R5460N201AC-TR-F [RICOH]

Power Management Circuit;
R5460N201AC-TR-F
型号: R5460N201AC-TR-F
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Power Management Circuit

文件: 总29页 (文件大小:574K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R5460_E2/2007/05/25  
Li-ION/POLYMER 2-CELL PROTECTOR  
R5460xxxxxx SERIES  
EA-165-070525  
OUTLINE  
The R5460xxxxxx Series are high voltage CMOS-based protection ICs for over-charge/discharge of  
rechargeable two-cell Lithium-ion (Li+) / Lithium polymer, further include a short circuit protection  
circuit for preventing large external short circuit current and the protection circuits against the excess  
discharge-current and excess charge current.  
Each of these ICs is composed of six voltage detectors, a reference unit, a delay circuit, a short  
circuit protector, an oscillator, a counter, and a logic circuit. When the over-charge voltage threshold or  
excess-charge current threshold crosses the each detector threshold from a low value to a high value,  
the output of COUT pin switches to “L” level after internal fixed delay time. To release over-charge de-  
tector after detecting over-charge, the detector can be reset and the output of COUT becomes "H" when a  
kind of load is connected to VDD after a charger is disconnected from the battery pack and the cell  
voltage becomes lower than over-charge detector threshold. In case that a charger is continuously  
connected to the battery pack, if the cell voltage becomes lower than the over-charge detector threshold,  
over-charge state is also released.  
The output of DOUT pin, the output of the over-discharge detector and the excess discharge-current  
detector, switches to “L” level after internally fixed delay time, when discharged voltage crosses the  
detector threshold from a high value to a value lower than VDET2.  
To release over-discharge detector, after detecting over-discharge voltage, connect a charger to the  
battery pack, and when the battery supply voltage becomes higher than over-discharge detector  
threshold. In case of "A" version, when the cell voltage becomes equal or more than the released voltage  
from over-discharge, over-discharge detector is released.  
Even if a battery is discharged to 0V, charge current is acceptable.  
After detecting excess-discharge current or short current, when the load is disconnected, the excess  
discharged or short condition is released and DOUT becomes “H”.  
After detecting over-discharge voltage, supply current will be kept extremely low by halting internal  
circuits' operation.  
When the output of COUT is “H”, if V- pin level is set at -1.6V, the delay time of detector can be  
shortened. Especially, the delay time of the over-charge detector can be reduced into approximately  
1/60 and test time for protection circuit PCB can be reduced. The output type of COUT and DOUT is  
CMOS.  
1
R5460xxxxxx  
FEATURES  
Manufactured with High Voltage Tolerant Process... Absolute Maximum Rating  
30V  
Low supply current................................. Supply current (At normal mode)  
Typ. 4.0µA  
Standby current  
Typ. 1.2µA (A/D version)  
Max. 0.1µA (B/C version)  
High accuracy detector threshold ............ Over-charge detector (Topt=25°C)  
(Topt=-5 to 55°C)  
±25mV  
±30mV  
±2.5%  
Over-discharge detector  
Excess discharge-current detector  
Excess charge-current detector  
±15mV  
±40mV  
Variety of detector threshold  
Over-charge detector threshold (A/B/C version)  
4.1V-4.5V step of 0.005V(VD1U/VD1L)  
3.5V-4.0V step of 0.005V(VD1U/VD1L)  
2.0V-3.0V step of 0.005V(VD2U/VD2L)  
0.05V-0.20V step of 0.005V  
Over-charge detector threshold (D version)  
Over-discharge detector threshold  
Excess discharge-current threshold  
3 options of Excess charge-current threshold (1) -0.4V ±40mV  
..................................................................... (2) -0.2V ±30mV  
......................................................................(3) -0.1V ±30mV  
Over-charge released voltage 0.1V-0.4V step of 0.05V(VH1U/VH1L)  
Over-discharge released voltage 0.2V-0.7V step of 0.1V(VH2U/VH2L)  
Internal fixed Output delay time.............. Over-charge detector Output Delay 1.0  
s
Over-discharge detector Output Delay  
128ms  
Excess discharge-current detector Output Delay  
Excess charge-current detector Output Delay  
12ms  
8ms  
Short Circuit detector Output Delay  
300µs  
Output Delay Time Shortening Function. At COUT is “H”, if V- level is set at –1.6V, the Output  
Delay time of detect and release the over-charge and  
over-discharge can be reduced. (Delay Time for  
over-charge becomes about 1/60 of normal state.)  
0V-battery charge ................................... acceptable  
Ultra Small package................................ SOT-23-6, PLP1820-6  
APPLICATIONS  
Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack  
High precision protectors for cell-phones and any other gadgets using on board Li+ / Li Polymer  
battery  
2
R5460xxxxxx  
BLOCK DIAGRAMS  
A/D version  
VDD  
DS Circuit  
VD1U  
scillator  
Counter  
Level  
Shift  
Logic  
Circuit  
Short  
Delay  
Detector  
VD2U  
Vc  
VD4  
VD3  
VD1L  
Logic  
Circuit  
VD2L  
DOUT  
COUT  
V-  
VSS  
B/C version  
VDD  
DS Circuit  
VD1U  
scillator  
Counter  
Level  
Shift  
Logic  
Circuit  
Short  
Detector  
Delay  
VD2U  
Vc  
VD4  
VD3  
