R1230D291G-TR [RICOH]

Switching Regulator, Current-mode, 575kHz Switching Freq-Max, CMOS, PDSO8, 0.9 MM HEIGHT, SON-8;
R1230D291G-TR
型号: R1230D291G-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Regulator, Current-mode, 575kHz Switching Freq-Max, CMOS, PDSO8, 0.9 MM HEIGHT, SON-8

开关 光电二极管
文件: 总26页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PWM/VFM STEP-DOWN DC/DC CONVERTER  
WITH SYNCHRONOUS RECTIFIER  
NO. EA-085-0305  
R1230D SERIES  
OUTLINE  
The R1230D Series are CMOS-based PWM step-down DC/DC Converters with synchronous rectifier, low supply  
current.  
Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-  
start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), PWM/VFM alternative  
circuit, a chip enable circuit, and a driver transistor. A low ripple, high efficiency step-down DC/DC converter can be  
easily composed of this IC with only a few kinds of external components, or an inductor and capacitors. (As for  
R1230D001G/H types, divider resistors are also necessary.) In terms of Output Voltage, it is fixed internally in the  
R1230Dxx1E/F types. While in the R1230D001G/H types, Output Voltage is adjustable with external divider resistors.  
PWM/VFM alternative circuit is active with Mode Pin of the R1230D Series. Thus, when the load current is small,  
the operation can be switching into the VFM operation from PWM operation by the logic of MODE pin and the effi-  
ciency at small load current can be improved. As protection circuits, Current Limit circuit which limits peak current of  
Lx at each clock cycle, and Latch type protection circuit which works if the term of Over-current condition keeps on a  
certain time in PWM mode exist. Latch-type protection circuit works to latch an internal driver with keeping it disable.  
To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC  
with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO.  
FEATURES  
Built-in Driver ON Resistance ....................................P-channel 0.35, N-channel 0.45(at VIN=3V)  
Built-in Soft-start Function (Typ. 1.5ms), and Latch-type Protection Function (Delay Time; Typ. 1.5ms)  
Two choices of Oscillator Frequency...........................500kHz, 800kHz  
PWM/VFM alternative with MODE pin .....................PWM operation; MODE pin at "L",  
VFM operation; MODE pin at "H"  
High Efficiency .............................................................Typ. 90%  
Output Voltage..............................................................Stepwise Setting with a step of 0.1V in the range of 1.2V ~  
3.3V (xx1E/F Type) or adjustable in the range of 0.8V to VIN  
(001G/H Type)  
High Accuracy Output Voltage ....................................±2.0% (xx1E/F Type)  
Package .........................................................................SON8 (Max height 0.9mm, thin type)  
1
R1230D  
APPLICATIONS  
Power source for portable equipment.  
BLOCK DIAGRAM  
R1230Dxx1E/F  
“L” PWM “H” VFM  
V
DD  
MODE  
3
6
V
IN  
5
1
8
V
OUT  
OSC  
PWM/VFM  
CONTROL  
Phase  
Compensation  
L
X
+
-
-
-
OUTPUT  
CONTROL  
Vref  
+
Current Protection  
UVLO  
Soft Start  
CE  
“H” Active  
CE  
Chip Enable  
4
2
7
PGND  
AGND  
R1230D001G/H  
LPWM HVFM  
V
DD  
MODE  
3
6
VIN  
5
1
8
V
FB  
OSC  
Phase  
PWM/VFM  
CONTROL  
Compensation  
LX  
+
-
-
-
OUTPUT  
CONTROL  
Vref  
+
Current Protection  
UVLO  
Soft Start  
Chip Enable  
HActive  
CE  
4
2
7
PGND  
AGND  
2
R1230D  
SELECTION GUIDE  
In the R1230D Series, the output voltage, the oscillator frequency, and the taping type for the ICs can be selected at  
the user's request.  
