RT9259PQV [RICHTEK]

12V Synchronous Buck PWM DC-DC and Linear Power Controller; 12V同步降压PWM DC -DC和线性电源控制器
RT9259PQV
型号: RT9259PQV
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

12V Synchronous Buck PWM DC-DC and Linear Power Controller
12V同步降压PWM DC -DC和线性电源控制器

控制器
文件: 总15页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9259  
12V Synchronous Buck PWM DC-DC and  
Linear Power Controller  
General Description  
Features  
z Single 12V Bias Supply  
The RT9259 is a dual-channelDC/DC controller specifically  
designed to deliver high quality power where 12V power  
source is available. This part consists of a synchronous  
buck controller and an LDO controller. The synchronous  
buck controller integrates MOSFET drivers that support  
12V+12V bootstrapped voltage for high efficiency power  
conversion. The bootstrap diode is built-in to simplify the  
circuit design and minimize external part count. The LDO  
controller drives an external N-MOSFET for lower power  
requirement.  
z Support Dual Channel Power Conversion  
`One Synchronous Rectified Buck PWM Controller  
`One Linear Controller  
z Both Controllers Drive Low Cost N-MOSFETs  
z Adjustable Frequency from 150kHz to 1MHz  
and Free-Run Frequency at 230kHz  
z Small External Component Count  
z Output Voltage Regulation  
`PWM Controller : 1% Accuracy  
`LDO Controller : 2% Accuracy  
Other features include adjustable operation frequency,  
internal soft start, under voltage protection, over current  
protection and shut down function. With the above  
functions, this part provides customers a compact, high  
efficiency, well-protected and cost-effective solution. This  
part comes to VQFN-16L 4x4, SOP14 and SSOP-16  
packages.  
z Two Internal VREF Power Support Lower to 0.8V  
z Adjustable External Compensation  
z Linear Controller Drives N-MOSFET Pass  
Transistor  
z Fully-Adjustable Outputs  
z Under Voltage Protection for Both Outputs  
z Over Current Fault Monitor on MOSFET; No Current  
Sense Resistor is Required.  
Ordering Information  
RT9259  
z RoHS Compliant and 100% Lead (Pb)-Free  
Package Type  
Applications  
S : SOP-14  
A : SSOP-16  
z Graphic CardGPU, Memory Core Power  
z Graphic Card Interface Power  
z Motherboard,Desktop and Servers Chipset and Memory  
Core Power  
QV : VQFN-16 4x4 (V-Type)  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
z IA Equipments  
Note :  
z Telecomm Equipments  
Richtek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
z High PowerDC-DC Regulators  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
Marking Information  
For marking information, contact our sales representative  
directly or through a Richtek distributor located in your  
area, otherwise visit our website for detail.  
DS9259-03T00 August 2007  
www.richtek.com  
1
RT9259  
Pin Configurations  
(TOP VIEW)  
16  
15  
14  
13  
12  
11  
10  
9
UGATE  
PHASE  
PGND  
LGATE  
NC  
BOOT  
BOOT  
RT_DIS  
COMP  
FB  
14  
13  
12  
11  
10  
9
UGATE  
PHASE  
PGND  
LGATE  
NC  
RT_DIS  
COMP  
FB  
2
3
4
5
6
7
8
16 15 14 13  
2
3
4
12 PGND  
COMP  
FB  
1
2
3
4
11  
LGATE  
DRV  
FBL  
10 NC  
DRV  
FBL  
DRV  
FBL  
GND  
5
6
7
17  
NC  
VCC12  
VCC12  
NC  
9
NC  
VCC12  
GND  
GND  
5
6
7
8
8
SOP-14  
SSOP-16  
VQFN-16L 4x4  
Typical Application Circuit  
V
+12V  
CC  
V
IN1  
+3.3V/+ V  
5 /+12V  
C
RT9259  
IN  
V
IN2  
BOOT  
+5V to +12V  
UGATE  
PHASE  
LGATE  
PGND  
Q1  
L
OUT  
1
VCC12  
DRV  
Q3  
V
OUT1  
V
OUT2  
FBL  
Q2  
C
OUT  
C
OUT2  
RT_DIS  
GND  
FB  
NC  
NC  