VD1L  
Logic  
Circuit  
VD2L  
DOUT  
COUT  
V-  
VSS  
3
R5460xxxxxx  
SELECTION GUIDE  
In the R5460xxxxxx Series, input threshold of over-charge, over-discharge, excess discharge current,  
and the package and taping can be designated.  
Part Number is designated as follows:  
R5460x xxxxx-xx  
↑ ↑ ↑ ↑  
Part Number  
a b cd e  
Code  
Contents  
a
Package Type N: SOT-23-6 K: PLP1820-6  
Serial Number for the R5460 Series designating input threshold for over-charge,  
over-discharge, excess discharge-current detectors.  
b
c
d
e
Designation of Output delay option of over-charge and excess discharge-current.  
Designation of version symbols.  
Taping Type: TR (refer to Taping Specification)  
PIN CONFIGURATIONS  
SOT-23-6  
PLP1820-6  
6
5
mark side  
2
4
4
3
6
1
5
mark side  
2
3
1
4
R5460xxxxxx  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
SOT23-6 PLP1820-6  
3
1
2
6
5
4
1
2
3
4
5
6
DOUT  
COUT  
V-  
Output pin of over-discharge detection, CMOS output  
Output pin of over-charge detection, CMOS output  
Pin for charger negative input  
VC  
Input Pin of the center voltage between two-cell  
Power supply pin, the substrate voltage level of the IC.  
Vss pin. Ground pin for the IC  
VDD  
VSS  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Item  
Ratings  
-0.3 to 12  
Unit  
VDD  
Supply voltage  
Input Voltage  
V
Vc  
V-  
Center pin voltage between two-cell VSS -0.3 to VDD+0.3  
V
Charger negative input V- pin  
VDD -30 to VDD+0.3  
Output voltage  
COUT pin  
VCOUT  
VDOUT  
VDD -30 to VDD +0.3  
VSS -0.3 to VDD +0.3  
V
V
DOUT pin  
PD  
Power dissipation  
150  
mW  
°C  
Topt  
Tstg  
Operating temperature range  
Storage temperature range  
-40 to 85  
-55 to 125  
°C  
5
R5460xxxxxx  
ELECTRICAL CHARACTERISTICS  
R5460X2XXAA version  
Unless otherwise specified, Topt=25°C  
Unit  
Symbol  
Item  
Conditions  
Voltage defined as  
VDD-VSS  
Min.  
1.5  
Typ.  
Max.  
10.0  
VDD1  
Operating input voltage  
V
V
Voltage defined as VDD-V-  
Minimum operating Voltage for  
0V charging *Note 1  
Vst  
1.8  
VDD-VSS=0V  
Detect rising edge of supply voltage  
R1=330Ω  
VDET1U  
VDET1U  
VREL1U  
V
V
V
V
DET1U-0.025  
V
DET1U+0.025  
VDET1U CELL1 Over-charge threshold  
R1=330(Topt=-5 to 55°C)*Note3  
VDET1U-0.030  
VDET1U+0.030  
VREL1U-0.050  
0.7  
11  
V
REL1U+0.050  
VREL1U CELL1 Over-charge released voltage  
R1=330Ω  
tVDET1  
VDD=3.5V to 4.5V,VC-VSS=3.5V  
Output delay of over-charge  
1.0  
16  
1.3  
21  
s
tVREL1 Output delay of release from over-charge VDD=4.5V to 3.5V, VC-VSS=3.5V  
ms  
Detect rising edge of supply voltage  
VDET1L  
VDET1L  
VREL1L  
V
V
V
VDET1L CELL2 Over-charge detector threshold  
VREL1L CELL2 Over-charge released voltage  
R1=330Ω  
R1=330(Topt=-5 to 55°C)*Note3  
R1=330Ω  
V
DET1L-0.025  
V
DET1L+0.025  
VDET1L-0.030  
VDET1L+0.030  
VREL1L-0.05  
VREL1L+0.05  
Detect falling edge of supply voltage  
CELL1 Over-discharge threshold  
CELL1 Released Voltage from  
Over-discharge  
VDET2U  
×
0.975  
VDET2U  
×
1.025  
VDET2U  
VREL2U  
VDET2U  
VREL2U  
V
Detect rising edge of supply voltage  
VREL2U  
89  
×
0.975  
VREL2U  
×
1.025  
V
VDD-VC=3.5V to 2.2V  
VC-VSS=3.5V  
VDD-VC=2.2V to 3.5V,  
VC-VSS=3.5V  
tVDET2 Output delay of over-discharge  
128  
167  
1.7  
ms  
Output delay of release from over-discharge  
tVREL2  
0.7  
1.2  
ms  
V
Detect falling edge of supply voltage  
CELL2 Over-discharge threshold  
CELL2 Released Voltage from  
Over-discharge  
Excess discharge-current threshold  
Output delay of excess discharge cur-  
rent  
VDET2L  
VREL2L  
×
0.975  
VDET2L  
VREL2L  
×
1.025  
VDET2L  
VREL2L  
VDET2L  
VREL2L  
VDET3  
12  
Detect rising edge of supply voltage  
×
0.975  
×
1.025  
V
Detect rising edge of 'V-' pin voltage VDET3-0.015  
VDET3+0.015  
VDET3  
V
VDD-VC=VC-VSS=3.5V, V-=0V to 0.5V  
tVDET3  
8
16  
ms  
Output delay of release from  
excess discharge-current  
VDD-VC=VC-Vss=3.5V, V-=3V  
to 0V  
tVREL3  
VDET4  
0.7  
1.2  
1.7  
ms  
V
-0.44  
-0.23  
-0.13  
-0.40 -0.36  
-0.20 -0.17  
-0.10 -0.07  
Detect falling edge of 'V-' pin voltage  
Excess charge-current threshold  
Output delay of excess charge-current  
V
DD-VC=VC-VSS=3.5V, V-=0V to  
tVDET4  
5
8
11  
ms  
-1V  
Output delay of release from excess VDD-VC=VC-VSS=3.5V, V-=-1V  
tVREL4  
0.7  
0.6  
230  
1.2  
1.0  
300  
1.7  
1.4  
500  
ms  
V
charge-current  
to 0V  
Vshort  
Short protection voltage  
VDD-VC=VC-VSS=3.5V  
VDD-VC=VC-VSS=3.5V, V-=0V to  
7V  
tshort Output Delay of Short protection  
µs  
Rshort  
Reset resistance for Excess  
discharge-current protection  
Delay Shortening Mode input  
voltage  
VDD=7.2V, V-=1V  
25  
40  
75  
kΩ  
V
VDD-VC=VC-VSS=4.4V  
-1.6  
VDS  
-2.2  
-1.0  
0.5  
Iol=50µA  
VDD-VC=VC-VSS=4.5V  
Ioh=-50µA  
VDD-VC=VC-VSS=3.9V  
Iol=50µA  
VDD-VC=VC-Vss=2.0V  
Ioh=-50µA,  
VDD-VC=VC-VSS=3.9V  
VDD-VC=VC-VSS=3.9V  
VDD-VC=VC-VSS=2V  
VOL1  
VOH1  
VOL2  
VOH2  
Nch ON voltage of COUT  
Pch ON voltage of COUT  
Nch ON voltage of DOUT  
Pch ON voltage of DOUT  
0.4  
7.4  
0.2  
V
6.8  
6.8  
V
0.5  
V
7.4  
4.0  
V
IDD  
IS  
Supply current  
Standby current  
8.0  
2.0  
µA  
µA  
1.2  
*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not  
production tested.  
6
R5460xxxxxx  
R5460X2XXAB/AC version  
Unless otherwise specified, Topt=25°C  
Unit  
Symbol  
Item  
Conditions  
Voltage defined as  
VDD-VSS  
Min.  
1.50  
Typ.  
Max.  
10.0  
VDD1  
Operating input voltage  
V
V
Voltage defined as VDD-V-  
Minimum operating Voltage for  
0V charging *Note 1  
Vst  
1.8  
VDD-VSS=0V  
Detect rising edge of supply voltage  
R1=330Ω  
VDET1U  
VDET1U  
VREL1U  
V
V
V
V
DET1U-0.025  
V
DET1U+0.025  
VDET1U CELL1 Over-charge threshold  
R1=330(Topt=-5 to 55°C)*Note3  
VDET1U-0.030  
VDET1U+0.030  
VREL1U CELL1 Over-charge released voltage  
VREL1U-0.05  
0.7  
11  
VREL1U+0.05  
R1=330Ω  
tVDET1  
VDD=3.5V to 4.5V,VC-VSS=3.5V  
Output delay of over-charge  
1.0  
16  
1.3  
21  
s
tVREL1 Output delay of release from over-charge VDD=4.5V to 3.5V, VC-VSS=3.5V  
ms  
Detect rising edge of supply voltage  
VDET1L  
VDET1L  
V
V
V
VDET1L CELL2 Over-charge detector threshold  
VREL1L CELL2 Over-charge released voltage  
R1=330Ω  
R1=330(Topt=-5 to 55°C)*Note3  
R1=330Ω  
V
DET1L-0.025  
V
DET1L+0.025  
VDET1L-0.030  
VDET1L+0.030  
VREL1L-0.050  
VREL1L VREL1L+0.050  
Detect falling edge of supply voltage  
CELL1 Over-discharge threshold  
VDET2U  
×0.975  
VDET2U  
×1.025  
VDET2U  
VDET2U  
V
VDD-VC=3.5V to 2.2V  
VC-VSS=3.5V  
VDD-VC=2.2V to 3.5V  
VC-VSS=3.5V  
tVDET2 Output delay of over-discharge  
89  
128  
167  
1.7  
ms  
Output delay of release from over-discharge  
tVREL2  
0.7  
1.2  
ms  
Detect falling edge of supply voltage  
CELL2 Over-discharge threshold  
VDET2L  
×0.975  
VDET2L×  
1.025  
VDET2L  
VDET3  
VDET2L  
VDET3  
V
V
Excess discharge-current threshold  
Output delay of excess discharge  
current  
Output delay of release from  
excess discharge-current  
Detect rising edge of 'V-' pin voltage VDET3-0.015  
VDET3+0.015  
V
DD-VC=VC-VSS=3.5V, V-=0V to  
tVDET3  
tVREL3  
8
12  
16  
ms  
ms  
0.5V  
VDD-VC=VC-Vss=3.5V, V-=3V  
to 0V  
0.7  
1.2  
1.7  
-0.44  
-0.23  
-0.13  
-0.40 -0.36  
-0.20 -0.17  
-0.10 -0.07  
Detect falling edge of 'V-' pin voltage  
Excess charge-current threshold  
Output delay of excess charge-current  
VDET4  
V
V
DD-VC=VC-VSS=3.5V, V-=0V to  
tVDET4  
5
8
11  
ms  
-1V  
Output delay of release from excess VDD-VC=VC-VSS=3.5V, V-=-1V  
tVREL4  
0.7  
0.6  
230  
1.2  
1.0  
300  
1.7  
1.4  
500  
ms  
V
charge-current  
to 0V  
Vshort  
Short protection voltage  
VDD-VC=VC-VSS=3.5V  
VDD-VC=VC-VSS=3.5V, V-=0V  
to 7V  
tshort Output Delay of Short protection  
µs  
Rshort  
Reset resistance for Excess  
discharge-current protection  
Delay Shortening Mode input  
voltage  
VDD=7.2V, V-=1V  
25  
40  
75  
kΩ  
V
VDD-VC=VC-VSS=4.4V  
-1.6  
VDS  
-2.2  
-1.0  
0.5  
Iol=50µA  
VDD-VC=VC-VSS=4.5V  
Ioh=-50µA  
VDD-VC=VC-VSS=3.9V  
Iol=50µA  
VDD-VC=VC-Vss=2.0V  
Ioh=-50µA,  
VDD-VC=VC-VSS=3.9V  
VDD-VC=VC-VSS=3.9V  
VDD-VC=VC-VSS=2V  
VOL1  
VOH1  
VOL2  
VOH2  
Nch ON voltage of COUT  
Pch ON voltage of COUT  
Nch ON voltage of DOUT  
Pch ON voltage of DOUT  
0.4  
7.4  
0.2  
V
6.8  
6.8  
V
0.5  
V
7.4  
4.0  
V
IDD  
IS  
Supply current  
Standby current  
8.0  
0.1  
µA  
µA  
*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not  
production tested.  
7
R5460xxxxxx  
R5460X2XXAD version  
Unless otherwise specified, Topt=25°C  
Unit  
Symbol  
Item  
Conditions  
Voltage defined as  
VDD-VSS  
Min.  
1.50  
Typ.  
Max.  
10.0  
VDD1  
Operating input voltage  
V
Voltage defined as VDD-V-  
Minimum operating Voltage for  
0V charging *Note 1  
Vst  
1.8  
V
VDD-VSS=0V  
Detect rising edge of supply voltage  
R1=330Ω  
VDET1U  
VDET1U  
VREL1U  
V
V
V
V
DET1U-0.025  
V
DET1U+0.025  
VDET1U CELL1 Over-charge threshold  
R1=330(Topt=-5 to 55°C)*Note3  
VDET1U-0.030  
VDET1U+0.030  
VREL1U CELL1 Over-charge released voltage  
VREL1U-0.05  
0.7  
11  
VREL1U+0.05  
R1=330Ω  
tVDET1  
VDD=3.2V to 4.5V,VC-VSS=3.2V  
Output delay of over-charge  
1.0  
16  
1.3  
21  
s
ms  
tVREL1 Output delay of release from over-charge VDD=4.5V to 3.2V, VC-VSS=3.2V  
Detect rising edge of supply voltage  
VDET1L  
VDET1L  
V
V
V
VDET1L CELL2 Over-charge detector threshold  
VREL1L CELL2 Over-charge released voltage  
R1=330Ω  
R1=330(Topt=-5 to 55°C)*Note3  
R1=330Ω  
V
DET1L-0.025  
V
DET1L+0.025  
VDET1L-0.030  
VDET1L+0.030  
VREL1L-0.050  
VREL1L VREL1L+0.050  
Detect falling edge of supply voltage  
CELL1 Over-discharge threshold  
CELL1 Released Voltage from  
Over-discharge  
VDET2U  
×
0.975  
VDET2U  
×
1.025  
VDET2U  
VREL2U  
VDET2U  
VREL2U  
V
Detect rising edge of supply voltage  
VREL2U  
89  
×
0.975  
VREL2U  
×
1.025  
V
VDD-VC=3.2V to 2.2V  
VC-VSS=3.2V  
VDD-VC=2.2V to 3.2V  
VC-VSS=3.2V  
tVDET2 Output delay of over-discharge  
128  
1.2  
167  
1.7  
ms  
Output delay of release from over-discharge  
tVREL2  
0.7  
ms  
V
Detect falling edge of supply voltage  
CELL2 Over-discharge threshold  
CELL2 Released Voltage from  
Over-discharge  
Excess discharge-current threshold  
Output delay of excess discharge  
current  
VDET2L  
VREL2L  
×
0.975  
VDET2L  
VREL2L  
×
1.025  
VDET2L  
VREL2L  
VDET2L  
VREL2L  
VDET3  
Detect rising edge of supply voltage  
×
0.975  
×
1.025  
V
Detect rising edge of 'V-' pin voltage VDET3-0.015  
VDET3+0.015  
VDET3  
V
V
DD-VC=VC-VSS=3.2V, V-=0V to  
tVDET3  
8
12  
16  
ms  
0.5V  
Output delay of release from  
excess discharge-current  
VDD-VC=VC-Vss=3.2V, V-=3V  
to 0V  
tVREL3  
VDET4  
0.7  
1.2  
1.7  
ms  
V
-0.44  
-0.23  
-0.13  
-0.40 -0.36  
-0.20 -0.17  
-0.10 -0.07  
Detect falling edge of 'V-' pin voltage  
Excess charge-current threshold  
Output delay of excess charge-current  
V
DD-VC=VC-VSS=3.2V, V-=0V to  
tVDET4  
5
8
11  
ms  
-1V  
Output delay of release from excess VDD-VC=VC-VSS=3.2V, V-=-1V  
tVREL4  
0.7  
0.6  
230  
1.2  
1.0  
300  
1.7  
1.4  
500  
ms  
V
charge-current  
to 0V  
Vshort  
Short protection voltage  
VDD-VC=VC-VSS=3.2V  
VDD-VC=VC-VSS=3.2V, V-=0V  
to 7V  
tshort Output Delay of Short protection  
µs  
Rshort  
Reset resistance for Excess  
discharge-current protection  
Delay Shortening Mode input  
voltage  
VDD=6.4V, V-=1V  
25  
40  
75  
kΩ  
V
VDD-VC=VC-VSS=4.0V  
-1.6  
VDS  
-2.2  
-1.0  
0.5  
Iol=50µA  
VDD-VC=VC-VSS=4.5V  
Ioh=-50µA  
VDD-VC=VC-VSS=3.2V  
Iol=50µA  
VDD-VC=VC-Vss=2.0V  
Ioh=-50µA,  
VDD-VC=VC-VSS=3.2V  
VDD-VC=VC-VSS=3.2V  
VDD-VC=VC-VSS=2V  
VOL1  
VOH1  
VOL2  
VOH2  
Nch ON voltage of COUT  
Pch ON voltage of COUT  
Nch ON voltage of DOUT  
Pch ON voltage of DOUT  
0.4  
7.4  
0.2  
V
6.8  
6.8  
V
0.5  
V
7.4  
4.0  
V
IDD  
IS  
Supply current  
Standby current  
8.0  
2.0  
µA  
µA  
1.2  
*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not  
production tested.  
8
R5460xxxxxx  
OPERATION  
VDET1U, VDET1L / Over-Charge Detectors  
The VDET1U and VDET1L monitor the voltage between VDD pin and VC pin (the voltage of Cell1) and  
the voltage between VC pin and VSS pin (the voltage of Cell2), if either voltage becomes equal or more  
than the over-charge detector threshold, the over-charge is detected, and an external charge control  
Nch MOSFET turns off with COUT pin being at "L" level.  
VDET1U is the detector of Cell1, and the VDET1L is the detector of Cell2.  
To reset the over-charge and make the COUT pin level to "H" again after detecting over-charge, in such  
conditions that a time when the both Cell1 and Cell2 are down to a level lower than over-charge voltage,  
by connecting a kind of load to VDD after disconnecting a charger from the battery pack. Then, the  
output voltage of COUT pin becomes "H", and it makes an external Nch MOSFET turn on, and charge  
cycle is available. In other words, once over-charge is detected, even if the supply voltage becomes low  
enough, if a charger is continuously connected to the battery pack, recharge is not possible. Therefore  
this over-charge detector has no hysteresis. To judge whether or not load is connected, the built-in  
excess-discharge current detector is used. By connecting some load, V- pin voltage becomes equal or  
more than excess-discharge current detector threshold, and reset the over-charge detecting state.  
Further, either or both voltage of Cell1 and Cell2 is higher than the over-charge detector threshold, if  
a charger is removed and some load is connected, COUT outputs “L”, however, load current can flow  
through the parasitic diode of the external charge control Nch MOSFET. After that, when the VDD pin  
voltage becomes lower than the over-charge detector threshold, COUT becomes “H”.  
Internal fixed output delay times for over-charge detection and release from over-charge exist. If  
either or both of the voltage of Cell1 or Cell2 keeps its level more than the over-charge detector  
threshold, and output delay time passes, over-charge voltage is detected. Even when the voltage of  
Cell1 or Cell2 pin level becomes equal or higher level than VDET1 if these voltages would be back to a level  
lower than the over-charge detector threshold within a time period of the output delay time, the  
over-charge is not detected. Besides, after detecting over-charge, while the both of Cell1 and Cell2  
voltages are lower than the over-charge detector threshold, even if a charger is removed and a load is  
connected, if the voltage is recovered within output delay time of release from over-charge, over-charge  
state is not released.  
A level shifter incorporated in a buffer driver for the COUT pin makes the "L" level of COUT pin to the V  
- pin voltage and the "H" level of COUT pin is set to VDD voltage with CMOS buffer.  
VDET2U, VDET2L / Over-Discharge Detectors  
The VDET2U and VDET2L monitor the voltage between VDD pin and VC pin (Cell1 voltage) and the  
voltage between VC pin and VSS pin (Cell2 Voltage). When either of the cell1 or cell2 voltage becomes  
equal or less than the over-discharge detector threshold, the over-discharge is detected and discharge  
9
R5460xxxxxx  
stops by the external discharge control Nch MOSFET turning off with the DOUT pin being at "L" level.  
To reset the over-discharge detector, if both voltages of Cell1 and Cell2 are equal or lower than the  
over-discharge detector threshold, a charge current flows through the parasitic diode of the external  
MOSFET. Then, when the VDD voltage becomes higher than the over-discharge detector threshold,  
DOUT becomes “H” and the external MOSFET turns on and discharge will be possible. After connecting  
a charger, if both voltages of cell1 and cell2 are higher than over-discharge detector threshold, DOUT  
becomes "H" immediately. In the case of A version, even if a charger is not connected, when the Cell1  
and Cell2 voltages become equal or more than the released voltage from over-discharge, the  
over-discharge is released and the voltage of the DOUT pin becomes “H”. Therefore, the over-discharge  
detector of A version has some hysterisis.  
When a cell voltage equals to zero, if the voltage of a charger is equal or more than 0V-charge  
minimum voltage (Vst), COUT pin becomes "H" and a system is allowable to charge.  
The output delay time for over-discharge detect is fixed internally. Even if the voltage of Cell1 or Cell2  
is down to equal or lower than the over-discharge detector threshold, if the voltage of Cell1 or Cell2  
would be back to a level higher than the over-discharge detector threshold within a time period of the  
output delay time, the over-discharge is not detected. Output delay time for release from over-discharge  
is also set.  
After detecting over-discharge, supply current would be reduced and be into standby by halting  
unnecessary circuits and consumption current of the IC itself is made as small as possible.  
The output type of DOUT pin is CMOS having "H" level of VDD and "L" level of VSS.  
VDET3 /Excess discharge-current Detector, Short Circuit Protector  
Both of the excess current detector and short circuit protection can work when the both of control  
FETs are in "ON" state.  
When the V- pin voltage is up to a value between the short protection voltage Vshort /VDD and excess  
discharge-current threshold VDET3, VDET3 operates and further soaring of V- pin voltage higher than  
Vshort makes the short circuit protector enabled. This leads the external discharge control Nch  
MOSFET turns off with the DOUT pin being at "L" level.  
An output delay time for the excess discharge-current detector is internally fixed.  
A quick recovery of V- pin level from a value between Vshort and VDET3 within the delay time keeps the  
discharge control FET staying "H" state. Output delay time for Release from excess discharge-current  
detection is also set.  
When the short circuit protector is enabled, the DOUT would be "L" and the delay time is also set.  
The V - pin has a built-in pull-down resistor to the Vss pin, that is, the resistance to release from  
excess-discharge current.  
After an excess discharge-current or short circuit protection is detected, removing a cause of excess  
discharge-current or external short circuit makes an external discharge control FET to an "ON" state  
10  
R5460xxxxxx  
automatically with the V- pin level being down to the VSS level through the built-in pulled down resistor.  
The reset resistor of excess discharge-current is off at normal state. Only when detecting excess dis-  
charge-current or short circuit, the resistor is on.  
Output delay time of excess discharge-current is set shorter than the delay time for over-discharge  
detector. Therefore, if VDD voltage would be lower than VDET2 at the same time as the excess dis-  
charge-current is detected, the R5460xxxxxx is at excess discharge-current detection mode. By dis-  
connecting a load, VDET3 is automatically released from excess discharge-current.  
VDET4/ Excess charge-current detector  
When the battery pack is chargeable and discharge is also possible, VDET4 senses V- pin voltage.  
For example, in case that a battery pack is charged by an inappropriate charger, an excess current  
flows, then the voltage of V- pin becomes equal or less than excess charge-current detector threshold.  
Then, the output of COUT becomes "L", and prevents from flowing excess current in the circuit by  
turning off the external Nch MOSFET.  
Output delay of excess charge current is internally fixed. Even the voltage level of V- pin becomes  
equal or lower than the excess charge-current detector threshold, the voltage is higher than the VDET4  
threshold within the delay time, the excess charge current is not detected. Output delay for the release  
from excess charge current is also set.  
VDET4 can be released with disconnecting a charger and connecting a load.  
DS (Delay Shorten) function  
Output delay time of over-charge, over-discharge, and release from those detecting modes can be  
shorter than those setting value by forcing equal or less than the delay shortening mode voltage to V-  
pin when the COUT is “H”.  
Operation against 2-Cell Unbalance  
A/D version: If one of the cells detects over-charge and the output of COUT becomes "L" and keeps the  
status, even if the other cell detects over-charge or over-discharge or short, the over-charge status is  
maintained and the output of COUT keeps "L". If one of the cell detects over-charge and the output of  
COUT becomes "L", the other cell detects over-discharge and the former cell is released from  
over-charge, after the delay time of the released from over-charge, the output of COUT becomes "H",  
and after the delay time of detecting over-discharge, the output of DOUT becomes "L". After detecting  
over-discharge, A version halts internal unnecessary circuits and be into the standby mode. (Supply  
current Max. 2.0µA)  
B version: If one of the cells detects over-charge and the output of COUT becomes "L" and keeps the  
status, even if the other cell detects over-charge or over-discharge or short, the over-charge status is  
maintained and the output of COUT keeps "L". If one of the cells detects over-discharge and the  
output of DOUT becomes "L", even if the other cell detects over-charge, the former cell also detects  
over-discharge, therefore, the output of DOUT keeps "L". After detecting over-discharge, B version  
11  
R5460xxxxxx  
halts internal unnecessary circuits and becomes into the standby mode. (Supply current Max.  
0.1µA).  
C version: If one of the cells detect over-charge, and when the COUT becomes "L", even if the other  
cell would detect over-discharge or short, the over-charge detector will be dominant and COUT keeps  
the "L" level. If one of the cell detects the over-discharge, and when the DOUT becomes "L", in case  
that a charger is connected to the battery pack and the other cell detects over-charge, the internal  
counter will start and after the delay time of over-discharge detector, DOUT will become "H". After the  
delay time of over-charge release from when the internal counter starts, COUT will be "L". If the  
over-discharge is detected, internal unnecessary circuits will be cut off and the standby mode will be  
realized. (Standby current Max. 0.1µA)  
In any versions, the external FETs do not turn off at the same time.  
12  
R5460xxxxxx  
TIMING CHART  
(1) Timing diagram of Over-charge, Excess charge current  
Excess  
Charge  
Current  
Connect Charger  
Connect Load  
Charger Open  
and Connect  
Load  
DET1  
V
DD  
C
V -V  
VREL1  
t
DET1  
V
SS  
C
V - V  
V
REL1  
t
DD  
V
V
DET3  
V
V-  
SS  
VDET4  
t
REL1  
V
t
REL1 t  
DET4  
t
REL4  
V
V
V
t
DD  
V
OUT  
C
VDET1  
t
VDET1  
t
V-  
t
t
Charge Current  
Charge/  
Discharge  
Current  
0
13  
R5460xxxxxx  
(2) Over-discharge, Excess discharge current, Short circuit  
AA/ADversion  
Excess  
Connect Load  
Connect Charger  
Short  
discharge  
Open  
Open  
current  
C
V
VDD  
REL2U  
DET2U  
V
-
V
t
REL2L  
DET2L  
SS  
VC  
V
V
V
t
DD  
short  
DET3  
V
V
V
V
V-  
SS  
DET4  
V
t
REL2  
V
REL3  
V
t
τ
ΡΕΛ3  
V
t
REL2  
V
t
DD  
V
t V  
DET3  
tshort  
OUT  
D
t
DET2  
t
DET2  
V
V
Vss  
t
Charge Current  
Charge/Discharge  
Current  
0
t
14  
R5460xxxxxx  
AB/AC version  
Connect  
Load  
Connect  
Charger  
Excess-  
discharge  
Current  
Connect  
Charger  
Short  
Open  
Connect Load  
Open  
DD  
C
V - V  
DET2  
V
t
C- SS  
V
V
DET2  
V
t
DD  
short  
DET3  
V
V
V
V-  
SS  
V
V
DET4  
t
t
REL2  
V
t
REL3  
V
t
REL3 t  
V
V
REL2  
V
DD  
tshort  
OUT  
D
VDET2  
t V  
DET2  
t
t
VDET3  
Vss  
t
Charge  
Current  
Charge/  
Discharge  
Current  
0
t
15  
R5460xxxxxx  
(3) Operation with unbalanced cells  
AC version  
Connect  
Load  
Connect  
Charger  
Connect Load  
Connect  
Charger  
Open  
VDET1L  
VREL1L  
VDD - VC  
t
t
VC - VSS  
VDET2L  
VDD  
VDET3  
V-  
VSS  
VDET4  
t
t
VDD  
COUT  
tVDET1  
tVREL1  
SS  
VDD  
DOUT  
tVDET2  
tVREL2  
tVDET2  
tVREL2  
VSS  
t
16  
R5460xxxxxx  
TYPICAL APPLICATION AND TECHNICAL NOTES  
R1 330Ω  
VDD  
C1  
0.F  
R2 330Ω  
Vc  
R5460  
C2  
0.F  
V-  
Vss  
DOUT  
COUT  
C3 0.0F  
R3  
1KΩ  
TECHNICAL NOTES  
R1, R2, C1 and C2 stabilize a supply voltage to the R5460xxxxxx. A recommended R1, R2 value is  
less than 1k.  
A larger value of R1 and R2 makes the detection voltage shift higher because of some conduction  
current in the R5460xxxxxx.  
To stabilize the operation, the value of C1 and C2 should be equal or more than 0.01µF.  
R1 and R3 can operate also as parts for current limit circuit against reverse charge or applying a  
charger with excess charging voltage beyond the absolute maximum rating of the R5460xxxxxx, the  
battery pack. Small value of R1 and R3 may cause over-power consumption rating of power dissipation  
of the R5460xxxxx. Thus, the total value of 'R1+R3' should be equal or more than 1k.  
If R3 value is set too large, after detecting over-discharge, release operation by connecting a charger  
may be impossible, our recommendation value as R3 is 3kor less.  
To stabilize the operation of the IC, use 0.01µF or more capacitor as C3.  
The typical application circuit diagram is just an example. This circuit performance largely depends  
on the PCB layout and external components. In the actual application, fully evaluation is necessary.  
Over-voltage and the over current beyond the absolute maximum rating should not be forced to the  
protection IC and external components.  
Ricoh cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Ricoh  
product. If technical notes are not complied with the circuit which is used Ricoh product, Ricoh is not responsible  
for any damages and any accidents.  
17  
R5460xxxxxx  
TEST CIRCUITS  
A
E
VDD  
DD  
V
V
OUT  
OUT  
D
C
C
V
V
V
V-  
OUT  
D
V
SS  
OSCILLOSCOPE  
SS  
V
V-  
F
B
C
D
DD  
V
V
DD  
V
V
C
C
V
OUT  
C
OUT  
C
OUT  
D
DOUT  
V-  
VSS  
V-  
A
V
SS  
V
G
H
DD  
C
VDD  
V
C
V
V
COUT  
V
V-  
VSS  
V-  
V
SS  
V
DD  
C
V
DD  
V
V
V
V
C
OUT  
C
A
VSS  
V-  
SS  
V
V
V-  
18  
R5460xxxxxx  
I
VDD  
VC  
COUT  
A
V
VSS  
V-  
J
VDD  
VC  
DOUT  
DOUT  
A
VSS  
V-  
V
K
L
VDD  
VC  
A
V
VSS  
V-  
VDD  
VC  
A
V-  
VSS  
19  
R5460xxxxxx  
Typical Characteristics were obtained with using those above circuits:  
Test Circuit A: Part1: Typical characteristics 1)  
Test Circuit B: Part1: Typical characteristics 2) 4) 6) 7)  
Test Circuit C: Part1: Typical characteristics 3) 5)  
Test Circuit D: Part1: Typical characteristics 8) 10) 12) 13)  
Test Circuit E: Part1: Typical characteristics 9) 11)  
Test Circuit F: Part1: Typical characteristics 14) 15) 16) 17) 18) 19)  
Test Circuit G: Part1: Typical characteristics 20) 21) 22) 23)  
Test Circuit H: Part1: Typical characteristics 24)  
Test Circuit I: Part1: Typical characteristics 25)  
Test Circuit J: Part1: Typical characteristics 26)  
Test Circuit K: Part1: Typical characteristics 27)  
Test Circuit L: Part1: Typical characteristics 28) 29) 30)  
TYPICAL CHARACTERISTICS (Part 1)  
1) Minimum Operating Voltage for 0V Cell Charging 2) Over-charge voltage threshold (Cell1) vs. Temperature  
R5460x201AB  
R5460x201AB  
VDD=VSS=0V  
Vc-Vss=3.5V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4.375  
4.370  
4.365  
4.360  
4.355  
4.350  
4.345  
4.340  
4.335  
4.330  
4.325  
-50  
-25  
0
25  
50  
75  
100  
-60 -40 -20  
0
20  
40  
60  
80 100  
Temperature Topt (°C)  
Temperature Topt(°C)  
3) Over-Charge Voltage Threshold (Cell2) vs. Temperature  
4)Release Voltage from Over-charge (Cell1) vs. Temperature  
R5460x201AB  
R5460x201AB  
VDD-VC=3.5V  
4.40  
Vc-Vss=3.5V  
4.30  
4.39  
4.38  
4.37  
4.36  
4.35  
4.34  
4.33  
4.32  
4.31  
4.30  
4.29  
4.28  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
-60 -40 -20  
0
20  
40  
60 80 100  
Tempperature Topt°C)  
20  
R5460xxxxxx  
5) Release Voltage from Over-charge (Cell2) vs.  
Temperature  
6) Output Delay of Over-charge Detector vs. Temperature  
R5460x201AB  
R5460x201AB  
VDD-VC=3.5V  
4.30  
VC-VSS=3.5V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20  
40  
60  
80 100  
Temperature Topt(°C)  
Temperature Topt(°C)  
7)  
Output Delay of Release from Over-charge vs. Temperature  
8)  
Over-discharge Detector Threshold (Cell1) vs. Temperature  
R5460x201AB  
R5460x201AB  
Vc-Vss=3.5V  
32  
Vc-Vss=3.5V  
2.40  
2.38  
2.35  
2.33  
2.30  
2.28  
2.25  
2.23  
2.20  
28  
24  
20  
16  
12  
8
4
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20  
40  
60  
80 100  
Temperature Topt(°C)  
Temperature Topt(°C)  
9) Over-discharge Detector Threshold (Cell2) vs.  
Temperature  
10) Release Voltage from Over-discharge (Cell1) vs.  
Temperature  
R5460x201AB  
R5460x202AA  
VDD-VC=3.5V  
2.37  
Vc-Vss=3.5V  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.35  
2.33  
2.31  
2.29  
2.27  
2.25  
2.23  
-60 -40 -20  
0
20 40 60 80 100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt(°C)  
21  
R5460xxxxxx  
11) Release Voltage from Over-discharge (Cell2) vs.  
12) Output Delay Time for Over-discharge vs. Temperature  
Temperature  
R5460x202AA  
R5460x201AB  
VDD-Vc=3.5V  
3.20  
Vc-Vss=3.5V  
250  
225  
200  
175  
150  
125  
100  
75  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
50  
25  
0
-60 -40 -20  
0
20  
40  
60  
80 100  
-60 -40 -20  
0
20  
40  
60  
80 100  
Temperature Topt(°C)  
Temperature Topt(°C)  
13) Output Delay of Release from Over-discharge vs. Temperature 14) Excess discharge Current Detector Threshold vs. Temperature  
R5460x201AB  
R5460x201AB  
0.220  
0.215  
0.210  
0.205  
0.200  
0.195  
0.190  
0.185  
0.180  
Vc-Vss=3.5V  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
Temperature Topt(°C)  
Temperature Topt(°C)  
15) Output Delay Time for Excess discharge-current Detector vs.  
Temperature  
16) Output Delay for Release from Excess discharge-current vs.  
Temperature  
R5460x201AB  
R5460x201AB  
2.8  
20  
18  
15  
13  
10  
8
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
5
3
0
-50  
-25  
0
25  
50  
75  
100  
-60 -40 -20  
0
20  
40  
60  
80 100  
Temperature Topt (°C)  
Temperature Topt(°C)  
22  
R5460xxxxxx  
17) Short Detector Voltage Threshold vs. Temperature 18) Output Delay for Short Detector vs. Temperature  
R5460x201AB  
R5460x201AB  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VDD-VC=VC-VSS=3.5V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
-50  
-25  
0
25  
50  
75  
100  
-60 -40 -20  
0
20 40 60 80 100  
Temperature Topt (°C)  
Temperature Topt(°C)  
19) Release resistance from Excess-discharge current vs.  
Temperature  
20) Excess-charge current Detector Threshold vs. Temperature  
R5460x201AB  
R5460x201AB  
-0.30  
-0.32  
-0.34  
-0.36  
-0.38  
-0.40  
-0.42  
-0.44  
-0.46  
-0.48  
-0.50  
VDD-VC=VC-VSS=3.6V  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
-50  
-25  
0
25  
50  
75  
100  
-60 -40 -20  
0
20 40 60 80 100  
Temperature Topt(°C)  
Temperature Topt(°C)  
21) Output Delay Time of Excess-charge current Detector Threshold 22) Output Delay Time for Release from Excess-charge current vs.  
vs. Temperature  
Temperature  
R5460x201AB  
R5460x201AB  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature Topt (°C)  
23  
R5460xxxxxx  
23) Delay Shortening Mode Voltage vs. Temperature  
24) Nch ON Voltage of COUT vs. Temperature  
R5460x201AB  
R5460x201AB  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
VDD-VC=VC-VSS=4.5V, IOL=50µA  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt (°C)  
Temperature Topt(°C)  
25) Pch ON Voltage of COUT vs. Temperature  
26) Nch ON Voltage of DOUT vs. Temperature  
R5460x201AB  
R5460x201AB  
VDD-VC=VC-VSS=2V, IoL=50µA  
0.50  
VDD-VC=VC-VSS=3.9V, IoH=-50µA  
7.9  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
7.7  
7.5  
7.3  
7.1  
6.9  
6.7  
6.5  
6.3  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt (°C)  
Temperqture Topt (°C)  
27) Pch ON Voltage of DOUT vs. Temperature  
28) Supply Current vs. Temperature  
V
DD-V  
C
=V  
C
-VSS=3.9VDoutVSS=-50µA  
VDD-VCC=VC-VSS=3.9V  
10  
Min=6.8, Typ.=7.4V  
8.3  
8.1  
7.9  
7.7  
7.5  
7.3  
7.1  
6.9  
6.7  
6.5  
6.3  
9
8
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(°C)  
Temperature (°C)  
24  
R5460xxxxxx  
29) Standby Current vs. Temperature (Ver. A.)  
30) Standby Current vs. Temperature (Ver. B.)  
R5460X202AA (VDD-Vc=Vc-Vss=2.0V)  
R5460x201AB (VDD-VC=VC-VSS=2.0V)  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Topt(C)  
Temperature Topt (°C)  
Part 2 Delay Time dependence on VDD  
1) Delay Time for Over-charge detector vs. VDD  
2) Delay Time for Release from Over-charge vs. VDD  
R5460x20XAX  
R5460x20XAX  
V-=0V,VDD=3.5V to 4.4V, 5.0V, 5.6V Vc-Vss =3.5V  
V-=0V,VDD=4.5V to 3.2V,3.7V,4.0V,Vc-Vss=3.5V  
18  
1.2  
16  
14  
12  
10  
8
6
4
1
0.8  
0.6  
0.4  
0.2  
0
2
0
3
3.5  
4
4.5  
4
4.5  
5
5.5  
6
VDD[V]  
VDD[V]  
3) Output Delay of Over-discharge detector vs. VDD  
4)  
Output Delay for Release from Over-discharge vs. VDD  
R5460x20XAX  
R5460x20XAX  
V-=0V,VDD=3.5V to 2.2V,2.0V,1.5V,Vc-Vss=3.5V  
140  
V-=0V,VDD=2.2V to 2.5V,3.3V,4.2V Vc-Vss=3.5V  
1.6  
1.4  
1.2  
1
120  
100  
80  
60  
40  
20  
0
0.8  
0.6  
0.4  
0.2  
0
1
1.5  
2
2.5  
2
2.5  
3
3.5  
VDD[V]  
4
4.5  
VDD[V]  
25  
R5460xxxxxx  
5) Output Delay for Excess Discharge Current  
vs. VDD  
6)  
Output Delay for Release from Excess Discharge  
Current Detect vs. VDD  
R5460x20XAX  
VDD=2.4V,3.3V ,4.2V Vc-Vss=3.5V V-=3.0V to 0V  
R5460x20XAX  
VDD=2.4V,3.3V ,4.2V,Vc-Vss=3.5V,V-=0V to 0.5V  
14  
1.4  
1.2  
1
12  
10  
8
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
2
2.5  
3
3.5  
4
4.5  
2
2.5  
3
3.5  
VDD[V]  
4
4.5  
VDD[V]  
7) Delay Time for Excess Charge Current Detector  
vs. VDD  
8) Delay Time for release from Excess charge  
current detect vs. VDD  
R5460x20XAX  
R5460x20XAX  
VDD=2.4V, 3.3V, 4.2V Vc-Vss=3.5V V-=0V to -0.9V  
VDD=2.4V, 3.3V, 4.2V Vc-Vss=3.5V V-=-0.9V to 0V  
9
1.4  
8
7
6
5
4
3
2
1
0
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
VDD[V]  
4
4.5  
2
2.5  
3
3.5  
VDD[V]  
4
4.5  
9) Output Delay for Short vs. VDD  
R5460x20XAX  
VDD=2.4V, 3.3V, 4.2V Vc-Vss=3.5V V-=0V to 1.5V  
350  
300  
250  
200  
150  
100  
50  
0
2
2.5  
3
3.5  
VDD[V]  
4
4.5  
26  
R5460xxxxxx  
Part 3  
Supply Current dependence on VDD  
Test Circuit  
PACK+  
R1 330Ω  
A
CELL1  
VDD  
C1  
0.1μF  
R2 330Ω  
Vc  
R5460  
C2  
0.1μF  
V-  
DOUT COUT  
Vss  
CELL2  
C3 0.01μF  
R3  
1KΩ  
PACK-  
Supply Current vs. VDD  
A version  
Bversion  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
VDD(V)  
VDD(V)  
27  
R5460xxxxxx  
Part 4 Over-charge detector, Release voltage from Over-charge, Over-discharge detector, Release voltage  
from Over-discharge dependence on External Resistance value  
Test Circuit  
PACK+  
R1  
CELL1  
VDD  
Vc  
C1  
0.1μF  
R2 330Ω  
R5460  
DOUT  
C2  
0.1μF  
V-  
Vss  
COUT  
CELL2  
C3 0.01μF  
R3  
1KΩ  
PACK-  
Over-charge Detector Threshold / Released Voltage from Over-discharge vs. R1  
R5460x202AA  
R5460x201AB  
ꢀꢀꢀꢀꢀ Over-charge threshold  
Over-charge released  
voltage  
4.266  
4.264  
4.262  
4.26  
4.361  
4.359  
4.357  
4.355  
4.353  
4.351  
4.349  
4.347  
4.345  
4.343  
4.341  
4.164  
4.162  
4.16  
4.158  
4.156  
4.154  
4.152  
4.15  
ꢀꢀꢀꢀꢀ Over-charge threshold  
4.064  
Over-charge released voltage  
4.06  
4.258  
4.256  
4.254  
4.252  
4.25  
4.056  
4.052  
4.048  
4.044  
4.04  
4.248  
4.246  
4.244  
4.242  
4.24  
4.148  
4.146  
4.144  
0
200  
400  
600  
800 1000  
0
200 400 600 800 1000  
R1[]  
R1[]  
Over-discharge / Released from Over-charge Threshold vs. R1  
R5460x201AB  
R5460x202AA  
2.406  
2.404  
2.402  
2.4  
2.398  
2.396  
2.394  
2.392  
2.39  
3.07  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
3
2.316  
2.314  
2.312  
2.31  
2.308  
2.306  
2.304  
2.302  
2.3  
2.5  
ꢀꢀꢀꢀꢀ Over-discharge threshold  
Over-discharge released  
voltage  
ꢀꢀꢀꢀOver-discharge threshold  
Over-discharge released voltage  
2.46  
2.42  
2.38  
2.34  
2.3  
2.99  
2.98  
2.97  
2.388  
2.386  
2.298  
2.296  
0
200 400 600 800 1000  
0
200 400 600 800 1000  
R1[]  
R1[]  
28  
R5460xxxxxx  
Part 5  
Charger Voltage at Released from Over-discharge with a Charger dependence on R2  
Test Circuit  
PACK+  
R1  
330Ω  
CELL1  
VDD  
C1  
0.1μF  
330Ω  
R2  
Vc  
R5460  
DOUT  
C2  
0.1μF  
V-  
Vss  
COUT  
CELL2  
C3 0.01μF  
R3  
PACK-  
Charger Voltage at Release from Over-discharge with a charger vs. R2  
R5460x201AB  
CELL1=4.25V,CELL2=4.25V  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
R3[k]  
29  

相关型号:

R5460N202AA-TR-FE

Power Supply Support Circuit,
RICOH

R5460N203AA-TR

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N205AA-TR

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N208AE-TR

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N208AF-TR-F

Li-lon BATTERY PROTECTOR
ROHM

R5460N213AD-TR

Power Supply Support Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N2XXAA-TR-FE

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N2XXAC-TR-FE

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N2XXAE-TR-FE

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5460N2XXAF-TR-FE

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, PDSO6, SOT-23, 6 PIN
RICOH

R5470KXXXCG-TR

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, DFN-4
RICOH

R5471KXXXCG-TR

Power Supply Management Circuit, Adjustable, 1 Channel, CMOS, DFN-6
RICOH