R1283Z001B-E2-F [RICOH]

DC-DC Regulated Power Supply Module, MODULE-11;
R1283Z001B-E2-F
型号: R1283Z001B-E2-F
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

DC-DC Regulated Power Supply Module, MODULE-11

文件: 总25页 (文件大小:523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1283x SERIES  
2ch DC/DC for CCD & OLED  
OUTLINE  
NO.EA-157-130509  
The R1283x 2ch DC/DC converter is designed for CCD & OLED Display power source. It contains a step up  
DC/DC converter and an inverting DC/DC converter to generate two required voltages by CCD & OLED Display.  
Step up DC/DC converter generates boosted output voltage up to 20V. Inverting DC/DC converter generates  
negative voltage up to VIN voltage minus 20V independently. Start up sequence is internally made. Each of the  
R1283x series consists of an oscillator, a PWM control circuit, a voltage reference, error amplifiers, over current  
protection circuits, short protection circuits, an under voltage lockout circuit (UVLO), an Nch driver for boost  
operation, a Pch driver for inverting. A high efficiency boost and inverting DC/DC converter can be composed  
with external inductors, diodes, capacitors, and resistors.  
FEATURES  
Operating Voltage ......................................... 2.5V to 5.5V  
Step Up DC/DC (CH1)  
Internal Nch MOSFET Driver (RON=400mΩTyp.)  
Adjustable VOUT Up to 20V with external resistor  
Internal Soft start function (Typ. 4.5ms)  
Over Current Protection  
Maximum Duty Cycle: 91%(Typ.)  
Inverting DC/DC (CH2)  
Internal Pch MOSFET Driver (RON=400mΩ Typ.)  
Adjustable VOUT Up to Vdd-20V with external resistor  
Auto Discharge function for negative output  
Internal Soft start function (Typ. 4.5ms)  
Over Current Protection  
Maximum Duty Cycle: 91%(Typ.)  
Short Protection with timer latch function (Typ. 50ms); Short condition for either or both two outputs makes  
all output drivers off and latches./ If the maximum duty cycle continues for a certain time, these output  
drivers will be turned off.  
CE with start up sequence function  
CH1CH2 (R1283K001x) / CH2CH1(R1283K002x) Selectable  
UVLO function  
Operating Frequency Selection ..........300kHz / 700kHz / 1400kHz  
Packages ...................................................... DFN(PLP)2730-12, WLCSP-11-P2 (Non-promotion)  
APPLICATION  
Fixed voltage power supply for portable equipment  
Fixed voltage power supply for CCD, OLED, LCD  
1
R1283x  
BLOCK DIAGRAM  
Timer  
Current Limit  
VCC  
PVCC  
UVLO  
Vref  
PWM  
Control  
L
X2  
Maxduty  
VREF  
Discharge  
Control  
V
FB2  
FB1  
Vref  
Vref  
VOUTN  
V
L
X1  
GND  
CE  
PWM  
Control  
Sequence  
Control  
PGND  
2
R1283x  
SELECTION GUIDE  
The start-up sequence, oscillator frequency, and the package for the ICs can be selected at the user’s  
request.  
Product Name  
Package  
Quantity per Reel  
4,000 pcs  
Pb Free  
Yes  
Halogen Free  
WLCSP-11-P2  
(Non-promotion)  
Yes  
Yes  
R1283Z00x-E2-F  
R1283K00x-TR  
DFN(PLP)2730-12  
5,000 pcs  
Yes  
x : The start-up sequence can be designated.  
(1) Step-up Inverting  
(2) Inverting Step-up  
: The oscillator frequency is the option as follows.  
(A) 300kHz (A Version for 1283Z packaged in WLCSP-11-P2 is not available)  
(B) 700kHz  
(C) 1400kHz  
The products scheduled to be discontinued : "Non-promotion"  
These products will be discontinued in the future. We advise you to select other products.  
3
R1283x  
PIN CONFIGURATIONS  
WLCSP-11-P2  
DFN(PLP)2730-12  
Top View Bottom View  
Top View  
Bottom View  
12 11 10  
9
8
7
7
8
9
10 11 12  
3
2
1
3
2
1
A
B
C
D
D
C
B
A
1
2
3
4
5
6
6
5
4
3
2
1
PIN DESCRIPTIONS  
WLCSP-11-P2 (Non-promotion)  
Pin No  
Symbol  
PGND  
VFB1  
Pin Description  
A1  
Power GND pin  
A2  
Feedback pin for Step up DC/DC  
Switching pin for Step up DC/DC  
Power Input pin  
A3  
LX1  
B1  
PVCC  
CE  
B2  
Chip Enable pin for the R1283  
Switching pin for Inverting DC/DC  
Analog GND pin  
B3  
LX2  
C1  
GND  
VOUTN  
VCC  
C3  
Discharge pin for Negative output  
Analog power source Input pin  
Reference Voltage Output pin  
Feedback pin for Inverting DC/DC  
D1  
D2  
VREF  
VFB2  
D3  
DFN(PLP)2730-12  
Pin No  
Symbol  
NC  
Pin Description  
1
2
No Connect  
LX1  
Switching pin for Step up DC/DC  
Switching pin for Inverting DC/DC  
Discharge pin for Negative Output  
Chip Enable pin for the R1283  
Feedback pin for Inverting DC/DC  
Reference Voltage Output pin  
Analog power source Input pin  
Feedback pin for Step up DC/DC  
Analog GND pin  
3
LX2  
4
VOUTN  
CE  
5
6
VFB2  
7
VREF  
VCC  
8
9
VFB1  
10  
11  
12  
GND  
PVCC  
PGND  
Power Input pin  
Power GND pin  
) Tab is GND level. (They are connected to the reverse side of this IC.)  
The tab is better to be connected to the GND, but leaving it open is also acceptable.  
4
R1283x  
ABSOLUTE MAXIMUM RATINGS  
(GND/PGND=0V)  
Symbol  
Item  
Rating  
6.5  
Unit  
V
VCC  
VCC / PVCC pin Voltage  
VFB1 pin Voltage  
VFB2 pin Voltage  
CE pin Voltage  
VREF pin Voltage  
LX1 pin Voltage  
LX1 pin Current  
LX2 pin Voltage  
LX2 pin Current  
VOUTN pin Voltage  
VDTC  
VFB  
V
0.3 to VCC+0.3  
0.7(1) to VCC+0.3  
0.3 to VCC+0.3  
0.7(1) to VCC+0.3  
0.3 to 24  
V
V
V
V
A
V
A
V
VCE  
VREF  
VLX1  
ILX1  
Internally Limited  
VCC24 to VCC+0.3  
Internally Limited  
VCC24 to VCC+0.3  
1000  
VLX2  
ILX2  
VNFB  
Power Dissipation (WLCSP-11-P2) (Non-promotion) (2)  
Power Dissipation (DFN(PLP)2730-12) (2)  
Operating Temperature Range  
PD  
mW  
1000  
Topt  
Tstg  
40 to 85  
°C  
°C  
Storage Temperature Range  
55 to 125  
1) In case the voltage range is from 0.7V to 0.3V, permissible current is 10mA or less.  
2) For Power Dissipation, please refer to PACKAGE INFORMATION.  
ABSOLUTE MAXIMUM RATINGS  
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the  
permanent damages and may degrade the life time and safety for both device and system using the device  
in the field.  
The functional operation at or over these absolute maximum ratings is not assured.  
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the  
recommended operating conditions, even if when they are used over such conditions by momentary  
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue  
to operate over the recommended operating conditions.  
5
R1283x  
ELECTRICAL CHARACTERISTICS  
R1283x  
Topt=25°C  
Unit.  
V
Symbol  
Item  
Conditions  
Min.  
Typ.  
Max.  
VCC  
Operating Input Voltage  
2.5  
5.5  
VCC=5.5V, FREQ=300kHz  
VCC=5.5V, FREQ=700kHz  
VCC=5.5V, FREQ=1400kHz  
VCC=5.5V, FREQ=300kHz  
VCC=5.5V, FREQ=700kHz  
VCC=5.5V, FREQ=1400kHz  
VCC=5.5V  
2.0  
4.0  
8.0  
mA  
mA  
mA  
μA  
μA  
μA  
VCC Consumption Current  
(Switching)  
ICC1  
ICC2  
250  
300  
350  
0.1  
VCC Consumption Current  
(At no switching)  
Istandby  
Standby Current  
3
μA  
VUVLO1  
UVLO Detect Voltage  
Falling  
2.05  
2.15  
VUVLO1  
+0.16  
1.2  
2.25  
V
VUVLO2  
VREF  
UVLO Released Voltage  
VREF Voltage Tolerance  
Rising  
2.48  
V
V
1.172  
+VFB2  
1.228  
+VFB2  
VCC=3.3V  
+VFB2  
VREF Voltage Temperature  
Coefficient  
VREF/Topt  
ppm/ºC  
VCC=3.3V, 40ºCTopt85ºC  
±150  
VREF/VCC VREF Line Regulation  
VREF/IOUT VREF Load Regulation  
2.5VVCC5.5V  
5
5
mV  
mV  
mA  
V
VCC=3.3V, 0.1mAIOUT2mA  
VCC=3.3V, VREF=0V  
VCC=3.3V  
ILIMREF  
VFB1  
VREF Short Current Limit  
VFB1 Voltage Tolerance  
15  
1.0  
0.985  
1.015  
VFB1 Voltage Temperature  
Coefficient  
VFB1/Topt  
ppm/ºC  
VCC=3.3V, 40ºCTopt85ºC  
±150  
IFB1  
VFB2  
IFB2  
VFB1 Input Current  
VFB2 Voltage Tolerance  
VFB2 Input Current  
VCC=5.5V, VFB1=0V or 5.5V  
VCC=3.3V  
0.1  
25  
0.1  
25  
0.1  
240  
600  
1200  
86  
μA  
mV  
μA  
kHz  
kHz  
kHz  
%
0
VCC=5.5V, VFB2=0V or 5.5V  
VCC=3.3V  
0.1  
300  
700  
1400  
91  
360  
800  
1600  
fosc  
Oscillator Frequency  
VCC=3.3V  
VCC=3.3V  
Maxduty1 CH1 Max. Duty Cycle  
Maxduty2 CH2 Max. Duty Cycle  
VCC=3.3V  
VCC=3.3V  
86  
91  
%
tSS1  
tSS2  
CH1 Soft-start Time  
CH2 Soft-start Time  
Delay Time for Protection  
LX1 ON Resistance  
LX1 Leakage Current  
LX1 Current limit  
VCC=3.3V, VFB1=0.9V  
VCC=3.3V, VFB2=0.12V  
VCC=3.3V  
4.5  
4.5  
50  
ms  
ms  
ms  
mΩ  
μA  
A
tDLY  
20  
1.0  
1.0  
RLX1  
VCC=3.3V  
400  
IOFFLX1  
ILIMLX1  
RLX2  
VCC=5.5V, VLX1=20V  
VCC=3.3V  
5
5
1.5  
LX2 ON Resistance  
LX2 Leakage Current  
LX2 Current limit  
VCC=3.3V  
400  
mΩ  
μA  
A
IOFFLX2  
ILIMLX2  
RVOUTN  
VCEL  
VCEH  
ICEL  
VCC=5.5V, VLX=14.5V  
VCC=3.3V  
1.5  
10  
VOUTN Discharge Resistance  
CE "L" Input Voltage  
CE "H" Input Voltage  
CE "L" Input Current  
CE "H" Input Current  
25  
VCC=3.3V, VOUTN=0.3V  
VCC=2.5V  
Ω
V
0.3  
VCC=5.5V  
1.5  
V
VCC=5.5V  
1.0  
1.0  
1.0  
1.0  
μA  
μA  
ICEH  
VCC=5.5V  
6
R1283x  
TYPICAL APPLICATION  
C1  
L1  
D1  
VOUT  
1
LX1  
C2  
VCC  
R3  
C5  
R2  
PGND  
VFB  
1
R1  
VOUTN  
LX2  
PVCC  
D2  
C1B  
VOUT  
2
C3  
R6  
C6  
L2  
R5  
EN  
CE  
VFB  
2
R4  
GND  
VREF  
C4  
Step-up DC/DC converter output voltage setting  
The output voltage VOUT1 of the step-up DC/DC converter is controlled with maintaining the VFB1 as 1.0V.  
VOUT1 can be set with adjusting the values of R1 and R2 as in the next formula. VOUT1 can be set equal or less  
than 20V.  
VOUT1 = VFB1 × (R1+R2) / R1  
Inverting DC/DC converter output voltage setting  
The output voltage VOUT2 of the inverting DC/DC converter is controlled with maintaining the VFB2 as 0V.  
VOUT2 can be set with adjusting the values of R4 and R5 as in the next formula.  
VOUT2 = VFB2 (VREFVFB2) × R5 / R4  
Auto Discharge Function  
When CE level turns from "H" to "L" level, the R1283x goes into standby mode and switching of the outputs of  
LX1 and LX2 will stop. Then dischage Tr. between VOUT2 and VCC turns on and discharges the negative output  
voltage. When the negative output voltage is discharged to 0V, the Tr. turns off and the negative output will be  
Hi-Z.  
When the Auto discharge function is unnecessary, VOUTN connect to VCC or make be Hi-Z.  
CE  
0V  
Negative output  
Hi-Z  
Discharge  
7
R1283x  
Start up Sequence (R1283x001x)  
When CE level turns from "L" to "H" level, the softstart of CH1 starts the operation. After detecting output  
voltage of CH1(VOUT1) as the nominal level, the soft start of CH2 starts the operation.  
CE  
CH1 (VOUT1)  
Soft start CH1  
Soft Start CH2  
0V  
CH2 (VOUT2)  
Start up Sequence (R1283x002x)  
When CE level turns from "L" to "H" level, the softstart of CH2 starts the operation. After detecting output  
voltage of CH2(VOUT2) as the nominal level, the soft start of CH1 starts the operation.  
CE  
CH1(VOUT1)  
Soft Start CH2  
Soft start CH1  
0V  
CH2(VOUT2)  
Short protection circuit timer  
In case that the voltage of VFB1 drops, the error amplifier of CH1 outputs "H". In case that the voltage of VFB2  
rises, the error amplifier of CH2 outputs "L". The built-in short protection circuit makes the ineternal timer operate  
with detecting the output of the error amplifier of CH1 as "H", or the output of the error amplifier of CH2 as "L".  
After the setting time will pass, the switching of LX1 and LX2 will stop.  
To release the latch operatoion, make the VCC set equal or less than UVLO level and restart or set the CE pin  
as "L" and make it "H" again.  
During the softstart operation of CH1 and CH2, the timer operates independently from the outputs of the error  
amplifiers. Therefore, even if the softstart cannot finish correctly because of the short circuit, the protection timer  
function will be able to work correctly.  
Phase Compensation  
DC/DC converter's phase may lose 180 degree by external components of L and C and load current. Because  
of this, the phase margin of the system will be less and the stability will be worse. Therefore, the phase must be  
gained.  
A pole will be formed by external components, L and C.  
Fpole ~ 1 / {2×π×(L1×C2)} (CH1)  
Fpole ~ 1 / {2×π×(L2×C3)} (CH2)  
Zero will be formed with R2, C5, R5, and C6.  
8
R1283x  
Fzero ~ 1/(2×π×R2×C5) (CH1)  
Fzero ~ 1/(2×π×R5×C6) (CH2)  
Set the cut-off frequency of the Zero close to the cut off frequency of the pole by L and C.  
To reduce the noise of Feedback voltage  
If the noise of the system is large, the output noise affects the feedback and the operation may be unstable. In  
that case, resistor values, R1, R2, R4, and R5 should be set lower and make the noise into the feedback pin  
reduce. Another method is set R3 and R6 . The appropriate value range is from 1kΩ to 5kΩ.  
Set a ceramic 1μF or more capacitor as C1B between VCC pin and GND. Set another 4.7μF or more  
capacitor between PVCC and GND as C1.  
Set a ceramic 1μF or more capacitor between VOUT1 and GND, and between VOUT2 and GND for each as C2  
and C3. Recommendation value range is from 4.7μF to 22μF.  
Set a ceramic capacitor between VREF and GND as C4. Recommendation value range is from 0.1μF to  
2.2μF.  
Operation of Step-up DC/DC Converter and Output Current  
Basic Circuit>  
IL2  
Inductor  
IL1  
Diode  
Lx Tr  
IOUT  
VOUT  
VIN  
CL  
Current through L>  
Continuous Mode  
ILxmax  
Discontinuous Mode  
ILxmax  
IL  
IL  
ILxmin  
ILxmin  
tf  
t
t
ton  
toff  
ton  
toff  
T=1/fosc  
T=1/fosc  
9
R1283x  
There are two operation modes for the PWM control step-up switching regulator, that is the continuous mode  
and the discontinuous mode.  
When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;  
IL1 = VIN × ton / L ............................................................................................................Formula1  
When the Lx transistor turns off, power will supply continuously. The inductor current at off (IL2) will be;  
IL2 = (VOUT - VIN) × tf / L..................................................................................................Formula2  
In terms of the PWM control, when the tf=toff, the inductor current will be continuous, the operation of the  
switching regulator will be continuous mode.  
In the continuous mode, the current variation of IL1 and IL2 are same, therefore  
VIN × ton / L = (VOUT VIN) × toff / L ..................................................................................Formula3  
In the continuous mode, the duty cycle will be  
DUTY = ton / (ton + toff) = (VOUT - VIN) / VOUT ....................................................................Formula4  
If the input power equals to output power,  
2
IOUT = VIN × ton / (2 × L × VOUT) .......................................................................................Formula5  
When IOUT becomes more then Formula5, it will be continuous mode.  
In this moment, the peak current, ILxmax flowing through the inductor is described as follows:  
ILxmax = IOUT × VOUT / VIN + VIN × ton / (2 × L).................................................................Formula6  
ILxmax = IOUT × VOUT / VIN + VIN × T × (VOUT VIN) / (2 × L × VOUT) ..................................Formula7  
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,  
and external components should be selected.  
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external  
components is not included.  
The actual maximum output current is between 50% and 80% of the calculation.  
Especially, when the IL is large, or VIN is low, the loss of VIN is generated with on resistance of the switch. As  
for VOUT, VF(as much as 0.3V) of the diode should be considered.  
10  
R1283x  
Operation of Inverting DC/DC Converter and Output Current  
Basic Circuit>  
Lx Tr  
Diode  
IOUT  
VOUT  
VIN  
IL1  
IL2  
CL  
Inductor  
Current through L>  
Continuous Mode  
ILxmax  
Discontinuous Mode  
ILxmax  
IL  
IL  
ILxmin  
ILxmin  
Tf  
t
t
toff  
ton  
ton  
toff  
T=1/fosc  
T=1/fosc  
There are also two operation modes for the PWM control inverting switching regulator, that is the continuous  
mode and the discontinuous mode.  
When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;  
IL1 = VIN × ton / L............................................................................................................ Formula8  
Inverting circuit saves energy during on time of Lx Tr, and supplies the energy to output during off time, output  
voltage opposed to input voltage is obtained. The inductor current at off (IL2) will be;  
IL2 = VOUT × tf / L............................................................................................................ Formula9  
(The above formula and after, the absolute value of the negative output voltage is assumed to be  
VOUT. :Output voltage= 10V, VOUT=10 )  
In terms of the PWM control, when the tf=toff, the inductor current will be continuous, the operation of the  
switching regulator will be continuous mode.  
In the continuous mode, the current variation of IL1 and IL2 are same, therefore  
11  
R1283x  
VIN × ton / L = VOUT × toff / L ...........................................................................................Formula10  
In the continuous mode, the duty cycle will be:  
DUTY = ton / (ton + toff) = VOUT / (VOUT + VIN )................................................................ Formula11  
If the input power equals to output power,  
2
IOUT = VIN × ton / (2 × L × VOUT) .....................................................................................Formula12  
When IOUT becomes more then Formula12, it will be continuous mode.  
In this moment, the peak current, ILxmax flowing through the inductor is described as follows:  
ILxmax = IOUT × VOUT / VIN + VIN × ton / (2 × L).................................................................Formula13  
ILxmax = IOUT × VOUT / VIN + VIN × VOUT × T / { 2 × L × (VOUT + VIN) } ................................Formula14  
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,  
and external components should be selected.  
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external  
components is not included.  
The actual maximum output current is between 50% and 80% of the calculation.  
Especially, when the IL is large, or VIN is low, the loss of VIN is generated with on resistance of the switch. As  
for VOUT, VF (as much as 0.3V) of the diode should be considered.  
12  
R1283x  
TYPICAL CHARACTERISTICS  
1) Output Voltage VS. Output Current  
R1283x001A  
R1283x001A  
Topt=25°C  
Topt=25°C  
4.8  
-4.2  
-4.3  
-4.4  
-4.5  
-4.6  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
4.7  
4.6  
VIN=2.8V  
4.5  
4.4  
VIN=3.6V  
VIN=4.2V  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
IOUT2 [mA]  
IOUT1 [mA]  
R1283x001A  
R1283x001A  
Topt=25°C  
Topt=25°C  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
0
25  
50  
75  
100  
125  
150  
0
50  
100  
150  
200  
IOUT1 [mA]  
IOUT2 [mA]  
R1283x001B  
R1283x001B  
Topt=25°C  
Topt=25°C  
4.8  
4.7  
4.6  
4.5  
4.4  
-5.2  
-5.3  
-5.4  
-5.5  
-5.6  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
IOUT2 [mA]  
IOUT1 [mA]  
13  
R1283x  
R1283x001B  
R1283x001B  
Topt=25°C  
Topt=25°C  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
11.4  
0
50  
100  
150  
200  
250  
0
100  
200  
300  
IOUT1 [mA]  
IOUT2 [mA]  
R1283x001C  
R1283x001C  
Topt=25°C  
Topt=25°C  
-4.2  
-4.3  
-4.4  
-4.5  
-4.6  
4.8  
4.7  
4.6  
4.5  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
4.4  
0
50  
100  
150  
200  
250 300  
350  
0
50  
100  
150  
200  
250  
300  
IOUT1 [mA]  
IOUT2 [mA]  
R1283x001C  
R1283x001C  
Topt=25°C  
Topt=25°C  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
VIN=2.8V  
VIN=3.6V  
VIN=4.2V  
VIN=5.0V  
11.4  
0
50  
100  
150  
200  
250  
0
50  
100 150  
200 250  
300 350  
IOUT1 [mA]  
IOUT2 [mA]  
14  
R1283x  
2) Efficiency  
Output Current  
VS.  
R1283x001A  
R1283x001A  
Topt=25 , VOUT2=-4.4V  
Topt=25 , VOUT1=4.6V  
V
OUT1=4.6V , IOUT1=0mA  
V
OUT2=-4.4V , IOUT2=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
20  
0
0
20  
40  
60  
80 100 120 140 160  
OUT2 [mA]  
20 40 60 80 100 120 140 160 180  
OUT1 [mA]  
I
I
R1283x001A  
R1283x001A  
Topt=25°C , VOUT1=12V  
Topt=25°C , VOUT2=-7.5V  
V
OUT2=-7.5V , IOUT2=0mA  
V
OUT1=12V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
20  
0
20  
40  
60  
I
80 100 120 140 160  
0
20 40  
60 80 100 120 140 160  
IOUT2 [mA]  
OUT1 [mA]  
R1283x001B  
R1283x001B  
Topt=25°C , VOUT1=4.6V  
Topt=25°C , VOUT2=-5.4V  
V
OUT2=-5.4V , IOUT2=0mA  
V
OUT1=4.6V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
20  
0
0
30  
60  
90  
120  
150  
180  
50  
100  
150  
200  
250  
IOUT2 [mA]  
IOUT1 [mA]  
15  
R1283x  
R1283x001B  
R1283x001B  
Topt=25°C , VOUT1=12V  
Topt=25°C, VOUT2=-7.5V  
V
OUT2=-7.5V , IOUT2=0mA  
V
OUT1=12V , IOUT1=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
10  
0
0
40  
80  
120 160  
OUT2 [mA]  
200  
240  
280  
30  
60  
90  
120 150 180 210  
I
IOUT1 [mA]  
R1283x001C  
R1283x001C  
Topt=25°C , VOUT2=-4.4V  
Topt=25°C , VOUT1=4.6V  
V
OUT1=4.6V , IOUT1=0mA  
V
OUT2=-4.4V , IOUT2=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
10  
0
40  
80 120 160 200 240 280 320  
OUT1 [mA]  
0
50  
100  
150  
OUT2 [mA]  
200  
250  
300  
I
I
R1283x001C  
R1283x001C  
Topt=25°C , VOUT2=-7.5V  
Topt=25°C , VOUT1=12V  
V
OUT1=12V , IOUT1=0mA  
V
OUT2=-7.5V , IOUT2=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
VIN=2.8 [V]  
VIN=3.6 [V]  
VIN=4.2 [V]  
VIN=5 [V]  
10  
0
0
40  
80 120 160 200 240 280 320  
OUT2 [mA]  
30  
60  
90 120 150 180 210 240  
OUT1 [mA]  
I
I
16  
R1283x  
3) CE "L" Input Voltage  
Temperature
4) CE "H" Input Voltage  
Temperature
VS.  
VS.  
R1283x00xx  
R1283x00xx  
VIN=5.5V  
VIN=2.5V  
1.1  
1
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
5) VFB1 Voltage VS.
Temperature  
6) VFB2 Voltage VS.
Temperature  
R1283x00xx  
R1283x00xx  
1.02  
1.01  
1
0.01  
0.005  
0
0.99  
0.98  
0.97  
-0.005  
-0.01  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
7) VREF Voltage  
Temperature  
8) UVLO Voltage  
VS.  
Temperature  
VS.  
R1283x00xx  
R1283x00xx  
1.22  
1.21  
1.2  
2.4  
2.35  
2.3  
UVLO Release  
UVLO Detect  
2.25  
2.2  
1.19  
1.18  
1.17  
1.16  
2.15  
2.1  
2.05  
-40  
-20  
0
20  
Topt [°C]  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
17  
R1283x  
9) LX1 ON Resistance  
Temperature  
10) LX2 ON Resistance  
T
VS.  
Temperature  
VS.  
R1283x00xx  
R1283x00xx  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
11) LX1 Limit Current  
Temperature  
12) LX2 Limit Current  
VS. Temperature  
VS.  
R1283x00xx  
R1283x00xx  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
13) Osillator Frequency  
Temperature
VS.  
R1283x00xA  
R1283x00xB  
800  
750  
700  
650  
600  
350  
330  
310  
290  
270  
250  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
18  
R1283x  
R1283x00xC  
1600  
1500  
1400  
1300  
1200  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
14) Maxduty1  
Temperature  
VS.  
R1283x00xA  
R1283x00xB  
94  
93  
92  
91  
90  
89  
94  
93  
92  
91  
90  
89  
88  
88  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
15) Maxduty2  
Temperature  
VS.  
R1283x00xC  
R1283x00xA  
92  
91  
90  
89  
88  
87  
94  
93  
92  
91  
90  
89  
88  
86  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
19  
R1283x  
R1283x00xB  
R1283x00xC  
92  
91  
90  
89  
88  
87  
86  
92  
91  
90  
89  
88  
87  
86  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
16) CH1 Soft-start Time VS.
Temperature  
17) CH2 Soft-start Time VS.
Temperature  
R1283x00xx  
R1283x00xx  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
18) Timer Latch Delay Time  
Temperature  
19) VOUTN Discharge Current  
VS.  
Temperature  
VS.  
R1283x00xx  
R1283x00xx  
0
-20  
-40  
-60  
-80  
100  
80  
60  
40  
20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Topt [°C]  
Topt [°C]  
20  
R1283x  
20) Startup Response  
R1283x001x  
R1283x002x  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
V
OUT1=12V , VOUT2=-7.5V  
V
OUT 1=12V , VOUT 2=-7.5V  
6
4
2
0
6
4
2
0
15  
12  
9
CE  
15  
12  
9
CE  
VOUT  
1
6
6
VOUT  
1
3
3
0
0
VOUT  
2
-3  
-6  
-9  
-3  
-6  
-9  
VOUT  
2
0
5
10  
Time [ms]  
15  
20  
0
5
10  
15  
20  
Time [ms]  
21)Shut down Response  
(V  
=Open)  
OUTN  
R1283x001x  
R1283x001x  
Topt=25°C , VIN=3.6V  
OUT 1=12V , VOUT 2=-7.5V  
IOUT 1=10mA  
Topt=25°C , VIN=3.6V  
OUT 1=12V , VOUT 2=-7.5V  
IOUT 1=10mA  
V
V
6
4
2
0
6
CE  
4
2
0
CE  
15  
15  
12  
9
12  
9
VOUT  
1
VOUT  
1
6
6
3
3
0
0
VOUT 2:not discharge  
-3  
-6  
-9  
-3  
-6  
-9  
VOUT 2 :discharge  
0
5
10  
15  
20  
0
5
10  
Time [ms]  
15  
20  
Time [ms]  
(V  
=Open)  
OUTN  
R1283x002x  
R1283x002x  
Topt=25°C , VIN=3.6V  
VOUT1=12V , VOUT2=-7.5V  
IOUT1=10mA  
Topt=25°C , VIN=3.6V  
OUT1=12V , VOUT2=-7.5V  
IOUT 1=10mA  
V
6
6
4
2
0
4
2
0
CE  
CE  
15  
15  
12  
9
12  
9
VOUT  
1
VOUT  
1
6
6
3
3
0
0
VOUT 2:not discharge  
-3  
-6  
-9  
-3  
-6  
-9  
VOUT 2:discharge  
0
5
10  
15  
20  
0
5
10  
15  
20  
Time [ms]  
Time [ms]  
21  
R1283x  
22) Load Transient Response  
R1283x00xA  
R1283x00xA  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
-
-
50  
200  
100  
0
0
-
-50  
-100  
-150  
12.6  
12.4  
12.2  
12.0  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
R1283x00xB  
R1283x00xB  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
-
-
50  
12.5  
12.3  
12.1  
11.9  
11.7  
11.5  
200  
100  
0
0
-
-50  
-100  
-150  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
R1283x00xC  
R1283x00xC  
Topt=25°C , VIN=3.6V  
Topt=25°C , VIN=3.6V  
-
-
50  
12.5  
12.3  
12.1  
11.9  
11.7  
11.5  
200  
100  
0
0
-
-50  
-100  
-150  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
22  
R1283x  
APPLIED CIRCUIT  
1) Application with outputting power supply (+12V/-7.5V) for CCD from Li battery  
3.6V  
4.7uF  
L1  
SBD  
VOUT1= 12V  
10uF x 2  
LX1  
1kΩ  
VCC  
110kΩ  
PGND  
C5  
VFB  
VOUTN  
LX2  
1
10kΩ  
PVCC  
CE  
SBD  
-7.5V  
VOUT2=  
10uF  
L2  
1kΩ  
EN  
75kΩ  
C6  
VFB2  
Ω
12k  
GND  
VREF  
0.1uF  
L1  
L2  
C5  
C6  
Inductor  
VLF3010 (TDK)  
R1283x00xA  
R1283x00xB  
R1283x00xC  
15μH  
6.8μH  
4.7μH  
10μH  
6.8μH  
4.7μH  
220pF  
150pF  
120pF  
220pF  
150pF  
120pF  
SBD  
CRS02 (TOSHIBA)  
2) Application with outputting power supply (+4.6V/-4.4V) for AMOLED from Li battery  
3.6V  
4.7uF  
L1  
SBD  
4.6  
V
VOUT1=  
LX1  
10uF  
1kΩ  
VCC  
36k  
Ω
PGND  
VFB  
C5  
1
10k  
Ω
VOUTN  
LX2  
PVCC  
CE  
SBD  
V
4.4  
VOUT2=  
-
L2  
1kΩ  
10uF  
EN  
56kΩ  
C6  
VFB  
2
GND  
Ω
15k  
VREF  
0.1uF  
L1  
L2  
C5  
C6  
Inductor  
VLF3010 (TDK)  
R1283x00xA  
R1283x00xB  
R1283x00xC  
15μH  
4.7μH  
4.7μH  
10μH  
4.7μH  
4.7μH  
100pF  
47pF  
68pF  
100pF  
33pF  
47pF  
SBD  
CRS02 (TOSHIBA)  
23  
R1283x  
3) Application with output disconnect and discharge.  
EN  
SBD  
VOUT  
1
LX1  
VCC  
PGND  
EN  
VFB1  
VOUTN  
LX2  
PVCC  
CE  
SBD  
VOUT  
2
EN  
VFB2  
GND  
VREF  
24  
1.The products and the product specifications described in this document are subject to change or  
discontinuation of production without notice for reasons such as improvement. Therefore, before  
deciding to use the products, please refer to Ricoh sales representatives for the latest  
information thereon.  
2.The materials in this document may not be copied or otherwise reproduced in whole or in part  
without prior written consent of Ricoh.  
3.Please be sure to take any necessary formalities under relevant laws or regulations before  
exporting or otherwise taking out of your country the products or the technical information  
described herein.  
4.The technical information described in this document shows typical characteristics of and  
example application circuits for the products. The release of such information is not to be  
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual  
property rights or any other rights.  
5.The products listed in this document are intended and designed for use as general electronic  
components in standard applications (office equipment, telecommunication equipment,  
measuring instruments, consumer electronic products, amusement equipment etc.). Those  
customers intending to use a product in an application requiring extreme quality and reliability,  
for example, in a highly specific application where the failure or misoperation of the product  
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,  
traffic control system, automotive and transportation equipment, combustion equipment, safety  
devices, life support system etc.) should first contact us.  
6.We are making our continuous effort to improve the quality and reliability of our products, but  
semiconductor products are likely to fail with certain probability. In order to prevent any injury to  
persons or damages to property resulting from such failure, customers should be careful enough  
to incorporate safety measures in their design, such as redundancy feature, firecontainment  
feature and fail-safe feature. We do not assume any liability or responsibility for any loss or  
damage arising from misuse or inappropriate use of the products.  
7.Anti-radiation design is not implemented in the products described in this document.  
8.Please contact Ricoh sales representatives should you have any questions or comments  
concerning the products or the technical information.  
For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.  
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.  
Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are  
also Antimony Free.)  
Halogen Free  
RICOH COMPANY, LTD.  
Electronic Devices Company  
http://www.ricoh.com/LSI/  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Higashi-Shinagawa Office (International Sales)  
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan  
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502  
RICOH EUROPE (NETHERLANDS) B.V.  
● Semiconductor Support Centre  
“Nieuw KronenburgProf. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands  
P.O.Box 114, 1180 AC Amstelveen  
Phone: +31-20-5474-309 Fax: +31-20-5474-791  
RICOH ELECTRONIC DEVICES KOREA Co., Ltd.  
11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea  
Phone: +82-2-2135-5700 Fax: +82-2-2135-5705  
RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.  
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,  
People's Republic of China  
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Taipei office  
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)  
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623  

相关型号:

R1283Z001C-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z002B-E2

Switching Regulator/Controller
RICOH

R1283Z002B-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z002C-E2-F

DC-DC Regulated Power Supply Module, MODULE-11
RICOH

R1283Z1B-E2

DC-DC Regulated Power Supply Module, 1.50 X 2.40 MM, WLCSP-11
RICOH

R1283Z1C-E2

DC-DC Regulated Power Supply Module, 1.50 X 2.40 MM, WLCSP-11
RICOH

R1283Z2A-E2

DC-DC Regulated Power Supply Module, 1.50 X 2.40 MM, WLCSP-11
RICOH

R1283Z2C-E2

DC-DC Regulated Power Supply Module, 1.50 X 2.40 MM, WLCSP-11
RICOH

R12844_15

For Scintillation Counting, Fast Time Response Bialkali Photocathode, 8-stage, Head-on Type
HAMAMATSU

R12857

13 mm (1/2 inch) diameter, 9-stage, High QE multialkali photocathode
HAMAMATSU

R1285L001B

Switching Regulator, 1600kHz Switching Freq-Max, 2.70 X 3 MM, DFN-12
RICOH

R1285L001B-TR-F

Switching Regulator, 1400kHz Switching Freq-Max, PDSO12, 2.7 X 3 MM, ROHS COMPLIANT, DFN-12
RICOH