COMP  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
RT9259S RT9259A RT9259PQV  
Bootstrap supply for the upper gate driver. Connect the  
bootstrap capacitor between BOOT pin and the PHASE pin.  
The bootstrap capacitor provides the charge to turn on the  
upper MOSFET.  
1
1
15  
BOOT  
Connect a resistor from RT_DIS to GND to set frequency. In  
2
3
4
5
2
3
4
5
16  
1
RT_DIS addition, if this pin is pulled down towards GND, it will disable  
both regulator outputs until released.  
Buck converter external compensation. This pin is used to  
compensate the control loop of the buck converter.  
COMP  
Buck converter feedback voltage. This pin is the inverting input  
2
FB  
of the PWM error amplifier. FB senses the switcher output  
through an external resistor divider network.  
Connect this pin to the gate of an external MOSFET. This pin  
provides the drive for the linear regulators pass MOSFET.  
3
DRV  
To be continued  
www.richtek.com  
2
DS9259-03T00 August 2007  
RT9259  
Pin No.  
Pin Name  
Pin Function  
RT9259S RT9259A  
RT9259PQV  
4
Linear regulator feedback voltage. This pin is the inverting  
input of the LDO error amplifier and protection monitor.  
Connect this pin to an external resistor divider network of  
the linear regulator.  
6
6
FBL  
7
8
7, 8  
5
7
GND  
Ground.  
Connect this pin to a well-decoupled 12V bias supply. It is  
also the positive supply for the lower gate driver, LGATE.  
9, 10  
VCC12  
6, 8, 9, 10,  
Exposed Pad (17)  
9, 10  
11, 12  
NC  
No Internal Connection.  
Lower gate driver output. Connect to the gate of the  
low-side power N-MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the lower MOSFET has turned off.  
11  
12  
13  
13  
14  
15  
11  
12  
13  
LGATE  
PGND  
Power ground return for the lower gate driver.  
Connect this pin to the source of the upper MOSFET and  
the drain of the lower MOSFET. This pin is monitored by the  
adaptive shoot-through protection circuitry to determine  
when the upper MOSFET has turned off.  
PHASE  
Connect this pin to a well-decoupled 12V bias supply. It is  
also the positive supply for the lower gate driver, LGATE.  
14  
16  
14  
UGATE  
Function Block Diagram  
VCC12  
Power  
On Reset  
5V  
Regulator  
Voltage  
Reference  
Bias  
5VDD  
V
0.4V  
REF2  
POR  
-
FBL  
40uA  
+
-
0.4V  
OC  
+
VCC12  
Soft-Start  
-
-
&
R
+
+
DRV  
OCSET  
+
Fault Logic  
20k  
Inhibit  
SSE  
PH_M  
-
1.5V  
+
BOOT  
UGATE  
PHASE  
Shutdown  
Oscillator  
SSE  
+
+
-
+
-
EA  
Driver  
Logic  
V
REF1  
PWM  
LGATE  
PGND  
RT_DIS  
GND  
COMP  
FB  
DS9259-03T00 August 2007  
www.richtek.com  
3
RT9259  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------- 15V  
z PHASE to GND  
DC------------------------------------------------------------------------------------------------------------- 5V to 15V  
< 200ns ------------------------------------------------------------------------------------------------------ 10V to 30V  
z BOOT to PHASE ------------------------------------------------------------------------------------------ 15V  
z BOOT toGND  
DC------------------------------------------------------------------------------------------------------------- 0.3V to VCC+15V  
< 200ns ------------------------------------------------------------------------------------------------------ 0.3V to 42V  
z UGATE ------------------------------------------------------------------------------------------------------- VPHASE 0.3V to VBOOT + 0.3V  
z LGATE ------------------------------------------------------------------------------------------------------- GND 0.3V to VCC + 0.3V  
z DRV ---------------------------------------------------------------------------------------------------------- GND 0.3V to VCC + 0.3V  
z Input, Output or I/O Voltage ----------------------------------------------------------------------------- GND 0.3V to 7V  
z PowerDissipation, PD @ TA = 25°C  
SOP-14 ------------------------------------------------------------------------------------------------------ 1.000W  
SSOP-16 ---------------------------------------------------------------------------------------------------- 0.909W  
VQFN-16L 4x4 --------------------------------------------------------------------------------------------- 1.852W  
z Package Thermal Resistance (Note 4)  
SOP-14, θJA ------------------------------------------------------------------------------------------------- 100°C/W  
SSOP-16, θJA ----------------------------------------------------------------------------------------------- 110°C/W  
VQFN-16L 4x4, θJA ---------------------------------------------------------------------------------------- 54°C/W  
z Junction Temperature ------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------- 260°C  
z Storage Temperature Range ---------------------------------------------------------------------------- 40°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ------------------------------------------------------------------------------ 2kV  
MM (Machine Mode) -------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VCC -------------------------------------------------------------------------------------- 12V 10%  
z Junction Temperature Range---------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range---------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 12V, TA = 25°C unless otherwise specified)  
Parameter  
Supply Input  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Power Supply Voltage  
Power On Reset  
V
--  
8.8  
0.4  
--  
12  
9.6  
0.78  
3
15  
10.4  
1.2  
--  
V
V
CC  
V
VCC Rising  
VCCRTH  
Power On Reset Hysteresis  
Power Supply Current  
V
V
VCCHYS  
VCC  
I
UGATE, LGATE Open  
mA  
To be continued  
www.richtek.com  
4
DS9259-03T00 August 2007  
RT9259  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
Oscillator  
Free Running Frequency  
Ramp Amplitude  
f
R
= 110kΩ  
RT  
250  
--  
300  
1.6  
350  
--  
kHz  
V
OSC  
Reference Voltage  
PWM Error Amplifier Reference  
Linear Driver Reference  
Error Amplifier  
V
V
0.792  
0.784  
0.8  
0.8  
0.808  
0.816  
V
V
REF1  
REF2  
DC Gain  
70  
6
88  
15  
6
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/us  
C
= 5pF  
LOAD  
3
Gate Driver  
V
V
V  
= 12V,  
= 1V  
BOOT  
PHASE  
Upper Drive Source  
R
--  
4
8
Ω
UGATE  
V  
BOOT  
UGATE  
Upper Drive Sink  
Lower Drive Source  
Lower Drive Sink  
Protection  
R
R
R
V
V
V
= 1V  
--  
--  
--  
4
4
2
8
6
4
Ω
Ω
Ω
UGATE  
LGATE  
LGATE  
UGATE  
– V  
= 1V  
CC  
LGATE  
= 1V  
LGATE  
Under Voltage Protection  
Soft-Start Time Interval  
Over Current Threshold  
RT_DIS Shutdown Threshold  
Linear Regulator  
0.36  
2
0.4  
3
0.45  
4
V
ms  
mV  
V
V
UVP  
T
SS  
--  
-400  
0.4  
--  
V
OC  
0.35  
--  
Output High Voltage  
Output Low Voltage  
Source Current  
9.5  
--  
10.3  
0.1  
--  
--  
1
V
V
V
V
DRV  
DRV  
2
--  
--  
mA  
mA  
I
I
DRVSR  
Sink Current  
0.5  
--  
DRVSC  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a high effective 4-layers 2S2P thermal conductivity test board  
of JEDEC 51-7 thermal measurement standard.  
DS9259-03T00 August 2007  
