RT9715EGS [RICHTEK]

IC PWR SWITCH USB 1.1A 8SOP;
RT9715EGS
型号: RT9715EGS
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

IC PWR SWITCH USB 1.1A 8SOP

文件: 总15页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9715  
90mΩ, 2A/1.5A/1.1A/0.7A High-Side Power Switches  
with Flag  
General Description  
Features  
z 90mΩ (typ.) N-MOSFET Switch  
z Operating Range : 2.7V to 5.5V  
z Reverse Blocking Current  
z Under Voltage Lockout  
The RT9715 is a cost-effective, low-voltage, single  
N-MOSFET high-side Power Switch IC for USB application.  
Low switch-on resistance (typ. 90mΩ) and low supply  
current (typ. 50uA) are realized in this IC.  
z Deglitched Fault Report (FLG)  
z Thermal Protection with Foldback  
z Over Current Protection  
The RT9715 integrates an over-current protection circuit,  
a short fold back circuit, a thermal shutdown circuit and an  
under-voltage lockout circuit for overall protection. Besides,  
a flag output is available to indicate fault conditions to the  
local USB controller. Furthermore, the chip also integrates  
an embedded delay function to prevent miss-operation from  
happening due to inrush-current. The RT9715 is an ideal  
solution for USB power supply and can support flexible  
applications since it is available in various packages such  
as SOT-23-5, SOP-8, MSOP-8 and WDFN-8L 3x3.  
z Short Circuit Protection  
z UL ApprovedE219878  
z Nemko ApprovedNO49621  
z RoHS Compliant and Halogen Free  
Applications  
z USB Peripherals  
z Notebook PCs  
Ordering Information  
RT9715  
Pin Configurations  
Package Type  
B : SOT-23-5  
(TOP VIEW)  
VIN  
EN/EN  
VIN  
EN/EN  
BG : SOT-23-5 (G-Type)  
BR : SOT-23-5 (R-Type)  
S : SOP-8  
5
4
5
4
2
3
2
3
F : MSOP-8  
QW : WDFN-8L 3x3 (W-Type)  
VOUT GND FLG  
SOT-23-5  
VOUT GND NC  
SOT-23-5 (G-Type)  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
VOUT  
VIN  
Output Current/EN Function  
A : 2A/Active High  
B : 2A/Active Low  
C : 1.5A/Active High  
D : 1.5A/Active Low  
E : 1.1A/Active High  
F : 1.1A/Active Low  
G : 0.7A/Active High  
5
4
GND  
8
7
6
5
VOUT  
VOUT  
VOUT  
FLG  
2
3
4
VIN  
VIN  
2
3
EN/EN  
EN/EN  
FLG GND  
SOP-8/MSOP-8  
SOT-23-5 (R-Type)  
H : 0.7A/Active Low  
GND  
VIN  
VIN  
1
2
3
4
8
7
6
5
VOUT  
VOUT  
VOUT  
FLG  
Note :  
Richtek products are :  
9
EN/EN  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
WDFN-8L 3x3  
` Suitable for use in SnPb or Pb-free soldering processes.  
Marking Information  
For marking information, contact our sales representative  
directly or through a Richtek distributor located in your  
area.  
DS9715-03 April 2011  
www.richtek.com  
1
RT9715  
Typical Application Circuit  
Pull-Up Resistor (10K to 100K)  
USB Controller  
Over -Current  
Supply Voltage  
2.7V to 5.5V  
VIN  
FLG  
C
1uF  
IN  
RT9715  
RT9715A/C/E/G  
Chip Enable  
VOUT  
V
BUS  
EN/EN  
D+  
C
10uF  
OUT  
150uF  
GND  
D-  
RT9715B/D/F/H  
Chip Enable  
GND  
Ferrite  
Beads  
Data  
Note : Alow-ESR 150uF aluminum electrolytic or tantalum between VOUT and GND is strongly recommended to meet  
the 330mV maximum droop requirement in the hub VBUS. (see Application Information Section for further details)  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
SOT-23-5 SOT-23-5 SOP-8 / WDFN-8L  
SOT-23-5  
(G-Type) (R-Type) MSOP-8  
3X3  
6 , 7 , 8 VOUT  
1
2
3
4
5
--  
1
2
--  
4
5
3
5
2
1
3
4
--  
6 , 7 , 8  
Output Voltage.  