The selection can be made by designating the part number as shown below;  
R1230Dxxxx-xx  
↑ ↑  
Part Number  
a bc d  
Code  
Contents  
Setting Output Voltage(VOUT):  
Stepwise setting with a step of 0.1V in the range of 1.2V to 3.3V is possible for E/F version.  
"00" is for Output Voltage Adjustable G/H version (0.8V ~ )  
a
1 : fixed  
b
Designation of Optional Function  
E : 500kHz, Fixed Output Voltage  
F : 800kHz, Fixed Output Voltage  
G : 500kHz, Adjustable Output Voltage  
H : 800kHz, Adjustable Output Voltage  
c
Designation of Taping Type; (Refer to Taping Specification)  
"TR" is prescribed as a standard.  
d
PIN CONFIGURATION  
SON-8  
7 6  
8
5
1
2
3
4
3
R1230D  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
7
8
VIN  
PGND  
VDD  
Voltage Supply Pin  
Ground Pin  
Voltage Supply Pin  
CE  
Chip Enable Pin (active with "H")  
VOUT/VFB  
MODE  
AGND  
LX  
Output/Feedback Pin  
Mode changer Pin (PWM mode at "L", VFM mode at "H".)  
Ground Pin  
LX Pin  
ABSOLUTE MAXIMUM RATINGS  
AGND=PGND=0V  
Symbol  
VIN  
Item  
VIN Supply Voltage  
Rating  
Unit  
V
6.5  
VDD  
VDD Pin Voltage  
6.5  
V
VLX  
LX Pin Voltage  
-0.3 ~ VIN +0.3  
-0.3 ~ VIN +0.3  
-0.3 ~ VIN +0.3  
-0.3 ~ VIN +0.3  
-0.8  
V
VCE  
CE Pin Input Voltage  
MODE Pin Input Voltage  
VFB Pin Input Voltage  
LX Pin Output Current  
Power Dissipation  
V
VMODE  
VFB  
V
V
ILX  
A
PD  
250  
mW  
°C  
°C  
Topt  
Tstg  
Operating Temperature Range  
Storage Temperature Range  
-40 ~ +85  
-55 ~ +125  
4
R1230D  
ELECTRICAL CHARACTERISTICS  
R1230Dxx1E/F  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIN  
Operating Input Voltage  
2.4  
5.5  
V
Typ.×  
Typ.×  
VIN=VCE=VSET+1.5V,  
VMODE=0V, IOUT=10mA  
VOUT  
Step-down Output Voltage  
VSET  
V
0.980  
1.020  
VOUT/  
T  
Step-down Output Voltage Tem-  
perature Coefficient  
ppm/  
°C  
-40°C Topt 85°C  
±150  
fosc  
fosc  
Oscillator Frequency (xx1E)  
Oscillator Frequency (xx1F)  
VIN=VCE=VSET+1.5V  
VIN=VCE=VSET+1.5V  
425  
680  
500  
800  
575  
920  
kHz  
kHz  
VIN=VCE=VSET+1.5V,  
VOUT=VMODE=0V  
IDD  
Supply Current (xx1E)  
Supply Current (xx1F)  
230  
250  
300  
350  
µA  
µA  
VIN=VCE=VSET+1.5V,  
VOUT=VMODE=0V  
IDD  
VIN=5.5V, VCE=VOUT=0V  
VIN=5.0V  
Istb  
RONP  
RONN  
Standby Current  
0
5
µA  
0.20  
0.20  
0.35  
0.45  
0.60  
0.70  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor VIN=5.0V  
VIN=5.5V, VCE=0V,  
ILXleak  
IVOUT  
ICE  
LX Leakage Current  
VOUT Leakage Current  
CE Input Current  
-0.1  
-0.1  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
µA  
µA  
µA  
VLX=0V/5.5V  
VIN=5.5V, VCE=0V,  
VLX=0V/5.5V  
VIN=5.5V, VMODE=0V,  
VCE=5.5V/0V  
-0.1  
1.5  
VCEH  
VCEL  
CE "H" Input Voltage  
CE "L" Input Voltage  
VIN=5.5V, VOUT=0V  
VIN=2.4V, VOUT=0V  
VMODE=0V  
V
V
0.3  
Maxdty Oscillator Maximum Duty Cycle  
100  
%
VMODE=VOUT=0V,  
VIN=VCE=3.0V  
VIN-  
0.15  
VIN-  
0.35  
VIN-  
0.55  
VLX LX Limit Voltage  
V
5
R1230D  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Tstart  
Delay Time by Soft-Start function at no load, VIN=VCE=VSET+1.5V  
0.5  
1.5  
2.5  
2.5  
ms  
VIN=VCE=VSET+1.5V,  
Delay Time for protection circuit  
VMODE=0V  
Tprot  
VUVLO1  
VUVLO2  
IMODE  
0.5  
1.8  
1.9  
1.5  
2.1  
2.2  
ms  
V
VIN=VCE=2.5V 1.5V,  
UVLO Threshold Voltage  
VOUT=0V  
2.2  
2.3  
0.1  
VIN=VCE=1. 5V 2.5V,  
UVLO Released Voltage  
VOUT=0V  
V
VIN=5.5V, VCE=0V,  
MODE Pin Input Current  
-0.1  
1.5  
µA  
VMODE=5.5V/0V  
VMODEH  
VMODEL  
MODE "H" Input Voltage  
MODE "L" Input Voltage  
VIN=VCE=5.5V, VOUT=0V  
VIN=VCE=2.4V, VOUT=0V  
V
V
0.3  
85  
VIN=VCE= VMODE=2.4V,  
VOUT=0V  
VFM Duty Cycle  
55  
65  
%
VFMdty  
R1230D001G/H  
Topt=25°C  
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
Unit  
VIN  
Operating Input Voltage  
Feedback Voltage  
2.4  
5.5  
V
VIN=VCE=VSET+1.5V,  
VMODE=0V, IOUT=10mA  
VFB  
0.776  
0.800  
±150  
0.824  
V
VFB/  
T  
Feedback Voltage  
ppm/  
°C  
-40°C Topt 85°C  
Temperature Coefficient  
fosc  
fosc  
IDD  
Oscillator Frequency (xx1G)  
Oscillator Frequency (xx1H)  
Supply Current (xx1G)  
Supply Current (xx1H)  
Standby Current  
VIN=VCE=VSET+1.5V  
425  
680  
500  
800  
230  
250  
0
575  
920  
300  
350  
5
kHz  
kHz  
µA  
µA  
µA  
VIN=VCE=VSET+1.5V  
VIN=VCE=5.5V, VFB=VMODE=0V  
VIN=VCE=5.5V, VFB=VMODE=0V  
VIN=5.5V, VCE=VFB=0V  
IDD  
Istb  
RONP  
RONN  
ON Resistance of Pch Transistor VIN=5.0V  
ON Resistance of Nch Transistor VIN=5.0V  
0.20  
0.20  
0.35  
0.45  
0.60  
0.70  
6
R1230D  
Topt=25°C  
Symbol  
Item  
Conditions  
VIN=5.5V, VCE=0V,  
Min.  
Typ.  
Max.  
Unit  
ILXleak  
LX Leakage Current  
-0.1  
0.0  
0.1  
0.1  
0.1  
µA  
VLX=0V/5.5V  
VIN=5.5V, VCE=0V,  
VFB=0V/5.5V  
IVFB  
VFB Leakage Current  
CE Input Current  
-0.1  
0.0  
0.0  
µA  
µA  
VIN=5.5V, VMODE=0V,  
VCE=5.5V/0V  
ICE  
-0.1  
1.5  
VCEH  
VCEL  
VIN=5.5V, VFB=0V  
VIN=2.4V, VFB=0V  
VMODE=0V  
V
V
CE "H" Input Voltage  
CE "L" Input Voltage  
0.3  
maxdty Oscillator Maximum Duty Cycle  
100  
%
VIN=VCE=3.0V, VMODE=0V,  
VFB=0V  
VIN-  
0.15  
VIN-  
0.35  
VIN-  
0.55  
VLX  
LX Limit Voltage  
V
Tstart  
Tprot  
VUVLO1  
VUVLO2  
Delay Time by Soft-Start function at no load, VIN=VCE=VSET+1.5V  
Delay Time for protection circuit VIN=VCE=3.6V, VMODE=0V  
0.5  
1.5  
1.5  
2.1  
2.2  
2.5  
ms  
ms  
V
UVLO Threshold Voltage  
UVLO Released Voltage  
VIN=VCE=2.5V 1.5V, VFB=0V  
VIN=VCE=1.5V 2.5V, VFB=0V  
1.8  
1.9  
2.2  
2.3  
V
VIN=5.5V, VMODE=5.5V/0V,  
VCE=0V  
IMODE  
MODE Pin Input Current  
-0.1  
1.5  
0.1  
µA  
VMODEH  
VMODEL  
MODE "H" Input Voltage  
MODE "L" Input Voltage  
VIN=VCE=5.5V, VFB=0V  
V
V
VIN=VCE=2.4V, VFB=0V  
0.3  
85  
VFMdty VFM Duty Cycle  
VIN=VCE=VMODE=2.4V, VFB=0V  
55  
65  
%
7
R1230D  
TEST CIRCUITS  
VIN  
LX  
V
IN  
LX  
OSCILLOSCOPE  
VDD  
V
DD  
CE  
CE  
VOUT  
V
OUT  
AGND  
AGND  
A
PGND MODE  
PGND MODE  
Test Circuit for Input Current and Leakage Current  
Test Circuit for Input Voltage and UVLO voltage  
OSCILLOSCOPE  
VOUT  
V
IN  
LX  
L
VDD  
CE  
10µF  
VOUT  
AGND  
PGND MODE  
Test Circuit for Output Voltage, Oscillator Frequency, Soft-Starting Time  
OSCILLOSCOPE  
V
V
IN  
LX  
V
V
IN  
LX  
DD  
A
DD  
CE  
CE  
A
VOUT  
V
OUT  
AGND  
AGND  
PGND MODE  
PGND MODE  
Test Circuit for Supply Current and Standby Current  
Test Circuit for ON resistance of LX, Limit  
Voltage, Delay Time of Protection Circuit  
The bypass capacitor between power supply and GND is a ceramic capacitor 10µF.  
8
R1230D  
TYPICAL APPLICATION AND TECHNICAL NOTES  
1) Fixed Output Voltage Type  
V
OUT  
V
IN  
LX  
L
C
IN  
PGND AGND  
MODE  
LOAD  
V
DD  
C
OUT  
CE  
VOUT  
L
: 10µH LQH3C100K54 (Murata)  
COUT : 10µF ECSTOJX106R (Panasonic)  
CIN : 10µF C3216JB0J106M (TDK)  
VFM mode may work with a parasitic diode, but we recommend that VFM mode used with an external diode in be-  
tween LX and GND. As for PWM mode, an external diode is not necessary.  
2) Adjustable Output Voltage Type  
L
VOUT  
VIN  
LX  
CIN  
PGND AGND  
MODE  
LOAD  
R1  
Cb  
Rb  
VDD  
COUT  
CE  
VFB  
R2  
L
: 10µH LQH3C100K54 (Murata)  
COUT : 10µF ECSTOJX106R (Panasonic)  
CIN : 10µF C3216JB0J106M (TDK)  
VFM mode may work with a parasitic diode, but we recommend that VFM mode used with an external diode in be-  
tween LX and GND. As for PWM mode, an external diode is not necessary.  
As for how to choose Cb, Rb, R1, and R2 values, refer to the technical notes.  
9
R1230D  
When you use these ICs, consider the following issues;  
Input same voltage into the power supply pins, VIN and VDD. Set the same level as AGND and PGND.  
When you control the CE pin and MODE pin by another power supply, do not make its "H" level more than the volt-  
age level of VIN / VDD pin.  
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize the  
wiring to VIN pin and PGND pin.  
At stand by mode, (CE="L"), the LX output is Hi-Z, or both P-channel transistor and N-channel transistor of LX pin  
turn off.  
Use an external capacitor COUT with a capacity of 10µF or more, and with good high frequency characteristics such  
as tantalum capacitors.  
At VFM mode, (MODE="H"), Latch protection circuit does not operate.  
If the mode is switched over into PWM mode from VFM mode during the operation, change the mode at light load  
current. If the load current us large, output voltage may decline.  
Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching current may flow in these lines. If the imped-  
ance of VIN and PGND lines is too large, the internal voltage level in this IC may shift caused by the switching cur-  
rent, and the operation might be unstable.  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay at-  
tention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values  
such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected  
rated values.  
10  
R1230D  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the en-  
ergy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output voltage  
than the input voltage is obtained. The operation will be explained with reference to the following diagrams:  
<Basic Circuits>  
<Current through L>  
IL  
ILmax  
i1  
ILmin  
topen  
IOUT  
L
Pch Tr  
V
OUT  
V
IN  
i2  
CL  
Nch Tr  
ton  
toff  
T=1/fosc  
Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL in-  
creases from Ilmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.  
Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at  
ILmax, and current IL (=i2) flows.  
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. Turns  
off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not  
enough. In this case, IL value increases from this Ilmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with  
the oscillator frequency (fosc) being maintained constant.  
Discontinuous Conduction Mode and Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the  
same as those when P-channel Tr. turns on and off.  
The difference between ILmax and ILmin, which is represented by I;  
I = ILmax - ILmin = VOUT × topen / L = (VIN - VOUT) × ton / L....................................Equation 1  
Wherein T = 1 / fosc = ton + toff  
duty (%) = ton / T × 100 = ton × fosc × 100  
topen toff  
In Equation 1, VOUT × topen/L and (VIN - VOUT) × ton/L respectively show the change of the current at "ON", and the  
change of the current at "OFF".  
11  
R1230D  
When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case, the  
energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period  
of toff, therefore ILmin becomes to zero (ILmin = 0). When IOUT is gradually increased, eventually, topen becomes to  
toff (topen = toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin > 0). The former mode  
is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
tonc = T × VIN / VOUT .............................................................................................................Equation 2  
When ton < tonc, the mode is the discontinuous mode, and when ton = tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When P-channel Tr. of LX is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX are re-  
spectively described as Ronp and Ronn, and the DC resistor of the inductor is described as RL.)  
VIN = VOUT + (Ronp + RL) × IOUT + L × IRP / ton.................................................................Equation 3  
When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"):  
L × IRP / toff = RL × IOUT + VOUT + Ronn × IOUT ...................................................................Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, ton / (toff + ton) = DON,  
DON = (VOUT – Ronn × IOUT + RL × IOUT) / (VIN + Ronn × IOUT – Ronp × IOUT) .................. Equation 5  
Ripple Current is as follows;  
IRP = (VIN – VOUT – Ronp × IOUT – RL × IOUT) × DON / fosc / L................................................Equation 6  
wherein, peak current that flows through L, and LX Tr. is as follows;  
ILmax = IOUT + IRP/2.............................................................................................................Equation 7  
Consider ILmax, condition of input and output and select external components.  
The above explanation is directed to the calculation in an ideal case in continuous mode.  
12  
R1230D  
How to Adjust Output Voltage and about Phase Compensation  
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 0.8V.  
Output Voltage, VOUT is as following equation;  
VOUT: R1+R2 = VFB: R2  
VOUT = VFB × (R1 + R2)/R2  
Thus, with changing the value of R1 and R2, output voltage can be set in the specified range.  
In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180  
degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase  
margin should be secured with proceeding the phase. A pole is formed with external components L and COUT.  
Fpole~1/2π LCOUT  
A zero (signal back to zero) is formed with R1 and Cb.  
Fzero ~ 1/(2π×R1×Cb)  
First, choose the appropriate value of R1, R2 and Cb.  
Set R1+R2 value 100kor less.  
For example, if L = 10µH, COUT = 10µF, the cut off frequency of the pole is approximately 16kHz.  
To make the cut off frequency of the pole higher than 16kHz, set R1 = 42kand Cb = 100pF.  
If VOUT is set at 1.5V, R2 = 48kis appropriate.  
If a ceramic capacitor is desirable as COUT in your application, nonetheless of the usage of both the fixed output voltage  
type and adjustable output type, add 0.2or more resistance to compensate the ESR. Further, if a ceramic capacitor is  
desirable to use as COUT without adding another resister to compensate the ESR, phase should be back drastically. To  
make it, R2 value should be smaller compared to R1. As a result, the set output voltage may be large. For example, to  
make VOUT = 1.5V, constants are R1 = 42k, R2 = 48k, and Cb = 100pF. If the ceramic capacitor is used, under the  
heavy load condition, oscillation may be result. On the other hand, if R2 = 12kand VOUT = 3.6V, phase back becomes  
also large, and even if the device is used with a heavy load, the operation will be stable.  
Rb is effective for reducing the noise on VFB, however, it is not always necessary. If it is necessary, use as much as  
30kas Rb.  
13  
R1230D  
External Components  
1. Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, mag-  
netic saturation occurs and make transform efficiency worse.  
Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output current,  
efficiency is better than using an inductor with a large value of L and vice versa.  
2. Capacitor  
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least 10µF for  
stable operation.  
COUT can reduce ripple of Output Voltage, therefore as much as 10µF tantalum type is recommended.  
3. Diode  
If VFM mode is chosen at light load, use a Schottky diode with small VF. A diode with small VF makes the efficiency  
of the circuit improved. Small reverse direction current, IR is an important factor, however, VF has more important pri-  
ority than IR.  
TIMING CHART  
Output  
Short  
Output Short  
CE pin Voltage  
Internal Opertional Internal Soft-start  
Amplifier Output Set Voltage  
Internal Oscillator Waveform  
Lx Pin Output  
Latched  
Delay Time of Protection  
Soft-start Time  
Stable  
The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched with  
protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty cycle of LX  
is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of amplifier is "H", then  
after the output voltage reaches the set output voltage, they are balanced with the stable state. Herein, if the output pin  
would be short circuit, the output of amplifier would become "H" again, and the condition would continue for 1.5ms (Typ.),  
latch circuit would work and the output of LX would be latched with "OFF". (Output ="High-Z")  
If the output short is released before the latch circuit works (within 1.5ms after output shorted), the output of am-  
plifier is balanced in the stable state again.  
Once the IC is latched, to release the protection, input "L" with CE pin, or make the supply voltage at UVLO level  
or less.  
14  
R1230D  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
R1230D181E  
1.9  
1.85  
1.8  
V
V
V
V
IN=3.3V PWM  
IN=3.3V VFM  
IN=5.0V PWM  
IN=5.0V VFM  
1.75  
1.7  
1
1
1
10  
100  
1000  
1000  
1000  
Output Current(mA)  
R1230D181F  
1.9  
1.85  
1.8  
V
V
V
V
IN=3.3V PWM  
IN=3.3V VFM  
IN=5.0V PWM  
IN=5.0V VFM  
1.75  
1.7  
10  
100  
Output Current(mA)  
R1230D331F  
3.4  
3.35  
3.3  
V
V
IN=5.0V PWM  
IN=5.0V VFM  
3.25  
3.2  
10  
100  
Output Current(mA)  
15  
R1230D  
2) Efficiency vs. Output Current  
R1230D181E  
100  
80  
60  
40  
V
V
V
V
IN=3.3V PWM  
IN=3.3V VFM  
IN=5.0V PWM  
IN=5.0V VFM  
20  
0
1
10  
10  
10  
100  
1000  
1000  
1000  
Output Current(mA)  
R1230D181F  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
V
V
V
IN=3.3V PWM  
IN=3.3V VFM  
IN=5.0V PWM  
IN=5.0V VFM  
0
1
100  
Output Current(mA)  
R1230D331F  
100  
80  
60  
40  
V
V
IN=5.0V PWM  
IN=5.0V VFM  
20  
0
1
100  
Output Current(mA)  
16  
R1230D  
3) Ripple Voltage vs. Output Current  
R1230D181E  
COUT=10µF Tantalum Capacitor ESR=400mΩ  
PWM Mode VIN=5.0V, IOUT=200mA  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-1.00E-06 0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06  
Time(sec)  
R1230D181F  
COUT=10µF, Tantalum Capacitor, ESR=400mΩ  
80  
70  
60  
50  
40  
30  
20  
VIN=5.0V  
VIN=3.3V  
10  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
Output Current IOUT(mA)  
R1230D181F  
C
OUT=10µF Ceramic Capacitor ESR=220mΩ  
PWM Mode VIN=5.0V, IOUT=200mA  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-1.00E-06 0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 6.00E-06 7.00E-06 8.00E-06  
Time(sec)  
17  
R1230D  
4) Output Waveform  
R1230D181F  
C
OUT=10µF Tantalum Capacitor ESR=400mΩ  
PWM Mode VIN=5.0V, IOUT=10mA  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-4.00E-06 -3.00E-06 -2.00E-06 -1.00E-06 0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06  
Time(sec)  
R1230D181F  
COUT=10µF Tantalum Capacitor ESR=400mΩ  
PWM Mode VIN=5.0V, IOUT=100mA  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-4.00E-06 -3.00E-06 -2.00E-06  
-1.00E-06 0.00E+00  
Time(sec)  
1.00E-06  
2.00E-06  
3.00E-06  
4.00E-06  
5) Output Voltage vs. Input Voltage  
R1230D181F  
IOUT=20mA  
1.90  
1.85  
1.80  
VFM  
PWM  
1.75  
1.70  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Input Voltage VIN(V)  
18  
R1230D  
6) Output Voltage vs. Temperature  
R1230D181F  
I
OUT=100mA  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
1.78  
1.76  
1.74  
1.72  
1.7  
-60  
-40  
-20  
0
20  
40  
60  
60  
60  
80  
100  
Temperature Topt(°C)  
R1230D001G/H  
I
OUT=100mA  
0.90  
0.85  
0.80  
0.75  
0.70  
-60  
-40  
-20  
0
20  
40  
80  
100  
Temperature Topt(°C)  
7) Oscillator Frequency vs. Temperature  
V
IN=VOUT+1.5V  
1000  
900  
800  
700  
600  
500  
400  
300  
-60  
-40  
-20  
0
20  
40  
80  
100  
Temperature Topt(°C)  
19  
R1230D  
8) Supply Current vs. Temperature  
V
IN=5.5V  
450  
380  
310  
240  
800kHz  
500kHz  
170  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
9) Soft-start time vs. Temperature  
R1230D181F  
V
IN=3.3V  
3.0  
2.4  
1.8  
1.2  
800kHz  
500kHz  
0.6  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
10) Delay Time for protection vs. Temperature  
R1230D181F  
3.0  
2.4  
1.8  
1.2  
0.6  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
20  
R1230D  
11) UVLO Threshold/Released Voltage vs. Temperature  
2.3  
UVLO Released Voltage  
2.25  
2.2  
2.15  
2.1  
UVLO Detector Threshold  
2.05  
2
1.95  
1.9  
1.85  
1.8  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
12) CE Pin Input Voltage vs. Temperature  
1.6  
1.4  
1.2  
1.0  
13) Mode Pin  
CEH  
0.8  
Input  
CEL  
-20  
0.6  
0.4  
Voltage  
vs. Tem-  
perature  
1.6  
0.2  
0
-60  
-40  
0
20  
40  
60  
80  
100  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Temperature Topt(°C)  
MODEH  
MODEL  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
21  
R1230D  
14) Duty Cycle at VFM Mode vs. Temperature  
80  
75  
70  
65  
60  
55  
50  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
15) Lx Transistor on Resistance vs. Temperature  
VIN=3.0V  
1.00  
0.75  
0.50  
NchTr. On Resistance  
0.25  
PchTr. On Resistance  
0
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
16) Limit Voltage vs. Temperature  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature Topt(°C)  
22  
R1230D  
17) Load Transient Response  
R1230D181F  
VIN=5.0V PWM  
0.6  
IOUT=100mA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-05 -2.00E-05 0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04 1.20E-04 1.40E-04  
Time(sec)  
R1230D181F  
VIN=5.0V PWM  
0.6  
0.5  
IOUT=200mA  
0.4  
0.3  
0.2  
0.1  
0
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-05 -2.00E-05 0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04 1.20E-04 1.40E-04  
Time(sec)  
R1230D181F  
VIN=5.0V PWM  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=100mA  
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-06 -1.00E-06 6.00E-06 1.10E-05 1.60E-05 2.10E-05 2.60E-05 3.10E-05 3.60E-05  
Time(sec)  
23  
R1230D  
R1230D181F  
VIN=5.0V PWM  
0.6  
IOUT=100mA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=2mA  
-0.1  
-0.2  
-0.3  
-0.0002 -0.0001  
0
0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008  
Time(sec)  
R1230D181F  
VIN=5.0V PWM  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=200mA  
IOUT=0A  
-0.1  
-0.2  
-0.3  
-4.00E-06 -1.00E-06 6.00E-06 1.10E-05 1.60E-05 2.10E-05 2.60E-05 3.10E-05 3.60E-05  
Time(sec)  
R1230D181F  
VIN=5.0V PWM  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT=200mA  
IOUT=2mA  
-0.1  
-0.2  
-0.3  
-0.0002 -0.0001  
0
0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008  
Time(sec)  
24  
R1230D  
18) Turn-on Waveform  
R1230D181F  
PWM Mode IOUT=0A VIN=5.0V  
5
4
3
2
1
0
4
2
CE  
0
-2  
-4  
VOUT  
-6  
-8  
-1  
-10  
-0.0004  
0
0
0
0.0004 0.0008 0.0012 0.0016  
Time(sec)  
0.002  
0.0024 0.0028  
R1230D181F  
PWM Mode IOUT=50mA VIN=5.0V  
5
4
3
2
1
0
4
2
CE  
0
-2  
-4  
VOUT  
-6  
-8  
-1  
-0.0004  
-10  
0.0004 0.0008 0.0012 0.0016  
Time(sec)  
0.002  
0.0024 0.0028  
R1230D181F  
PWM Mode IOUT=200mA VIN=5.0V  
5
4
3
2
1
0
4
2
CE  
0
-2  
-4  
VOUT  
-6  
-8  
-1  
-0.0004  
-10  
0.0004 0.0008 0.0012 0.0016  
Time(sec)  
0.002  
0.0024 0.0028  
25  
R1230D  
R1230D181F  
VFM Mode IOUT=0A VIN=5.0V  
5
4
3
2
1
0
4
2
CE  
0
-2  
-4  
VOUT  
-6  
-8  
-1  
-10  
-0.0004  
0
0.0004 0.0008 0.0012 0.0016  
Time(sec)  
0.002  
0.0024 0.0028  
R1230D181F  
VFM Mode IOUT=50mA VIN=5.0V  
5
4
3
2
1
0
4
2
CE  
0
-2  
-4  
VOUT  
-6  
-8  
-1  
-10  
-0.0004  
0
0.0004 0.0008 0.0012 0.0016  
Time(sec)  
0.002  
0.0024 0.0028  
26  

相关型号:

ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC