  
P1  
60  
40  
20  
0
Open Loop Error  
AMP Gain  
20LOG  
(R1/R2)  
20LOG  
(V /ΔV  
)
IN  
OSC  
Compensation  
Gain  
Modulator  
Gain  
-20  
(1). The IC needs a bypassing ceramic capacitor as a R-C  
filter to isolate the pulse current from power stage  
and supply to IC, so the ceramic capacitor should be  
placed adjacent to the IC.  
Closed Loop Gain  
-40  
-60  
F
F
LC  
ESR  
10  
100  
1K  
10K  
100K  
1M  
10M  
Frequency (Hz)  
(2). Place the high frequency ceramic decoupling close  
to the power MOSFETs.  
Figure 3  
Feedback Loop Design Procedure  
(3). The feedback part should be placed as close to IC as  
possible and keep away from the inductor and all noise  
sources.  
Use these guidelines for locating the poles and zeros of  
the compensation network :  
(4). The components of bootstraps should be closed to  
each other and close to MOSFETs.  
1. Pick Gain (R2/R1) for desired 0dB crossing frequency  
(FC).  
2. Place 1ST zero FZ1 below modulator's double pole FLC  
(~75% FLC).  
(5).The PCB trace from Ug and Lg of controller to  
MOSFETs should be as short as possible and can  
carry 1A peak current.  
3. Place 2ND zero FZ2 at modulator's double pole FLC.  
4. Place 1ST pole FZ1 at the ESR zero FZ_ESR.  
5. Place 2ND pole FZ2 at half the switching frequency.  
6. Check gain against error amplifier's open-loop gain.  
7. Pick RFB for desired output voltage.  
(6). Place all of the components as close to IC as possible.  
8. Estimate phase margin and repeat if necessary.  
Layout Consideration  
Layout is very important in high frequency switching  
converter design. If designed improperly, the PCB could  
radiate excessive noise and contribute to the converter  
instability. First, place the PWM power stage components.  
Mount all the power components and connections in the  
top layer with wide copper areas. The MOSFETs of Buck,  
inductor, and output capacitor should be as close to each  
other as possible. This can reduce the radiation of EMI  
due to the high frequency current loop. If the output  
capacitors are placed in parallel to reduce the ESR of  
capacitor, equal sharing ripple current should be  
considered. Place the input capacitor directly to the drain  
DS9232B-03 March 2007  
www.richtek.com  
13  
RT9232B  
Outline Dimension  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
8.534  
3.810  
1.346  
0.330  
1.194  
0.178  
0.102  
5.791  
0.406  
8.738  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.198  
1.270  
0.336  
0.150  
0.053  
0.013  
0.047  
0.007  
0.004  
0.228  
0.016  
0.344  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
14Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
14  
DS9232B-03 March 2007  

RT9232B 相关器件

型号 制造商 描述 价格 文档
RT9232BGS RICHTEK Programmable Frequency Synchronous Buck PWM Controller 获取价格
RT9232BPS RICHTEK Programmable Frequency Synchronous Buck PWM Controller 获取价格
RT9232GS RICHTEK Programmable Frequency Synchronous Buck PWM Controller 获取价格
RT9232PS RICHTEK Programmable Frequency Synchronous Buck PWM Controller 获取价格
RT9232_07 RICHTEK Programmable Frequency Synchronous Buck PWM Controller 获取价格
RT9233 ETC 4 BIT PROGRAMMABLE SYNCHRONOUS PWM BUCK CONVERTER CONTROLLER 获取价格
RT9233-CS ETC 4 BIT PROGRAMMABLE SYNCHRONOUS PWM BUCK CONVERTER CONTROLLER 获取价格
RT9233-MS ETC 4 BIT PROGRAMMABLE SYNCHRONOUS PWM BUCK CONVERTER CONTROLLER 获取价格
RT9237 ETC MULTI-PHASE DC/DC CONTROLLER FOR CPU CORE POWER SUPPLY 获取价格
RT9237A ETC 获取价格

RT9232B 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6