Ground.  
1
5
1
5
GND  
FLG  
EN/EN  
VIN  
Fault FLAG Output.  
4
4
Chip Enable (Active High/Low).  
Power Input Voltage.  
2 , 3  
--  
2 , 3  
--  
NC  
No Internal Connection.  
The exposed pad must be soldered to a large  
PCB and connected to GND for maximum  
power dissipation.  
9 (Exposed  
Pad)  
--  
--  
--  
--  
Function Block Diagram  
VIN  
Bias  
EN/EN  
Current  
Limiting  
UVLO  
Gate  
Control  
Charge  
Pump  
Oscillator  
Output Voltage  
Detection  
VOUT  
Thermal  
Protection  
Auto Discharge  
FLG  
Delay  
GND  
www.richtek.com  
DS9715-03 April 2011  
2
RT9715  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN -------------------------------------------------------------------------------------------- 6V  
z ENVoltage -------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z FLAGVoltage ---------------------------------------------------------------------------------------------------------- 6V  
z Power Dissipation, PD @ TA = 25°C  
SOT-23-5 ---------------------------------------------------------------------------------------------------------------- 300mW  
SOP-8 -------------------------------------------------------------------------------------------------------------------- 469mW  
MSOP-8 ----------------------------------------------------------------------------------------------------------------- 469mW  
WDFN-8L 3x3 ---------------------------------------------------------------------------------------------------------- 694mW  
z Package Thermal Resistance (Note 2)  
SOT-23-5, θJA ----------------------------------------------------------------------------------------------------------- 250°C/W  
SOP-8, θJA -------------------------------------------------------------------------------------------------------------- 160°C/W  
MSOP-8, θJA ------------------------------------------------------------------------------------------------------------ 160°C/W  
WDFN-8L 3x3, θJA ----------------------------------------------------------------------------------------------------- 108°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------------- 150°C  
z Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------- 260°C  
z Storage Temperature Range ---------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ------------------------------------------------------------------------------------------ 2kV  
MM (Machine Mode) -------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN -------------------------------------------------------------------------------------------- 2.7V to 5.5V  
z ENVoltage -------------------------------------------------------------------------------------------------------------- 0V to 5.5V  
z Junction Temperature Range---------------------------------------------------------------------------------------- 40°C to 100°C  
z Ambient Temperature Range---------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 5V, CIN = 1uF, COUT = 10uF, TA = 25°C, unless otherwise specified)  
Parameter  
Input Quiescent Current  
Input Shutdown Current  
RT9715A/B  
Symbol  
IQ  
Test Conditions  
Min  
Typ  
Max  
Unit  
Switch On, VOUT = Open  
Switch Off, VOUT = Open  
VIN = 5V, IOUT = 1.5A  
VIN = 5V, IOUT =1.3A  
VIN = 5V, IOUT = 1A  
--  
--  
--  
--  
--  
--  
50  
0.1  
90  
90  
90  
90  
70  
1
uA  
ISHDN  
110  
110  
110  
110  
RT9715C/D  
RT9715E/F  
RT9715G/H  
Switch On  
Resistance  
RDS(ON)  
mΩ  
V
IN = 5V, IOUT = 0.6A  
RT9715A/B  
RT9715C/D  
RT9715E/F  
RT9715G/H  
RT9715A/B  
RT9715C/D  
RT9715E/F  
RT9715G/H  
2
1.5  
1.1  
0.7  
--  
2.5  
2
3.2  
2.8  
2.1  
1.4  
--  
Current  
Limit  
ILIM  
VOUT = 4V  
A
A
1.5  
1
1.7  
1.4  
1
Short  
Current  
VOUT = 0V, Measured Prior to  
Thermal Shutdown  
--  
--  
ISC_FB  
--  
--  
--  
--  
0.7  
To be continued  
DS9715-03 April 2011  
www.richtek.com  
3
RT9715  
Parameter  
Symbol  
Test Conditions  
VIN = 2.7V to 5.5V  
Min  
2
Typ  
--  
Max  
--  
Unit  
V
Logic_High Voltage VIH  
Logic_Low Voltage VIL  
EN/EN  
Threshold  
VIN = 2.7V to 5.5V  
--  
--  
0.8  
0.1  
1
V
--  
0.01  
0.5  
200  
20  
uA  
uA  
us  
Ω
EN/EN Input Current  
Output Leakage Current  
Output Turn-On Rise Time  