www.richtek.com  
5
RT9259  
Typical Operating Characteristics  
Dead Time  
Dead Time  
No Load, Falling  
No Load, Rising  
UGATE  
UGATE  
VIN1  
VIN1  
PHASE  
LGATE  
PHASE  
(5V/Div)  
(5V/Div)  
LGATE  
Time (25ns/Div)  
Time (25ns/Div)  
OCP  
Power Off  
No Load  
UGATE  
VOUT1  
(10V/Div)  
(10V/Div)  
(2V/Div)  
VREF  
IL  
LGATE  
(0.5A/Div)  
IL  
(10A/Div)  
(200mV/Div)  
Time (2.5ms/Div)  
Time (5μs/Div)  
Start Up  
Shut Down  
Full Load  
No Load  
VIN1  
UGATE  
(20V/Div)  
(5V/Div)  
LGATE  
VOUT1  
RT_Dis  
(10V/Div)  
(500mV/Div)  
(500mV/Div)  
PHASE  
VOUT1  
(10V/Div)  
RT_Dis  
(1V/Div)  
(500mV/Div)  
Time (1ms/Div)  
Time (5μs/Div)  
www.richtek.com  
6
DS9259-03T00 August 2007  
RT9259  
Start Up  
Start Up  
No Load  
ILOAD = 20A  
RT_Dis  
ILOAD  
(2.5A/Div)  
(500mV/Div)  
(500mV/Div)  
VOUT1  
VOUT1  
(500mV/Div)  
Time (1ms/Div)  
Time (1ms/Div)  
Transient Response  
Transient Response  
UGATE  
VOUT  
(20V/Div)  
(100mV/Div)  
(20V/Div)  
(100mV/Div)  
VOUT1  
UGATE  
IL  
IL  
VIN1 = 12V, VOUT1 = 2V  
VIN1 = 12V, VOUT1 = 2V  
LOAD = 1A to 20A  
(10A/Div)  
(10A/Div)  
ILOAD = 20A to 1A  
I
Time (2.5μs/Div)  
Time (10μs/Div)  
Transient Response  
Under Voltage Protection  
LDO  
VIN2 = 12V, VOUT2 = 2.5V  
LOAD = 1A to 100mA  
VIN2 = 0V  
LDO  
I
LGATE  
UGATE  
(2mV/Div)  
(10V/Div)  
(20V/Div)  
VOUT2  
IL  
COMP  
VOUT2  
(500mV/Div)  
(1V/Div)  
(0.5A/Div)  
Time (100μs/Div)  
Time (10ms/Div)  
DS9259-03T00 August 2007  
www.richtek.com  
7
RT9259  
Application Information  
Introduction  
When let open, the free running frequency is 230kHz  
typically. Figure 1 shows the operation frequency vs. RRT  
for quick reference.  
The RT9259 is a dual-channelDC/DC controller specifically  
designed to deliver high quality power where 12V power  
source is available. This part consists of a synchronous  
buck controller and an LDO controller. The synchronous  
buck controller integrates internal MOSFET drivers that  
support 12V+12V bootstrapped voltage for high efficiency  
power conversion. The bootstrap diode is built-in to simplify  
the circuit design and minimize external part count. The  
LDO controller drives an external N-MOSFET for lower  
power requirement.  
1400  
1200  
1000  
800  
600  
400  
200  
0
Internal 5VDD Regulator  
It is highly recommended to power the RT9259 with well-  
decoupled 12V to VCC12 pin. VCC12 powers the RT9259  
control circuit, low side gate driver and bootstrap circuit for  
high side gate driver. A bootstrap diode is embedded to  
facilitates PCB design and reduce the total BOM cost. No  
external Schottky diode is required. The RT9259 integrates  
MOSFET gate drives that are powered from the VCC12  
pin and support 12V + 12V driving capability. Converters  
that consist of RT9259 feature high efficiency without  
special consideration on the selection of MOSFETs.  
10  
100  
1000  
R
RT ((kΩ))  
Figure 1. RT vs. fsw at Low Frequency  
Shorting the RT_DIS pin to GND with an external signal-  
level MOSFET shuts down the device. This allows flexible  
power sequence control for specified application. The  
RT_DIS pin threshold voltage is 0.4V typically.  
An internal linear regulator regulates VCC12 input to a  
5VDDvoltage for internal control logic circuit. No external  
bypass capacitor is required for filtering the 5VDDvoltage.  
This further facilitates PCB design and reduces the total  
BOM cost.  
VIN1 Detection  
The RT9259 continuously generates a 10kHz pulse train  
with 1μs pulse width to turn on the upper MOSFET for  
detecting the existence of VIN1 after VCC12V POR and  
RT_DIS enabled as shown in Figure 2. PHASE pin voltage  
is monitored during the detection duration.  
Power On Reset  
If the PHASE voltage crosses 1.5V four times, VIN1  
existence is recognized and the RT9259 initiates its soft  
start cycle as described in next section.  
The RT9259 automatically initializes upon applying input  
power (at the VCC12) pin. The power on reset function  
(POR) continually monitors the input bias supply voltage  
at the VCC12 pin. The VCC12V POR level is typically  
9.6V at VCC12V rising.  
V
POR_H  
PHASE  
+
-
IN1  
PHASE_M  
1.5V  
UGATE  
Frequency Setting and Shut Down  
1st 2nd 3rd4th  
PHASE  
waveform  
Internal Counter will count (V  
four times (rising & falling) to recognize  
Connecting a resistor RRT from the RT_DIS pin to GND  
sets the operation frequency. The relation can be roughly  
expressed in the equation.  
> 1.5V)  
PHASE  
V
is ready.  
IN1  
7700  
Figure 2  
f
230kHz +  
(kHz)  
OSC  
R
RT  
www.richtek.com  
8
DS9259-03T00 August 2007  
RT9259  
Soft Start for Synchronous Buck Converter  
VIN1 = 12V to 0V  
A built-in soft-start is used to prevent surge current from  
power supply input during power on (referring to the  
Functional BlockDiagram). The error amplifier EAis a three-  
input device. SSE or VREF1 whichever is smaller dominates  
the behavior non-inverting input. The internal soft start  
voltage SSE linearly ramps up to about 4V after VIN1  
existence is recognized with about 2ms delay. According,  
the output voltage ramps up smoothly to its target level.  
The rise time of output voltage is about 2ms as shown in  
Figure 3. VREF1 takes over the behavior EA when SSE >  
UGATE  
(20V/Div)  
FB  
(500mV/Div)  
VOUT  
(20V/Div)  
Time (10ms/Div)  
VREF1  
.
Figure 4. UVP triggered by FB  
SSE is also used for LDO soft start. LDO input voltage  
VIN2 MUST be ready before SSE starts to ramp up.  
Otherwise UVP function of LDO may be triggered and shut  
down the RT9259.  
VIN2 = 0V  
LGATE  
(10V/Div)  
UGATE  
(20V/Div)  
RT_DIS  
(500mV/Div)  
COMP  
(500mV/Div)  
UGATE  
(20V/Div)  
VOUT1  
(500mV/Div)  
VOUT1  
(1V/Div)  
LGATE  
(10V/Div)  
Time (10ms/Div)  
Time (1ms/Div)  
Figure 5. UVP hiccups triggered by FBL  
Figure 3 : Start up by RT_DIS  
Over Current Protection  
The RT9259 senses the current flowing through lower  
MOSFET for over current protection (OCP) by sensing the  
PHASE pin voltage as shown in the Functional Block  
Diagram.A40uAcurrent source flows through internal 20kΩ  
ROCSET to PHASE pin causes 0.8V voltage drop across  
the resistor. OCP is triggered if the voltage at PHASE pin  
(drop of lower MOSFETVDS) is lower than 0.4V when low  
side MOSFET conducting. Accordingly inductor current  
threshold for OCP is a function of conducting resistance  
of lower MOSFET RDS(ON) as :  
Under Voltage Protection  
The voltages at FB and FBL pin are monitored for under  
voltage protection (UVP) after the soft start is completed.  
UVP is triggered if one of the feedback voltages is under  
(50% x VREFX) with a 30us delay. As shown in Figure 4,  
the RT9259 PWM controller is shut down when VFB drops  
lower than the UVP threshold. In Figure 5, the RT9259  
shuts down after 4 time UVP hiccups triggered by FBL.  
40μA ×R  
(20kΩ)- 0.4V  
DS(ON)  
OCSET  
0.4V  
DS(ON)  
I
=
=
OCSET  
R
R
DS9259-03T00 August 2007  
www.richtek.com  
9
RT9259  
If MOSFET with RDS(ON) = 16mΩ is used, the OCP  
threshold current is about 25A. Once OCP is triggered,  
the RT9259 enters hiccup mode and re-soft starts again.  
The RT9259 shuts down after 4 time OCP hiccups.  
A well-designed compensator regulates the output voltage  
to the reference voltage VREF with fast transient response  
and good stability.  
In order to achieve fast transient response and accurate  
output regulation, an adequate compensator design is  
necessary. The goal of the compensation network is to  
provide adequate phase margin (greater than 45 degrees)  
and the highest 0dB crossing frequency. It is also  
recommended to manipulate loop frequency response that  
its gain crosses over 0dB at a slope of 20dB/dec.  
V
IN  
OSC  
Driver  
Driver  
PWM  
Inductor Current  
(20A/Div)  
Comparator  
L
V
OUT  
-
+
ΔV  
OSC  
PHASE  
C
Time (2.5ms/Div)  
OUT  
ESR  
Figure 6. Shorted then Start Up  
Z
FB  
COMP  
-
Z
IN  
EA  
+
IL  
REF  
(20A/Div)  
Z
V
FB  
C2  
C1  
OUT  
Z
IN  
C3  
R2  
R3  
LGATE  
(5V/Div)  
R1  
COMP  
FB  
-
UGATE  
(5V/Div)  
EA  
+
REF  
Time (5μs/Div)  
Figure 8. Closed Loop  
1) Modulator Frequency Equations  
Figure 7. Shorted then Start Up (Extended Figure 3)  
Feedback Compensation  
The modulator transfer function is the small-signal transfer  
function of VOUT/VCOMP (output voltage over the error  
amplifier output. This transfer function is dominated by a  
DC gain, a double pole, and a zero as shown in Figure 10.  
The DC gain of the modulator is the input voltage (VIN)  
divided by the peak to peak oscillator voltage VOSC. The  
output LC filter introduces a double pole, 40dB/decade  
gain slope above its corner resonant frequency, and a total  
phase lag of 180 degrees. The resonant frequency of the  
The RT9259 is a voltage mode controller. The control loop  
is a single voltage feedback path including a compensator  
and modulator as shown Figure 8. The modulator consists  
of the PWM comparator and power stage. The PWM  
comparator compares error amplifier EA output (COMP)  
with oscillator (OSC) sawtooth wave to provide a pulse-  
width modulated (PWM) with an amplitude of VIN at the  
PHASE node. The PWM wave is smoothed by the output  
filter LOUT and COUT. The output voltage (VOUT) is sensed  
and fed to the inverting input of the error amplifier.  
LC filter expressed as :  
1
f
LC  
=
2π L  
× C  
OUT  
OUT  
www.richtek.com  
10  
DS9259-03T00 August 2007  
RT9259  
The ESR zero is contributed by the ESR associated with  
the output capacitance. Note that this requires that the  
output capacitor should have enough ESR to satisfy stability  
requirements. The ESR zero of the output capacitor  
but often jeopardize the system stability. In order to cancel  
one of the LC filter poles, place the zero before the LC  
filter resonant frequency. In the experience, place the zero  
at 75% LC filter resonant frequency. Crossover frequency  
should be higher than the ESR zero but less than 1/5 of  
the switching frequency. The second pole is placed at half  
the switching frequency.  
expressed as follows :  
1
f
=
ESR  
2π × C  
×ESR  
OUT  
2) Compensation Frequency Equations  
Thermal Considerations  
The compensation network consists of the error amplifier  
and the impedance networks ZC and ZF as shown in  
Figure 9.  
For continuous operation, do not exceed absolute  
maximum operation junction temperature 125°C. The  
maximum power dissipation depends on the thermal  
resistance of IC package, PCB layout, the rate of  
surroundings airflow and temperature difference between  
junction to ambient. The maximum power dissipation can  
be calculated by following formula :  
Z
F
C1  
Z
C
C2  
R2  
R1  
V
OUT  
PD(MAX) = ( TJ(MAX) TA ) / θJA  
FB  
Where TJ(MAX) is the maximum operation junction  
temperature 125°C, TAis the ambient temperature and the  
θJA is the junction to ambient thermal resistance.  
-
EA  
+
COMP  
R
F
V
REF  
For recommended operating conditions specification of  
RT9259, where TJ(MAX) is the maximum junction  
temperature of the die (125°C) and TA is the maximum  
ambient temperature. The junction to ambient thermal  
resistance θJA is layout dependent. For VQFN-16L 4x4  
packages, the thermal resistance θJA is 54°C/W on the  
standard JEDEC 51-7 four-layers thermal test board.  
Figure 9. Compensation Loop  
1
f
=
Z1  
2π x R2 x C2  
1
fP1  
=
C1x C2  
C1+ C2  
2π x R2 x  
80
60  
Loop Gain  
The maximum power dissipation at TA = 25°C can be  
calculated by following formula :  
40
20  
Compensation  
Gain  
PD(MAX) = ( 125°C 25°C ) / 54°C/W = 1.852 W for  
QFN-16L 4x4 packages  
0
PD(MAX) = ( 125°C 25°C) / 100°C/W = 1.000 W for  
SOP-14 packages  
Modulator  
Gain  
-20  
PD(MAX) = ( 125°C 25°C ) / 110°C/W = 0.909 W for  
-40  
SSOP-16 packages  
10  
-60  
100k  
1M  
100  
1k  
10k  
The maximum power dissipation depends on operating  
ambient temperature for fixedTJ (MAX) and thermal resistance  
θJA. For RT9259 packages, the Figure 11 of derating curves  
allows the designer to see the effect of rising ambient  
temperature on the maximum power allowed.  
Frequency (Hz)  
Figure 10. Bode Plot  
Figure 10 shows theDC-DC converter's gain vs. frequency.  
The compensation gain uses external impedance networks  
ZC and ZF to provide a stable, high bandwidth loop. High  
crossover frequency is desirable for fast transient response,  
DS9259-03T00 August 2007  
www.richtek.com  
11  
RT9259  
2
1.75  
1.5  
The power components and the PWM controller should  
be placed firstly. Place the input capacitors, especially the  
high-frequency ceramic decoupling capacitors, close to the  
power switches. Place the output inductor and output  
capacitors between the MOSFETs and the load.Also locate  
the PWM controller near by MOSFETs.Amulti-layer printed  
circuit board is recommended. Figure 12 shows the  
connections of the critical components in the converter.  
Note that the capacitors CIN and COUT each of them  
represents numerous physical capacitors.  
4-Layers PCB  
QFN-16L 4x4  
1.25  
SOP-14  
1
SSOP-16  
0.75  
0.5  
0.25  
0
Use a dedicated grounding plane and use vias to ground  
all critical components to this layer. Apply another solid  
layer as a power plane and cut this plane into smaller islands  
of common voltage levels. The power plane should support  
the input power and output power nodes. Use copper filled  
polygons on the top and bottom circuit layers for the PHASE  
node, but it is not necessary to oversize this particular  
island. Since the PHASE node is subjected to very high  
dV/dt voltages, the stray capacitance formed between  
these islands and the surrounding circuitry will tend to couple  
switching noise. Use the remaining printed circuit layers  
for small signal routing. The PCB traces between the PWM  
controller and the gate of MOSFET and also the traces  
connecting source of MOSFETs should be sized to carry  
2A peak currents.  
0
25  
50  
75  
100  
125  
Ambient Temperature  
(°C)  
Figure 11.Derating Curves for RT9259 Packages  
PCB Layout Considerations  
MOSFETs switch very fast and efficiently. The speed with  
which the current transitions from one device to another  
causes voltage spikes across the interconnecting  
impedances and parasitic circuit elements. The voltage  
spikes can degrade efficiency and radiate noise, that results  
in over-voltage stress on devices. Careful component  
placement layout and printed circuit design can minimize  
the voltage spikes induced in the converter. Consider, as  
an example, the turn-off transition of the upper MOSFET  
prior to turn-off, the upper MOSFET was carrying the full  
load current. During turn-off, current stops flowing in the  
upper MOSFET and is picked up by the low side MOSFET  
or schottky diode.  
IQ1  
IL  
V
5V/12V  
GND  
OUT  
Q1  
LOAD  
IQ2  
Q2  
Any inductance in the switched current path generates a  
large voltage spike during the switching interval. Careful  
component selections, layout of the critical components,  
and use shorter and wider PCB traces help in minimizing  
the magnitude of voltage spikes.  
VCC  
GND  
RT9259  
FB  
LGATE  
UGATE  
There are two sets of critical components in a DC-DC  
converter using the RT9259. The switching power  
components are most critical because they switch large  
amounts of energy, and as such, they tend to generate  
equally large amounts of noise. The critical small signal  
components are those connected to sensitive nodes or  
those supplying critical bypass current.  
Figure 12. The connections of the critical components in  
the converter  
www.richtek.com  
12  
DS9259-03T00 August 2007  
RT9259  
Outline Dimension  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
8.534  
3.810  
1.346  
0.330  
1.194  
0.178  
0.102  
5.791  
0.406  
8.738  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.198  
1.270  
0.336  
0.150  
0.053  
0.013  
0.047  
0.007  
0.004  
0.228  
0.016  
0.344  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
14Lead SOP Plastic Package  
DS9259-03T00 August 2007  
www.richtek.com  
13  
RT9259  
c
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
1.753  
0.254  
Min  
Max  
0.069  
0.010  
A
A1  
A2  
b
1.346  
0.102  
0.053  
0.004  
1.499  
0.635  
0.059  
0.025  
0.203  
0.178  
4.801  
0.305  
0.254  
5.004  
0.008  
0.007  
0.189  
0.012  
0.010  
0.197  
C
D
e
E
5.791  
3.810  
0.406  
6.198  
3.988  
1.270  
0.228  
0.150  
0.016  
0.244  
0.157  
0.050  
E1  
L
16-Lead SSOP Plastic Package  
www.richtek.com  
14  
DS9259-03T00 August 2007  
RT9259  
SEE DETAIL A  
D
D2  
L
1
E
E2  
1
2
1
2
e
b
DETAILA  
A
A3  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.800  
0.000  
0.175  
0.250  
3.950  
2.000  
3.950  
2.000  
1.000  
0.050  
0.250  
0.380  
4.050  
2.450  
4.050  
2.450  
0.031  
0.000  
0.007  
0.010  
0.156  
0.079  
0.156  
0.079  
0.039  
0.002  
0.010  
0.015  
0.159  
0.096  
0.159  
0.096  
D
D2  
E
E2  
e
0.650  
0.026  
L
0.500  
0.600  
0.020  
0.024  
V-Type 16L QFN 4x4 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9259-03T00 August 2007  
www.richtek.com  
15  

相关型号:

RT9259PS

12V Synchronous Buck PWM DC-DC and Linear Power Controller
RICHTEK

RT9261

VFM Step-up DC/DC Converter
RICHTEK

RT9261-15CB

VFM Step-up DC/DC Converter
RICHTEK

RT9261-15CX

VFM Step-up DC/DC Converter
RICHTEK

RT9261-15GB

VFM Step-Up DC/DC Converter
RICHTEK

RT9261-15GX

VFM Step-Up DC/DC Converter
RICHTEK

RT9261-15PB

VFM Step-Up DC/DC Converter
RICHTEK

RT9261-15PX

VFM Step-Up DC/DC Converter
RICHTEK

RT9261-16CB

VFM Step-up DC/DC Converter
RICHTEK

RT9261-16CX

VFM Step-up DC/DC Converter
RICHTEK

RT9261-16GB

VFM Step-Up DC/DC Converter
RICHTEK

RT9261-16GX

VFM Step-Up DC/DC Converter
RICHTEK