R5220D141A [RICOH]

PWM Step-down DC/DC Converter with switch function; PWM降压型DC / DC转换器与开关功能
R5220D141A
型号: R5220D141A
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

PWM Step-down DC/DC Converter with switch function
PWM降压型DC / DC转换器与开关功能

转换器 开关
文件: 总25页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R5220x SERIES  
PWM Step-down DC/DC Converter with switch function  
NO.EA-121-070824  
OUTLINE  
The R5220x Series are CMOS-based PWM step-down DC/DC Converters with synchronous rectifier, low  
supply current and LDO mode.  
DC/DC converter of the R5220x consists of an oscillator, a PWM control circuit, a reference voltage unit, an  
error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage  
(UVLO), PWM-DC to DC converter / LDO alternative circuit, a chip enable circuit, and a driver transistor. A high  
efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external  
components, or an inductor and capacitors.  
LDO of the R5220x consists of a vortage reference unit, an error amplifier, resistors for voltage setting, output  
current limit circuit, a driver transistor, and so on. The output voltage is fixed internally in the R5220x. The output  
voltage of the DC/DC converter and the LDO can be set independently.  
PWM step-down DC/DC converter / LDO alternative circuit is active with Mode Pin of the R5220x Series. Thus,  
when the load current is small, the operation can be switching into the LDO operation from PWM operation by  
the logic of MODE pin and the consumption current of the IC itself will be small at light load current. As protection  
circuits, the current limit circuit which limits peak current of Lx at each clock cycle, and the latch type protection  
circuit which works if the term of the over-current condition keeps on a certain time in PWM mode. Latch-type  
protection circuit works to latch an internal driver with keeping it disable. To release the protection, after disable  
this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at  
UVLO detector threshold level or lower than UVLO.  
FEATURES  
Supply Current................................................................Typ. 350µA (DC/DC), Typ. 5µA (VR)  
Standby Current..............................................................Typ. 0.1µA  
Built-in Driver ON Resistance .........................................P-channel 0.5, N-channel 0.5(at VIN=3.6V)  
Output Current ................................................................Min. 400mA (DC/DC), Min. 50mA (VR)  
Input Voltage ...................................................................2.8V to 5.5V (Absolute Input Maximum: 6.5V)  
Output Voltage ................................................................1.0V to 3.3V  
>
Output Voltage Accuracy.................................................±2.0% (VOUT 1.5), ±30mV (VOUT <1.5V)  
=
Oscillator Frequency (DC/DC) ........................................Typ. 1.2MHz  
Package ..........................................................................SON-6, PLP2514-6  
Built-in Soft-start Function...............................................Typ. 0.2ms  
Latch-type Protection Function (Delay Time)..................Typ. 3.0ms  
Built-in fold-back protection circuit (DC/DC, VR)  
Ceramic Capacitor is recommended.  
APPLICATIONS  
Power source for portable equipment such as DSC, DVC, and communication equipment.  
1
R5220x  
BLOCK DIAGRAM  
VIN  
OSC  
OUTPUT  
CONTROL  
LX  
Vref  
Current Limit  
Soft  
Start  
1
MODE∗  
VOUT  
CE  
Vref  
Current Limit  
GND  
*1 R5220xxxxA: DC/DC mode: Mode pin= "H", VR mode: Mode pin= "L"  
R5220xxxxB: DC/DC mode: Mode pin= "L", VR mode: Mode pin= "H"  
SELECTION GUIDE  
In the R5220x Series, the output voltage, the version, and the taping type for the ICs can be selected at the  
user's request.  
The selection can be made with designating the part number as shown below;  
R5220xxxxx-xx-xPart Number  
↑ ↑ ↑↑  
a b c d  
e
f
Code  
Contents  
Designating the Package type:  
D: SON-6  
K: PLP2514-6  
a
b
c
Setting Output Voltage (VOUT) or alphanumeric custom code.  
Setting Output Voltage  
1: standard (b: output voltage; DC/DC output voltage = LDO output voltage)  
2: custom code (b: custom code; DC/DC output voltage LDO output voltage)  
Designation of chip enable and Mode pin polarities  
d
e
f
A: CE; "H" active, Mode pin; "H"=DC/DC converter mode, "L"=LDO Mode  
B: CE; "H" active, Mode pin; "L"=DC/DC converter mode, "H"=LDO Mode  
Designation of Taping Type; (Refer to Taping Specification) "TR" is prescribed as a standard.  
Designation of composition of plating:  
F: Lead free plating (SON-6)  
None: Au plating (PLP2514-6)  
2
R5220x  
PIN CONFIGURATIONS  
SON-6  
PLP2514-6  
Bottom View  
Top View  
Bottom View  
Top View  
6
5
4
4
5
6
6 5 4  
4 5 6  
1 2 3  
3 2 1  
1
2
3
3
2
1
PIN DESCRIPTIONS  
Pin No  
Symbol  
Description  
1
2
Lx  
LX Pin Voltage Supply Pin  
Ground Pin  
GND  
Mode changer Pin  
(Refer to the selection guide above.)  
3
MODE  
4
5
6
CE  
VOUT  
VIN  
Chip Enable Pin (active with "H")  
Output Pin  
Voltage Supply Pin  
* Tab in the  
parts have GND level. (They are connected to the back side of this IC.)  
Do not connect to other wires or land patterns.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Rating  
6.5  
Unit  
VIN  
VIN Supply Voltage  
V
V
VLX  
LX Pin Voltage  
0.3 to VIN+0.3  
0.3 to 6.5  
0.3 to 6.5  
0.3 to VIN+0.3  
600  
VCE  
CE Pin Input Voltage  
V
VMODE  
VOUT  
ILX  
MODE Pin Input Voltage  
VOUT Pin Voltage  
V
V
LX Pin Output Current  
mA  
mA  
IOUT  
VOUT Pin Output Current  
Power Dissipation (SON-6)*  
Power Dissipation (PLP2514-6)*  
Operating Temperature Range  
Storage Temperature Range  
200  
500  
PD  
mW  
730  
Topt  
Tstg  
40 to +85  
55 to +125  
°C  
°C  
*) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.  
3
R5220x  
ELECTRICAL CHARACTERISTICS  
R5220xxxxA  
Topt=25°C  
Symbol  
Item  
Conditions  
Min. Typ. Max. Unit  
VIN  
Operating Input Voltage  
Supply Current 1  
(Standby mode)  
2.8  
5.5  
V
VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN  
VOUT1:DC/DC Set VOUT  
ISS1  
0.1  
1.0  
µA  
Supply Current 2  
(Power Save mode)  
Supply Current 3  
VIN=VCE=VOUT2+1.0V, VMODE=GND  
VOUT2:VR Set VOUT, IOUT=0mA  
VIN=VCE=VMODE=3.6V  
ISS2  
ISS3  
5
10  
µA  
µA  
350  
450  
DC/DC Part  
Symbol  
Topt=25°C  
Item  
Output Voltage  
Conditions  
Min.  
Typ.  
Max.  
Unit  
>
VOUT1  
1.5  
×0.98  
0.03  
0.96  
×1.02  
+0.03  
1.44  
0.30  
0.35  
VIN=3.6V  
=
VOUT1  
fosc  
V
IOUT=50mA  
VOUT1 < 1.5  
Oscillator Frequency  
Soft-start Time  
1.20  
0.15  
0.20  
0.5  
MHz  
ms  
VIN=3.6V  
VOUT1 < 1.5  
TSTART  
VIN=3.6V  
>
VOUT1  
1.5  
=
RONP  
RONN  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor  
Lx Leakage Current  
VIN=3.6V, ILX=−100mA  
VIN=3.6V, ILX=−100mA  
0.5  
ILXLEAK  
1.0  
VIN=5.5V, VCE=0V, LX=5.5V/0V 1.0  
µA  
VOUT/  
Topt  
Output Voltage  
Temperature Coefficient  
40°C Topt 85°C  
±150  
ppm/°C  
=
=
Maxduty Oscillator Maximum Duty Cycle  
100  
500  
1.0  
2.00  
2.05  
1.0  
%
mA  
ms  
V
V
V
VOUT=0V  
VIN=3.6V  
VIN=3.6V  
ILXlim  
Tprot  
Lx Current Limit  
800  
3.0  
2.35  
2.45  
Protection Delay Circuit  
UVLO Threshold Voltage  
UVLO Released Voltage  
MODE "H" Input Voltage  
MODE "L" Input Voltage  
7.0  
2.75  
2.80  
VUVLO1  
VUVLO2  
VMODEH  
VMODEL  
VIN=VCE=VMODE, VOUT=0V  
VIN=VCE=VMODE, VOUT=0V  
0
0.3  
V
VR Part  
Symbol  
Topt=25°C  
Item  
Conditions  
Min.  
Typ.  
Max.  
×1.02  
+0.03  
Unit  
>
VOUT2  
1.5  
VIN=VOUT2+1.0V  
×0.98  
0.03  
50  
=
VOUT2  
IOUT  
Output Voltage  
Output Current  
V
IOUT=10mA  
VOUT2 < 1.5  
mA  
VIN=VOUT2+1.0V  
VOUT2 < 2.3  
15  
25  
35  
0.7  
0.3  
40  
50  
65  
VOUT2/  
IOUT  
VIN=VOUT2+1.0V  
Load Regulation  
Dropout Voltage  
mV  
V
2.3 VOUT2 < 3.0  
=
<
10µA  
IOUT  
25mA  
=
=
>
VOUT2  
3.0  
=
VOUT2 < 1.8  
VDIF  
IOUT=50mA  
>
VOUT2  
1.8  
=
<
2.8V VIN 5.5V  
=
=
VOUT2 < 2.3  
IOUT=25mA  
VOUT2+0.5V VIN 5.5V  
= =  
IOUT=25mA  
VOUT2/  
VIN  
Line Regulation  
Ripple Rejection  
0.2  
%/V  
>
VOUT2  
2.3  
=
RR  
Refer to Typical Characteristics  
dB  
VOUT/ Output Voltage  
IOUT=30mA,  
±100  
ppm/°C  
<
Temperature Coefficient  
Topt  
Ilim  
40°C Topt 85°C  
=
=
Short Current Limit  
CE pull-down current  
CE "H" Input Voltage  
CE "L" Input Voltage  
60  
0.40  
mA  
µA  
V
VOUT=0V  
IPDC  
0.12  
1.0  
0
0.70  
0.3  
VCEH  
VCEL  
V
4
R5220x  
R5220xxxxB  
Topt=25°C  
Symbol  
Item  
Conditions  
Min. Typ. Max. Unit  
VIN  
Operating Input Voltage  
2.8  
5.5  
V
Supply Current 1  
(Standby mode)  
VIN=VOUT1+1.0V, VCE=GND, VMODE=GND or VIN  
VOUT1:DC/DC Set VOUT  
ISS1  
0.1  
1.0  
µA  
Supply Current 2  
(Power Save mode)  
Supply Current 3  
VIN=VCE=VMODE=VOUT2+1.0V,  
VOUT2:VR Set VOUT, IOUT=0mA  
VIN=VCE=3.6V, VMODE=GND  
ISS2  
ISS3  
5
10  
µA  
µA  
350  
450  
DC/DC Part  
Symbol  
Topt=25°C  
Item  
Conditions  
Min.  
×0.98  
0.03  
Typ.  
Max.  
Unit  
>
VOUT1  
1.5  
VIN=3.6V  
×1.02  
+0.03  
1.44  
0.30  
0.35  
=
VOUT1  
fosc  
Output Voltage  
V
IOUT=50mA  
VOUT1<1.5  
Oscillator Frequency  
Soft-start Time  
0.96  
1.20  
0.15  
0.20  
0.5  
MHz  
ms  
VIN=VSET1+1.5V  
VOUT1<1.5  
VOUT1  
VIN=3.6V, ILX=−100mA  
VIN=3.6V, ILX=−100mA  
VIN=5.5V, VCE=0V, LX=5.5V/0V  
TSTART  
VIN=3.6V  
>
1.5  
=
RONP  
RONN  
ILXLEAK  
ON Resistance of Pch Transistor  
ON Resistance of Nch Transistor  
Lx Leakage Current  
µA  
0.5  
1.0  
1.0  
VOUT/ Output Voltage  
40°C Topt 85°C  
±150  
ppm/°C  
=
=
Temperature Coefficient  
Topt  
Maxduty Oscillator Maximum Duty Cycle  
100  
500  
1.0  
2.00  
2.05  
1.0  
%
mA  
ms  
V
V
V
VOUT=0V  
VIN=3.6V  
VIN=3.6V  
VCE=VIN, VMODE=GND, VOUT=0V  
VCE=VIN, VMODE=GND, VOUT=0V  
ILXlim  
Tprot  
VUVLO1  
VUVLO2  
Lx Current Limit  
800  
3.0  
2.35  
2.45  
Protection Delay Circuit  
UVLO Threshold Voltage  
UVLO Released Voltage  
7.0  
2.75  
2.80  
VMODEH MODE "H" Input Voltage  
VMODEL  
MODE "L" Input Voltage  
0
0.3  
V
VR Part  
Symbol  
Topt=25°C  
Item  
Output Voltage  
Output Current  
Conditions  
Min.  
×0.98  
0.03  
50  
Typ.  
Max.  
×1.02  
+0.03  
Unit  
>
VOUT2  
1.5  
VIN=VOUT2+1.0V  
IOUT=10mA  
=
VOUT2  
IOUT  
V
VOUT2<1.5  
mA  
VIN=VOUT2+1.0V  
VOUT2<2.3  
15  
25  
35  
40  
50  
65  
VOUT2/  
IOUT  
VIN=VOUT2+1.0V  
Load Regulation  
mV  
V
2.3 VOUT2<3.0  
=
<
10µA  
IOUT  
25mA  
=
=
>
VOUT2  
3.0  
=
VOUT2<1.8V  
0.7  
0.3  
VDIF  
Dropout Voltage  
IOUT=50mA  
>
VOUT2  
1.8V  
=
<
2.8V VIN 5.5V  
=
=
VOUT2<2.3V  
IOUT=25mA  
VOUT2+0.5V VIN 5.5V  
IOUT=25mA  
VOUT2/  
VIN  
Line Regulation  
Ripple Rejection  
0.2  
%/V  
=
=
>
VOUT2  
2.3V  
=
RR  
Refer to Typical Characteristics  
dB  
VOUT/ Output Voltage  
IOUT=30mA,  
±100  
ppm/°C  
<
Temperature Coefficient  
Topt  
Ilim  
40°C Topt 85°C  
=
=
Short Current Limit  
CE pull-down current  
CE "H" Input Voltage  
CE "L" Input Voltage  
60  
0.40  
mA  
µA  
V
VOUT=0V  
IPDC  
0.12  
1.0  
0
0.70  
0.3  
VCEH  
VCEL  
V
5
R5220x  
TYPICAL APPLICATION  
VIN  
CIN 10µF  
L 4.7µH  
6
1
Lx  
VIN  
R5220x  
Series  
Load  
2
5
4
GND  
VOUT  
COUT 10µF  
3
MODE  
CE  
Parts Recommendation  
CIN  
10µF Ceramic Capacitor C2012JB0J106K (TDK)  
10µF Ceramic Capacitor C2012JB0J106K (TDK)  
4.7µH VLP5610-4R7(TDK)  
COUT  
L
External Components  
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular,  
minimize the wiring to VIN pin and GND pin. If VDD line or GND line’s impedance is high, the internal voltage  
level of the IC may fluctuate and the operation may be unstable. Make GND line and VDD line sufficient.  
Through the VDD line, the GND line, the inductor, Lx pin, and VOUT line, a large current caused by switching  
may flow, therefore, those lines should be sufficient and avoid the cross talk with other sensitive lines. Use  
the individual line from the VOUT pin of the IC for the inductor and the capacitor and load.  
Use a low ESR ceramic capacitor COUT/CIN with a capacity of 10µF or more.  
Select an inductor with an inductance range from 4.7µH to 10µH. The internal phase compensation is  
secured with these inductance values and COUT value. Choose the inductor with a low DC resistance and  
enough permissible current and hard to reach magnetic saturation. In terms of inductance value, choose the  
appropriate value with considering the conditions of the input voltage range and the output voltage, and  
load current. If the inductance value is too small and the load current is large, the peak current of Lx may  
reach the Lx current limit, and the protection against over-current may work.  
The protection circuit against over-current is affected by the self-heating and the heat radiation environment.  
Therefore evaluate under the considerable environment of the application.  
The performance of power source circuits using these ICs extremely depends upon the peripheral circuits.  
Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that  
the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their  
respected rated values.  
6
R5220x  
OPERATION of step-down DC/DC converter and Output Current  
The step-down DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the  
energy from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output  
voltage than the input voltage is obtained. The operation will be explained with reference to the following  
diagrams:  
<Basic Circuits>  
<Current through L>  
IL  
ILmax  
i1  
OUT  
V
ILmin  
L
Pch Tr  
Nch Tr  
topen  
IN  
V
i2  
CL  
GND  
ton  
toff  
T=1/fosc  
Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL  
increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.  
Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL  
at ILmax, and current IL (=i2) flows.  
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr.  
Turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff  
time is not enough. In this case, IL value increases from this ILmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with  
the oscillator frequency (fosc) being maintained constant.  
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the  
same as those when P-channel Tr. turns on and off.  
The difference between ILmax and ILmin, which is represented by I;  
I=ILmaxILmin=VOUT×topen/L=(VINVOUT)×ton/L........................................................ Equation 1  
wherein, T=1/fosc=ton+toff  
duty (%)=ton/T×100=ton×fosc×100  
<
topen toff  
=
In Equation 1, VOUT×topen/L and (VIN VOUT) ×ton/L respectively show the change of the current at "ON", and the  
change of the current at "OFF".  
7
R5220x  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
When P-channel Tr. of LX is ON:  
(Wherein, Ripple Current P-P value is described as IRP, ON resistance of P-channel Tr. and N-channel Tr. of LX  
are respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.)  
VIN = VOUT + (RONP + RL) × IOUT + L × IRP / ton ...................................................................Equation 2  
When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"):  
L × IRP / toff = RONN × IOUT + VOUT + RL × IOUT ..................................................................Equation 3  
Put Equation 3 to Equation 2 and solve for ON duty of P-channel transistor, ton/(toff+ton)=DON,  
DON = (VOUT – RONN × IOUT + RL × IOUT) / (VIN + RONN × IOUT – RONP × IOUT)............................Equation 4  
Ripple Current is as follows;  
IRP = (VIN VOUT RONP × IOUT RL × IOUT) × DON / fosc / L................................................Equation 5  
wherein, peak current that flows through L, and LX Tr. is as follows;  
ILmax = IOUT + IRP / 2......................................................................................................Equation 6  
Consider ILmax, condition of input and output and select external components.  
œ The above explanation is directed to the calculation in an ideal case in continuous mode.  
8
R5220x  
TIMING CHART  
1) IC start-up  
The timing chart as shown in the next describes the operation starting the IC is enabled with CE. When the CE  
pin voltage becomes higher than the threshold voltage, the IC’s operations starts. At first, only the voltage  
regulator (VR) starts. The threshold level of the CE pin is between CE “H” input voltage and CE “L” input voltage.  
After starting the operation, the output capacitor (COUT) is charged with the output current of the VR, and the  
output level becomes the set VR output voltage. At this moment, the output of Lx is “off”, (“Hi-Z”), the pin voltage,  
VLX=VOUT through the external inductor L.  
Secondly, the Mode pin voltage is higher than the threshold voltage, internal operation of DC/DC starts. The  
threshold level is between Mode “H” input voltage and Mode “L” input voltage. The soft-start circuit inside the  
DC/DC converter’s operation is as follows:  
(Case 1) DC/DC output voltage < VR output voltage  
After the soft-start time, while the output voltage level is down from the VR output voltage to DC/DC output  
voltage, the circuit is waiting for the start of DC/DC operation. When the output voltage reaches so set DC/DC  
output voltage level, the actual DC/DC operation starts.  
(Case 2) DC/DC output voltage> VR output voltage  
The soft-start circuit of DC/DC converter makes the voltage reference unit of the IC rise gradually and be  
constant. After the voltage reference unit reaches the constant level which the output voltage of DC/DC  
converter can balance becomes the output voltage of VR, the set output voltage of DC/DC converter may be  
realized.  
Therefore, the soft-start time means the time range of starting to the time when the voltage reference unit  
reaches the constant level, and the soft-start time is different from turning on speed in some cases. The  
operation starting time depends on the ability of the power supply, the load current, the inductance value, the  
capacitance value, and the voltage difference between the set VR output and the set DC/DC output.  
If CE and Mode are on at once, the same operation as above is happened except the VR start-up and  
Soft-start operation start at the same time.  
If Mode signal is forced earlier than CE signal, this IC is stand-by until CE signal comes. Therefore when the  
CE signal is set, the IC operation starts as above.  
VOUT voltage rising speed at start-up with power supply is affected by the next conditions:  
1.The turning on speed of VIN voltage limited by the power supply to the IC and the input capacitor CIN.  
2.The output capacitor, COUT value and load current.  
DC/DC operation starting time  
>
1.If the VR output DC/DC output, the operation starting time of the DC/DC converter is approximately equal to  
=
the next formula.  
TDC/DC_ACT = TSS + (VOUT_VR VOUT_DC/DC + 15mV) × COUT / (load current at mode change + 1µA)  
TSS: Soft-start time  
VOUT_VR: VR output voltage  
VOUT_DC/DC: DC/DC Output Voltage  
*1µA is the supply current of the IC itself for the output.  
2.If the VR output < DC/DC output, the operation starting time is the soft-start time + starting operation time  
which depends on the power supply, the load current, and the external components.  
9
R5220x  
CEH  
CEL  
V
CE pin input signal  
MODEH  
MODEL  
V
V
MODE pin input signal  
V
Soft start time  
IC DC/DC Voltage Reference Unit  
A.VR Output=DC/DC Output voltage  
VOUT  
Effect from Power Supply, Load Current, Extemal Components  
Lx voltage  
DC/DC Operation  
B.VR voltage > DC/DC Output  
VOUT  
DC/DC does not operate if VR output is larger than  
DC/DC  
Lx voltage  
DC/DC Operation  
C. VR voltage < DC/DC voltage  
VOUT  
Lx voltage  
DC/DC Operating  
If CE pin input signal is forced earlier than the supply voltage, the voltage difference between the input and the  
output which is according to the input voltage to VIN, is maintained and the VOUT is rising up.  
10  
R5220x  
TEST CIRCUITS  
OSCILLOSCOPE  
Lx  
VIN  
Lx  
VIN  
VOUT  
ND  
VOUT  
GND  
A
MODE  
CE  
MODE  
CE  
Supply Current 1,2,3  
Output Voltage(DC/DC)  
OSCILLOSCOPE  
OSCILLOSCOPE  
Lx  
VIN  
Lx  
VIN  
OUT  
CE  
VOUT  
GND  
V
GND  
MODE  
CE  
MODE  
Oscillator Frequency  
Soft-start Time  
OSCILLOSCOPE  
Lx  
VIN  
OUT  
CE  
Lx  
VIN  
OUT  
CE  
V
GND  
V
GND  
A
MODE  
MODE  
Lx Leakage Current  
Lx Current Limit, Output Delay for Protection  
Lx Pch transistor ON resistance  
Nch transistor ON resistance  
11  
R5220x  
OSCILLOSCOPE  
OSCILLOSCOPE  
Lx  
VIN  
OUT  
CE  
Lx  
VIN  
V
VOUT  
GND  
GND  
MODE  
MODE  
CE  
A
UVLO Detector Threshold UVLO Release Voltage  
MODEInput Voltage ”H”,”L” Input Current  
Lx  
VIN  
OUT  
CE  
Lx  
VIN  
V
ND  
ND  
VOUT  
MODE  
MODE  
CE  
Network  
Analyzer  
V
Output Voltage (VR), Load Regulation  
Line Regulation, Dropout Voltage  
(J) RippleRejection  
Lx  
VIN  
OUT  
CE  
Lx  
VIN  
V
ND  
ND  
VOUT  
MODE  
MODE  
A
CE  
V
A
Short Current Limit  
CE=”H”/”L” Input Voltage/ Input Current  
12  
R5220x  
TYPICAL CHARACTERISTICS  
1) DC/DC Converter  
1-1) DC/DC Output Voltage vs. Output Current  
1-2) DC/DC Output Voltage vs. Input Voltage  
R5220x181A  
R5220x181A  
1.84  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.83  
1.82  
1.81  
1.80  
1.79  
1mA  
50mA  
250mA  
1.78  
2.8V  
1.78  
1.77  
1.76  
3.6V  
1.77  
5.5V  
1.76  
0
100  
200  
300  
400  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage(V)  
Output Current(mA)  
1-3) DC/DC Efficiency vs. Output Current  
1-4) DC/DC Supply Current vs. Temperature  
R5220x181A  
V
IN=VCE=VMODE=3.6V  
100  
80  
60  
40  
20  
0
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
2.8V  
3.6V  
5.5V  
DC/DC_VSET : 1.0V  
DC/DC_VSET : 1.8V  
0.1  
1
10  
100  
1000  
-50 -25  
0
25  
50  
75  
100  
Output Current(mA)  
Temperature Topt(°C)  
1-5) DC/DC Supply Current vs. Input Voltage  
1-6) DC/DC Output Waveform  
R5220x121A  
C
IN=COUT=Ceramic 10µF,L=4.7µH  
IN=3.6V,IOUT=300mA  
VIN=VCE=VMODE  
V
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
-50 -25  
0
25  
50  
75  
100  
0
1
2
3
4
5
Input Voltage(V)  
Time(µs)  
13  
R5220x  
1-7) DC/DC Output Voltage vs. Temperature  
R5220x181A  
R5220x181A  
IOUT=50mA  
1.86  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
0
1
2
3
4
5
-50 -25  
0
25  
50  
75  
100  
Time(µs)  
Temperature Topt(°C)  
1-8) DC/DC Oscillator Frequency vs. Temperature 1-9) DC/DC Oscillator Frequency vs. Input Voltage  
R5220x181A  
V
IN=3.6V  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-50 -25  
0
25  
50  
75  
100  
Input Voltage(V)  
Temperature Topt(°C)  
1-10) Soft-start time vs. Temperature  
1-11) UVLO Detector Threshold/ Released Voltage vs.  
Temperature  
250  
200  
150  
100  
2.8  
2.7  
UVLO Detector Threshold  
2.6  
UVLO Released Voltage  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
DC/DC_VSET : 1.0V  
DC/DC_VSET : 1.8V  
50  
0
-50 -25  
0
25  
50  
75  
100  
-50 -25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
14  
R5220x  
1-12) MODE Input Voltage vs. temperature  
1-13) Pch Transistor On Resistance vs. Temperature  
V
IN=3.6V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-50 -25  
0
25  
50  
75  
100  
-50 -25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
1-14) Nch Transistor On Resistance vs.  
Temperature  
1-15) DC/DC Lx Current Limit vs. Temperature  
R5220x131A  
V
IN=3.6V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1200  
1000  
800  
600  
400  
-50 -25  
0
25  
50  
75  
100  
-50 -25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
2) VR  
2-1) VR Output Voltage vs. Output Current  
R5220x121A  
R5220x181A  
1.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN=2.8V  
VIN=3.6V  
VIN=5.5V  
V
V
V
IN=2.8V  
IN=3.6V  
IN=5.5V  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
15  
R5220x  
2-2) VR Output Voltage vs. Input Voltage  
R5220x121A  
R5220x181A  
1.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
I
I
I
OUT=1mA  
IOUT=1mA  
IOUT=25mA  
IOUT=50mA  
0.4  
0.2  
0.0  
OUT=25mA  
OUT=50mA  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
2-3) VR Supply Current vs. Input Voltage  
R5220x121A  
R5220x181A  
8.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage VIN(V)  
Input Voltage VIN(V)  
2-4) VR Output Voltage vs. Temperature  
R5220x121A  
R5220x181A  
1.24  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
-50 -25  
0
25  
50  
75  
100  
-50 -25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
16  
R5220x  
2-5) VR Supply Current vs. Temperature  
R5220x121A  
R5220x181A  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
V
V
IN=3.6V  
IN=5.5V  
V
V
IN=3.6V  
IN=5.5V  
-50 -25  
0
25  
50  
75  
100  
-50 -25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
2-6) Dropout Voltage vs. Output Current  
R5220x121A  
R5220x181A  
800  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
85°C  
0
1
2
3
4
5
0
10  
20  
30  
40  
50  
Time(µs)  
Output Current IOUT(mA)  
2-7) Ripple Rejection vs. Input Voltage  
R5220x121A  
R5220x181A  
Ripple 0.2Vp-p,IOUT=25mA,  
Ripple 0.2Vp-p,IOUT=25mA,  
C
IN=none,COUT=Ceramic10µF  
C
IN=none,COUT=Ceramic10µF  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
f=400Hz  
f=1kHz  
f=10kHz  
f=100kHz  
f=400Hz  
f=1kHz  
f=10kHz  
f=100kHz  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
17  
R5220x  
2-8) VR Ripple Rejection vs. Frequency  
R5220x121A  
R5220x181A  
V
IN=2.8V+0.2Vp-p  
V
IN=2.2V+0.2Vp-p  
C
IN=none COUT=Ceramic10µF  
C
IN=none COUT=Ceramic10µF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
OUT=50mA  
OUT=25mA  
OUT=1mA  
I
I
I
OUT=50mA  
OUT=25mA  
OUT=1mA  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency f (kHz)  
Frequency f (kHz)  
2-9) Input Transient Response  
R5220x121A  
R5220x181A  
IOUT=10mA  
I
OUT=10mA  
C
IN=none, COUT=Ceramic10µF  
C
IN=none, COUT=Ceramic10µF  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
5
4
3
2
1
0
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
5
4
3
2
1
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
Time T(ms)  
Time T(ms)  
2-10) Load Transient Response  
R5220x121A  
R5220x121A  
V
IN=3.6V,CIN=COUT=Ceramic10µF  
V
IN=3.6V,CIN=COUT=Ceramic10µF  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
50  
25  
0
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
50  
25  
0
1mA  
25mA 1mA  
0mA  
10mA 0mA  
0.0  
0.8  
1.6  
2.4  
3.2  
4.0  
0.0  
0.8  
1.6  
2.4  
3.2  
4.0  
Time T(µs)  
Time (µs)  
18  
R5220x  
R5220x181A  
R5220x181A  
V
IN=3.6V,CIN=COUT=Ceramic10µF  
V
IN=3.6V,CIN=COUT=Ceramic10µF  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
50  
25  
0
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
50  
25  
0
1mA  
25mA  
1mA  
0mA  
10mA  
0mA  
0.0  
0.8  
1.6  
2.4  
3.2  
4.0  
0.0  
0.8  
1.6  
2.4  
3.2  
4.0  
Time T(µs)  
Time T(µs)  
3) Mode Transient Response between VR and DC/DC  
3-1) VR to DC/DC Mode Transient Response  
3-2) DC/DC to VR Mode Transient Response  
R5220x151A  
R5220x151A  
V
IN=3.6V,IOUT=0.5mA  
V
IN=3.6V,IOUT=0.5mA  
C
IN=COUT=Ceramic10µF  
C
IN=COUT=Ceramic10µF  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
20  
16  
12  
8
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
20  
16  
12  
8
V
OUT  
V
OUT  
4
4
VMODE  
VMODE  
0
0
0
200  
400  
600  
800 1000  
0
200  
400  
600  
800 1000  
Time (µs)  
Time (µs)  
19  
PE-SON-6-0510  
PACKAGE INFORMATION  
SON-6  
Unit: mm  
PACKAGE DIMENSIONS  
1.6 0.2  
6
4
3
1
Bottom View  
Attention: Tab suspension leads in the  
parts have VDD or GND level.(They are  
connected to the reverse side of this IC.)  
Refer to PIN DISCRIPTION.  
Do not connect to other wires or land patterns.  
0.1  
0.2 0.1  
0.5  
TAPING SPECIFICATION  
4.0 0.1  
+0.1  
0
1.5  
2.0 0.05  
0.2 0.1  
1.9  
4.0 0.1  
1.7MAX.  
1.1 0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=3000pcs)  
11.4 1.0  
9.0 0.3  
2 0.5  
21 0.8  
PE-SON-6-0510  
PACKAGE INFORMATION  
POWER DISSIPATION (SON-6)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.5mm × 44pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
500mW  
θja=(12525°C)/0.5W=200°C/W  
Free Air  
250mW  
-
Power Dissipation  
Thermal Resistance  
600  
On Board  
40  
500  
400  
300  
200  
100  
0
Free Air  
250  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Power Dissipation  
Measurement Board Pattern  
IC Mount Area (Unit : mm)  
RECOMMENDED LAND PATTERN  
0.25  
0.5  
(Unit: mm)  
PE-PLP2514-6-0610  
PACKAGE INFORMATION  
PLP2514-6  
Unit: mm  
PACKAGE DIMENSIONS  
0.50  
0.20±0.05  
1.4  
B
A
4
6
× 4  
0.05  
INDEX  
3
1
1.10±0.05  
Bottom View  
Attention: Tabs or Tab suspension leads in the  
parts have VDD or GND level.(They are  
connected to the reverse side of this IC.)  
Refer to PIN DISCRIPTION.  
S
0.05  
S
Do not connect to other wires or land patterns.  
TAPING SPECIFICATION  
0.1  
0
+
1.5  
4.0±0.1  
2.0±0.05  
0.2±0.1  
1.1±0.1  
1.75  
1.2max.  
4.0±0.1  
TR  
User Direction of Feed  
TAPING REEL DIMENSIONS  
(1reel=5000pcs)  
11.4±1.0  
9.0±0.3  
21±0.8  
2±0.5  
PE-PLP2514-6-0610  
PACKAGE INFORMATION  
POWER DISSIPATION (PLP2514-6)  
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.  
This specification is based on the measurement at the condition below:  
Measurement Conditions  
Standard Land Pattern  
Environment  
Board Material  
Board Dimensions  
Copper Ratio  
Mounting on Board (Wind velocity=0m/s)  
Glass cloth epoxy plactic (Double sided)  
40mm × 40mm × 1.6mm  
Top side : Approx. 50% , Back side : Approx. 50%  
Through-hole  
φ0.54mm × 30pcs  
Measurement Result  
(Topt=25°C,Tjmax=125°C)  
Standard Land Pattern  
730mW  
Power Dissipation  
Thermal Resistance  
θja=(12525°C)/0.73W=137°C/W  
1200  
1000  
40  
800  
730  
On Board  
600  
400  
200  
0
0
25  
50  
75 85 100  
125  
150  
Measurement Board Pattern  
Ambient Temperature (°C)  
IC Mount Area Unit : mm  
Power Dissipation  
RECOMMENDED LAND PATTERN (PLP2514-6)  
0.9  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
(Unit: mm)  
ME-R5220D-070810  
MARK INFORMATION  
R5220D SERIES MARK SPECIFICATION  
SON-6  
1
3
2
4
,
,
: Product Code (refer to Part Number vs. Product Code)  
: Lot Number  
1
3
2
4
Part Number vs. Product Code  
Product Code  
Product Code  
Product Code  
Set VOUT  
Part Number  
Part Number  
Part Number  
1
2
1
2
1
2
DC/DC  
1.2V  
VR  
1.1V  
1.1V  
1.05V  
1.0V  
R5220D101A  
R5220D111A  
R5220D121A  
R5220D131A  
R5220D141A  
R5220D151A  
R5220D161A  
R5220D171A  
R5220D181A  
R5220D191A  
R5220D201A  
R5220D211A  
R5220D221A  
R5220D231A  
R5220D241A  
R5220D251A  
R5220D261A  
R5220D271A  
R5220D281A  
R5220D291A  
R5220D301A  
R5220D311A  
R5220D321A  
R5220D331A  
R5220D261A5  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
B
C
D
E
F
G
H
J
R5220D101B  
R5220D111B  
R5220D121B  
R5220D131B  
R5220D141B  
R5220D151B  
R5220D161B  
R5220D171B  
R5220D181B  
R5220D191B  
R5220D201B  
R5220D211B  
R5220D221B  
R5220D231B  
R5220D241B  
R5220D251B  
R5220D261B  
R5220D271B  
R5220D281B  
R5220D291B  
R5220D301B  
R5220D311B  
R5220D321B  
R5220D331B  
R5220D261B5  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
B
C
D
E
F
G
H
J
R5220D012A  
R5220D022A  
R5220D032A  
R5220D042A  
C
C
C
C
W
X
Y
Z
1.5V  
1.3V  
1.5V  
R5220D012B  
R5220D022B  
R5220D032B  
R5220D042B  
D
D
D
D
W
X
Y
Z
1.2V  
1.5V  
1.3V  
1.5V  
1.1V  
1.1V  
1.05V  
1.0V  
K
L
K
L
M
N
P
Q
R
S
T
U
V
0
M
N
P
Q
R
S
T
U
V
0
1
1
2
2
3
3
4
4
ME-R5220K-070810  
MARK INFORMATION  
R5220K SERIES MARK SPECIFICATION  
PLP2514-6  
1
5
4
to  
: Product Code (refer to Part Number vs. Product Code)  
6
,
: Lot Number  
1
4
2
5
3
6
Part Number vs. Product Code  
Product Code  
Product Code  
Product Code  
Set VOUT  
Part Number  
Part Number  
Part Number  
1
2
3
4
1
2
3
4
1
2
3
4
DC/DC VR  
R5220K101A  
R5220K111A  
R5220K121A  
R5220K131A  
R5220K141A  
R5220K151A  
R5220K161A  
R5220K171A  
R5220K181A  
R5220K191A  
R5220K201A  
R5220K211A  
R5220K221A  
R5220K231A  
R5220K241A  
R5220K251A  
R5220K261A  
R5220K271A  
R5220K281A  
R5220K291A  
R5220K301A  
R5220K311A  
R5220K321A  
R5220K331A  
R5220K261A5  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
R5220K101B  
R5220K111B  
R5220K121B  
R5220K131B  
R5220K141B  
R5220K151B  
R5220K161B  
R5220K171B  
R5220K181B  
R5220K191B  
R5220K201B  
R5220K211B  
R5220K221B  
R5220K231B  
R5220K241B  
R5220K251B  
R5220K261B  
R5220K271B  
R5220K281B  
R5220K291B  
R5220K301B  
R5220K311B  
R5220K321B  
R5220K331B  
R5220K261B5  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
R5220K012A  
R5220K022A  
R5220K032A  
R5220K042A  
S
S
S
S
0
0
0
0
1
2
3
4
2
2
2
2
1.2V  
1.5V  
1.1V  
1.1V  
1.3V 1.05V  
1.5V  
1.0V  
R5220K012B  
R5220K022B  
R5220K032B  
R5220K042B  
T
T
T
T
0
0
0
0
1
2
3
4
2
2
2
2
1.2V  
1.5V  
1.1V  
1.1V  
1.3V 1.05V  
1.5V 1.0V  

相关型号:

R5220D141A-TR

Switching Regulator, Voltage-mode, 0.8A, 1440kHz Switching Freq-Max, CMOS, PDSO6, 0.85 MM HEIGHT, TSON-6
RICOH

R5220D141A-TR-F

暂无描述
RICOH

R5220D141A-TR-FE

Switching Regulator, 0.2A, 1440kHz Switching Freq-Max, CMOS, PDSO6, HALOGEN FREE AND ROHS COMPLIANT, SON-6
RICOH

R5220D141B

PWM Step-down DC/DC Converter with switch function
RICOH

R5220D141B-TR

暂无描述
RICOH

R5220D141B-TR-FE

暂无描述
RICOH

R5220D151A

PWM Step-down DC/DC Converter with switch function
RICOH

R5220D151A-TR

暂无描述
RICOH

R5220D151A-TR-FE

暂无描述
RICOH

R5220D151B

PWM Step-down DC/DC Converter with switch function
RICOH

R5220D151B-TR-FE

Switching Regulator, 0.2A, 1440kHz Switching Freq-Max, CMOS, PDSO6, HALOGEN FREE AND ROHS COMPLIANT, SON-6
RICOH

R5220D161A

PWM Step-down DC/DC Converter with switch function
RICOH