FLG Output Resistance  
FLG Off Current  
IEN/EN  
VEN = 5V  
ILEAKAGE  
--  
VEN = 0V, RLOAD = 0Ω  
10% to 90% of VOUT Rising  
TON_RISE  
RFLG  
IFLG_OFF  
--  
--  
I
SINK = 1mA  
--  
--  
--  
0.01  
1
uA  
VFLG = 5V  
From fault condition to FLG  
assertion  
FLG Delay Time  
TD  
5
12  
20  
ms  
VEN = 0V, VEN = 5V  
Shutdown Auto-Discharge  
Resistance  
RDischarge  
--  
100  
150  
Ω
Under-Voltage Lockout  
VUVLO  
VIN Rising  
1.3  
--  
1.7  
0.1  
120  
100  
20  
--  
--  
--  
--  
--  
V
V
Under-Voltage Hysteresis  
ΔVUVLO  
VIN Decreasing  
VOUT > 1V  
--  
°C  
°C  
°C  
Thermal Shutdown Protection  
Thermal Shutdown Hysteresis  
TSD  
VOUT = 0V  
--  
VOUT = 0V  
--  
Note 1. Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device.  
These are stress ratings only, and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Note 2. θJA is measured in the natural convection at TA = 25°C on a low effective single layer thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
www.richtek.com  
4
DS9715-03 April 2011  
RT9715  
Typical Operating Characteristics  
On Resistance vs. Input Voltage  
On Resistance vs. Temperature  
108  
125  
120  
115  
110  
105  
100  
95  
IOUT = 2A  
VIN = 5V, IOUT = 2A  
106  
SOP-8  
104  
102  
100  
98  
SOP-8  
SOT-23-5  
90  
96  
SOT-23-5  
85  
94  
92  
90  
80  
75  
70  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
Input Voltage (V)  
(°C)  
Temperature  
Quiescent Current vs. Input Voltage  
Quiescent Current vs. Temperature  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
No Load  
VIN = 5V,No Load  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110  
Input Voltage (V)  
Temperature (°C)  
Shutdown Current vs. Input Voltage  
Shutdown Current vs. Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
No Load  
VIN = 5V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110  
Input Voltage (V)  
Temperature  
(°C)  
DS9715-03 April 2011  
www.richtek.com  
5
RT9715  
UVLO Threshold vs. Temperature  
Output Voltage vs. Output Current  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
VIN = 5V  
Rising  
Falling  
VIN = 3.3V  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110  
(°C)  
Temperature  
Output Current (A)  
Current Limit vs. Input Voltage  
Current Limit vs. Temperature  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
VIN = 5V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110  
Input Voltage (V)  
Temperature (°C)  
Short Current vs. Input Voltage  
Short Current vs. Temperature  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
2.00  
1.90  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
VIN = 5V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110  
Input Voltage (V)  
Temperature  
(°C)  
www.richtek.com  
6
DS9715-03 April 2011  
RT9715  
FLG Delay Time vs. Temperature  
FLG Delay Time vs. Input Voltage  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
12  
11  
10  
9
VIN = 5V  
8
7
9.0  
6
8.5  
5
8.0  
4
-40 -25 -10  
5
20 35 50 65 80 95 110  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Input Voltage (V)  
Temperature (°C)  
Power On from VIN  
Power Off from VIN  
EN = 0V, No Load  
EN = 0V, No Load  
VIN  
(2V/Div)  
VIN  
(2V/Div)  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
Time (25ms/Div)  
Time (25ms/Div)  
FLG Response  
Power On from EN  
VIN = 5V, RLOAD = 2.7Ω  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
IIN  
(1A/Div)  
EN  
(5V/Div)  
EN  
(5V/Div)  
IIN  
(1A/Div)  
FLG  
(5V/Div)  
VIN = 5V, RLOAD = 0.5Ω  
Time (2.5ms/Div)  
Time (100us/Div)  
DS9715-03 April 2011  
www.richtek.com  
7
RT9715  
Applications Information  
Fault Flag  
The RT9715 is a single N-MOSFET high-side power  
switches with enable input, optimized for self-powered and  
bus-powered Universal Serial Bus (USB) applications. The  
RT9715 is equipped with a charge pump circuitry to drive  
The RT9715 series provides a FLGsignal pin which is an  
N-Channel open drain MOSFET output. This open drain  
output goes low when current limit or the die temperature  
exceeds 120°C approximately. The FLGoutput is capable  
of sinking a 10mA load to typically 200mV above ground.  
The FLGpin requires a pull-up resistor, this resistor should  
be large in value to reduce energy drain. A100kΩ pull-up  
resistor works well for most applications. In the case of an  
over-current condition, FLGwill be asserted only after the  
flag response delay time, tD, has elapsed. This ensures  
that FLGis asserted only upon valid over-current conditions  
and that erroneous error reporting is eliminated.  
the internal N-MOSFET switch; the switch's low RDS(ON)  
,
90mΩ, meets USB voltage drop requirements; and a flag  
output is available to indicate fault conditions to the local  
USB controller.  
Input and Output  
VIN (input) is the power source connection to the internal  
circuitry and the drain of the MOSFET. VOUT (output) is  
the source of the MOSFET. In a typical application, current  
flows through the switch from VIN to VOUT toward the load.  
If VOUT is greater than VIN, current will flow from VOUT to  
VIN since the MOSFET is bidirectional when on.  
For example, false over-current conditions may occur  
during hot-plug events when extremely large capacitive  
loads are connected and causes a high transient inrush  
current that exceeds the current limit threshold. The FLG  
response delay time tD is typically 12ms.  
Unlike a normal MOSFET, there is no parasitic body diode  
between drain and source of the MOSFET, the RT9715  
prevents reverse current flow if VOUT is externally forced to  
Under-Voltage Lockout  
a higher voltage than VIN when the chip is disabled (VEN  
0.8V or VEN > 2V).  
<
Under-voltage lockout (UVLO) prevents the MOSFETswitch  
from turning on until input the voltage exceeds  
approximately 1.7V. If input voltage drops below  
approximately 1.3V, UVLO turns off the MOSFET switch.  
Under-voltage detection functions only when the switch is  
enabled.  
S
D
S
D
G
G
Current Limiting and Short-Circuit Protection  
Normal MOSFET  
RT9715  
The current limit circuitry prevents damage to the MOSFET  
switch and the hub downstream port but can deliver load  
current up to the current limit threshold of typically 2A  
through the switch of the RT9715A/B, 1.5A for  
RT9715C/D, 1.1A for RT9715E/F and 0.7A for  
RT9715G/H respectively. When a heavy load or short circuit  
is applied to an enabled switch, a large transient current  
may flow until the current limit circuitry responds. Once  
this current limit threshold is exceeded, the device enters  
constant current mode until the thermal shutdown occurs  
or the fault is removed.  
Chip Enable Input  
The switch will be disabled when the EN/EN pin is in a  
logic low/high condition.During this condition, the internal  
circuitry and MOSFETwill be turned off, reducing the supply  
current to 0.1uA typical. Floating the EN/EN may cause  
unpredictable operation. EN should not be allowed to go  
negative with respect to GND. The EN/EN pin may be  
directly tied to VIN (GND) to keep the part on.  
Soft Start for Hot Plug-In Applications  
In order to eliminate the upstream voltage droop caused  
by the large inrush current during hot-plug events, the soft-  
startfeature effectively isolates the power source from  
extremely large capacitive loads, satisfying the USB voltage  
droop requirements.  
Thermal Shutdown  
Thermal protection limits the power dissipation in RT9715.  
When the operation junction temperature exceeds 120°C,  
the OTP circuit starts the thermal shutdown function and  
www.richtek.com  
8
DS9715-03 April 2011  
RT9715  
turns the pass element off. The pass element turn on again  
after the junction temperature cools to 80°C. The RT9715  
lowers its OTP trip level from 120°C to 100°C when output  
short circuit occurs (VOUT < 1V) as shown in Figure 1.  
The junction to ambient thermal resistance (θJA) for  
SOT-23-5/TSOT-23-5, SOP-8/MSOP-8 and WDFM-8L3x3  
packages at recommended minimum footprint are 250°C/  
W, 160°C/W and 108°C/W respectively (θJA is layout  
dependent).  
V
Short to GND  
OUT  
Universal Serial Bus (USB) & Power Distribution  
1V  
V
OUT  
The goal of USB is to enable device from different vendors  
to interoperate in an open architecture. USB features  
include ease of use for the end user, a wide range of  
workloads and applications, robustness, synergy with the  
PC industry, and low-cost implementation. Benefits include  
self-identifying peripherals, dynamically attachable and  
reconfigurable peripherals, multiple connections (support  
for concurrent operation of many devices), support for as  
many as 127 physical devices, and compatibility with PC  
Plug-and-Play architecture.  
I
OUT  
Thermal  
Shutdown  
120°C  
100 C  
°
OTP Trip Point  
100 °C  
80 °C  
IC Temperature  
Figure 1. Short Circuit Thermal Folded Back Protection  
when Output Short Circuit Occurs (Patent)  
The Universal Serial Bus connects USB devices with a  
USB host: each USB system has one USB host. USB  
devices are classified either as hubs, which provide  
additional attachment points to the USB, or as functions,  
which provide capabilities to the system (for example, a  
digital joystick). Hub devices are then classified as either  
Bus-Power Hubs or Self-Powered Hubs.  
Power Dissipation  
The junction temperature of the RT9715 series depend on  
several factors such as the load, PCB layout, ambient  
temperature and package type. The output pin of the  
RT9715 can deliver the current of up to 2A (RT9715A/B),  
1.5A(RT9715C/D), 1.1A(RT9715E/F) and 0.7A(RT9715G/  
H) respectively over the full operating junction temperature  
range. However, the maximum output current must be  
derated at higher ambient temperature to ensure the  
junction temperature does not exceed 100°C. With all  
possible conditions, the junction temperature must be within  
the range specified under operating conditions. Power  
dissipation can be calculated based on the output current  
and the RDS(ON) of the switch as below.  
ABus-Powered Hub draws all of the power to any internal  
functions and downstream ports from the USB connector  
power pins. The hub may draw up to 500mA from the  
upstream device. External ports in a Bus-Powered Hub  
can supply up to 100mA per port, with a maximum of four  
external ports.  
Self-Powered Hub power for the internal functions and  
downstream ports does not come from the USB, although  
the USB interface may draw up to 100mAfrom its upstream  
connect, to allow the interface to function when the  
remainder of the hub is powered down. The hub must be  
able to supply up to 500mA on all of its external  
downstream ports. Please refer to Universal Serial  
Specification Revision 2.0 for more details on designing  
compliant USB hub and host systems.  
2
PD = RDS(ON) x IOUT  
Although the devices are rated for 2A, 1.5A, 1.1Aand 0.7A  
of output current, but the application may limit the amount  
of output current based on the total power dissipation and  
the ambient temperature. The final operating junction  
temperature for any set of conditions can be estimated by  
the following thermal equation :  
Over-Current protection devices such as fuses and PTC  
resistors (also called polyfuse or polyswitch) have slow  
trip times, high on-resistance, and lack the necessary  
circuitry for USB-required fault reporting.  
PD (MAX) = ( TJ (MAX) - T ) / θJA  
A
Where TJ (MAX) is the maximum junction temperature of  
the die (100°C) andTA is the maximum ambient temperature.  
DS9715-03 April 2011  
www.richtek.com  
9
RT9715  
The faster trip time of the RT9715 power distribution allows  
designers to design hubs that can operate through faults.  
The RT9715 provides low on-resistance and internal fault-  
reporting circuitry to meet voltage regulation and fault  
notification requirements.  
the Bus-Powered Hub must be accounted for to guarantee  
voltage regulation (see Figure 7-47 of Universal Serial  
Specification Revision 2.0 ).  
The following calculation determines VOUT (MIN) for multi-  
ple ports (NPORTS) ganged together through one switch (if  
using one switch per port, NPORTS is equal to 1) :  
Because the devices are also power switches, the designer  
of self-powered hubs has the flexibility to turn off power to  
output ports. Unlike a normal MOSFET, the devices have  
controlled rise and fall times to provide the needed inrush  
current limiting required for the bus-powered hub power  
switch.  
VOUT (MIN) = 4.75V [ II x ( 4 x RCONN + 2 x RCABLE ) ] −  
(0.1A x NPORTS x RSWITCH ) VPCB  
Where  
RCONN = Resistance of connector contacts  
(two contacts per connector)  
Supply Filter/Bypass Capacitor  
RCABLE = Resistance of upstream cable wires  
(one 5V and one GND)  
A1uF low-ESR ceramic capacitor from VIN toGND, located  
at the device is strongly recommended to prevent the input  
voltage drooping during hot-plug events. However, higher  
capacitor values will further reduce the voltage droop on  
the input. Furthermore, without the bypass capacitor, an  
output short may cause sufficient ringing on the input (from  
source lead inductance) to destroy the internal control  
circuitry. The input transient must not exceed 6V of the  
absolute maximum supply voltage even for a short duration.  
RSWITCH = Resistance of power switch  
(90mΩ typical for RT9715)  
VPCB = PCB voltage drop  
The USB specification defines the maximum resistance  
per contact (RCONN) of the USB connector to be 30mΩ and  
the drop across the PCB and switch to be 100mV. This  
basically leaves two variables in the equation: the  
resistance of the switch and the resistance of the cable.  
Output Filter Capacitor  
A low-ESR 150uF aluminum electrolytic or tantalum  
between VOUT andGNDis strongly recommended to meet  
the 330mV maximum droop requirement in the hub VBUS  
(Per USB 2.0, output ports must have a minimum 120uF  
of low-ESR bulk capacitance per hub). Standard bypass  
methods should be used to minimize inductance and  
resistance between the bypass capacitor and the  
downstream connector to reduce EMI and decouple voltage  
droop caused when downstream cables are hot-insertion  
transients. Ferrite beads in series with VBUS, the ground  
line and the 0.1uF bypass capacitors at the power connector  
pins are recommended for EMI and ESD protection. The  
bypass capacitor itself should have a low dissipation factor  
to allow decoupling at higher frequencies.  
If the hub consumes the maximum current (II) of 500mA,  
the maximum resistance of the cable is 90mΩ.  
The resistance of the switch is defined as follows :  
RSWITCH = { 4.75V 4.4V [ 0.5A x ( 4 x 30mΩ + 2 x  
90mΩ) ] VPCB } ÷( 0.1A x NPORTS )  
= (200mV V ) ( 0.1A x NPORTS  
)
÷
PCB  
If the voltage drop across the PCB is limited to 100mV,  
the maximum resistance for the switch is 250mΩ for four  
ports ganged together. The RT9715, with its maximum  
100mΩ on-resistance over temperature, can fit the demand  
of this requirement.  
Thermal Considerations  
Voltage Drop  
For continuous operation, do not exceed absolute  
maximum operation junction temperature. The maximum  
power dissipation depends on the thermal resistance of IC  
package, PCB layout, the rate of surroundings airflow and  
temperature difference between junction to ambient. The  
The USB specification states a minimum port-output voltage  
in two locations on the bus, 4.75V out of a Self-Powered  
Hub port and 4.40V out of a Bus-Powered Hub port. As  
with the Self-Powered Hub, all resistive voltage drops for  
www.richtek.com  
10  
DS9715-03 April 2011  
RT9715  
maximum power dissipation can be calculated by following  
formula :  
PCB Layout Guide  
In order to meet the voltage drop, droop, and EMI  
requirements, careful PCB layout is necessary. The  
following guidelines must be followed :  
PD(MAX) = (TJ(MAX) TA) / θJA  
Where TJ(MAX) is the maximum operation junction  
temperature 100°C, TAis the ambient temperature and the  
θJA is the junction to ambient thermal resistance.  
` Locate the ceramic bypass capacitors as close as  
possible to the VIN pins of the RT9715.  
` Place a ground plane under all circuitry to lower both  
resistance and inductance and improveDC and transient  
performance (Use a separate ground and power plans if  
possible).  
For recommended operating conditions specification of  
RT9715, where TJ(MAX) is the maximum junction  
temperature of the die (100°C) and TA is the maximum  
ambient temperature. The junction to ambient thermal  
resistance θJA is layout dependent. For SOT-23-5  
packages, the thermal resistance θJA is 250°C/W on the  
standard JEDEC 51-3 single-layer thermal test board.And  
for SOP-8 and MSOP-8 packages, the thermal resistance  
` Keep all VBUS traces as short as possible and use at  
least 50-mil, 2 ounce copper for all VBUS traces.  
` Avoid vias as much as possible. If vias are necessary,  
make them as large as feasible.  
θJA is 160°C/W. The maximum power dissipation at TA =  
` Place cuts in the ground plane between ports to help  
25°C can be calculated by following formula :  
reduce the coupling of transients between ports.  
PD(MAX) = (100°C - 25°C) / (250°C/W) = 0.3W for  
` Locate the output capacitor and ferrite beads as close to  
the USB connectors as possible to lower impedance  
(mainly inductance) between the port and the capacitor  
and improve transient load performance.  
SOT-23-5 packages  
PD(MAX) = (100°C - 25°C) / (160°C/W) = 0.469W for  
SOP-8/MSOP-8 packages  
PD(MAX) = (100°C - 25°C) / (108°C/W) = 0.694W for  
WDFN-8L 3x3 packages  
` Locate the RT9715 as close as possible to the output  
port to limit switching noise.  
The maximum power dissipation depends on operating  
ambient temperature for fixedTJ(MAX) and thermal resistance  
θJA. For RT9715 packages, the Figure 2 of derating curves  
allows the designer to see the effect of rising ambient  
temperature on the maximum power allowed.  
The input capacitor should  
be placed as close as  
possible to the IC.  
V
V
V
BUS  
OUT  
IN  
0.8  
Single Layer PCB  
WDFN-8L 3x3  
GND  
0.7  
0.6  
SOP-8/MSOP-8  
0.5  
GND_BUS  
EN  
FLG  
0.4  
SOT-23-5  
0.3  
V
IN  
Figure 3  
0.2  
0.1  
0
0
10 20 30 40 50 60 70 80 90 100  
Ambient Temperature (°C)  
Figure 2. Derating Curves for RT9715 Package  
DS9715-03 April 2011  
www.richtek.com  
11  
RT9715  
Outline Dimension  
H
D
L
B
C
A
b
A1  
e
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
B
0.889  
0.000  
1.397  
0.356  
2.591  
2.692  
0.838  
0.080  
0.300  
1.295  
0.152  
1.803  
0.559  
2.997  
3.099  
1.041  
0.254  
0.610  
0.035  
0.000  
0.055  
0.014  
0.102  
0.106  
0.033  
0.003  
0.012  
0.051  
0.006  
0.071  
0.022  
0.118  
0.122  
0.041  
0.010  
0.024  
b
C
D
e
H
L
SOT-23-5 Surface Mount Package  
www.richtek.com  
12  
DS9715-03 April 2011  
RT9715  
H
A
M
J
B
F
C
I
D
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.050  
5.791  
0.400  
5.004  
3.988  
1.753  
0.508  
1.346  
0.254  
0.254  
6.200  
1.270  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.002  
0.228  
0.016  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.010  
0.244  
0.050  
J
M
8-Lead SOP Plastic Package  
DS9715-03 April 2011  
www.richtek.com  
13  
RT9715  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.810  
0.000  
0.750  
0.220  
2.900  
1.100  
0.150  
0.950  
0.380  
3.100  
0.032  
0.000  
0.030  
0.009  
0.114  
0.043  
0.006  
0.037  
0.015  
0.122  
D
e
0.650  
0.026  
E
4.800  
2.900  
0.400  
5.000  
3.100  
0.800  
0.189  
0.114  
0.016  
0.197  
0.122  
0.031  
E1  
L
8-Lead MSOP Plastic Package  
www.richtek.com  
14  
DS9715-03 April 2011  
RT9715  
D2  
D
L
E
E2  
SEE DETAIL A  
1
e
b
2
1
2
1
A
A3  
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.200  
2.950  
2.100  
2.950  
1.350  
0.800  
0.050  
0.250  
0.300  
3.050  
2.350  
3.050  
1.600  
0.028  
0.000  
0.007  
0.008  
0.116  
0.083  
0.116  
0.053  
0.031  
0.002  
0.010  
0.012  
0.120  
0.093  
0.120  
0.063  
D
D2  
E
E2  
e
0.650  
0.026  
L
0.425  
0.525  
0.017  
0.021  
W-Type 8L DFN 3x3 Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
5F, No. 95, Minchiuan Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)86672399 Fax: (8862)86672377  
Email: marketing@richtek.com  
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design,  
specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed  
by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.  
DS9715-03 April 2011  
www.richtek.com  
15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY