R1232D151B-TR-FE [RICOH]

Switching Regulator;
R1232D151B-TR-FE
型号: R1232D151B-TR-FE
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Regulator

开关
文件: 总23页 (文件大小:1332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1232D SERIES  
PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER  
NO.EA-129-130510  
OUTLINE  
The R1232D Series are CMOS-based PWM step-down DC/DC converters with synchronous rectifier, low  
supply current. As an output capacitor, a 10μF or more ceramic capacitor can be used with the R1232D.  
Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a  
soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), a chip enable  
circuit, a synchronous rectifier, Nch. driver transistor, and so on. A low ripple, high efficiency step-down DC/DC  
converter can be easily composed of this IC with only a few kinds of external components, or an inductor and  
capacitors. (As for R1232D001x type, divider resistors are also necessary.) In terms of the output voltage, it is  
fixed internally in the R1232Dxx1x types. While in the R1232D001x types, the output voltage is adjustable with  
external divider resistors.  
As protection circuits, current limit circuit which limits peak current of LX at each clock cycle, and latch type  
protection circuit exist. The latch protection works if the term of the over-current condition keeps on a certain time.  
Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of  
protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make  
the supply voltage at UVLO detector threshold level or lower than UVLO.  
FEATURES  
Two choices of Oscillator Frequency............................1MHz, 2.25MHz  
(Small inductors can be used. 4.7μH for 1MHz/2.2μH for 2.25MHz)  
Built-in Driver ON Resistance .......................................P-channel 0.2Ω (at VIN=5.0V)  
Built-in Soft-start Function.............................................Typ. 1.0ms (fosc=1MHz type)  
Output Voltage ..............................................................0.9V to 3.3V (R1232Dxx1x Type)  
0.8V to VIN (R1232D001x Type)  
High Accuracy Output Voltage ......................................±2.0%  
Built-in Current Limit Circuit ..........................................Typ. 1.4A  
Package ........................................................................SON-8 (t=0.9mm)  
APPLICATIONS  
Power source for portable equipment such as PDA, DSC, Notebook PC.  
Power source for HDD  
1
R1232D  
BLOCK DIAGRAMS  
R1232Dxx1A/B  
VDD  
AGND  
3
7
V
IN  
2
8
Slope  
Compensation  
Current Limit  
5
4
V
OUT  
Phase  
Compensation  
Q
R
Vref  
S
PWM  
Comparator  
Output  
Contorol  
Error  
Amplifer  
L
X
CE  
Oscillator  
Soft Start  
UVLO  
“H” Active  
TEST Circuit  
Chip Enable  
1
6
PGND  
TEST GND Fixed  
R1232D001C/D  
V
DD  
AGND  
3
7
V
IN  
2
8
Slope  
Compensation  
Current Limit  
5
4
V
FB  
Phase  
Compensation  
Q
R
Vref  
S
PWM  
Comparator  
Output  
Error  
Amplifer  
L
X
Contorol  
CE  
Oscillator  
Soft Start  
UVLO  
“H” Active  
TEST Circuit  
Chip Enable  
1
6
PGND  
TEST GND Fixed  
2
R1232D  
SELECTION GUIDE  
In the R1232D Series, the output voltage, the oscillator frequency and the output voltage adjustment for the  
ICs can be selected at the user’s request.  
Product Name  
Package  
Quantity per Reel  
Pb Free  
Halogen Free  
SON-8  
3,000 pcs  
Yes  
Yes  
R1232Dxx1-TR-FE  
xx: The output voltage can be designated in the range from 0.9 V(09) to 3.3V(33) in 0.1V steps.  
(For externally adjustable output voltage type, (00).)  
: The oscillator frequency and the output voltage adjustment are options as follows.  
Output voltage  
adjustment  
Code  
Oscillator frequency  
A
B
C
D
1MHz  
2.25MHz  
1MHz  
No  
No  
Yes  
Yes  
2.25MHz  
3
R1232D  
PIN CONFIGURATION  
SON-8  
Top View  
Bottom View  
8
7
6
5
5
6
7
8
1
2
3
4
4
3
2
1
PIN DESCRIPTIONS  
Pin No  
Symbol  
PGND  
VIN  
Pin Description  
1
2
3
4
5
6
7
8
Ground Pin  
Voltage Supply Pin  
Voltage Supply Pin  
VDD  
CE  
Chip Enable Pin (active with "H")  
Output/Feedback Pin  
VOUT/VFB  
TEST  
AGND  
LX  
Test Pin (Forced to the GND level.)  
Ground Pin  
LX Switching Pin (CMOS Output)  
* Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but  
leaving it open is also acceptable.  
4
R1232D  
ABSOLUTE MAXIMUM RATINGS  
AGND=PGND=0V)  
Symbol  
VIN  
Item  
Rating  
Unit  
V
VIN Supply Voltage  
VDD Pin Voltage  
0.3 to 6.5  
VDD  
V
0.3 to 6.5  
VLX  
LX Pin Voltage  
V
0.3 to VIN + 0.3  
0.3 to VIN + 0.3  
0.3 to VIN + 0.3  
0.3 to VIN + 0.3  
VCE  
CE Pin Input Voltage  
TEST Pin Input Voltage  
V
VTEST  
VOUT/VFB  
ILX  
V
VOUT/VFB Pin Input Voltage  
LX Pin Output Current  
V
V
±1.5  
480  
PD  
Power Dissipation (SON-8)*  
Operating Temperature Range  
Storage Temperature Range  
mW  
°C  
°C  
Ta  
40 to 85  
55 to 125  
Tstg  
) For Power Dissipation, please refer to PACKAGE INFORMATION.  
ABSOLUTE MAXIMUM RATINGS  
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the  
permanent damages and may degrade the life time and safety for both device and system using the device  
in the field. The functional operation at or over these absolute maximum ratings is not assured.  
5
R1232D  
ELECTRICAL CHARACTERISTICS  
R1232DxxxA/C  
Ta=25°C  
Unit  
V
Symbol  
Item  
Conditions  
Min.  
Typ. Max.  
VIN  
Operating Input Voltage  
2.6  
5.5  
VIN=VCE=5.0V, IOUT=10mA  
Step-down Output Voltage  
Feedback Voltage  
V
OUT  
×0.980  
0.784 0.800 0.816  
×1.020  
V
V
VFB  
ΔVOUT/ΔTa  
fosc  
R1232D001C  
ppm/  
°C  
Step-down Output Voltage  
Temperature Coefficient  
40°C Ta 85°C  
±150  
=
Oscillator Frequency  
0.75  
70  
1.00  
140  
0.0  
1.25  
190  
5.0  
MHz  
VIN=VCE =VSET +1.5V  
VIN=VCE =5.5V,  
VOUT(VFB)=5.5V  
IDD  
Supply Current  
μA  
μA  
Istandby  
Standby Current  
LX Leakage Current  
VCE=VOUT(VFB)=0V, VIN= 5.5V  
VIN=5.5V,VCE=0V  
VLX=5.5V or 0V  
ILXleak  
0.0  
5.0  
5.0  
μA  
RONP  
RONN  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor  
Oscillator Maximum Duty Cycle  
Soft-start Time  
0.20  
0.20  
0.35  
0.35  
VIN=5.0V, ILX=200mA  
VIN=5.0V, ILX=200mA  
Ω
Ω
Maxduty  
tstart  
100  
0.5  
%
ms  
1.0  
2.0  
1.4  
VIN=VCE =5.0V, at no load  
VIN=VCE =5.0V  
tprot  
Protection Delay Time  
0.1  
10.0  
ms  
A
ILXlimit  
VUVLO1  
Lx Current Limit  
1.0  
1.4  
VIN=VCE =5.0V  
UVLO Detector Threshold  
2.10  
2.25  
2.40  
2.50  
0.1  
V
VIN=VCE =2.6V-> 1.5V  
VUVLO1  
+0.10  
VUVLO2  
UVLO Released Voltage  
CE Input Current  
2.20  
0.1  
0.1  
1.5  
V
VIN=VCE =1.5V-> 2.6V  
μA  
μA  
ICE  
0.0  
VIN=5.5V, VCE =5.5V or 0V  
IVOUT  
IVFB)  
VIN=5.5V, VCE =0V,  
VOUT(IVFB)=5.5V or 0V  
VOUT/IVFB Leakage Current  
0.0  
0.1  
VCEH  
VCEL  
CE "H" Input Voltage  
CE "L" Input Voltage  
V
V
VIN=5.5V  
VIN=3.0V  
0.3  
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the  
recommended operating conditions, even if when they are used over such conditions by momentary  
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue  
to operate over the recommended operating conditions.  
6
R1232D  
R1232DxxxB/D  
Ta=25°C  
Symbol  
Item  
Conditions  
Min.  
2.6  
Typ. Max.  
5.5  
Unit  
V
VIN  
VOUT  
VFB  
Operating Input Voltage  
Step-down Output Voltage  
Feedback Voltage  
V
VIN=VCE=5.0V,IOUT=10mA  
×0.980  
×1.020  
R1232D001D  
0.784 0.800 0.816  
V
ppm/  
°C  
Step-down Output Voltage  
Temperature Coefficient  
ΔVOUT/ΔTa  
fosc  
40°C Ta 85°C  
±150  
=
Oscillator Frequency  
1.91  
170  
2.25  
240  
0.0  
2.58  
310  
5.0  
MHz  
VIN=VCE=VSET+1.5V  
VIN=VCE =5.5V,  
VOUT(VFB)=5.5V  
μA  
IDD  
Supply Current  
μA  
μA  
Istandby  
Standby Current  
LX Leakage Current  
VCE=VOUT(VFB)=0V, VIN= 5.5V  
VIN=5.5V, VCE=0V,  
VLX=5.5V or 0V  
ILXleak  
0.0  
5.0  
5.0  
RONP  
RONN  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor  
Oscillator Maximum Duty Cycle  
Soft-start Time  
0.20  
0.20  
0.35  
0.35  
VIN=5.0V, ILX=200mA  
VIN=5.0V, ILX=200mA  
Ω
Ω
Maxduty  
tstart  
100  
0.15  
0.1  
%
ms  
0.4  
2.0  
0.7  
VIN=VCE=5.0V, at no load  
VIN=VCE=5.0V  
tprot  
Protection Delay Time  
10.0  
ms  
A
ILXlimit  
VUVLO1  
LX Current Limit  
1.0  
1.4  
VIN=VCE=5.0V  
UVLO Detector Threshold  
2.10  
2.25  
2.40  
2.50  
0.1  
V
VIN=VCE=2.6V -> 1.5V  
VUVLO1  
+0.10  
VUVLO2  
UVLO Released Voltage  
CE Input Current  
2.20  
0.1  
0.1  
1.5  
V
VIN=VCE =1.5V -> 2.6V  
VIN=5.5V, VCE =5.5V/0V  
μA  
μA  
ICE  
0.0  
IVOUT  
IVFB)  
VIN=5.5V, VCE =0V,  
VOUT(IVFB)=5.5V or 0V  
VOUT/IVFB Leakage Current  
0.0  
0.1  
VCEH  
VCEL  
CE "H" Input Voltage  
CE "L" Input Voltage  
V
V
VIN=5.5V  
VIN=3.0V  
0.3  
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the  
recommended operating conditions, even if when they are used over such conditions by momentary  
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue  
to operate over the recommended operating conditions.  
7
R1232D  
TEST CIRCUIT  
VIN  
Lx  
VIN  
Lx  
CE  
VDD  
VDD  
OSCILLOSCOPE  
CE  
VOUT /VFB  
VOUT/VFB  
AGND  
PGND TEST  
A
AGND  
PGND TEST  
Test Circuit for Input Current and Leakage Current  
Test Circuit for Input Voltage and UVLO voltage  
OSCILLOSCOPE  
VOUT  
VIN  
Lx  
CE  
VDD  
L
VOUT/VFB  
AGND  
PGND TEST  
Test Circuit for Output Voltage, Oscillator Frequency, Soft-Starting Time  
OSCILLOSCOPE  
VIN  
Lx  
CE  
VIN  
Lx  
CE  
A
VDD  
VDD  
VOUT/VFB  
VOUT /VFB  
A
AGND  
AGND  
PGND TEST  
PGND TEST  
Test Circuit for Supply Current and Standby Current  
Test Circuit for ON resistance of LX, Limit  
Current, Delay Time of Protection Circuit  
8
R1232D  
TYPICAL APPLICATION AND TECHNICAL NOTES  
Fixed Output Voltage Type  
L
VOUT  
PGND  
LX  
C
IN  
V
IN  
AGND  
TEST  
LOAD  
C
OUT  
V
DD  
V
OUT  
CE  
Adjustable Output Type  
L
VOUT  
PGND  
LX  
C
IN  
V
IN  
AGND  
TEST  
LOAD  
C
OUT  
V
DD  
Cb  
R1  
R2  
V
FB  
CE  
CIN  
10μF C2012JB0J106MT (TDK), 10μF CM21B106M06AB (Kyocera)  
10μF C2012JB0J106MT (TDK), 10μF CM21B106M06AB (Kyocera)  
COUT  
4.7μH/2.7μH VLP5610-4R7MR90, VLP5610-2R7M1R0 (TDK)  
*2.2μH is also suitable for B/D version.  
L
In terms of setting R1, R2, Cb, refer to the technical notes.  
9
R1232D  
When you use these ICs, consider the following issues;  
Input the same voltage into power supply pins, VIN and VDD. Set the same level as AGND and PGND.  
When you control the CE pin by another power supply, do not make its "H" level more than the voltage level  
of VIN / VDD pin.  
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular,  
minimize the wiring to VIN pin and PGND pin.  
At stand by mode, (CE="L"), the LX output is Hi-Z, or both P-channel transistor and N-channel transistor of  
LX pin turn off.  
Set the "Test pin" to the GND. Do not make the test pin voltage as floating or other voltage.  
Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching current may flow in these lines. If the  
impedance of VIN and PGND lines is too large, the internal voltage level in this IC may shift caused by the  
switching current, and the operation might be unstable.  
Over current protection circuit supervises the inductor peak current (the current flowing Pch transistor) at all  
each switching cycle, and if the current beyond the Lx current limit, Pch transistor is turned off. Further, if the  
over current status continues equal or longer than protection delay time, or when the Lx limit current is  
exceeded even once when the driver operates by duty 100%, Pch transistor is latched in the OFF state and  
the operation of DC/DC converter stops.  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that  
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
10  
R1232D  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the  
energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output  
voltage than the input voltage is obtained. The operation will be explained with reference to the following  
diagrams:  
<Basic Circuits>  
<Current through L>  
IL  
ILmax  
i1  
I
OUT  
ILmin  
topen  
L
Lx Tr  
SD  
V
OUT  
V
IN  
i2  
CL  
ton  
toff  
T=1/fosc  
Step 1:P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment,  
IL increases from Ilmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.  
Step 2:When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at  
ILmax, and current IL (=i2) flows.  
Step 3:IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr.  
Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff  
time is not enough. In this case, IL value increases from this Ilmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton),  
with the oscillator frequency (fosc) being maintained constant.  
Continuous Conduction Mode  
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the  
same as those when P-channel Tr. turns on and off.  
The difference between ILmax and ILmin, which is represented by ΔI;  
ΔI=ILmaxILmin=VOUT×topen/L=(VINVOUT)×ton/L........................................................ Equation 1  
Where,t=1/fosc=ton+toff  
duty (%)=ton/t×100=ton×fosc×100  
<
topen toff  
=
In Equation 1, VOUT×topen/L and (VINVOUT) ×ton/L are respectively shown the change of the current at ON,  
and the change of the current at OFF.  
Even if the output current (IOUT) is, topen < toff as illustrated in the above diagram is not realized with this IC. At  
least, topen is equal toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero  
(ILmin>0). The mode is referred to as the continuous mode.  
11  
R1232D  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc  
tonc=t×VOUT/VIN .............................................................................................................Equation 2  
When the ton=tonc, the mode is the continuous mode.  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When P-channel Tr. of LX is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX  
are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.)  
VIN=VOUT+(RONP+RL)×IOUT+L×IRP/ton...............................................................................Equation 3  
When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"):  
L×IRP/toff=VF+VOUT+RONN×IOUT........................................................................................Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, Don=ton/(toff+ton),  
DON=(VOUTRONN×IOUT+RL×IOUT)/(VIN+RONN×IOUTRONP×IOUT)............................................Equation 5  
Ripple Current is as follows;  
IRP=(VINVOUTRONP×IOUTRL×IOUT)×DON/fosc/L...............................................................Equation 6  
wherein, peak current that flows through L, and LX Tr. is as follows;  
ILmax=IOUT+IRP/2...........................................................................................................Equation 7  
Consider ILmax, condition of input and output and select external components.  
ÌThe above explanation is directed to the calculation in an ideal case in continuous mode.  
12  
R1232D  
How to Adjust Output Voltage and about Phase Compensation  
As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 0.8V.  
Output Voltage, VOUT is as following equation;  
VOUT R1+R2=VFB:R2  
VOUT=VFB×(R1+R2)/R2  
Thus, with changing the value of R1 and R2, output voltage can be set in the specified range.  
In the DC/DC converter, with the load current and external components such as L and C, phase might be  
behind 180 degree. In this case, the phase margin of the system will be less and stability will be worse. To  
prevent this, phase margin should be secured with proceeding the phase. A pole is formed with external  
components L and COUT.  
fpole ~1/2π LCOUT  
A zero (signal back to zero) is formed with R1 and Cb.  
fzero ~ 1/(2p×R1×Cb)  
First, choose the appropriate value of R1, R2 and Cb.  
Set R1+R2 value 100kΩ or less.  
For example, if L=4.7μH, COUT =10μF, the cut off frequency of the pole is approximately 23kHz.  
To make the cut off frequency of the zero by R1, R2, and Cb be higher than 23kHz,  
set R1=33kΩ and Cb=100pF.If VOUT is set at 2.0V, R2=22kΩ is appropriate.  
13  
R1232D  
External Components  
1.Inductor  
Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows,  
magnetic saturation occurs and makes transform efficiency be worse.  
Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is.  
Provided that the allowable current is large in that case and DC current is small, therefore, for large output  
current, efficiency is better than using an inductor with a large value of L and vice versa.  
2.Capacitor  
As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least  
10μF for stable operation.  
COUT can reduce ripple of the output voltage, therefore as much as 10μF ceramic type is recommended.  
TIMING CHART  
Output  
Short  
Output Short  
CE pin Voltage  
Intemal Opertional Intemal Soft-start  
Amplifier Output Set Voltage  
Intemal Oscillator Waveform  
Lx Pin Output  
Latched  
Delay Time of Protection  
Soft-start Time  
Stable  
The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched  
with protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty  
cycle of LX is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of  
amplifier is "H". After the output voltage reaches the set output voltage, they are balanced well. Herein, if the  
output pin would be short circuit, the output of amplifier would become "H" again, and the condition would  
continue for 2.0ms (Typ.), or the Lx limit current is exceeded even once when the driver operates by duty 100%,  
latch circuit would work and the output of LX would be latched with "OFF". (Output ="High-Z")  
If the output short is released before the latch circuit works (within 2ms after output shorted), the output of  
amplifier is balanced in the stable state again.  
Once the IC is latched, to release the protection, input "L" with CE pin, or make the supply voltage at UVLO  
level or less.  
14  
R1232D  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current (CIN = 10μF, COUT = 10μF)  
R1232D121A  
R1232D331A  
V
IN=5.0V  
VIN=5.0V  
1.300  
1.250  
1.200  
1.150  
1.100  
3.400  
3.350  
3.300  
3.250  
3.200  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
R1232D121B  
R1232D331B  
V
IN=5.0V  
V
IN=5.0V  
1.300  
1.250  
1.200  
1.150  
1.100  
3.400  
3.350  
3.300  
3.250  
3.200  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
2) Efficiency vs. Output Current (CIN = 10μF, COUT = 10μF)  
R1232D121A  
R1232D331A  
V
IN=3.3V, 5.0V  
VIN=5.0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(VIN=5.0V)  
(VIN=3.3V)  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
15  
R1232D  
R1232D121B  
R1232D331B  
V
IN=3.3V, 5.0V  
VIN=5.0V  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(VIN=5.0V)  
(VIN=3.3V)  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
3) Output Waveform  
R1232D121A  
R1232D331A  
V
IN=5.0V, IOUT=600mA  
VIN=5.0V, IOUT=600mA  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Time t(ns)  
Time t(ns)  
R1232D121B  
R1232D331B  
V
IN=5.0V, IOUT=600mA  
VIN=5.0V, IOUT=600mA  
0.06  
0.04  
0.02  
0
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.02  
-0.04  
-0.06  
-1.5 -1.0 -0.5  
0
0.5  
1.0  
1.5  
-1.5 -1.0 -0.5  
0
0.5  
1.0  
1.5  
Time t(ns)  
Time t(ns)  
16  
R1232D  
4) Load Transient Response  
R1232D121A  
R1232D121A  
V
IN=5.0V  
VIN=5.0V  
0.8  
0.6  
0.4  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Output Current 10mA600mA  
Output Current 600mA10mA  
0.2  
0
Output Voltage  
-0.1  
-0.2  
-0.3  
Output Voltage  
-0.1  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Time t (μs)  
Time t (μs)  
R1232D121B  
R1232D121B  
V
IN=5.0V  
VIN=5.0V  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Output Current 10mA600mA  
Output Current 600mA10mA  
Output Voltage  
-0.1  
-0.2  
-0.3  
Output Voltage  
-0.1  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Time t (μs)  
Time t (μs)  
5) Output Voltage vs. Input Voltage  
R1232D121A  
R1232D331A  
I
OUT=600mA  
I
OUT=600mA  
1.22  
1.21  
1.20  
1.19  
1.18  
3.32  
3.31  
3.30  
3.29  
3.28  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
17  
R1232D  
6) Oscillator Frequency vs. Input Voltage  
R1232D121A  
R1232D121B  
I
OUT=600mA  
IOUT=600mA  
1.10  
1.05  
1.00  
0.95  
0.90  
2.4  
2.3  
2.2  
2.1  
2.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
7) Lx Transistor On Resistance vs. Input Voltage  
Switching Tr. Pch on Resistance  
Synchronous Rectifier Tr. Nch on Resistance  
I
OUT=200mA  
IOUT=200mA  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
8) Turn-on speed by CE pin  
R1232D121A  
R1232D121A  
VIN=5.0V, L=4.7μH Rload=0Ω  
VIN=5.0V, L=4.7μH Rload=12Ω  
CE  
CE  
5V/div  
5V/div  
V
OUT  
V
OUT  
1V/div  
1V/div  
IL  
IL  
200mA/div  
200mA/div  
200μs/div  
200μs/div  
18  
R1232D  
R1232D331B  
R1232D331B  
VIN=5.0V, L=2.7μH Rload=0Ω  
VIN=5.0V, L=2.7μH Rload=33Ω  
CE  
CE  
5V/div  
5V/div  
VOUT  
V
OUT  
1V/div  
1V/div  
IL  
IL  
200mA/div  
200mA/div  
100μs/div  
100μs/div  
9) Output Voltage vs. Temperature  
R1232D121A  
R1232D331A  
V
IN=5.0V  
VIN=5.0V  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
3.40  
3.35  
3.30  
3.25  
3.20  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
10) Oscillator Frequency vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V  
VIN=5.0V  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
19  
R1232D  
11) Supply Current vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V  
VIN=5.0V  
130  
125  
120  
115  
110  
230  
225  
220  
215  
210  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
12) Soft-start time vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V, Rload=0Ω  
VIN=5.0V, Rload=0Ω  
1.3  
1.1  
0.9  
0.7  
0.5  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
13) UVLO Voltage vs. Temperature  
R1232D121A  
R1232D121A  
2.40  
2.50  
2.40  
2.30  
2.20  
2.30  
2.20  
2.10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
20  
R1232D  
14) CE Input Voltage vs. Temperature  
R1232D121A  
R1232D121A  
V
IN=5.0V, CE=H Threshold  
VIN=5.0V, CE=L Threshold  
1.5  
1.3  
1.0  
0.8  
0.5  
1.5  
1.3  
1.0  
0.8  
0.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
15) TEST Input Voltage vs. Temperature  
R1232D121A  
VIN=5.0V  
1.5  
1.3  
1.0  
0.8  
0.5  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
16) Lx Transistor On Resistance vs. Temperature  
Driver Tr. Pch ON Resistance  
Rectifier Tr.Nch ON Resistance  
V
IN=5.0V  
V
IN=5.0V  
0.30  
0.20  
0.10  
0.00  
0.30  
0.20  
0.10  
0.00  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
21  
R1232D  
17) Current Limit vs. Temperature  
R1232D121A  
R1232D331B  
V
IN=5.0V  
VIN=5.0V  
-0.80  
-1.05  
-1.30  
-1.55  
-1.80  
-0.80  
-1.05  
-1.30  
-1.55  
-1.80  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
18) Protection Delay Time vs. Temperatures  
R1232D121A  
R1232D331B  
V
IN=5.0V  
VIN=5.0V  
10.0  
7.5  
5.0  
2.5  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature Topt(°C)  
Temperature Topt(°C)  
22  
1.The products and the product specifications described in this document are subject to change or  
discontinuation of production without notice for reasons such as improvement. Therefore, before  
deciding to use the products, please refer to Ricoh sales representatives for the latest  
information thereon.  
2.The materials in this document may not be copied or otherwise reproduced in whole or in part  
without prior written consent of Ricoh.  
3.Please be sure to take any necessary formalities under relevant laws or regulations before  
exporting or otherwise taking out of your country the products or the technical information  
described herein.  
4.The technical information described in this document shows typical characteristics of and  
example application circuits for the products. The release of such information is not to be  
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual  
property rights or any other rights.  
5.The products listed in this document are intended and designed for use as general electronic  
components in standard applications (office equipment, telecommunication equipment,  
measuring instruments, consumer electronic products, amusement equipment etc.). Those  
customers intending to use a product in an application requiring extreme quality and reliability,  
for example, in a highly specific application where the failure or misoperation of the product  
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,  
traffic control system, automotive and transportation equipment, combustion equipment, safety  
devices, life support system etc.) should first contact us.  
6.We are making our continuous effort to improve the quality and reliability of our products, but  
semiconductor products are likely to fail with certain probability. In order to prevent any injury to  
persons or damages to property resulting from such failure, customers should be careful enough  
to incorporate safety measures in their design, such as redundancy feature, firecontainment  
feature and fail-safe feature. We do not assume any liability or responsibility for any loss or  
damage arising from misuse or inappropriate use of the products.  
7.Anti-radiation design is not implemented in the products described in this document.  
8.Please contact Ricoh sales representatives should you have any questions or comments  
concerning the products or the technical information.  
For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.  
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.  
Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are  
also Antimony Free.)  
Halogen Free  
RICOH COMPANY, LTD.  
Electronic Devices Company  
http://www.ricoh.com/LSI/  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Higashi-Shinagawa Office (International Sales)  
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan  
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502  
RICOH EUROPE (NETHERLANDS) B.V.  
● Semiconductor Support Centre  
“Nieuw KronenburgProf. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands  
P.O.Box 114, 1180 AC Amstelveen  
Phone: +31-20-5474-309 Fax: +31-20-5474-791  
RICOH ELECTRONIC DEVICES KOREA Co., Ltd.  
11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea  
Phone: +82-2-2135-5700 Fax: +82-2-2135-5705  
RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.  
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,  
People's Republic of China  
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Taipei office  
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)  
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623  

相关型号:

R1232D161A

PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER
RICOH

R1232D161A-TR-F

Switching Regulator, 1.5A, 1250kHz Switching Freq-Max, CMOS, 0.90 MM HEIGHT, LEAD FREE, SON-8
RICOH

R1232D161A-TR-FE

Switching Regulator
RICOH

R1232D161B

PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER
RICOH

R1232D161B-TR-F

暂无描述
RICOH

R1232D171A

PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER
RICOH

R1232D171A-TR-F

Switching Regulator, 1.5A, 1250kHz Switching Freq-Max, CMOS, 0.90 MM HEIGHT, LEAD FREE, SON-8
RICOH

R1232D171A-TR-FE

Switching Regulator
RICOH

R1232D171B

PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER
RICOH

R1232D171B-TR

Switching Regulator, 1.5A, 2580kHz Switching Freq-Max, CMOS, 0.90 MM HEIGHT, SON-8
RICOH

R1232D171B-TR-F

Switching Regulator, 1.5A, 2580kHz Switching Freq-Max, CMOS, 0.90 MM HEIGHT, LEAD FREE, SON-8
RICOH

R1232D171B-TR-FE

Switching Regulator
RICOH