R1224N402G-TR [RICOH]

Switching Controller, 0.05A, 360kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN;
R1224N402G-TR
型号: R1224N402G-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Controller, 0.05A, 360kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN

开关 光电二极管
文件: 总42页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1224N SERIES  
PWM/VFM step-down DC/DC Converter  
NO.EA-096-061102  
OUTLINE  
The R1224N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current.  
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a  
phase compensation circuit, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable  
circuit, resistors for output voltage detect, and input voltage detect circuit. A low ripple, high efficiency step-down  
DC/DC converter can be easily composed of this IC with only several external components, or a power-transistor,  
an inductor, a diode and capacitors. Output Voltage is fixed or can be adjusted with external resistors (Adjustable  
types are without PWM/VFM alternative circuit).  
With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching  
into the VFM oscillator from PWM oscillator. Therefore, the efficiency at small load current is improved. Several  
types of the R1224Nxxx, which are without a PWM/VFM alternative circuit, are also available.  
If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. The  
protection circuit is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat  
this operation until maximum duty cycle condition is released. When the cause of large load current or something  
else is removed, the operation is automatically released and returns to normal operation.  
Further, built-in UVLO function works when the input voltage is equal or less than UVLO threshold, it makes  
this IC be standby and suppresses the consumption current and avoid an unstable operation.  
FEATURES  
Supply Current................................................................Typ. 20µA (R1224Nxx2E/F/M/L, R1224N102M)  
Typ. 30µA (R1224Nxx2G, R1224N102G)  
Typ. 40µA (R1224Nxx2H, R1224N102H)  
Standby Current..............................................................Typ. 0µA  
Input Voltage Range .......................................................2.3V~18.5V  
Output Voltage Range.....................................................1.2V to 6.0V (R1224Nxx2x)  
1.0V to VIN (R1224N102x)  
Output Voltage Accuracy.................................................±2.0%  
Oscillator Frequency.......................................................Typ. 180kHz (R1224Nxx2M, R1224N102M)  
Typ. 300kHz (R1224Nxx2E/G, R1224N102G)  
Typ. 500kHz (R1224Nxx2F/H, R1224N102H)  
Efficiency.........................................................................Typ. 90%  
Low Temperature-Drift Coefficient of Output Voltage......Typ. ±100ppm/°C  
Package .......................................................................... SOT-23-5  
Built-in Soft-start Function............................................... Typ. 10ms  
Built-in Current Limit Circuit  
APPLICATIONS  
Power source for hand-held communication equipment, cameras, video instruments such as VCRs,  
camcorders.  
Power source for battery-powered equipment.  
Power source for household electrical appliances.  
1
R1224N  
BLOCK DIAGRAM  
*Fixed Output Voltage Type  
OSC  
VIN  
5
VOUT  
3
1
EXT  
4
Amp  
Vref  
PWM/VFM  
CONTROL  
Soft Start  
Chip Enable  
CE  
Protection  
Vref  
UVLO  
2
GND  
*Adjustable Output Voltage Type  
OSC  
VIN  
5
VFB  
3
1
EXT  
4
Amp  
Vref  
Soft Start  
CE  
Chip Enable  
Protection  
Vref  
UVLO  
2
GND  
2
R1224N  
SELECTION GUIDE  
In the R1224N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for  
the ICs can be selected at the user's request.  
The selection can be made with designating the part number as shown below;  
R1224Nxx2x-xx-xPart Number  
↑ ↑ ↑ ↑ ↑  
a b c d e  
f
Code  
Contents  
Designation of Package Type;  
N: SOT-23-5  
a
Setting Output Voltage (VOUT):  
Stepwise setting with a step of 0.1V in the range of 1.2V to 6.0V is possible.  
Adjustable type; a=10 means Reference Voltage=1.0V Optional Function is G/H/M.  
b
c
2: fixed  
Designation of Optional Function  
E : 300kHz, with a PWM/VFM alternative circuit  
F : 500kHz, with a PWM/VFM alternative circuit  
G : 300kHz, without a PWM/VFM alternative circuit  
H : 500kHz, without a PWM/VFM alternative circuit  
L : 180kHz, with a PWM/VFM alternative circuit  
M :180kHz, without a PWM/VFM alternative circuit  
d
Designation of Taping Type;  
(Refer to Taping Specification)"TR" is prescribed as a standard.  
e
f
Designation of Composition of pin plating  
-F: Lead free plating  
3
R1224N  
PIN CONFIGURATIO  
SOT-23-5  
5
4
(mark side)  
1
2
3
PIN DESCRIPTION  
Pin No  
Symbol  
Pin Description  
1
2
3
4
5
CE  
GND  
Chip Enable Pin (“H” Active)  
Ground Pin  
VOUT (VFB)  
EXT  
Pin for Monitoring Output Voltage (Feedback Voltage)  
External Transistor Drive Pin (CMOS Output)  
Power Supply Pin  
VIN  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
20  
Unit  
V
VIN  
VIN Supply Voltage  
VEXT  
VCE  
EXT Pin Output Voltage  
V
0.3 to VIN+0.3  
0.3 to VIN+0.3  
0.3 to VIN+0.3  
± 50  
CE Pin Input Voltage  
V
VOUT  
IEXT  
VOUT/VFB Pin Input Voltage  
EXT Pin Inductor Drive Output Current  
Power Dissipation (SOT-23-5)*  
Operating Temperature Range  
Storage Temperature Range  
V
A
PD  
420  
mW  
°C  
°C  
Topt  
Tstg  
40 to +85  
55 to +125  
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.  
4
R1224N  
ELECTRICAL CHARACTERISTICS  
R1224Nxx2X (X=E/F/G/H/L/M) except R1224N102X  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max. Unit  
VIN  
Operating Input Voltage  
2.3  
18.5  
V
V
VSET  
×0.98  
VSET  
×1.02  
VIN=VCE=VSET+1.5V, IOUT=−100mA  
VOUT  
Step-down Output Voltage  
VSET  
When VSET 1.5V, VIN=VCE=3.0V  
=
VOUT/  
Topt  
Step-down Output Voltage  
Temperature Coefficient  
ppm/°C  
40°C Topt 85°C  
±100  
=
=
VIN=VCE=VSET+1.5V, IOUT=−100mA  
When VSET 1.5, VIN=VCE=3.0V  
=
fosc  
Oscillator Frequency  
144  
240  
400  
180  
300  
500  
216  
360  
600  
kHz  
L/M Version  
E/G Version  
F/H Version  
fosc/  
Topt  
Oscillator Frequency  
Temperature Coefficient  
%/°C  
40°C Topt 85°C  
±0.2  
=
=
VIN=VCE=VOUT=18.5V  
E/F/L/M Version  
G version  
20  
30  
40  
50  
60  
80  
IDD1  
Supply Current 1  
µA  
H version  
Istandby Standby Current  
0.0  
0.5  
VIN=18.5V, VCE=0V, VOUT=0V  
µA  
VIN=8V, VEXT=7.9V, VOUT=8V,  
VCE=8V  
IEXTH  
IEXTL  
EXT “H” Output Current  
mA  
17  
10  
VIN=8V, VEXT=0.1V, VOUT=0V,  
VCE=8V  
EXT “L” Output Current  
20  
30  
mA  
ICEH  
ICEL  
CE “H” Input Current  
CE “L” Input Current  
CE “H” Input Voltage  
CE “L” Input Voltage  
0.0  
0.0  
0.5  
0.3  
VIN=VCE=VOUT=18.5V  
VIN=VOUT=18.5V, VCE=0V  
VIN=8V, VOUT=0V  
µA  
µA  
V
0.5  
VCEH  
VCEL  
1.5  
V
VIN=8V, VOUT=0V  
Oscillator Maximum  
Duty Cycle  
Maxdty  
100  
1.8  
%
VFMdty VFM Duty Cycle  
E/F/L Version  
35  
%
V
VUVLO1  
UVLO Voltage  
2.0  
2.2  
2.3  
VIN=VCE=2.5V to 1.5V, VOUT=0V  
VUVLO1  
+0.1  
VUVLO2  
UVLO Release Voltage  
V
VIN=VCE=1.5V to 2.5V, VOUT=0V  
VIN=VSET+1.5V, IOUT=−10mA  
VCE=0VVSET+1.5V  
tstart  
tprot  
Delay Time by Soft-Start function  
Delay Time for protection circuit  
5
5
10  
15  
20  
30  
ms  
ms  
VIN=VCE=VSET+1.5V  
VOUT=VSET+1.5V0V  
5
R1224N  
R1224N102X (X=G/H/M)  
Topt=25°C  
Symbol  
VIN  
Item  
Operating Input Voltage  
Feedback Voltage  
Conditions  
Min.  
2.3  
Typ.  
Max. Unit  
18.5  
1.02  
V
V
VFB  
0.98  
1.00  
VIN=VCE=3.5V, IFB=−100mA  
VFB/  
Topt  
Feedback Voltage  
Temperature Coefficient  
ppm/°C  
40°C Topt 85°C  
±100  
=
=
VIN=VCE=3.5V, IFB=−100mA  
M Version  
G Version  
144  
240  
400  
180  
300  
500  
216  
360  
600  
fosc  
Oscillator Frequency  
kHz  
H Version  
fosc/  
Topt  
Oscillator Frequency  
Temperature Coefficient  
%/°C  
µA  
40°C Topt 85°C  
±0.2  
=
=
VIN=VCE=VFB=18.5V  
M Version  
G Version  
20  
30  
40  
50  
60  
80  
IDD1  
Supply Current 1  
H Version  
Istandby Standby Current  
0.0  
0.5  
VIN=18.5V, VCE=0V, VFB=0V  
µA  
VIN=8V, VEXT=7.9V, VFB=8V,  
VCE=8V  
IEXTH  
IEXTL  
EXT “H” Output Current  
mA  
17  
10  
VIN=8V, VEXT=0.1V, VFB=0V,  
VCE=8V  
EXT “L” Output Current  
20  
30  
mA  
ICEH  
ICEL  
CE “H” Input Current  
CE “L” Input Current  
CE “H” Input Voltage  
CE “L” Input Voltage  
Oscillator Maximum Duty Cycle  
UVLO Voltage  
0.0  
0.0  
0.5  
0.3  
VIN=VCE=VFB=18.5V  
VIN=VFB=18.5V, VCE=0V  
VIN=8V, VFB=0V  
µA  
µA  
V
0.5  
VCEH  
1.5  
VCEL  
V
VIN=8V, VFB=0V  
Maxdty  
VUVLO1  
100  
1.8  
%
V
2.0  
2.2  
2.3  
VIN=VCE=2.5V to 1.5V, VFB=0V  
VIN=VCE=1.5V to 2.5V, VFB=0V  
VUVLO1  
+0.1  
VUVLO2  
tstart  
tprot  
UVLO Release Voltage  
V
VIN=2.5V, IFB=−10mA  
VCE=0V2.5V  
Delay Time by Soft-Start function  
Delay Time for protection circuit  
5
5
10  
15  
20  
30  
ms  
ms  
VIN=VCE=2.5V  
VFB=2.5V0V  
6
R1224N  
TYPICAL APPLICATION AND APPLICATION HINTS  
(1) Fixed Output Voltage Type (R1224Nxx2E/F/G/H/L/M except xx=10)  
L
PMOS  
C1  
4
EXT  
R1  
IN  
OUT  
V
V
5
1
3
R1224N  
C3  
CE  
SD  
GND  
2
C2  
LOAD  
CE CONTROL  
PMOS: HAT1044M (Hitachi)  
SD1 : RB063L-30 (Rohm)  
L
: CR105-270MC (Sumida, 27µH)  
C3 : 47µF (Tantalum Type)  
C2 : 0.1µF (Ceramic Type)  
C1  
R1  
: 10µF (Ceramic Type)  
: 10Ω  
(2) Adjustable Output Type (R1224N102G/H/M) Example: Output Voltage=3.2V  
L
PMOS  
C4  
C1  
R4  
4
EXT  
R1  
R3  
IN  
FB  
V
V
5
1
3
R1224N  
C3  
CE  
SD  
GND  
2
R2  
C2  
LOAD  
CE CONTROL  
PMOS: HAT1044M (Hitachi)  
SD1 : RB063L-30 (Rohm)  
L : CR105-270MC (Sumida, 27µH)  
C3 : 47µF (Tantalum Type)  
C1  
R1  
: 10µF (Ceramic Type)  
: 10, R2=22k, R3=2.7k, R4=33kΩ  
C2 : 0.1µF (Ceramic Type) C4: 1000pF (Ceramic Type)  
7
R1224N  
When you use these ICs, consider the following issues;  
As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed  
for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do  
not make its “H” level more than the voltage level of VIN pin.  
Set external components as close as possible to the IC and minimize the connection between the components  
and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make  
sufficient ground and reinforce supplying. A large switching current could flow through the connection of power  
supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the  
voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation  
of the IC.  
Protection circuit may work if the maximum duty cycle continue for the time defined in the electrical  
characteristics. Once after stopping the output voltage, output will restart with soft-start operation. If the  
difference between input voltage and output voltage is small, the protection circuit may work.  
Use capacitors with a capacity of 22µF or more for VOUT pin, and with good high frequency characteristics such  
as tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least twice as  
much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is  
generated by an inductor when an external transistor is on and off.  
Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach  
magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the  
absolute maximum rating at the maximum loading.  
Use an inductor with appropriate inductance.  
Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity.  
Do not use this IC under the condition with VIN voltage at equal or less than minimum operating voltage.  
When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is  
small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this  
case, the devise is reset with UVLO function that is different from the reset-protection function caused by  
maximum duty cycle.  
With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1224N alters  
from PWM mode to VFM mode (Pulse skip mode). The purpose of this circuit is raising the efficiency with a light  
load by skipping the frequency and suppressing the consumption current. However, the ratio of output voltage  
against input voltage is 35% or less, (ex. VIN>8.6V and VOUT=3.0V) even if the large current may be loaded, the  
IC keeps its VFM mode. As a result, frequency might be decreased, and oscillation waveform might be unstable.  
These phenomena are the typical characteristics of the IC with PWM/VFM alternative circuit.  
ÌThe performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that  
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
8
R1224N  
How to Adjust Output Voltage and about Phase Compensation  
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 1.0V.  
Output Voltage, VOUT is as following equation:  
VOUT: R2+R4=VFB: R2  
VOUT=VFB×(R2+R4)/R2  
Thus, with changing the value of R2 and R4, output voltage can be set in the specified range.  
In the DC/DC converter, with the load current and external components such as L and C, phase might be behind  
180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this,  
phase margin should be secured with proceeding the phase. A pole is formed with external components L and  
C3.  
Fpole ~1/2π L×C3  
A zero (signal back to zero) is formed with R4 and C4.  
Fzero~1/(2π×R4×C4)  
For example, if L=27µH, C3=47µF, the cut off frequency of the pole is approximately 4.5kHz.  
To make the cut off frequency of the pole as much as 4.5kHz, set R4=33kand C4=1000pF.  
If VOUT is set at 2.5V, R2=22kis appropriate.  
R3 prevents feedback of the noise to VFB pin, about 2.7kis appropriate value.  
L
PMOS  
C4  
C1  
R4  
4
EXT  
R1  
R3  
IN  
FB  
V
V
5
1
3
R1224N  
C3  
CE  
SD  
GND  
2
R2  
C2  
LOAD  
CE CONTROL  
9
R1224N  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the  
energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output  
voltage than the input voltage is obtained. The operation will be explained with reference to the following  
diagrams:  
<Basic Circuits>  
<Current through L>  
i1  
IL  
ILmax  
OUT  
I
IN  
OUT  
V
V
L
Lx Tr  
ILmin  
topen  
i2  
SD  
CL  
ton  
toff  
GND  
T=1/fosc  
Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases  
from ILmin. (=0) to reach ILmax. in proportion to the on-time period (ton) of Lx Tr.  
Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL  
(=i2) flows.  
Step 3: IL decreases gradually and reaches ILmin. after a time period of topen, and SD turns off, provided that in  
the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this  
case, IL value is from this ILmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with  
the oscillator frequency (fosc) being maintained constant.  
Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the  
same as those when Lx Tr. is ON and when it is OFF.  
The difference between ILmax and ILmin, which is represented by I;  
I=ILmax-ILmin=VOUT×topen/L=(VIN-VOUT)×ton/L ................................... Equation 1  
wherein, T=1/fosc=ton+toff  
duty (%)=ton/T×100=ton×fosc×100  
<
topen toff  
=
In Equation 1, VOUT×topen/L and (VIN-VOUT)×ton/L are respectively shown the change of the current at ON, and  
the change of the current at OFF.  
When the output current (IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the  
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time  
period of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen  
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The  
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
10  
R1224N  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
tonc=T×VOUT/VIN..................................................................................... Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When Lx Tr. is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of Lx Tr. is described as Rp the direct  
current of the inductor is described as RL.)  
VIN=VOUT+(Rp+RL)×IOUT+L×IRP/ton .................................................Equation 3  
When Lx Tr. is OFF:  
L×IRP/toff=VF+VOUT+RL×IOUT ............................................................ Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON,  
DON=(VOUT+VF+RL×IOUT)/(VIN+VFRp×IOUT)......................................Equation 5  
Ripple Current is as follows;  
IRP=(VINVOUTRp×IOUTRL×IOUT)×DON/f/L........................................Equation 6  
Wherein, peak current that flows through L, Lx Tr., and SD is as follows;  
ILmax=IOUT+IRP/2............................................................................ Equation 7  
Consider ILmax, condition of input and output and select external components.  
Ì The above explanation is directed to the calculation in an ideal case in continuous mode.  
11  
R1224N  
External Components  
1. Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,  
magnetic saturation occurs and make transform efficiency worse.  
When the load current is definite, the smaller value of L, the larger the ripple current.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output  
current, efficiency is better than using an inductor with a large value of L and vice versa.  
2. Diode  
Use a diode with low VF (Schottky type is recommended.) and high switching speed.  
Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.  
3. Capacitors  
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10µF for  
stable operation.  
COUT can reduce ripple of Output Voltage, therefore 47µF or more value of tantalum type capacitor is  
recommended.  
4. Lx Transistor  
Pch Power MOSFET is required for this IC.  
Its breakdown voltage between gate and source should be a few V higher than Input Voltage.  
In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold  
voltage is effective.  
If a large load current is necessary for your application and important, choose a MOSFET with low ON  
resistance for good efficiency.  
If a small load current is mainly necessary for your application, choose a MOSFET with low gate capacity for  
good efficiency.  
Maximum continuous drain current of MOSFET should be larger than peak current, ILmax.  
12  
R1224N  
TIMING CHART  
VOUT Set Output Voltage  
UVLO Voltage  
VIN  
Input Voltage  
Rising Time  
UVLO Reset  
VOUT Set Output Voltage  
CE  
Protection Circuit Delay Time  
VOUT Set Output  
Voltage  
EXT  
Reset Protection  
VOUT Set Output  
Voltage  
VOUT  
Stable  
Operation  
Stable  
Operation  
Stable  
Operation  
Soft Start  
Soft Start  
Soft Start  
Soft Start  
The timing chart shown above describes the changing process of input voltage rising, stable operating,  
operating with large current, stable operating, input voltage falling, input voltage recovering, and stable  
operating.  
First, until when the input voltage (VIN) reaches UVLO voltage, the circuit inside keeps the condition of  
pre-standby.  
Second, after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start  
operation finishes, the operation becomes stable.  
If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during  
the delay time of protection circuit. (The current value depends on the circuit.)  
After the delay time passes, reset protection works, or EXT signal will be “H”, then output will turn off, then  
soft-start operation starts. After the soft-start operation, EXT signal will be “L”, but if the large current is still  
flowing, after the delay time of protection circuit passes, reset protection circuit will work again, the operation will  
be continuously repeated unless the cause of large current flowing is not removed.  
Once the cause of the large current flowing is removed, within the delay time, the operation will be back to the  
stable one.  
If the timing for release the large current is in the protection process, the operation will be back to the normal  
one after the soft-start operation.  
If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection  
circuit may be ready to work, therefore, after the delay time of protection circuit, EXT will be “H”.  
Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function.  
After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of  
spre-standby.  
Then after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation  
finishes, the operation becomes stable.  
13  
R1224N  
TEST CIRCUITS  
Output Voltage, Oscillator Frequency, CE “H” Input Voltage, CE “L” Input Voltage, Soft-start time  
L1  
PMOS  
4
EXT  
Oscilloscope  
IN  
V
5
1
D1  
C1  
2
3
R1224N  
GND  
C2  
OUT  
(VFB)  
V
CE  
V
Supply Current 1  
Standby Current  
IN  
A
IN  
A
V
V
5
1
5
1
2
3
2
3
R1224N  
CE  
R1224N  
CE  
GND  
GND  
OUT  
V
OUT  
V
(VFB)  
(VFB)  
EXT “H” Output Current  
EXT “L” Output Current  
IN  
IN  
EXT  
V
EXT  
V
4
2
3
5
1
4
2
3
5
1
R1224N  
R1224N  
GND  
GND  
A
A
OUT  
(VFB)  
OUT  
(VFB)  
V
V
CE  
CE  
CE “H” Input Current, CE “L” Input Current  
Output Delay Time for Protection Circuit  
IN  
IN  
V
EXT  
V
5
1
4
2
3
5
1
Oscilloscope  
2
3
R1224N  
R1224N  
GND  
GND  
OUT  
V
OUT  
(VFB)  
V
A
CE  
CE  
C2  
(VFB)  
PMOS: HAT1044M (Hitachi)  
SD1 : RB491D (Rohm)  
L : CD104-270MC (Sumida, 27µH)  
C2: 47µF (Tantalum Type)  
C1  
: 47µF (Tantalum Type)  
14  
R1224N  
TYPICAL CHARACTERISTICS  
1)Output Voltage vs. Output Current (*Note)  
R1224N182E L=10µH  
R1224N182F L=10µH  
1.850  
1.850  
1.830  
1.830  
1.810  
1.790  
1.810  
1.790  
1.770  
1.750  
V
IN3.3V  
IN5V  
V
IN3.3V  
IN5V  
1.770  
V
V
1.750  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current IOUT(mA)  
R1224N182G L=10µH  
R1224N182H L=10µH  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
V
V
V
IN3.3V  
V
V
V
IN3.3V  
IN5V  
IN5V  
IN12V  
IN12V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N182L L=27µH  
R1224N182M L=27µH  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
1.850  
1.830  
1.810  
1.790  
1.770  
1.750  
V
V
V
IN3.3V  
V
IN3.3V  
IN5V  
IN5V  
V
IN12V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
15  
R1224N  
R1224N332E L=10µH  
R1224N332F L=10µH  
3.40  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
V
IN4.8V  
IN7V  
V
IN4.8V  
IN7V  
V
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332G L=10µH  
R1224N332G (VIN=10V)  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
VIN4.8V  
VIN12V  
VIN15V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332G (VIN=16V)  
R1224N332H L=10µH  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
VIN4.8V  
VIN12V  
VIN15V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
16  
R1224N  
R1224N332L L=27µH  
R1224N332M L=27µH  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
3.400  
3.380  
3.360  
3.340  
3.320  
3.300  
3.280  
3.260  
3.240  
3.220  
3.200  
V
V
V
IN4.8V  
IN12V  
IN15V  
V
IN4.8V  
IN7V  
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332M (VIN=5V)  
R1224N332M (VIN=10V)  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
0
1
2
3
4
5
1
2
3
4
5
0
Output Current lOUT(A)  
Output Current lOUT(A)  
R1224N332M (VIN=18V)  
R1224N502E L=10µH  
5.100  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
V
IN6.5V  
IN10V  
V
0.1  
1
10  
100  
1000  
0
1
2
3
4
10000  
Output Current lOUT(A)  
Output Current lOUT(mA)  
17  
R1224N  
R1224N502F L=10µH  
R1224N502G L=10µH  
5.100  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
VIN6.5V  
VIN12V  
VIN15V  
V
IN6.5V  
IN10V  
V
0.1  
0.1  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502G (VIN=10V)  
R1224N502G (VIN=16V)  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502H L=10µH  
R1224N502L L=27µH  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
VIN6.5V  
VIN12V  
VIN15V  
V
IN6.5V  
IN10V  
V
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
18  
R1224N  
R1224N502M L=27µH  
5.100  
5.080  
5.060  
5.040  
5.020  
5.000  
4.980  
4.960  
4.940  
4.920  
4.900  
*Note: Typical characteristics 1) are obtained with using  
the following components;  
PMOS: IRF7406 (IR)  
V
V
V
IN6.5V  
IN12V  
IN15V  
L
: CDRH127-100MC (Sumida: 10µH)  
SD  
C1  
C2  
C3  
R1  
: RB083L-20 (Rohm)  
: 25SC47 (Sanyo/OS-con: 47µF/25V)×2  
: 0.1µF (Ceramic Type)  
: 10SA220 (Sanyo/OS-con: 220µF/10V)  
: 10Ω  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
2) Efficiency vs. Output Current (*Note)  
R1224N182F (VIN=3.3V)  
CDRH127-10µH  
R1224N182F (VIN=5.0V)  
CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N182G (VIN=3.3V) CDRH127-10µH  
R1224N182G (VIN=5.0V) CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
19  
R1224N  
R1224N182G (VIN=12V)  
CDRH127-10µH  
R1224N182H (VIN=3.3V)  
CDRH127-10µH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N182H (VIN=5.0V) CDRH127-10µH  
R1224N182H (VIN=12V) CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N182L (VIN=3.3V)  
CDRH127-27µH  
R1224N182L (VIN=5.0V)  
CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
20  
R1224N  
R1224N182M (VIN=3.3V)  
CDRH127-27µH  
R1224N182M (VIN=5.0V)  
CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N182M (VIN=12V) CDRH127-27µH  
R1224N332E (VIN=7.0V) CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332E (VIN=4.8V)  
CDRH127-10µH  
R1224N332F (VIN=7.0V)  
CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
21  
R1224N  
R1224N332F (VIN=4.8V)  
CDRH127-10µH  
R1224N332G (VIN=12V)  
CDRH127-10µH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332G (VIN=4.8V) CDRH127-10µH  
R1224N332G (VIN=10V)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332G (VIN=16V)  
R1224N332G (VIN=15V)  
CDRH127-10µH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
22  
R1224N  
R1224N332H (VIN=12V)  
CDRH127-10µH  
R1224N332H (VIN=4.8V)  
CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332H (VIN=15V) CDRH127-10µH  
R1224N332L (VIN=7.0V) CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332L (VIN=4.8V)  
CDRH127-27µH  
R1224N332M (VIN=12V)  
CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
23  
R1224N  
R1224N332M (VIN=4.8V)  
CDRH127-27µH  
R1224N332M (VIN=5V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0.1  
1
10  
100  
1000 10000  
0
1
2
3
4
5
Output Current lOUT(mA)  
Output Current lOUT(A)  
R1224N332M (VIN=10V)  
R1224N332M (VIN=18V)  
100  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
0
1
2
3
4
5
0
1
2
3
4
Output Current lOUT(A)  
Output Current lOUT(A)  
R1224N332M (VIN=15V)  
CDRH127-27µH  
R1224N502E (VIN=6.5V)  
CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
24  
R1224N  
R1224N502E (VIN=10V)  
CDRH127-10µH  
R1224N502F (VIN=6.5V)  
CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502F (VIN=10V) CDRH127-10µH  
R1224N502G (VIN=10V)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502G (VIN=16V)  
R1224N502G (VIN=6.5V)  
CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
25  
R1224N  
R1224N502G (VIN=12V)  
CDRH127-10µH  
R1224N502G (VIN=15V)  
CDRH127-10µH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502H (VIN=6.5V) CDRH127-10µH  
R1224N502H (VIN=12V) CDRH127-10µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502H (VIN=15V)  
CDRH127-10µH  
R1224N502L (VIN=6.5V)  
CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
26  
R1224N  
R1224N502L (VIN=10V)  
CDRH127-27µH  
R1224N502M (VIN=6.5V)  
CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502M (VIN=12V) CDRH127-27µH  
R1224N502M (VIN=15V) CDRH127-27µH  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
*Note: Typical characteristics 2) are obtained with using the following components;  
PMOS: IRF7406 (IR)  
L
SD  
C1  
: CDRH127-100MC (Sumida: 10µH)  
: RB083L-20 (Rohm)  
: 25SC47 (Sanyo/OS-con: 47µF/25V)×2  
C2 : 0.1µF (Ceramic Type)  
C3 : 10SA220 (Sanyo/OS-con: 220µF/10V)  
R1 : 10Ω  
27  
R1224N  
3) Ripple Voltage vs. Output Current  
R1224N182E L=10µH  
R1224N182F L=10µH  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
V
IN3.3V  
IN5V  
V
IN3.3V  
IN5V  
50  
40  
30  
20  
10  
0
V
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1224N182G L=10µH  
R1224N182H L=10µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
IN3.3V  
V
V
V
IN3.3V  
IN5V  
IN5V  
IN12V  
IN12V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1224N182L L=27µH  
R1224N182M L=27µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
IN3.3V  
V
IN3.3V  
IN5V  
IN5V  
V
IN12V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
28  
R1224N  
R1224N332E L=10µH  
R1224N332F L=10µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
IN4.8V  
IN7V  
V
IN4.8V  
IN7V  
V
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1224N332G L=10µH  
R1224N332H L=10µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
VIN4.8V  
VIN12V  
VIN15V  
VIN4.8V  
VIN12V  
VIN15V  
0.1  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
1
10  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N332L L=27µH  
R1224N332M L=27µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
VIN4.8V  
VIN12V  
VIN15V  
V
IN4.8V  
IN7V  
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
29  
R1224N  
R1224N502E L=10µH  
R1224N502F L=10µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
IN6.5V  
IN10V  
V
IN6.5V  
IN10V  
V
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current lOUT(mA)  
Output Current lOUT(mA)  
R1224N502G L=10µH  
R1224N502H L=10µH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
VIN6.5V  
VIN12V  
VIN15V  
VIN6.5V  
VIN12V  
VIN15V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1224N502L L=27µH  
R1224N502M L=27µH  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
V
V
IN6.5V  
IN12V  
IN15V  
V
IN6.5V  
IN10V  
V
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000 10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
30  
R1224N  
4) Output Voltage vs. Input Voltage  
R1224N182E L=10µH  
R1224N182F L=10µH  
2.00  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1mA  
1mA  
500mA  
500mA  
1.65  
1.60  
0
0
0
5
10  
15  
20  
20  
20  
0
0
0
5
10  
15  
20  
20  
20  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
R1224N182G L=10µH  
R1224N182H L=10µH  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
-1mA  
-500mA  
-1mA  
-500mA  
5
10  
15  
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
R1224N182L L=27µH  
R1224N182M L=27µH  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1mA  
500mA  
1mA  
500mA  
5
10  
15  
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
31  
R1224N  
R1224N332E L=10µH  
R1224N332F L=10µH  
3.40  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
1mA  
500mA  
1mA  
500mA  
0
0
0
5
10  
15  
20  
20  
20  
0
0
0
5
10  
15  
20  
20  
20  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
R1224N332G L=10µH  
R1224N332H L=10µH  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
-1mA  
-500mA  
-1mA  
-500mA  
5
10  
15  
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
R1224N332L L=27µH  
R1224N332M L=27µH  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
1mA  
500mA  
1mA  
500mA  
5
10  
15  
5
10  
15  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
32  
R1224N  
R1224N502E L=10µH  
R1224N502F L=10µH  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1mA  
500mA  
1mA  
500mA  
0
0
0
5
10  
15  
20  
20  
20  
0
0
0
5
10  
15  
20  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
R1224N502G L=10µH  
R1224N502H L=10µH  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
-1mA  
-500mA  
-1mA  
-500mA  
5
10  
15  
5
10  
15  
20  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
R1224N502L L=27µH  
R1224N502M L=27µH  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
1mA  
500mA  
1mA  
500mA  
5
10  
15  
5
10  
15  
20  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
33  
R1224N  
5) Output Voltage vs. Temperature  
R1224N332E  
R1224N122F  
3.33  
1.210  
1.205  
1.200  
1.195  
1.190  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
R1224N602L  
R1224N102G  
6.10  
1.010  
1.005  
1.000  
0.995  
0.990  
6.05  
6.00  
5.95  
5.90  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
6) Oscillator Frequency vs. Temperature  
R1224N102G  
R1224N102H  
360  
600  
550  
500  
450  
400  
330  
300  
270  
240  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
34  
R1224N  
R1224N102M  
216  
198  
180  
162  
144  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
7) Supply Current vs. Temperature  
R1224N332E  
R1224N602L  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
0
-40  
0
-40  
-15  
10  
35  
60  
85  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
R1224N602F  
R1224N102G  
25  
40  
30  
20  
10  
0
20  
15  
10  
5
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
35  
R1224N  
R1224N102H  
R1224N102M  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
8) Soft-start time vs. Temperature  
R1224N102G  
15  
10  
5
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
9) Delay Time for Protection vs. Temperature  
R1224N332E  
30  
25  
20  
15  
10  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
36  
R1224N  
10) EXT “H” Output Current vs. Temperature  
R1224N332E  
-10  
-15  
-20  
-25  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
11) EXT “L” Output Current vs. Temperature  
R1224N332E  
50  
40  
30  
20  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
12) Load Transient Response  
R1224N332G  
L=10µH VIN=4.8V  
R1224N332G  
L=10µH VIN=4.8V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-0  
-0  
0
1E-04 2E-04 3E-04 4E-04  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
37  
R1224N  
R1224N332G  
L=10µH VIN=10V  
R1224N332G  
L=10µH VIN=10V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
R1224N332H  
L=10µH VIN=4.8V  
R1224N332H  
L=10µH VIN=4.8V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
600  
400  
200  
0
-2E-04 -1E-04  
0
1E-04 2E-04 3E-04 4E-04  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
R1224N332H  
L=10µH VIN=10V  
R1224N332H  
L=10µH VIN=10V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-2E-04 -1E-04  
0
1E-04 2E-04 3E-04 4E-04  
-2E-04 -1E-04  
0
0.0001 0.0002 0.0003 0.0004  
Time(sec)  
Time(sec)  
38  
R1224N  
R1224N332M  
L=27µH VIN=4.8V  
R1224N332M  
L=27µH VIN=4.8V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
600  
400  
400  
200  
200  
0
0
-2E-04 -1E-04  
0
0.0001 0.0002 0.0003 0.0004  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
R1224N332M  
L=27µH VIN=10V  
R1224N332M  
L=27µH VIN=10V  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2000  
1800  
1600  
1400  
1200  
1000  
800  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
600  
400  
200  
0
-2E-04 -1E-04  
0
1E-04 2E-04 3E-04 4E-04  
-0.04 -0.02  
0
0.02 0.04 0.06 0.08  
Time(sec)  
Time(sec)  
12) UVLO Voltage vs. Temperature  
R1224N332E  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(˚C)  
39  
PE-SOT-23-5-071228  
PACKAGE INFORMATION  
SOT-23-5 (SC-74A)  
Unit: mm  
PACKAGE DIMENSIONS  
2.9±0.2  
+0.2  
0.1  
1.1  
1.9±0.2  
(0.95)  
(0.95)  
0.8±0.1  
5
4
0 to 0.1  
1
2
3
+0.1  
0.05  
0.15  
0.4±0.1  
TAPING SPECIFICATION  
4.0–0.1  
+0.1  
0
φ1.5  
2.0–0.05  
0.3–0.1  
3.3  
4.0–0.1  
2.0Max.  
1.1±0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc)  
(1reel=3000pcs)  
11.4±1.0  
9.0±0.3  
2±0.5  
21±0.8  
PE-SOT-23-5-071228  
PACKAGE INFORMATION  
POWER DISSIPATION (SOT-23-5)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plastic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
φ0.5mm × 44pcs  
Through-hole  
Measurement Result  
(Topt=25°C, Tjmax=125°C)  
Free Air  
Standard Land Pattern  
420mW  
Power Dissipation  
250mW  
Thermal Resistance  
θja=(12525°C)/0.42W=238°C/W  
400°C/W  
600  
40  
500  
400  
300  
200  
100  
0
On Board  
420  
250  
Free Air  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area Unit : mm  
RECOMMENDED LAND PATTERN  
0.7 MAX.  
1.0  
2.4  
0.95  
1.9  
0.95  
(Unit: mm)  
ME-R1224N-0612  
MARK INFORMATION  
R1224N SERIES MARK SPECIFICATION  
SOT-23-5 (SC-74A)  
1
4
2
5
3
,
,
,
: Product Code (refer to Part Number vs. Product Code)  
: Lot Number  
1
2
3
4
5
Part Number vs. Product Code  
Product Code  
Product Code  
Product Code  
Part Number  
Part Number  
Part Number  
1
2
3
1
2
3
1
2
3
R1224N102G  
R1224N122G  
R1224N152G  
R1224N182G  
R1224N252G  
R1224N302G  
R1224N332G  
R1224N362G  
R1224N402G  
R1224N502G  
R1224N552G  
R1224N602G  
R1224N122E  
R1224N152E  
R1224N182E  
R1224N222E  
R1224N252E  
R1224N262E  
R1224N272E  
R1224N302E  
R1224N332E  
R1224N502E  
R1224N552E  
R1224N602E  
G
G
G
G
G
G
G
G
G
G
G
G
E
E
E
E
E
E
E
E
E
E
E
E
1
1
1
1
2
3
3
3
4
5
5
6
1
1
1
2
2
2
2
3
3
5
5
6
0
2
5
8
5
0
3
6
0
0
5
0
2
5
8
2
5
6
7
0
3
0
5
0
R1224N102H  
R1224N122H  
R1224N132H  
R1224N152H  
R1224N182H  
R1224N252H  
R1224N302H  
R1224N332H  
R1224N362H  
R1224N402H  
R1224N462H  
R1224N472H  
R1224N502H  
R1224N552H  
R1224N602H  
R1224N122F  
R1224N152F  
R1224N182F  
R1224N252F  
R1224N262F  
R1224N302F  
R1224N322F  
R1224N332F  
R1224N362F  
R1224N502F  
R1224N552F  
R1224N602F  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
F
F
F
F
F
F
F
F
F
F
F
F
1
1
1
1
1
2
3
3
3
4
4
4
5
5
6
1
1
1
2
2
3
3
3
3
5
5
6
0
2
3
5
8
5
0
3
6
0
6
7
0
5
0
2
5
8
5
6
0
2
3
6
0
5
0
R1224N102M  
R1224N122M  
R1224N152M  
R1224N182M  
R1224N252M  
R1224N302M  
R1224N312M  
R1224N332M  
R1224N502M  
R1224N552M  
R1224N602M  
R1224N122 L  
R1224N152 L  
R1224N182 L  
R1224N252 L  
R1224N302 L  
R1224N312 L  
R1224N332 L  
R1224N502 L  
R1224N552 L  
R1224N602 L  
M
M
M
M
M
M
M
M
M
M
M
L
L
L
L
L
L
L
L
L
1
1
1
1
2
3
3
3
5
5
6
1
1
1
2
3
3
3
5
5
6
0
2
5
8
5
0
1
3
0
5
0
2
5
8
5
0
1
3
0
5
0
L

相关型号:

R1224N402G-TR-F

Switching Controller, 0.05A, 360kHz Switching Freq-Max, CMOS, PDSO5, LEAD FREE, SOT-23, 5 PIN
RICOH

R1224N402G-TR-FA

Switching Controller, 0.05A, 360kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402G-TR-FE

暂无描述
RICOH

R1224N402H

PWM/VFM step-down DC/DC Converter
RICOH

R1224N402H-TL

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402H-TR

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402H-TR-F

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, LEAD FREE, SOT-23, 5 PIN
RICOH

R1224N402H-TR-FA

Switching Controller, 0.05A, 600kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402L-TL-FA

Switching Controller, 0.05A, 216kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402L-TR

Switching Controller, 0.05A, 216kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402L-TR-FA

Switching Controller, 0.05A, 216kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH

R1224N402M-TL

Switching Controller, 0.05A, 216kHz Switching Freq-Max, CMOS, PDSO5, SOT-23, 5 PIN
RICOH