R1285L201A-TR [RICOH]

Switching Regulator, 1.9A, 1600kHz Switching Freq-Max, PDSO12, 2.70 X 3 MM, HALOGEN AND LEAD FREE, DFN-12;
R1285L201A-TR
型号: R1285L201A-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Regulator, 1.9A, 1600kHz Switching Freq-Max, PDSO12, 2.70 X 3 MM, HALOGEN AND LEAD FREE, DFN-12

开关 光电二极管
文件: 总24页 (文件大小:704K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R1285L series  
Non-promotion  
2ch DCDC for OLED  
NO.EA-208-130509  
OUTLINE  
The R1285L 2ch DC/DC converter is designed for OLED Display power source. It contains a step up DC/DC  
converter and an inverting DC/DC converter to generate two required voltages by OLED Display.  
Step up DC/DC converter generates boosted output voltage to 4.6V ~ 5.0V. Inverting DC/DC converter generates  
negative voltage –2.0V ~ -6.0V independently. Each of the R1285 series consists of an oscillator, a PWM control  
circuit, a voltage reference, error amplifiers, over current protection circuits, short protection circuits, an under  
voltage lockout circuit (UVLO), a complete shutdown switch and an Nch driver for boost operation, a Pch driver for  
inverting. A high efficiency boost and inverting DC/DC converter can be composed with external inductors, diodes,  
capacitors and resistors. Start up sequence is internally made.  
FEATURES  
z
z
Operating Voltage • • • • • 2.3V ~ 4.8V  
Step Up DC/DC (CH1)  
Internal Pch MOSFET for complete shutdown (Ron=300mΩTyp.)  
Internal Nch MOSFET Driver (Ron=300mΩTyp.)  
Output Voltage (VOUTP  
) • • • • • 4.6V ~ 5.0V (0.2VStep)  
Auto Discharge function for positive output  
Internal Soft start function (Typ. 4.5ms)  
Over Current Protection  
Maximum Duty Cycle: 85%(Typ.)  
z
z
z
Inverting DC/DC (CH2)  
Internal Pch MOSFET Driver (Ron=600mΩ Typ.)  
Output Voltage (VOUTN  
Adjustable Vout Up to -6V with external resistors  
Auto Discharge function for negative output  
Internal Soft start function (Typ. 4.5ms)  
Over Current Protection  
)
• • • • • -2V ~ -6V (0.1VStep)  
[ R1285LxxxA ]  
[ R1285L00xB ]  
Maximum Duty Cycle: 90%(Typ.)  
Control  
Short Protection with timer latch function (Typ. 50ms)  
Short condition for either or both two outputs makes all output drivers off and latches. If the  
maximum duty cycle continues for a certain time, these output drivers will be turned off. This  
function prevents irregular current from overheating the R1285 .  
CE with start up sequence function ( CH1CH2 )  
UVLO function.  
Operating Frequency • • • • • 1400kHz  
Small package • • • • • DFN2730-12  
APPLICATION  
z
z
Fixed voltage power supply for portable equipment  
Fixed voltage power supply for OLED  
V 1.4  
1
R1285L  
Non-promotion  
BLOCK DIAGRAM  
R1285LxxxA  
PVCC  
LXP1  
LXP2  
Current  
Limit  
Osc  
Maxduty  
PWM  
Control  
PWM  
Control  
Timer  
LXN  
Maxduty  
Current  
Limit  
Short  
Protect  
PGND  
VOUTP  
Discharge  
Control  
Discharge  
Control  
VOUTN  
TST1  
Vref3  
Vref2  
Vref1  
Soft start1  
TST2  
Sequence  
Control  
Soft start2  
Enable  
Control  
CE  
UVLO  
VCC  
GND  
R1285L00xB  
PVCC  
LXP1  
LXP2  
Current  
Limit  
Osc  
Maxduty  
PWM  
Control  
PWM  
Control  
Timer  
LXN  
Maxduty  
Current  
Limit  
Short  
Protect  
PGND  
VOUTP  
Discharge  
Control  
Discharge  
Control  
VOUTN  
VFBN  
VREF  
Vref3  
Vref2  
Vref1  
Soft start1  
Sequence  
Control  
Soft start2  
Enable  
Control  
CE  
UVLO  
VCC  
GND  
2
R1285L  
Non-promotion  
SELECTION GUIDE  
The mask option for the ICs can be selected at the user's request. The selection can be made with designating the  
part number as shown below.  
Product Name  
Package  
DFN2730-12  
Quantity per Reel  
Pb Free  
Halogen Free  
5,000 pcs  
R1285Lxx$-TR  
xx :  
Setting inverting output voltage (VOUTN  
)
Stepwise setting with a step of 0.1V in the range of -2.0V(20) to -6.0(60)V is possible for fixed output  
version.  
"00" is for Output Voltage Adjustable version.  
:  
Setting positive output voltage (VOUTP  
)
14.6V  
24.8V  
35.0V  
$:  
Designation of method of setting Inverting Voltage  
AFixed output version  
BAdjustable version  
The products scheduled to be discontinued : "Non-promotion"  
These products will be discontinued in the future. We advise you to select other products.  
3
R1285L  
Non-promotion  
PIN CONFIGURATION  
DFN 2730-12  
Top View Bottom View  
12 11 10  
9
8
7
7
8
9
10 11 12  
1
2
3
4
5
6
6
5
4
3
2
1
PIN DESCRIPTIONS  
R1285LxxxA  
PIN No.  
NAME  
PGND  
VOUTP  
PVCC  
VCC  
FUNCTION  
1
2
Power GND pin  
Output Voltage feedback pin for Step up DC/DC  
Power input pin  
3
4
Analog power source input pin  
Analog GND pin  
5
GND  
CE  
6
Chip enable pin  
7
TST2  
TST1  
VOUTN  
LXN  
TEST pin  
8
TEST pin  
9
Output Voltage feedback pin for Inverting DC/DC  
Switching pin for Inverting DC/DC  
Shutdown switch output pin  
Switching pin for Step up DC/DC  
10  
11  
12  
LXP1  
LXP2  
R1285L00xB  
PIN No.  
NAME  
PGND  
VOUTP  
PVCC  
VCC  
FUNCTION  
Power GND pin  
1
2
3
4
5
Output Voltage feedback pin for Step up DC/DC  
Power input pin  
Analog power source input pin  
Analog GND pin  
GND  
CE  
6
7
Chip enable pin  
VREF  
VFBN  
VOUTN  
LXN  
Reference voltage output pin for Inverting DC/DC  
Feedback pin for Inverting DC/DC  
Output Voltage feedback pin for Inverting DC/DC  
Switching pin for Inverting DC/DC  
Shutdown switch output pin  
8
9
10  
11  
12  
LXP1  
LXP2  
Switching pin for Step up DC/DC  
) Tab is GND level. (They are connected to the reverse side of this IC.)  
The tab is better to be connected to the GND, but leaving it open is also acceptable.  
4
R1285L  
Non-promotion  
ABSOLUTE MAXIMUM RATINGS  
(GND / PGND=0V)  
Item  
VCC / PVCC pin Voltage  
VOUTP pin Voltage  
Symbol  
VCC  
Rating  
-0.3 ~ 6.0  
Unit  
V
VOUTP  
VCE  
-0.3 ~ 6.0  
V
CE pin Voltage  
-0.3 ~ VCC+0.3  
-0.3 ~ VCC+0.3  
-0.3 ~ 6.0  
V
LXP1 pin Voltage  
VLXP  
1
2
V
LXP2 pin Voltage  
VLXP  
V
LXN pin Voltage  
VLXN  
VOUTN  
VTST  
VFBN  
VREF  
PD  
VCC-14 ~ VCC+0.3  
VCC-14 ~ VCC+0.3  
-0.3 ~ VCC+0.3  
-0.7*1 ~ VCC+0.3  
-0.7*1 ~ VCC+0.3  
1000  
V
VOUTN pin Voltage  
V
TST1/TST2 pin Voltage [R1285LxxxA]  
VFBN pin Voltage [R1285L00xB]  
VREF pin Voltage [R1285L00xB]  
Power Dissipation  
V
V
V
mW  
ºC  
ºC  
Operating Temperature Range  
Storage Temperature Range  
Ta  
-40 ~ +85  
Tstg  
-55 ~ +125  
1) In case the voltage range is from –0.7V to –0.3V, permissible current is 10mA or less.  
ABSOLUTE MAXIMUM RATINGS  
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent  
damages and may degrade the life time and safety for both device and system using the device in the field. The  
functional operation at or over these absolute maximum ratings is not assured.  
5
R1285L  
Non-promotion  
ELECTRICAL CHARACTERISTICS  
(Ta=25ºC)  
Symbol  
VCC  
ICC1  
Item  
Conditions  
MIN.  
2.3  
TYP. MAX. Unit.  
4.8  
9.1  
V
Operating Input Voltage  
V
CC Consumption Current  
(switching)  
CC Consumption Current  
4.0  
mA  
VCC=4.8V  
VCC=4.8V  
V
350  
730  
uA  
ICC2  
(at no switching)  
0.1  
3
uA  
V
ISTB  
Standby Current  
VCC=4.8V  
Falling  
VUVLO  
1
2
UVLO Detect Voltage  
1.95  
2.05  
2.15  
2.28  
VUVLO1  
+0.10  
V
VUVLO  
UVLO Released Voltage  
Rising  
1200 1400 1600 kHz  
FOSC  
TDLY  
VCEL  
VCEH  
RCE  
Oscillator Frequency  
Delay Time for Protection  
CE “L” Input Voltage  
CE “H” Input Voltage  
VCC=3.7V  
VCC=3.7V  
VCC=2.3V  
VCC=4.8V  
14  
50  
162  
0.3  
ms  
V
1.5  
V
300  
600  
900  
kΩ  
CE pin Pulldown Resistance VCC=3.7V  
Step-up DC/DC  
x0.985  
x1.015  
V
VOUTP  
VOUTP Voltage Tolerance  
VCC=3.7V  
VCC=3.7V , -40ºC Ta 85ºC  
VOUTP  
/T  
VOUTP  
/Vcc  
VOUTP  
/IOUT  
V
V
V
OUTP Voltage  
Temperature Coefficient  
OUTP Voltage  
Line Regulation  
OUTP Voltage  
ppm  
/ºC  
±
150  
=
=
±4  
±10  
±10  
mV  
mV  
mV  
2.9V VCC 3.4, IOUT = 0mA  
=
VCC=3.7V , 10mA IOUT 100mA  
=
Load Regulation  
VCC=2.9V 3.4V , TR=TF=50us  
VOUTP Voltage  
VOUTP_TR  
Line Transient Response  
IOUT = 100mA  
78  
85  
4.5  
300  
91  
10  
%
ms  
mΩ  
uA  
mΩ  
uA  
A
Maxduty1 CH1 Max. Duty Cycle  
VCC=3.7V  
1.6  
TSS1  
CH1 Soft-Start Time  
LXP1 ON Resistance  
VCC=3.7V  
RLXP1  
VCC=3.7V  
5
IOFF LXP1 LXP1 Leakage Current  
RLXP2 LXP2 ON Resistance  
IOFF LXP2 LXP2 Leakage Current  
VCC=4.8V , VLXP1=0V  
VCC=3.7V  
300  
5
VCC=4.8V , VLXP2=5V  
VCC=3.7V  
0.61  
2.8  
1.0  
5
1.68  
10.3  
ILIMLXP2  
IVOUTP  
LXP2 Current Limit  
mA  
VOUTP Discharge Current  
VCC=3.7V , VOUTP=0.1V  
6
R1285L  
Non-promotion  
Inverting DC/DC [ R1285LxxxA]  
x0.985  
x1.015  
VOUTN  
VOUTN Voltage Tolerance  
VCC=3.7V  
VOUTN  
/T  
VOUTN  
/Vcc  
VOUTN  
/IOUT  
V
V
V
OUTN Voltage  
Temperature Coefficient  
OUTN Voltage  
Line Regulation  
OUTN Voltage  
Load Regulation  
ppm  
/ºC  
VCC=3.7V , -40ºCTa85ºC  
2.9VVCC3.4, IOUT = 0mA  
VCC=3.7V , 10mAIOUT100mA  
±
150  
±6  
mV  
mV  
mV  
±15  
±25  
VCC=2.9V 3.4V , TR=TF=50us  
IOUT = 100mA  
VOUTN_TR  
VOUTN Voltage  
Line Transient Response  
83  
90  
4.5  
600  
98  
10  
%
ms  
mΩ  
uA  
A
Maxduty2 CH2 Max. Duty Cycle  
VCC=3.7V  
1.6  
TSS2  
CH2 Soft-Start Time  
LXN ON Resistance  
LXN Leakage Current  
LXN Current Limit  
VCC=3.7V  
RLXN  
VCC=3.7V  
5
IOFF LXN  
ILIMLXN  
IVOUTN  
VCC=4.8V , VLXN=-6V  
VCC=3.7V  
1.0  
25  
1.5  
40  
1.9  
59  
mA  
VOUTN Discharge Current  
VCC=3.7V , VOUTN=-0.3V  
Inverting DC/DC [ R1285L00xB]  
-25  
0
25  
mV  
μA  
V
VFBN  
VCC=3.7V  
V
FBN voltage tolerance  
FBN input current  
-0.1  
0.1  
IFBN  
VCC=4.8V , VFBN=0V or 4.8V  
V
1.172  
+VFBN +VFBN +VFBN  
1.2  
1.228  
VREF  
VCC=3.7V  
VREF voltage tolerance  
VREF  
/T  
VOUTN  
V
REF voltage  
VCC=3.7V  
-40ºCTa85ºC  
ppm  
/ºC  
±150  
temperature coefficient  
OUTN Voltage  
V
±6  
mV  
mV  
mV  
2.9VVCC3.4, IOUT = 0mA  
/VCC  
Line Regulation  
VOUTN  
/IOUT  
VOUTN Voltage  
±15  
VCC=3.7V , 10mAIOUT100mA  
Load Regulation  
VOUTN_TR  
VOUTN Voltage  
VCC=2.9V 3.4V , TR=TF=50us  
, IOUT = 100mA  
±
25  
Line Transient Response  
83  
90  
98  
10  
%
ms  
mΩ  
uA  
A
Maxduty2 CH2 Max. Duty Cycle  
VCC=3.7V  
1.6  
4.5  
TSS2  
CH2 Soft-Start Time  
LXN ON Resistance  
LXN Leakage Current  
LXN Current Limit  
VCC=3.7V  
600  
RLXN  
VCC=3.7V  
5
IOFF LXN  
ILIMLXN  
IVOUTN  
VCC=4.8V , VLXN=-6V  
VCC=3.7V  
1.0  
25  
1.5  
40  
1.9  
59  
mA  
VOUTN Discharge Current  
VCC=3.7V , VOUTN=-0.3V  
* In terms of TST pin(TST1 , TST2), connect the GND level or remain it open.  
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended  
operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the  
semiconductor devices may receive serious damage when they continue to operate over the recommended operating  
conditions.  
7
R1285L  
Non-promotion  
Test Circuits  
<VCC Consumption Current (switching)>  
<VCC Consumption Current (no switching)>  
PGND  
PGND  
VOUTP  
LXP  
2
LXP  
2
1
VOUTP  
LXP  
L
XP1  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
GND  
CE  
GND  
CE  
A
A
<Standby Current>  
<UVLO Detect Voltage>  
PGND  
VOUTP  
LXP  
2
1
LXP  
PGND  
VOUTP  
LXP  
2
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
Oscilloscope  
LXP1  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
GND  
CE  
A
GND  
CE  
<UVLO Released Voltage>  
<CH1 Oscillator Frequency/ Max.Duty>  
Oscilloscope  
Oscilloscope  
PGND  
PGND  
VOUTP  
L
XP2  
LXP  
2
VOUTP  
LXP1  
L
XP1  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
GND  
CE  
GND  
CE  
*In case of the R1285L00xB, the pin name is changed from TST1 to V  
FBN and TST2 to VREF  
.
8
R1285L  
Non-promotion  
<Delay Time for Protection>  
PGND  
<CH2 Oscillator Frequency/ Max.Duty>  
PGND  
VOUTP  
LXP  
2
1
Oscilloscope  
Oscilloscope  
LXP  
L
XP2  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
LXP  
1
VOUTP  
PVCC  
VCC  
LXN  
GND  
CE  
VOUTN  
TST1  
TST2  
GND  
CE  
Function  
Generator  
Step-up DC/DC  
<VOUTP Voltage Line Regulation >  
D1  
< VOUTP Voltage Tolerance>  
LXP2  
1
PGND  
V
Oscilloscope  
LXP  
LXP  
2
1
PGND  
VOUTP  
PVCC  
VCC  
L1  
L2  
LXN  
VOUTN  
LXP  
VOUTP  
PVCC  
VCC  
LXN  
VOUTN  
D2  
TST1  
TST2  
GND  
CE  
TST1  
TST2  
GND  
CE  
C2  
C1  
C3  
A
<VOUTP Voltage Line Transient Response>  
<VOUTP Voltage Load Regulation >  
D1  
Buffer Circuit  
D1  
V
LXP  
2
VCC  
PGND  
LXP  
2
1
PGND  
V
AC IN  
LXP1  
LXP  
VOUTP  
PVCC  
VCC  
L1  
L2  
VOUTP  
PVCC  
VCC  
L1  
L2  
GND  
OUT  
LXN  
VOUTN  
LXN  
VOUTN  
D2  
D2  
TST1  
TST2  
TST1  
TST2  
GND  
CE  
GND  
CE  
Function  
Generator  
C2  
C2  
C3  
A
C1  
C1  
C3  
V
V
and TST2 to VREF  
.
*In case of the R1285L00xB, the pin name is changed from TST1 to VFBN  
9
R1285L  
Non-promotion  
<Lxp1 ON Resistance>  
PGND  
<CH1 Soft-Start Time>  
L
XP2  
LXP  
LXN  
Oscilloscope  
1
VOUTP  
PVCC  
LXP  
2
1
PGND  
LXP  
VOUTP  
PVCC  
VCC  
VOUTN  
TST1  
TST2  
VCC  
LXN  
VOUTN  
GND  
CE  
V
TST1  
TST2  
GND  
CE  
Function  
Generator  
< Lxp2 ON Resistance >  
< Lxp1 Leakage Current >  
LXP  
2
1
LXP  
2
1
PGND  
VOUTP  
PVCC  
PGND  
VOUTP  
LXP  
LXP  
LXN  
VOUTN  
TST1  
TST2  
LXN  
PVCC  
VCC  
VOUTN  
VCC  
GND  
CE  
A
TST1  
TST2  
GND  
CE  
V
< Lxp2 Current Limit>  
< Lxp2 Leakage Current >  
Oscilloscope  
PGND  
VOUTP  
LXP  
2
1
PGND  
VOUTP  
PVCC  
LXP  
LXP  
LXN  
VOUTN  
TST1  
TST2  
2
LXP  
1
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
VCC  
GND  
CE  
GND  
CE  
A
<VOUTP Discharge Current >  
PGND  
VOUTP  
LXP  
2
1
LXP  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
GND  
CE  
A
and TST2 to VREF  
.
*In case of the R1285L00xB, the pin name is changed from TST1 to VFBN  
10  
R1285L  
Non-promotion  
Inverting DC/DC  
<VOUTN Voltage Line Regulation>  
D1  
<VOUTN Voltage Tolerance>  
LXP  
2
1
PGND  
LXP2  
PGND  
LXP  
VOUTP  
PVCC  
VCC  
Oscilloscope  
LXP  
1
VOUTP  
PVCC  
VCC  
LXN  
VOUTN  
L1  
LXN  
VOUTN  
L2  
D2  
TST1  
TST2  
GND  
CE  
TST1  
TST2  
GND  
CE  
V
C1  
C3  
C2  
A
<VOUTN Voltage Load Regulation >  
D1  
<VOUTN Voltage Line Transient Response>  
D1  
Buffer Circuit  
VCC  
LXP2  
PGND  
LXP  
2
1
PGND  
AC IN  
L1  
L2  
LXP  
1
LXP  
L1  
L2  
VOUTP  
PVCC  
VCC  
VOUTP  
PVCC  
VCC  
GND  
OUT  
LXN  
LXN  
D2  
D2  
VOUTN  
VOUTN  
TST1  
TST2  
TST1  
TST2  
GND  
CE  
GND  
CE  
Function  
Generator  
V
V
C3  
C1  
C1  
C2  
C2  
A
C3  
V
V
<LXN ON Resistance>  
PGND  
<CH2 Soft-Start Time >  
LXP  
2
1
LXP  
2
1
PGND  
Oscilloscope  
LXP  
LXP  
VOUTP  
PVCC  
VCC  
VOUTP  
PVCC  
VCC  
LXN  
LXN  
VOUTN  
VOUTN  
TST1  
TST2  
TST1  
TST2  
GND  
CE  
GND  
CE  
V
Function  
Generator  
and TST2 to VREF  
.
*In case of the R1285L00xB, the pin name is changed from TST1 to VFBN  
11  
R1285L  
Non-promotion  
< LXN Leakage Current >  
< LXN Current Limit>  
PGND  
VOUTP  
LXP  
2
1
PGND  
VOUTP  
LXP  
2
1
Oscilloscope  
LXP  
LXP  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
PVCC  
VCC  
LXN  
VOUTN  
GND  
CE  
GND  
CE  
TST1  
TST2  
A
<VOUTN Discharge Current >  
PGND  
VOUTP  
LXP  
2
L
XP1  
PVCC  
VCC  
LXN  
VOUTN  
TST1  
TST2  
GND  
CE  
A
*In case of the R1285L00xB, the pin name is changed from TST1 to VFBN and TST2 to VREF  
.
12  
R1285L  
Non-promotion  
TYPICAL APPLICATION AND TECHNICAL NOTES  
R1285LxxxA  
VOUTP  
C3  
10uF  
D1  
L2  
L1  
L2  
VLS252010T-4R7M  
PGND  
VOUTP  
PVCC  
VCC  
LXP2  
(TDK)  
L1  
VLS252010T-4R7M  
(TDK)  
LXP1  
LXN  
D1  
D2  
C1  
C2  
RSX051VA-30 (Rohm)  
D2  
VOUTN  
VOUTN  
C1  
4.7uF  
RSX051VA-30 (Rohm)  
4.7uF 1608size  
C2  
10uF  
GND  
CE  
TST1  
TST2  
CT21X5R106K10A095  
( Kyocera)  
EN control  
C3  
CT21X5R106K10A095  
( Kyocera)  
R1285L00xB  
VOUTP  
C3  
10uF  
D1  
L2  
PGND  
VOUTP  
PVCC  
VCC  
LXP2  
L1  
LXP1  
LXN  
D2  
R2 R3  
R1 C4  
C5  
VOUTN  
VOUTN  
VFBN  
VREF  
C1  
4.7uF  
C2  
10uF  
GND  
CE  
EN control  
Set a ceramic 4.7μF or more capacitor between Vcc and GND as C1.  
Set a ceramic10μF or more capacitor between VOUTP and GND, and between VOUTN and GND for each as  
C2 and C3.  
Start up Sequence  
When CE level turns from ‘L’ to ‘H’ level, the softstart of CH1 starts the operation. After detecting output voltage of  
CH1(VOUTP)as the nominal level, the soft start of CH2 starts the operation.  
CE  
CH1 (VOUTP  
)
Soft start CH1  
Soft Start CH2  
0V  
CH2 (VOUTN  
)
13  
R1285L  
Non-promotion  
Auto Discharge Function  
When CE level turns from ‘H’ to ‘L’ level, the R1285 goes into standby mode and switching of the outputs of  
LXP2 and LXN will stop. Then dischage switch between VOUTN and PVCC and switch between VOUTP and GND  
turn on and discharge the negative output voltage and positive output voltage. When the negative output  
voltage is discharged to 0V, the switch between VOUTN and PVCC turns off and the negative output will be  
Hi-Z. Positive output voltage is discharged to 0V In standby mode.  
If Vcc voltage became lower than UVLO detect voltage , discharge switches also turn on and discharge  
output voltage(VOUTN and VOUTP) .  
In case of timer latch protection,discharge switches will keep off .  
CE  
VOUTP  
0V  
Hi-Z (VOUTN  
0V (VOUTP  
)
VOUTN  
Discharge  
)
Short protection circuit timer  
In case that the voltage of VOUTP drops, the error amplifier of CH1 outputs "H". In case that the voltage of  
VOUTN rises, the error amplifier of CH2 outputs "L". The built-in short protection circuit makes the internal  
timer operate with detecting the output of the error amplifier of CH1 as "H", or the output of the error  
amplifier of CH2 as "L". After the setting time will pass, the switching of LXP2 and LXN will stop and shutdown  
switch will turn off and both of discharge switches will keep off .  
To release the latch operation, make the Vcc set equal or less than UVLO level and restart or set the CE pin  
as "L" and make it "H" again.  
During the softstart operation of CH1and CH2, the timer operates independently from the outputs of the  
error amplifiers. Therefore, even if the softstart cannot finish correctly because of the short circuit, the  
protection timer function will be able to work correctly.  
Amp output for Boost  
Amp output for Inverting  
Normal state  
Short state  
Latch state  
Shutdown  
Timer function (Typ. 50ms)  
During a timer function, current is  
After shutdown  
restricted by current limit protection drivers and shutdown  
or maxduty function until shutdown . switch turn off  
14  
R1285L  
Non-promotion  
Inverting DC/DC converter output voltage setting [ R1285L00xB ]  
The output voltage VOUTN of the inverting DC/DC converter is controlled with maintaining the VFBN as 0V.  
VOUTN can be set with adjusting the values of R1 and R2 as in the next formula.  
VOUTN = VFBN - (VREF-VFBN) x R2 / R1  
DC/DC converter’s phase may lose 180 degree by external components of L and C and load current. Because of  
this, the phase margin of the system will be less and the stability will be worse. Therefore, the phase must be  
gained.  
A pole will be formed by external components, L and C.  
Fpole ~ 1 / {2 x π x (L2xC2)}  
Zero will be formed with R2 and C4.  
Fzero ~ 1 / (2 x π x R2 x C4)  
Set the cut-off frequency of the Zero close to the cut-off frequency of the pole by L and C.  
If the noise of the system is large, the output noise affects the feedback and the operation may be unstable. In  
that case, another resistor R3 will be set. The appropriate value range is from 1kΩ to 5kΩ.  
Set a ceramic 1μF to 2.2μF capacitor between VREF and GND as C5. [ R1285L00xB ]  
Operation of Step-up DC/DC Converter and Output Current  
<Basic Circuit>  
IL2  
Inductor  
Diode  
Lx Tr  
IOUT  
VOUT  
VIN  
IL1  
CL  
<Current through L>  
IL  
Continuous Mode  
Discontinuous Mode  
ILxmax  
ILxmax  
IL  
ILxmin  
ILxmin  
Tf  
t
t
Ton  
T=1/fosc  
Toff  
Ton  
T=1/fosc  
Toff  
15  
R1285L  
Non-promotion  
There are two operation modes for the PWM control step-up switching regulator, that is the continuous mode  
and the discontinuous mode.  
When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;  
IL1 = VIN x Ton / L ...............................................................................................................Formula1  
When the Lx transistor turns off, power will supply continuously. The inductor current at off (IL2) will be;  
IL2 = (VOUT-VIN) x Tf / L .....................................................................................................Formula2  
In terms of the PWM control, when the Tf=Toff, the inductor current will be continuous, the operation of the  
switching regulator will be continuous mode.  
In the continuous mode, the current variation of IL1 and IL2 are same, therefore  
VIN x Ton / L = (VOUT-VIN) x Toff / L  
....................................................................................Formula3  
In the continuous mode, the duty cycle will be  
DUTY = Ton / (Ton+Toff) = (VOUT-VIN) / VOUT ........................................................................Formula4  
If the input power equals to output power,  
IOUT = VIN2 x Ton / (2 x L x VOUT  
)
.......................................................................................Formula5  
When IOUT becomes more then Formula5, it will be continuous mode.  
In this moment, the peak current, ILxmax flowing through the inductor is described as follows:  
ILxmax = IOUT x VOUT / VIN + VIN x Ton /(2 x L)  
ILxmax = IOUT x VOUT / VIN + VIN x Tx (VOUT-VIN) /(2 x L x VOUT  
..................................................................Formula6  
.......................................Formula7  
)
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,  
and external components should be selected.  
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external  
components is not included.  
The actual maximum output current is between 50% and 80% of the calculation.  
Especially, when the IL is large, or VIN is low, the loss of VIN is generated with on resistance of the switch.  
As for VOUT, VF(as much as 0.3V)of the diode should be considered.  
Operation of Inverting DC/DC Converter and Output Current  
<Basic Circuit>  
Lx Tr  
Diode  
IOUT  
VOUT  
VIN  
IL1  
IL2  
Inductor  
CL  
16  
R1285L  
Non-promotion  
<Current through L>  
Discontinuous Mode  
ILxmax  
Continuous Mode  
ILxmax  
IL  
IL  
ILxmin  
ILxmin  
Tf  
t
t
Ton  
T=1/fosc  
Toff  
Ton  
T=1/fosc  
Toff  
There are also two operation modes for the PWM control inverting switching regulator, that is the continuous  
mode and the discontinuous mode.  
When the LX Tr. is on, the voltage for the inductor L will be VIN. The inductor current (IL1) will be;  
IL1 = VIN x Ton / L...................................................................................................................Formula8  
Inverting circuit saves energy during on time of Lx Tr, and supplies the energy to output during off time,  
output voltage opposed to input voltage is obtained. The inductor current at off (IL2) will be;  
IL2 = VOUT x Tf / L .................................................................................................................Formula9  
(The above formula and after, the absolute value of the negative output voltage is assumed to be  
VOUT  
.
: Output voltage= -10V , VOUT=10 )  
In terms of the PWM control, when the Tf=Toff, the inductor current will be continuous, the operation of the  
switching regulator will be continuous mode.  
In the continuous mode, the current variation of IL1 and IL2 are same, therefore  
VIN x Ton / L = VOUT x Toff / L...................................................................................................Formula10  
In the continuous mode, the duty cycle will be:  
DUTY = Ton / (Ton+Toff) = VOUT / (VOUT + VIN )........................................................................Formula11  
If the input power equals to output power,  
IOUT = VIN2 x Ton / (2 x L x VOUT) .............................................................................................Formula12  
When IOUT becomes more then Formula12 , it will be continuous mode.  
In this moment ,the peak current, ILxmax flowing through the inductor is described as follows:  
ILxmax = IOUT x VOUT / VIN + VIN x Ton / (2 x L)...........................................................................Formula13  
ILxmax = IOUT x VOUT / VIN + VIN x VOUT x T / { 2 x L x (VOUT + VIN ) }.........................................Formula14  
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output,  
and external components should be selected.  
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external  
components is not included.  
The actual maximum output current is between 50% and 80% of the calculation.  
Especially, when the IL is large, or VIN is low, the loss of VIN is generated with on resistance of the switch. As  
for VOUT, VF(as much as 0.3V)of the diode should be considered.  
17  
R1285L  
Non-promotion  
R1285LxxxX Typical Characteristics  
1) Output voltage vs. Output Current  
R1285Lxx1A/001B(VOUTP= 4.6V)  
R1285L49xA(VOUTN= -4.9V)  
Ta=25°C  
Ta=25°C  
4.7  
4.68  
4.66  
4.64  
4.62  
4.6  
-4.8  
-4.82  
-4.84  
-4.86  
-4.88  
-4.9  
-4.92  
-4.94  
-4.96  
-4.98  
-5  
4.58  
4.56  
Vin= 4.5  
Vin= 4.5  
VIN=4.5V  
VIN=4.5V  
4.54  
4.52  
4.5  
Vin= 3.7  
Vin= 3.7  
VIN=3.7V  
VIN=3.7V  
Vin= 2.9  
Vin= 2.9  
VIN=2.9V  
VIN=2.9V  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
IOUT P [mA ]  
IOUT N [mA]  
R1285L54xA(VOUTN= -5.4V)  
R1285L00xB(VOUTN= -4.9V)  
Ta=25°C  
Ta=25°C  
-5.3  
-5.32  
-5.34  
-5.36  
-5.38  
-5.4  
-4.8  
-4.82  
-4.84  
-4.86  
-4.88  
-4.9  
-5.42  
-5.44  
-5.46  
-5.48  
-5.5  
-4.92  
-4.94  
-4.96  
-4.98  
-5  
VV in==4.54V.5  
V
IN=4.5V  
IN  
Vin= 4.5  
V
IN=3.7V  
V
IN=3.7V  
Vin= 3.7  
Vin= 3.7  
V
IN=2.9V  
V
IN=2.9V  
Vin= 2.9  
Vin= 2.9  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
IOUT N [mA]  
IOUT N [mA]  
R1285L00xB(VOUTN= -5.4V)  
INVERTING  
Ta=25°C  
Topt=25  
-5.26  
-5.28  
-5.3  
-5.32  
-5.34  
-5.36  
-5.38  
-5.4  
VVIiNn==4.54V.5  
IN=3.7V  
-5.42  
-5.44  
-5.46  
V
Vin= 3.7  
VIN=2.9V  
Vin= 2.9  
0
20  
40  
60  
80  
100 120 140 160 180 200  
IOUT N [mA]  
2) Efficiency vs. Output Current  
R1285Lxx1A/001B(VOUTP= 4.6V)  
R1285L49xA(VOUTN= -4.9V)  
Ta=25°C  
Ta=25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN=4.5V  
VIN=4.5V  
Vin= 4.5  
Vin= 4.5  
V
IN=3.7V  
VIN=3.7V  
Vin= 3.7  
Vin= 3.7  
V
IN=2.9V  
VIN=2.9V  
Vin= 2.9  
Vin= 2.9  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
IOUT P [mA ]  
IOUT N [mA]  
18  
R1285L  
Non-promotion  
Ta=25°C  
OUTP=0mA  
Ta=25°C  
R1285L54xA(VOUTN= -5.4V)  
R1285L00xB(VOUTN= -4.9V)  
I
IOUTP=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin= 4.5  
VIN=4.5V  
Vin= 4.5  
IN=4.5V  
V
Vin= 3.7  
VIN=3.7V  
Vin= 3.7  
VIN=3.7V  
Vin= 2.9  
VIN=2.9V  
Vin= 2.9  
VIN=2.9V  
0
20  
40  
60  
80  
100 120  
140  
160  
180  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
IOUT N [mA]  
IOUT N [mA]  
Ta=25°C  
R1285L00xB(VOUTN= -5.4V)  
R1285L00xB(VoutN= -4.9V)  
Topt=25  
IOUTP=0mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin= 4.5  
IN=4.5V  
V
Vin= 3.7  
VIN=3.7V  
Vin= 2.9  
VIN=2.9V  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
IOUT N [mA]  
3) Output Current vs. Output Voltage (Load Regulation)  
R1285Lxx1A/001B(VOUTP= 4.6V)  
R1285L49xA(VOUTN= -4.9V)  
Ta=25°C  
Toap=t2=52°5C  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
Vin= 4.5  
VIN=4.5V  
Vin= 4.5  
VIN=4.5V  
-30  
-40  
-50  
Vin= 3.7  
VIN=3.7V  
VVin=3=.73V.7  
IN  
Vin= 2.9  
VIN=2.9V  
VIN=2.9V  
Vin= 2.9  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
IOUT N [mA]  
IOUT P [mA]  
R1285L54xA(VOUTN= -5.4V)  
R1285L00xB(VOUTN= -4.9V)  
Ta=25°C  
Ta=25°C  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
VVIiNn==4.45V.5  
Vin= 4.5  
VIN=4.5V  
V
=3.7V  
VIiNn= 3.7  
Vin= 3.7  
VIN=3.7V  
VVIiNn==2.29V.9  
Vin= 2.9  
VIN=2.9V  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
IOUT N [mA]  
IOUT N [mA]  
19  
R1285L  
Non-promotion  
R1285L00xB(VOUTN= -5.4V)  
R1285L00xB(VoutN= -4.9V)  
Ta=25  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
VIN=4.5V  
VIN=3.7V  
VIN=2.9V  
-50  
0
20  
40  
60  
80  
100  
120  
IOUT N [mA]  
4)Turn-on/Turn-off Speed by CE signal  
R1285L491A  
R1285L001B(VOUTN= -4.9V)  
Topt=25  
CE  
CE  
V
OUTP  
N
VO TP  
U
U
VIN = 3.7V, IOUT = 0mA, ta = 25°C  
V
OUT
VO TN  
VIN = 3.7V, IOUT = 0mA, ta= 25°C  
IRUSH
IRUSH  
6.0  
4.0  
6.0  
4.0  
2.0  
2.0  
0.0  
300  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
200  
100  
0
-2.0  
-4.0  
-6.0  
-8.0  
100  
50  
0
-50  
-100  
-2  
0
2
4
6
8
10 12 14 16 18  
-2  
0
2
4
6
8
10  
12  
14  
16 18  
time [ms]  
time [ms]  
5) Load Transient Response  
R1285Lxx1A(VOUTP= 4.6V)  
R1285L49xA(VOUTN= -4.9V)  
Topt=25  
VIN = 3.7V, ta= 25°C, tr / tf = 10us  
VIN = 3.7V, ta= 25°C, tr / tf = 10us  
4.700  
4.675  
4.650  
4.625  
4.600  
4.575  
4.550  
4.525  
4.500  
-4.65  
-4.70  
-4.75  
-4.80  
-4.85  
-4.90  
-4.95  
-5.00  
Output Voltage  
Output Voltage  
100  
50  
100  
50  
0
-50  
-100  
-150  
0
Load Current  
Load Current  
-50  
-100  
-200 -100  
0
100  
300  
500  
600  
700  
800  
-100  
0
100  
200  
400  
600  
700  
800  
900  
200 time [us]400  
300 time [us]500  
6) Line Transient Response  
R1285Lxx1A(VOUTP= 4.6V)  
R1285L49xA(VOUTN= -4.9V)  
Load Current = 100mA, ta = 25°C, tr / tf = 50us  
Load Current = 100mA, ta = 25°C, tr / tf = 50us  
-4.850  
4.700  
4.675  
4.650  
4.625  
4.600  
4.575  
-4.875  
-4.900  
-4.925  
-4.950  
Output Voltage  
Input Voltage  
Output Voltage  
Input Voltage  
3.4  
2.9  
2.4  
3.4  
2.9  
2.4  
-100  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
-100  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
time [us]  
time [us]  
20  
R1285L  
Non-promotion  
7) UVLO Voltage VS. Temperature  
R1285Lxxxx  
8) VOUTP Voltage VS. Temperature  
R1285Lxx1A  
2.25  
2.2  
4.7  
4.65  
4.6  
2.15  
UVLO Release  
2.1  
2.05  
4.55  
4.5  
UVLO  
2
1.95  
1.9  
4.45  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
9) VOUTN Voltage VS. Temperature  
R1285L20xA  
R1285L48xA  
-1.95  
-1.97  
-1.99  
-2.01  
-2.03  
-2.05  
-4.65  
-4.7  
-4.75  
-4.8  
-4.85  
-4.9  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
) UVLO 検出/復帰電圧対周囲温度特性例  
R1285L60xA  
R1285Lxxxx  
-5.85  
-5.9  
-5.95  
-6  
-6.05  
-6.1  
-6.15  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
21  
R1285L  
Non-promotion  
10) VFBN Voltage VS. Temperature  
R1285L00xB  
11) VREF Voltage VS. Temperature  
R1285L00xB  
0.03  
0.02  
0.01  
0
1.22  
1.21  
1.2  
1.19  
1.18  
1.17  
1.16  
-0.01  
-0.02  
-0.03  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
12) LXP1 ON Resistance VS. Temperature  
R1285Lxxxx  
13) LXP2 ON Resistance VS. Temperature  
R1285Lxxxx  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
14) LXN ON Resistance VS. Temperature  
R1285Lxxxx  
15) LXP2 Current Limit VS. Temperature  
R1285Lxxxx  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1
0.8  
0.6  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
22  
R1285L  
Non-promotion  
16) LXN Current Limit VS. Temperature  
17) Oscillator Frequency VS. Temperature  
R1285Lxxxx  
R1285Lxxxx  
2
1500  
1.8  
1.6  
1.4  
1.2  
1
1450  
1400  
1350  
1300  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
18) Maxduty1 VS. Temperature  
R1285Lxxxx  
19) Maxduty2 VS. Temperature  
R1285Lxxxx  
88  
87  
86  
85  
84  
83  
82  
94  
93  
92  
91  
90  
89  
88  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
20) CH1 Soft-Start Time VS. Temperature  
R1285Lxxxx  
21) CH2 Soft-Start Time VS. Temperature  
R1285Lxxxx  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ta [°C]  
Ta [°C]  
23  
1.The products and the product specifications described in this document are subject to change or  
discontinuation of production without notice for reasons such as improvement. Therefore, before  
deciding to use the products, please refer to Ricoh sales representatives for the latest  
information thereon.  
2.The materials in this document may not be copied or otherwise reproduced in whole or in part  
without prior written consent of Ricoh.  
3.Please be sure to take any necessary formalities under relevant laws or regulations before  
exporting or otherwise taking out of your country the products or the technical information  
described herein.  
4.The technical information described in this document shows typical characteristics of and  
example application circuits for the products. The release of such information is not to be  
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual  
property rights or any other rights.  
5.The products listed in this document are intended and designed for use as general electronic  
components in standard applications (office equipment, telecommunication equipment,  
measuring instruments, consumer electronic products, amusement equipment etc.). Those  
customers intending to use a product in an application requiring extreme quality and reliability,  
for example, in a highly specific application where the failure or misoperation of the product  
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,  
traffic control system, automotive and transportation equipment, combustion equipment, safety  
devices, life support system etc.) should first contact us.  
6.We are making our continuous effort to improve the quality and reliability of our products, but  
semiconductor products are likely to fail with certain probability. In order to prevent any injury to  
persons or damages to property resulting from such failure, customers should be careful enough  
to incorporate safety measures in their design, such as redundancy feature, firecontainment  
feature and fail-safe feature. We do not assume any liability or responsibility for any loss or  
damage arising from misuse or inappropriate use of the products.  
7.Anti-radiation design is not implemented in the products described in this document.  
8.Please contact Ricoh sales representatives should you have any questions or comments  
concerning the products or the technical information.  
For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.  
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.  
Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are  
also Antimony Free.)  
Halogen Free  
RICOH COMPANY, LTD.  
Electronic Devices Company  
http://www.ricoh.com/LSI/  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Higashi-Shinagawa Office (International Sales)  
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan  
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502  
RICOH EUROPE (NETHERLANDS) B.V.  
● Semiconductor Support Centre  
“Nieuw KronenburgProf. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands  
P.O.Box 114, 1180 AC Amstelveen  
Phone: +31-20-5474-309 Fax: +31-20-5474-791  
RICOH ELECTRONIC DEVICES KOREA Co., Ltd.  
11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea  
Phone: +82-2-2135-5700 Fax: +82-2-2135-5705  
RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.  
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,  
People's Republic of China  
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Taipei office  
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)  
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623  

相关型号:

R1285L201A-TR-F

Switching Regulator, 1400kHz Switching Freq-Max, PDSO12, 2.7 X 3 MM, ROHS COMPLIANT, DFN-12
RICOH

R1285L202A

Switching Regulator, 1600kHz Switching Freq-Max, 2.70 X 3 MM, DFN-12
RICOH

R1285L202A-TR

Switching Regulator, 1.9A, 1600kHz Switching Freq-Max, PDSO12, 2.70 X 3 MM, HALOGEN AND LEAD FREE, DFN-12
RICOH

R1285L202A-TR-F

Switching Regulator, 1400kHz Switching Freq-Max, PDSO12, 2.7 X 3 MM, ROHS COMPLIANT, DFN-12
RICOH

R1285L203A

Switching Regulator, 1600kHz Switching Freq-Max, 2.70 X 3 MM, DFN-12
RICOH

R1285L203A-TR-F

Switching Regulator, 1400kHz Switching Freq-Max, PDSO12, 2.7 X 3 MM, ROHS COMPLIANT, DFN-12
RICOH

R1285L211A

Switching Regulator, 1600kHz Switching Freq-Max, 2.70 X 3 MM, DFN-12
RICOH

R1285L211A-TR

Switching Regulator, 1.9A, 1600kHz Switching Freq-Max, PDSO12, 2.70 X 3 MM, HALOGEN AND LEAD FREE, DFN-12
RICOH

R1285L211A-TR-F

Switching Regulator, 1400kHz Switching Freq-Max, PDSO12, 2.7 X 3 MM, ROHS COMPLIANT, DFN-12
RICOH

R1285L212A

Switching Regulator, 1600kHz Switching Freq-Max, 2.70 X 3 MM, DFN-12
RICOH

R1285L212A-TR

Switching Regulator, 1.9A, 1600kHz Switching Freq-Max, PDSO12, 2.70 X 3 MM, HALOGEN AND LEAD FREE, DFN-12
RICOH

R1285L212A-TR-F

Switching Regulator, 1400kHz Switching Freq-Max, PDSO12, 2.7 X 3 MM, ROHS COMPLIANT, DFN-12
RICOH