RT9618 [RICHTEK]

Synchronous-Rectified Buck MOSFET Drivers; 同步整流降压MOSFET驱动器
RT9618
型号: RT9618
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Synchronous-Rectified Buck MOSFET Drivers
同步整流降压MOSFET驱动器

驱动器
文件: 总12页 (文件大小:434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9618/A  
Synchronous-Rectified Buck MOSFET Drivers  
General Description  
Features  
z Drives Two N-Channel MOSFETs  
z Adaptive Shoot-Through Protection  
z Embedded Boot Strapped Diode  
z Support High Switching Frequency  
z Fast Output Rise Time  
The RT9618/A is a high frequency, dual MOSFET driver  
specifically designed to drive two power N-Channel  
MOSFETs in a synchronous-rectified buck converter  
topology. This driver combined with Richteks series of  
Multi-Phase Buck PWM controller form a complete core-  
voltage regulator solution for advanced micro-processors.  
z Small SOP-8 Package  
z Tri-State Input for Bridge Shutdown  
z Supply Under Voltage Protection  
z Upper MOSFET Direct Shorted Protection  
z RoHS Compliant and 100% Lead (Pb)-Free  
The RT9618/A drives both the lower/upper gate in a  
synchronous-rectifier bridge with 12V. This drive-voltage  
flexibility provides the advantage of optimizing applications  
involving trade-offs between switching losses and  
conduction losses.  
Applications  
RT9618Ahas longer UGATE/LGATE deadtime which can  
drive the MOSFETs with large gate RC value, avoiding the  
shoot-through phenomenon. RT9618 is targeted to drive  
low gate RC MOSFETs and performs better efficiency.  
z Core Voltage Supplies forDesktop, Motherboard CPU  
z High Frequency Low ProfileDC-DC Converters  
z High Current Low VoltageDC-DC Converters  
The output drivers in the RT9618/A can efficiently switch  
power MOSFETs at frequency up to 500kHz. Switching  
frequency above 500kHz has to take into account the  
thermal dissipation of SOP-8 package. RT9618/A is  
capable to drive a 3nF load with a 30ns rise time. RT9618/  
A implements bootstrapping on the upper gate with an  
external capacitor and an embedded diode. This reduces  
implementation complexity and allows the use of higher  
performance, cost effectiveN-Channel MOSFETs.Adaptive  
shoot-through protection is integrated to prevent both  
MOSFETs from conducting simultaneously.  
Ordering Information  
RT9618/A  
Package Type  
S : SOP-8  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
Long Dead Time  
Short Dead Time  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Pin Configurations  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
(TOP VIEW)  
BOOT  
PWM  
OD  
8
7
6
5
UGATE  
PHASE  
PGND  
2
3
4
VCC  
LGATE  
SOP-8  
DS9618/A-04 March 2007  
www.richtek.com  
1
RT9618/A  
Typical Application Circuit  
L1  
2.2uH  
ATX_12V  
V
IN  
C12  
1000uF  
C8  
10uF  
C9  
10uF  
C10  
1000uF  
C11  
1000uF  
C13  
10uF  
C14  
10uF  
C2  
1uF  
R2  
1
D1  
1
R1  
10  
R3  
2.2  
BOOT  
8
4
ATX_12V  
VCC  
Q1  
Q2  
UGATE  
C1  
1uF  
L2  
1uH  
RT9618/A  
V
CORE  
C7  
7
5
PHASE  
LGATE  
3
2
OD  
PWM  
+5V  
R5  
2.2  
R4  
0
C4  
2200uF  
C5  
2200uF  
C6  
10uF  
PWM  
10uF  
C3  
3.3nF  
PGND  
6
Functional Pin Description  
Pin No. Pin Name  
Pin Function  
1
2
BOOT  
PWM  
Floating bootstrap supply pin for upper gate drive.  
Input PWM signal for controlling the driver.  
Output Disable. When low, both UGATE and LGATE are driven low and the normal  
operation is disabled.  
3
OD  
4
5
6
VCC  
+12V Supply Voltage.  
LGATE  
PGND  
Lower Gate Drive Output. Connected to gate of low-side power N-Channel MOSFET.  
Common Ground.  
Connected this pin to the source of the high-side MOSFET and the drain of the low-side  
MOSFET.  
7
8
PHASE  
UGATE  
Upper Gate Drive Output. Connected to gate of high-side power N-Channel MOSFET.  
www.richtek.com  
2
DS9618/A-04 March 2007  
RT9618/A  
Function Block Diagram  
VCC  
POR  
Internal  
5V  
R
BOOT  
Input  
Disable  
PWM  
Shoot-Through  
Protection  
UGATE  
R
Turn Off Detect  
PHASE  
OD  
VCC  
Shoot-Through  
Protection  
LGATE  
PGND  
Timing Diagram  
PWM  
t
pdlLGATE  
90%  
LGATE  
UGATE  
t
pdlUGATE  
2V  
2V  
90%  
2V  
t
2V  
t
pdhUGATE  
pdhLGATE  
DS9618/A-04 March 2007  
www.richtek.com  
3
RT9618/A  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------- 0.3V to 15V  
z BOOT to PHASE ----------------------------------------------------------------------------------------- 0.3V to 15V  
z BOOT toGND  
DC------------------------------------------------------------------------------------------------------------ 0.3V to VCC + 15V  
< 200ns ----------------------------------------------------------------------------------------------------- 0.3V to 42V  
z PHASE to GND  
DC------------------------------------------------------------------------------------------------------------ 5V to 15V  
< 200ns ----------------------------------------------------------------------------------------------------- 10V to 30V  
z LGATE  
DC------------------------------------------------------------------------------------------------------------ GND 0.3V to VCC + 0.3V  
< 200ns ----------------------------------------------------------------------------------------------------- 2V to VCC + 0.3V  
z UGATE ------------------------------------------------------------------------------------------------------ VPHASE 0.3V to VBOOT + 0.3V  
< 200ns ----------------------------------------------------------------------------------------------------- VPHASE 2V to VBOOT + 0.3V  
z PWM Input Voltage -------------------------------------------------------------------------------------- GND 0.3V to 7V  
z OD------------------------------------------------------------------------------------------------------------ GND 0.3V to 7V  
z PowerDissipation, PD @ TA = 25°C  
z SOP-8 ------------------------------------------------------------------------------------------------------- 0.625W  
z Package Thermal Resistance (Note 4)  
SOP-8, θJA ------------------------------------------------------------------------------------------------- 160°C/W  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------- 40°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------- 12V 10%  
z Junction Temperature Range--------------------------------------------------------------------------- 0°C to 125°C  
z Ambient Temperature Range--------------------------------------------------------------------------- 0°C to 70°C  
Electrical Characteristics  
(Recommended Operating Conditions, TA = 25°C unless otherwise specified)  
Parameter  
Supply Voltage  
Symbol  
Test Conditions  
Min  
7.3  
--  
Typ  
--  
Max Units  
V
CC  
Power Supply Voltage  
Supply Current  
13.5  
2.5  
V
V
CC  
V
CC  
Power Supply Current  
1
mA  
I
V
= 12V, PWM = 0V  
VCC  
BOOT  
Power-On Reset  
5.5  
--  
6.4  
2.2  
7.3  
--  
POR Threshold  
Hysteresis  
V
V
V
V
CC  
Rising  
VCCrth  
V
VCChys  
To be continued  
www.richtek.com  
4
DS9618/A-04 March 2007  
RT9618/A  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
PWM Input  
Maximum Input Current  
PWM Floating Voltage  
PWM Rising Threshold  
PWM Falling Threshold  
Output Disable Input  
OD Rising Threshold  
OD Hysteresis  
PWM = 0V or 5V  
--  
--  
300  
2.4  
3.6  
1.3  
--  
--  
μA  
V
I
PWM  
V
V
CC  
= 12V  
PWMfl  
3.2  
1.1  
3.9  
1.5  
V
V
PWMrth  
PWMfth  
V
V
1.5  
--  
1.8  
0.5  
2.1  
--  
V
V
V
V
ODrth  
ODhys  
Timing  
UGATE Rise Time  
UGATE Fall Time  
LGATE Rise Time  
LGATE Fall Time  
t
t
t
t
V
V
V
V
= 12V, 3nF load  
= 12V, 3nF load  
= 12V, 3nF load  
= 12V, 3nF load  
--  
--  
--  
--  
--  
--  
--  
--  
--  
27  
32  
35  
27  
20  
90  
15  
20  
8
35  
45  
45  
38  
--  
ns  
ns  
ns  
ns  
rUGATE  
fUGATE  
rLGATE  
fLGATE  
CC  
CC  
CC  
CC  
RT9618  
t
pdhUGATE  
V
V  
= 12V  
BOOT  
PHASE  
RT9618A  
--  
See Timing Diagram  
Propagation Delay  
ns  
t
t
t
--  
pdlUGATE  
pdhLGATE  
pdlLGATE  
RT9618/A  
--  
See Timing Diagram  
--  
Output  
UGATE Drive Source  
UGATE Drive Sink  
LGATE Drive Source  
LGATE Drive Sink  
R
R
R
R
V
V
V
V
V  
V  
= 12V  
= 12V  
--  
--  
--  
--  
1.9  
1.4  
1.9  
1.1  
3
3
Ω
Ω
Ω
Ω
UGATEsr  
UGATEsk  
LGATEsr  
LGATEsk  
BOOT  
PHASE  
BOOT  
PHASE  
= 12V  
= 12V  
3
CC  
CC  
2.2  
Note 1. Stresses listed as the above Absolute Maximum Ratingsmay cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational  
sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may  
remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
DS9618/A-04 March 2007  
www.richtek.com  
5
RT9618/A  
Typical Operating Characteristics  
High side MOSFET : FR3707Z x 1, Low side MOSFET : LR8113 x 2  
Drive Enable  
Drive Disable  
OD  
(2V/Div)  
OD  
(2V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
LGATE  
(10V/Div)  
LGATE  
(10V/Div)  
PHASE  
(10V/Div)  
PHASE  
(10V/Div)  
No Load  
No Load  
Time (1μs/Div)  
Time (1μs/Div)  
PWM to Drive Waveform  
PWM to Drive Waveform  
PWM  
(5V/Div)  
PWM  
(5V/Div)  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
LGATE  
(10V/Div)  
LGATE  
(10V/Div)  
PHASE  
(10V/Div)  
PHASE  
(10V/Div)  
No Load  
No Load  
Time (25ns/Div)  
Time (25ns/Div)  
Dead Time  
Dead Time  
30A/CH  
UGATE  
30A/CH  
UGATE  
PHASE  
PHASE  
LGATE  
(5V/Div)  
(5V/Div)  
LGATE  
Time (20ns/Div)  
Time (20ns/Div)  
www.richtek.com  
6
DS9618/A-04 March 2007  
RT9618/A  
Dead Time  
Dead Time  
No Load  
UGATE  
No Load  
UGATE  
PHASE  
LGATE  
PHASE  
LGATE  
(5V/Div)  
(5V/Div)  
Time (20ns/Div)  
Time (20ns/Div)  
Short Pulse  
Internal Diode I-V Curve  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
IOUT = 119A to 24A  
UGATE  
PHASE  
LGATE  
(5V/Div)  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
Voltage (V)  
Time (20ns/Div)  
DS9618/A-04 March 2007  
www.richtek.com  
7
RT9618/A  
Application Information  
The RT9618/Ais designed to drive both high side and low  
side N-Channel MOSFET through externally input PWM  
control signal. It has power-on protection function which  
held UGATE and LGATE low before VCC up across the  
rising threshold voltage. After the initialization, the PWM  
signal takes the control. The rising PWM signal first forces  
the LGATE signal turns low then UGATE signal is allowed  
to go high just after a non-overlapping time to avoid shoot-  
through current. The falling of PWM signal first forces  
UGATE to go low. When UGATE and PHASE signal reach  
a predetermined low level, LGATE signal is allowed to turn  
high.  
Also to prevent the overlap of the gate drives during LGATE  
turn low and UGATE turn high, the non-overlap circuit  
monitors the LGATE voltage. When LGATE go below 1.2V,  
UGATE is allowed to go high.  
Driving Power MOSFETs  
The DC input impedance of the power MOSFET is  
extremely high. When Vgs at 12V (or 5V), the gate draws  
the current only few nano-amperes. Thus once the gate  
has been driven up to "ON" level, the current could be  
negligible.  
However, the capacitance at the gate to source terminal  
should be considered. It requires relatively large currents  
to drive the gate up and down 12V (or 5V) rapidly. It also  
required to switch drain current on and off with the required  
speed. The required gate drive currents are calculated as  
follows.  
The PWM signal is acted as "High" if above the rising  
threshold and acted as "Low" if below the falling threshold.  
Any signal level enters and remains within the shutdown  
window is considered as "tri-state", the output drivers are  
disabled and both MOSFET gates are pulled and held  
low. If left the PWM signal floating, the pin will be kept  
around 2.4V by the internal divider and provide the PWM  
controller with a recognizable level. OD pin will also  
shutdown the bridge of tied to GND.  
D1  
L
d1  
s1  
V
V
OUT  
IN  
Cgs1  
Cgd1  
Cgd2  
Cgs2  
d2  
Igs1  
Igd1  
Ig1  
The RT9618/A typically operates at frequency of 200kHz  
to 500kHz. It shall be noted that to place a 1N4148 or  
schottky diode between the VCC and BOOT pin as shown  
in the typical application circuit for ligher efficiency.  
Ig2 Igd2  
Igs2  
g1  
g2  
D2  
s2  
GND  
V
g1  
Non-overlap Control  
V
+12V  
PHASE  
To prevent the overlap of the gate drives during the UGATE  
turn low and the LGATE turn high, the non-overlap circuit  
monitors the voltages at the PHASE node and high side  
gate drive (UGATE-PHASE). When the PWM input signal  
goes low, UGATE begins to turn low (after propagation  
delay). Before LGATE can turn high, the non-overlap  
protection circuit ensures that the monitored voltages have  
gone below 1.2V. Once the monitored voltages fall below  
1.2V, LGATE begins to turn high. For short pulse condtion,  
if the PHASE pin had not gone high after LGATE turns  
low, the LGATE has to wait for 200ns before turn high. By  
waiting for the voltages of the PHASE pin and high side  
gate drive to fall below 1.2V, the non-overlap protection  
circuit ensures that UGATE is low before LGATE turns  
high.  
t
t
V
g2  
12V  
Figure 1. Equivalent Circuit andAssociated Waveforms  
In Figure 1, the current Ig1 and Ig2 are required to move the  
gate up to 12V. The operation consists of charging Cgd  
and Cgs. Cgs1 and Cgs2 are the capacitances from gate to  
source of the high side and the low side power MOSFETs,  
respectively. In general data sheets, the Cgs is referred as  
"Ciss" which is the input capacitance. Cgd1 and Cgd2 are the  
capacitances from gate to drain of the high side and  
www.richtek.com  
8
DS9618/A-04 March 2007  
RT9618/A  
the low side power MOSFETs, respectively and referred to  
the data sheets as "Crss" the reverse transfer capacitance.  
For example, tr1 and tr2 are the rising time of the high side  
and the low side power MOSFETs respectively, the required  
the total current required from the gate driving source is  
(9)  
Ig1 = Igs1 +Igd1 = (1.428 + 0.326) = 1.754 (A)  
Ig2 = Igs2 +Igd2 = (0.88 + 0.4) = 1.28 (A)  
(10)  
current Igs1 and Igs2 are showed below :  
,
By a similar calculation, we can also get the sink current  
required from the turned off MOSFET.  
Cgs1×12  
dVg1  
dt  
Igs1 = Cgs1  
=
(1)  
(2)  
tr1  
Cgs1×12  
dVg2  
dt  
Select the Bootstrap Capacitor  
Igs2 = Cgs1  
=
tr2  
Figure 2 shows part of the bootstrap circuit of RT9618/A.  
The VCB (the voltage difference between BOOTand PHASE  
on RT9618/A) provides a voltage to the gate of the high  
side power MOSFET. This supply needs to be ensured  
that the MOSFET can be driven. For this, the capacitance  
CB has to be selected properly. It is determined by following  
constraints.  
Before driving the gate of the high side MOSFET up to  
12V (or 5V), the low side MOSFET has to be off; and the  
high side MOSFET is turned off before the low side is  
turned on. From Figure 1, the body diode "D2" had been  
turned on before high side MOSFETs turned on.  
dV  
dt  
12V  
tr1  
(3)  
Igd1 = Cgd1  
= Cgd1  
V
IN  
1N4148  
V
CC  
Before the low side MOSFET is turned on, the Cgd2 have  
been charged to VIN. Thus, as Cgd2 reverses its polarity  
and g2 is charged up to 12V, the required current is  
BOOT  
+
C
UGATE  
PHASE  
B
V
CB  
-
dV  
dt  
Vi+12V  
(4)  
I
= C  
= C  
gd2  
gd2  
gd2  
t
V
r2  
CC  
LGATE  
PGND  
It is helpful to calculate these currents in a typical case.  
Assume a synchronous rectified buck converter, input  
voltage VIN = 12V, Vg1 = Vg2 = 12V. The high side MOSFET  
is PHB83N03LT whose Ciss = 1660pF, Crss = 380pF, and  
tr = 14ns. The low side MOSFET is PHB95N03LT whose  
Ciss = 2200pF, Crss = 500pF and tr= 30ns, from the equation  
(1) and (2) we can obtain  
Figure 2. Part of Bootstrap Circuit of RT9618/A  
In practice, a low value capacitor CB will lead the over-  
charging that could damage the IC. Therefore to minimize  
the risk of overcharging and reducing the ripple on VCB,  
the bootstrap capacitor should not be smaller than 0.1μF,  
and the larger the better. In general design, using 1μF can  
provide better performance.At least one low-ESR capacitor  
should be used to provide good local de-coupling. Here, to  
adopt either a ceramic or tantalum capacitor is suitable.  
1660×10-12 ×12  
(5)  
(6)  
Igs1  
=
=
= 1.428 (A)  
= 0.88 (A)  
14×10-9  
2200×10-12 ×12  
30×10-9  
Igs2  
from equation. (3) and (4)  
Power Dissipation  
For not exceeding the maximum allowable power  
dissipation to drive the IC beyond the maximum  
recommended operating junction temperature of 125°C, it  
is necessary to calculate power dissipation appro-priately.  
380×10-12 ×12  
(7)  
(8)  
I
=
=
= 0.326 (A)  
gd1  
gd2  
14×10-9  
500×10-12 ×(12+12)  
I
= 0.4 (A)  
30×10-9  
DS9618/A-04 March 2007  
www.richtek.com  
9
RT9618/A  
This dissipation is a function of switching frequency and  
total gate charge of the selected MOSFET. Figure 3 shows  
the power dissipation test circuit. CL and CU are the UGATE  
and LGATE load capacitors, respectively. The bootstrap  
capacitor value is 0.01μF.  
TJ = (160°C/W x 100mW) + 25°C = 41°C  
where the ambient temperature is 25°C.  
(11)  
The method to improve the thermal transfer is to increase  
the PCB copper area around the RT9618/A first. Then,  
adding a ground pad under IC to transfer the heat to the  
peripheral of the board.  
C
BOOT  
1uF  
1N4148  
10  
+12V  
+12V  
Over-Voltage Protection Function at Power-On  
BOOT  
UGATE  
2N7002  
VCC  
An unique feature of the RT9618/A driver is the addition of  
over-voltage protection in the event of upper MOSFET direct  
shorted before power-on. The RT9618/A detects the fault  
condition during initial start-up, the internal power-on OVP  
sense circuitry will rapidly drive the output lower MOSFET  
on before the multi-phase PWM controller takes control.  
1uF  
C
3nF  
U
RT9618/A  
PHASE  
2N7002  
5V  
PWM  
OD  
VIN  
20  
LGATE  
PGND  
C
L
3nF  
Figure 5 shows the measured waveforms with the high  
side MOSFET directly shorted to 12V.  
Figure 3. Test Circuit  
Figure 4 shows the power dissipation of the RT9618/Aas  
a function of frequency and load capacitance. The value of  
the CU and CL are the same and the frequency is varied  
from 100kHz to 1MHz.  
(2V/Div)  
VCC  
Power Dissipation vs. Frequency  
(2V/Div)  
PHASE  
1000  
CU=CL=3nF  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
(2V/Div)  
LGATE  
(2V/Div)  
VCORE  
CU=CL=2nF  
CU=CL=1nF  
Time (50ms/Div)  
Figure 5. Waveforms at High Side MOSFET Shorted  
Please note that the VCC trigger point to RT9618/A is at  
3V, and the clamped level on PHASE pin is at about 2.4V.  
Obviously since the PHASE pin voltage increases during  
initial start-up, the VCORE increases correspondingly, but  
it would quickly drop-off followed by LGATE and VCC  
decreased.  
0
200  
400  
600  
800  
1000  
Frequency (kHz)  
Figure 4. PowerDissipation vs. Frequency  
The operating junction temperature can be calculated from  
the power dissipation curves (Figure 4). Assume  
VCC =12V, operating frequency is 200kHz and the  
CU=CL=1nF which emulate the input capacitances of the  
high side and low side power MOSFETs. From Figure 4,  
the power dissipation is 100mW. For RT9618/A, the  
package thermal resistance θJA is 160°C/W, the operating  
junction temperature is calculated as :  
Layout Consideration  
Figure 6 shows the schematic circuit of a two-phase  
synchronous buck converter to implement the RT9618/A.  
The converter operates from 5V to 12V of VIN.  
www.richtek.com  
10  
DS9618/A-04 March 2007  
RT9618/A  
D1  
L1  
R1  
10  
12V  
V
12V  
IN  
C4  
1uF  
1.2uH  
C2  
1uF  
1
4
C1  
1000uF  
BOOT  
VCC  
CB  
1uF  
2
3
VIN  
PWM  
5V  
8
Q1  
L2  
UGATE  
PHASE  
7
V
OD  
CORE  
PHB83N03LT  
PHB95N03LT  
2uH  
Q2  
C3  
1500uF  
5
6
PGND  
LGATE  
Figure 6. Two-Phase Synchronous Buck Converter Circuit  
When layout the PCB, it should be very careful. The power-  
circuit section is the most critical one. If not configured  
properly, it will generate a large amount of EMI. The junction  
of Q1, Q2, L2 should be very close.  
Next, the trace from UGATE, and LGATE should also be  
short to decrease the noise of the driver output signals.  
PHASE signals from the junction of the power MOSFET,  
carrying the large gate drive current pulses, should be as  
heavy as the gate drive trace. The bypass capacitor C4  
should be connected to PGND directly. Furthermore, the  
bootstrap capacitors (CB) should always be placed as close  
to the pins of the IC as possible.  
DS9618/A-04 March 2007  
www.richtek.com  
11  
RT9618/A  
Outline Dimension  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.050  
5.791  
0.400  
5.004  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.200  
1.270  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.002  
0.228  
0.016  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
8-Lead SOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
www.richtek.com  
12  
DS9618/A-04 March 2007  

相关型号:

RT9618A

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618AGS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618APS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618GS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618PS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618_11

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9619

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9619A

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9619AGS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9619APS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9619GS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9619PS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK