RP402N502A-TR [RICOH]

Switching Regulator,;
RP402N502A-TR
型号: RP402N502A-TR
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Regulator,

文件: 总43页 (文件大小:2116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RP402x Series  
High Efficiency Small Packaged Step-up DC/DC Converter  
No. EA-317-181205  
OUTLINE  
The RP402x is a high efficiency step-up DC/DC converter with synchronous rectifier. The device can start up  
with low voltage of typically 0.7 V which is ideal for the applications powered by either one-cell or two-cell  
alkaline, nickel-metal-hydride (NiMH) or one-cell Lithium-ion (Li+) batteries.  
Internally, the RP402x consists of an oscillator, a reference voltage unit with soft start, a chip enable circuit, an  
error amplifier, phase compensation circuits, a slope circuit, a PWM control circuit, a start-up circuit, a  
PWM/VFM mode control circuit, internal switches and protection circuits.  
The RP402x is employing synchronous rectification for improving the efficiency or rectification by replacing  
diodes with built-in switching transistors. Using synchronous rectification not only increases circuit performance  
but also allows a design to reduce parts count.  
The RP402x is available in either internally fixed output voltage type or adjustable output voltage type. The  
RP402xxxxx is the internally fixed output voltage type. The RP402x00xx is the adjustable output voltage type,  
which allows output voltages that range from 1.8 V to 5.5 V via an external divider resistor.  
The RP402x provides the forced PWM control and the PWM/VFM auto switching control. Either one of these  
can be selected by inputting a signal to the MODE pin. The forced PWM control switches at fixed frequency  
rate in low output current in order to reduce noise. Likewise, the PWM/VFM auto switching control automatically  
switches from PWM mode to VFM mode in low output current in order to achieve high efficiency. The RP402N  
is available in the PWM/VFM auto switching control. However, the RP402N is also available in the forced PWM  
control as a custom-designed IC(1).  
The RP402x has a soft-start time of typically 0.5 ms.  
The RP402x features the complete output disconnect shutdown option and the input-to-output bypass  
shutdown option. The RP402xxxxA/ B/ E/ F incorporates the complete output disconnect shutdown option,  
which allows the output to be disconnected from the input. The RP402xxxxC/ D/ G/ H incorporates the input-  
to-output bypass shutdown option, which allows the output to be connected to the input.  
The RP402x is protected against damage by a short-current protection, an over-voltage lockout, an over  
voltage protection, an anti-ringing switch and a latch-type protection. An anti-ringing switch prevents the  
occurrence of noise when an inductor current reaches a discontinuous mode. The RP402x provides optional  
Latch function with current limit detection which can turn off the power in case the limit values are detected for  
a fixed time and current limit circuit controls peak inductor currents in every clock. The latch-type protection  
can be released by switching the CE pin from high to low while the power is turned on.  
The RP402x is offered in a compact 5-pin SOT23-5 package or a 8-pin DFN(PLP)2020-8 package.  
(1) As for the custom-designed IC, please contact our sales representatives.  
1
RP402x  
No. EA-317-181205  
FEATURES  
Low Voltage Start-up ··································Typ. 0.7 V  
Input Voltage Range···································Fixed Output Voltage Type: 0.6 V to 4.8 V  
Adjustable Output Voltage Type: 0.6 V to 4.6 V  
High Efficiency ··········································94% (100 mA/ 5.0 V, VIN = 3.6 V, 25°C)  
90% (1 mA/ 5.0 V, VIN = 3.6 V, 25°C)  
Output Current ··········································800 mA: VIN = 3.6 V, VOUT = 5.0 V  
LX Driver ON Resistance ·····························NMOS/ PMOS: 0.20 Ω (VOUT = 5.0 V, 25°C)  
PWM Oscillator Frequency ··························1.2 MHz (Normal PWM), 1.0 MHz (Forced PWM)  
Output Voltage Range·································Fixed Output Voltage Type: 1.8 V to 5.5 V, 0.1 V step  
Adjustable Output Voltage Type: 1.8 V to 5.5 V (recommended)  
OVLO Detector Threshold ···························Typ. 5.1 V  
OVP Detector Threshold ·····························Typ. 6.0 V  
LX Peak Current Limit ·································Typ. 1.5 A  
Latch Protection Delay Time·························Typ. 3.3 ms (RP402Kxx1x, RP402Nxx1x)  
Typ. 4.1 ms (RP402Kxx2x)  
Soft-start Time ··········································Typ. 0.5 ms  
EMI Suppression (Built-in Anti-ringing Switch) (RP402Kxx1x, RP402Nxx1x)  
Voltage Regulation at VIN > VOUT  
Zero Input Complete Shutdown at VIN = 0 V  
Input-to-Output Bypass Shutdown Option at CE = L (RP402xxxxC/ D/ G/ H)  
Ceramic Capacitor Capable  
Package ··················································DFN(PLP)2020-8, SOT23-5  
APPLICATIONS  
MP3 Players, PDA  
Digital Still Cameras  
LCD Bias Supplies  
Portable Blood Pressure Meter  
Wireless Handset  
GPS  
USB-OTG  
HDMI  
2
RP402x  
No. EA-317-181205  
SELECTION GUIDE  
The package type, the set output voltage, the PWM control type, the shutdown option, the MODE pin option,  
and the latch function are user-selectable options.  
Selection Guide  
Package  
DFN(PLP)2020-8  
SOT-23-5  
Quantity per Reel  
5,000 pcs  
Pb Free  
Yes  
Halogen Free  
Product Name  
RP402Kxx#$-TR  
Yes  
Yes  
RP402Nxx#$-TR-FE  
3,000 pcs  
Yes  
xx: Specify the set output voltage (VSET).  
00: Adjustable Output Voltage Type (1.8 V to 5.5 V, recommended voltage range)  
xx: Fixed Output Voltage Type (1.8 V to 5.5 V, adjustable in 0.1 V step)  
Please note: SOT-23-5 package is only available with fixed output voltage type.  
#: Specify the PWM control type.  
1: Normal PWM operation  
2: Forced PWM operation  
$: Specify the combination of the shutdown option, the MODE pin option and the latch function.  
Version  
Shutdown Options at CE = L  
Complete Output Disconnect  
Complete Output Disconnect  
Input-to-Output Bypass  
MODE Pin  
Yes  
Latch Function  
A
B
C
D
E
F
Yes  
No  
Yes  
Yes  
Yes  
No  
Input-to-Output Bypass  
Yes  
Complete Output Disconnect  
Complete Output Disconnect  
Input-to-Output Bypass  
No  
Yes  
No  
No  
G
H
No  
Yes  
No  
Input-to-Output Bypass  
No  
Please refer to Selection Guide Table on the next page for detailed information.  
3
RP402x  
No. EA-317-181205  
Selection Guide Table  
MODE Pin Function  
Output  
Voltage  
Type  
Shutdown  
Option  
at CE = L  
PWM  
Controlling  
Method  
Latch  
Function  
Package  
#$  
MODE  
Pin  
Power Controlling Method  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Forced PWM Control  
Note: “H” recommended  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Forced PWM Control  
Note: “H” recommended  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Forced PWM Control  
Note: “H” recommended  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Forced PWM Control  
Note: “H” recommended  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
“H”: Normal PWM Control,  
“L”: PWM/VFM Auto Switching  
Control  
Normal  
PWM  
1A  
2A  
1B  
2B  
1C  
Yes  
No  
Forced  
PWM  
Complete  
Output  
Disconnect  
Normal  
PWM  
Fixed Output  
Voltage Type  
Forced  
PWM  
Normal  
PWM  
Yes  
No  
Input-to-  
Output  
Bypass  
Normal  
PWM  
1D  
DFN(PLP)2020-8  
Yes  
Normal  
PWM  
1A  
2A  
1B  
2B  
1C  
Yes  
No  
Forced  
PWM  
Complete  
Output  
Disconnect  
Normal  
PWM  
Adjustable  
Output  
Voltage  
Type  
Forced  
PWM  
Normal  
PWM  
Yes  
No  
Input-to-  
Output  
Bypass  
Normal  
PWM  
1D  
Normal  
PWM  
Normal  
PWM  
Normal  
PWM  
Normal  
PWM  
1E  
1F  
1G  
1H  
PWM/VFM Auto Switching Control  
PWM/VFM Auto Switching Control  
PWM/VFM Auto Switching Control  
PWM/VFM Auto Switching Control  
Yes  
No  
Complete  
Output  
Disconnect  
Fixed Output  
Voltage Type  
SOT-23-5  
No  
Yes  
No  
Input-to-  
Output  
Bypass  
4
RP402x  
No. EA-317-181205  
BLOCK DIAGRAMS  
*1  
This Bypass Switch is included in the RP402KxxxC / D only.  
This Latch Timer is included in the RP402KxxxA / C only.  
*2  
BYPASS  
SW*1  
OVER VOLTAGE  
PROTECTION  
VIN  
Lx  
VOUT  
REVERSE  
DETECTOR  
VFM  
CONTROLLER  
OSCILLATOR  
MODE  
POWER  
CONTROLLER  
STARTUP  
CIRCUIT  
BACKGATE  
CONTROLLER  
VREF  
+
-
PWM  
CONTROLLER  
SOFT  
START  
SWITCHING  
CONTROLLER  
CURRENT  
CHIP  
ENABLE  
LATCH  
PROTECTION  
CE  
TIMER*2  
SHORT  
PROTECTION  
RAMP  
COMPENSATION  
CURRENT  
FEEDBACK  
GND  
RP402Kxxxx Block Diagram  
*1 This Bypass Switch is included in the RP402KxxxC / D only.  
*2 This Latch Timer is included in the RP402KxxxA / C only.  
BYPASS  
SW*1  
OVER VOLTAGE  
PROTECTION  
VIN  
Lx  
VOUT  
REVERSE  
DETECTOR  
VFM  
CONTROLLER  
OSCILLATOR  
MODE  
POWER  
CONTROLLER  
STARTUP  
CIRCUIT  
BACKGATE  
CONTROLLER  
VREF  
+
-
PWM  
CONTROLLER  
SOFT  
START  
SWITCHING  
CONTROLLER  
CURRENT  
PROTECTION  
CHIP  
LATCH  
CE  
ENABLE  
TIMER*2  
SHORT  
PROTECTION  
VFB  
RAMP  
COMPENSATION  
CURRENT  
FEEDBA CK  
GND  
RP402K00xx Block Diagram  
5
RP402x  
No. EA-317-181205  
*1 This Bypass Switch is included in the RP402NxxxG/ H only.  
*2 This Latch Timer is included in the RP402NxxxE/ G only.  
BYPASS  
SW*1  
OVER VOLTAGE  
PROTECTION  
VIN  
Lx  
VOUT  
REVERSE  
DETECTOR  
VFM  
CONTROLLER  
OSCILLATOR  
POWER  
CONTROLLER  
STARTUP  
CIRCUIT  
BACKGATE  
CONTROLLER  
VREF  
+
-
PWM  
CONTROLLER  
SOFT  
START  
SWITCHING  
CONTROLLER  
CURRENT  
CHIP  
ENABLE  
LATCH  
TIMER  
PROTECTION  
CE  
*2  
SHORT  
PROTECTIO N  
RAMP  
COMPENSATION  
CURRENT  
FEEDBACK  
GND  
RP402Nxxxx Block Diagram  
6
RP402x  
No. EA-317-181205  
PIN DESCRIPTION  
Top View  
Bottom View  
5
4
8
7
6
5
5
6
7
8
1
2
3
1
2
3
4
4
3
2
1
RP402K [DFN(PLP)2020-8] Pin Configurations  
RP402N (SOT-23-5) Pin Configurations  
The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate  
level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.  
RP402Kxxxx Pin Description  
Pin No.  
Symbol  
MODE  
NC  
Description  
1
2
3
4
5
6
7
8
Mode Pin(1)  
No Connection  
Ground Pin  
GND  
Lx  
Internal NMOS Switch Drain Pin  
Output Pin  
VOUT  
VIN  
Power Supply Pin  
NC  
No Connection  
CE  
Chip Enable Pin, Active-high  
RP402K00xx Pin Description  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
7
8
MODE  
NC  
MODE Pin(1)  
No Connection  
GND  
Lx  
Ground Pin  
Internal NMOS Switch Drain Pin  
Output Pin  
VOUT  
VIN  
Power Supply Pin  
VFB  
Feedback Input Pin for Setting Output Voltage  
Chip Enable Pin, Active-high  
CE  
RP402Nxx1x Pin Description  
Pin No.  
Symbol  
Description  
Internal NMOS Switch Drain Pin  
Ground Pin  
1
2
3
4
5
Lx  
GND  
CE  
Chip Enable Pin, Active-high  
Power Supply Pin  
VIN  
VOUT  
Output Pin  
(1) MODE Pin = “H” is recommended for RP402Kxx2x.  
7
RP402x  
No. EA-317-181205  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings  
Symbol  
VIN  
Parameter  
Rating  
−0.3 to 6.5  
−0.3 to 7.0  
−0.3 to 6.5  
−0.3 to 6.5  
−0.3 to 6.5  
−0.3 to 6.5  
1800  
Unit  
V
VIN Pin Voltage  
VOUT Pin Voltage  
LX Pin Voltage  
CE Pin Voltage  
V
VOUT  
VLX  
V
V
VCE  
V
VFB  
VFB Pin Voltage (RP402K00xx only)  
MODE Pin Voltage (RP402Kxxxx only)  
V
VMODE  
Power Dissipation (1)  
DFN(PLP)2020-8  
SOT-23-5  
PD  
mW  
660  
(JEDEC STD. 51-7)  
°C  
°C  
Tj  
Junction Temperature Range  
−40 to 125  
−55 to 125  
Tstg  
Storage Temperature Range  
ABSOLUTE MAXIMUM RATINGS  
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent  
damages and may degrade the life time and safety for both device and system using the device in the field. The  
functional operation at or over these absolute maximum ratings is not assured.  
RECOMMENDED OPERATING CONDITIONS  
Recommended Operating Conditions  
Symbol  
VIN  
Parameter  
Input Voltage  
Operating Temperature  
Rating  
0.6 to 4.8  
−40 to 85  
Unit  
V
Ta  
°C  
RECOMMENDED OPERATING CONDITIONS  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the recommended  
operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And  
the semiconductor devices may receive serious damage when they continue to operate over the recommended  
operating conditions.  
(1) Refer to POWER DISSIPATION for detailed information.  
8
RP402x  
No. EA-317-181205  
ELECTRICAL CHARACTERISTICS  
The specifications surrounded by  
are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C.  
RP402xxxxx Electrical Characteristics (Not applicable to RP402K00xx)  
(Ta = 25°C)  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
VSTART  
Start-up Voltage  
RL = 5.5 kΩ  
0.7  
0.8  
V
V
VHOLD  
VOVLO  
VOVP  
IDD1  
Hold-on Voltage after start-up(1)  
OVLO Voltage  
RL = 5.5 kΩ  
-
0.6  
4.8  
5.1  
6.0  
1.6  
V
OVP Voltage  
-
V
VIN = VSET −0.4 V,  
Quiescent Current 1  
mA  
V
OUT = 0.95 x VSET  
VIN = VSET −0.4 V,  
OUT = VSET + 0.2 V  
VIN = 4.8 V, VOUT = 0V,  
CE = 0V  
IDD2  
Quiescent Current 2(2)  
21  
37  
µA  
V
RP402xxxxA/ B/ E/ F  
RP402xxxxC/ D/ G/ H  
0.2  
1.2  
1.0  
V
Istandby  
VOUT  
Standby Current  
µA  
V
VIN = 4.8 V, VCE = 0 V  
VIN = VCE = 1.5 V  
2.5  
Output Voltage  
Output-Voltage  
x0.985  
x1.015  
ppm  
/°C  
ΔVOUT  
/ΔTa  
−40°C ≤ Ta ≤ 85°C  
50  
1200  
1000  
Temperature Coefficient  
1080  
1020  
1320  
1380  
RP402xxx1x  
RP402xxx2x  
Switching  
Frequency  
VIN = 1.5 V,  
fosc  
kHz  
VOUT = 0.95 x VSET  
900  
850  
1100  
1150  
RONN  
RONP  
NMOS ON Resistance(1)  
PMOS ON Resistance(1)  
VOUT = 5.0 V  
VOUT = 5.0 V  
VIN = 4.8 V,  
0.20  
0.20  
Ω
Ω
ICEH  
ICEL  
CE ”H” Input Current  
CE ”L” Input Current  
0.5  
µA  
µA  
VOUT = VCE = 5 V  
VIN = 4.8 V,  
−0.5  
−0.5  
VOUT = 5 V, VCE = 0 V  
V
V
IN = 4.8V,  
CE = 0 V,  
RP402xxx1x  
RP402xxx2x  
0.5  
72  
MODE ”H” Input  
Current(3)  
IMODEH  
µA  
VMODE = 5.5 V  
VIN = 4.8 V, VCE = VMODE  
0 V  
=
IMODEL  
ILXH  
MODE ”L” Input Current(3)  
Lx ”H” Leakage Current  
µA  
µA  
VIN = VOUT = VLX = 4.8V,  
VCE = 0 V  
0.5  
0.5  
VOUT = 5 V, VLX = 0 V,  
VCE = 0 V  
ILXL  
Lx ”L”Leakage Current  
Lx Limit Current(4)  
µA  
A
ILXPEAK  
1.3  
1.5  
All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj ≈ Ta = 25°C).  
(1) Hold-on Voltage and NMOS/ PMOS ON Resistance are dependent on VOUT.  
(2) Quiescent Current 2 is not applicable to RP402xxx2x.  
(3) MODE “H”/ “L” Input Current/ Voltage is only applicable to RP402Kxxxx.  
(4) LX Limit Current fluctuates depending on Duty.  
9
RP402x  
No. EA-317-181205  
ELECTRICAL CHARACTERISTICS (continued)  
The specifications surrounded by  
are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C.  
RP402xxxxx Electrical Characteristics (Not applicable to RP402K00xx)  
(Ta = 25°C)  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
VCEH  
CE ”H” Input Voltage  
CE “L” Input Voltage  
0.7  
V
V
V
V
VCEL  
0.3  
VMODEH  
VMODEL  
MODE ”H” Input Voltage (1)  
MODE ”L” Input Voltage (1)  
1.0  
0.4  
95  
VIN = 1.5 V, VOUT = 0.95  
x VSET  
Maxduty Oscillator Maximum Duty Cycle  
80  
88  
%
Measures the time when  
VCE = 0 V to 1.5 V,  
VOUT = VSET x 0.95  
tstart  
tprot  
Soft-start Time(2)  
0.25  
0.5  
0.70  
ms  
ms  
RP402xxx1x  
RP402xxx2x  
2.7  
3.5  
3.3  
4.1  
3.9  
4.7  
Protection  
Time(3)  
Delay  
RONA  
RONB  
Anti-ringing Switch ON Resistance(4)  
Bypass Switch ON  
VIN = 2.5 V, VOUT = 3.3 V  
100  
Ω
Ω
VIN = 3.0 V,  
VOUT = 0 V  
RP402xxxxC/ D/ G/ H  
160  
0.1  
Resistance(5)  
IINZERO  
VIN Zero Current  
VIN = 0 V, VOUT = 5.5 V  
1.0  
µA  
All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj ≈ Ta = 25°C).  
(1) MODE “H”/ “L” Input Current/ Voltage is only applicable to RP402Kxxxx.  
(2)  
V ≥ 1.7 V  
IN  
(3) Protection Delay Time is not included in RP402xxxxB/ D/ F/ H.  
(4) Anti-ringing Switch ON Resistance is dependent on VOUT. Not applicable to RP402xxx2x.  
(5) Bypass Switch ON Resistance is dependent on VIN.  
10  
RP402x  
No. EA-317-181205  
Electrical Characteristics by Differenct Output Voltage  
VOUT (Ta = 25°C)  
Typ.  
Product  
Name  
Min.  
Max.  
1.827  
1.929  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
2.944  
3.045  
3.147  
3.248  
3.350  
3.451  
3.553  
3.654  
3.756  
3.857  
3.959  
4.060  
4.162  
4.263  
4.365  
4.466  
4.568  
4.669  
4.771  
4.872  
4.974  
5.075  
5.177  
5.278  
5.380  
5.481  
5.582  
RP402x18xx  
RP402x19xx  
RP402x20xx  
RP402x21xx  
RP402x22xx  
RP402x23xx  
RP402x24xx  
RP402x25xx  
RP402x26xx  
RP402x27xx  
RP402x28xx  
RP402x29xx  
RP402x30xx  
RP402x31xx  
RP402x32xx  
RP402x33xx  
RP402x34xx  
RP402x35xx  
RP402x36xx  
RP402x37xx  
RP402x38xx  
RP402x39xx  
RP402x40xx  
RP402x41xx  
RP402x42xx  
RP402x43xx  
RP402x44xx  
RP402x45xx  
RP402x46xx  
RP402x47xx  
RP402x48xx  
RP402x49xx  
RP402x50xx  
RP402x51xx  
RP402x52xx  
RP402x53xx  
RP402x54xx  
RP402x55xx  
1.773  
1.872  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.857  
2.955  
3.054  
3.152  
3.251  
3.349  
3.448  
3.546  
3.645  
3.743  
3.842  
3.940  
4.039  
4.137  
4.236  
4.334  
4.433  
4.531  
4.630  
4.728  
4.827  
4.925  
5.024  
5.122  
5.221  
5.319  
5.417  
1.800  
1.900  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
3.600  
3.700  
3.800  
3.900  
4.000  
4.100  
4.200  
4.300  
4.400  
4.500  
4.600  
4.700  
4.800  
4.900  
5.000  
5.100  
5.200  
5.300  
5.400  
5.500  
11  
RP402x  
No. EA-317-181205  
ELECTRICAL CHARACTERISTICS (continued)  
The specifications surrounded by  
are guaranteed by design engineering at −40°C ≤ Ta ≤ 85°C.  
RP402K00xx Electrical Characteristics  
(Ta = 25°C)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
VIN  
Input Voltage  
4.6  
0.8  
V
VSTART  
VHOLD  
VOVLO  
VOVP  
Start-up Voltage  
RL = 5.5 kΩ  
0.7  
V
V
V
V
Hold-on Voltage after start-up(1)  
OVLO Voltage  
RL = 5.5 kΩ  
0.6  
4.6  
5.1  
6.0  
1.6  
OVP Voltage  
VIN = 3 V, VOUT = 5 V,  
IDD1  
IDD2  
Quiescent Current 1  
Quiescent Current 2(2)  
mA  
µA  
V
FB = 0.6 V  
VIN = 4.8 V, VOUT = 5.5 V,  
FB = 2.0 V, VMODE = 0 V  
VIN = 4.8 V, VOUT = 0V,  
CE = 0V  
21  
37  
V
RP402KxxxA/ B  
RP402KxxxC/ D  
0.2  
1.2  
1.0  
2.5  
V
Istandby Standby Current  
µA  
V
VIN = 4.8 V, VCE = 0 V  
VFB  
Feedback Voltage  
VIN = 3.0 V, VOUT = 5 V  
0.985  
1.00  
1.015  
ppm  
/°C  
ΔVFB  
/ΔTa  
Output Voltage Temperature  
Coefficient  
−40°C ≤ Ta ≤ 85°C  
50  
1200  
1000  
1080  
1020  
1320  
1380  
RP402K001x  
Switching  
VIN = 3.0 V, VOUT = 3.3 V,  
VFB = 0.6 V  
fosc  
kHz  
Frequency  
900  
850  
1100  
1150  
RP402K002x  
RONN  
RONP  
NMOS ON Resistance(1)  
PMOS ON Resistance(1)  
VOUT = 5.0 V  
VOUT = 5.0 V  
0.20  
0.20  
Ω
Ω
VIN = 4.8 V, VOUT = VCE  
5.5 V  
=
ICEH  
ICEL  
CE ”H” Input Current  
CE ”L” Input Current  
0.5  
µA  
µA  
VIN = 4.8 V, VOUT = 5 V,  
−0.5  
−0.5  
VCE = 0 V  
RP402K001x  
RP402K002x  
0.5  
72  
MODE ”H” Input  
Current  
VIN = 4.8 V, VMODE = 5.5 V,  
VCE = 0 V  
IMODEH  
µA  
VIN = 4.8 V, VCE = VMODE  
0 V  
=
IMODEL  
ILXH  
MODE ”H” Input Current  
Lx ”H” Leakage Current  
µA  
µA  
VIN = VOUT = VLX = 4.8 V,  
0.5  
0.5  
V
CE = 0 V  
VOUT = 5.0 V, VLX = 0 V,  
CE = 0 V  
ILXL  
Lx ”L”Leakage Current  
Lx Limit Current(3)  
µA  
A
V
ILXPEAK  
1.3  
1.5  
All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj ≈ Ta = 25°C).  
(1) Hold-on Voltage and NMOS/ PMOS ON Resistance are dependent on VOUT.  
(2) Quiescent Current 2 is not applicable to RP402K002x.  
(3) LX Limit Current fluctuates depending on Duty.  
12  
RP402x  
No. EA-317-181205  
ELECTRICAL CHARACTERISTICS (continued)  
The specifications surrounded by  
are guaranteed by design engineering −40°C ≤ Ta ≤ 85°C.  
RP402K00xx Electrical Characteristics  
(Ta = 25°C)  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
VCEH  
CE ”H” Input Voltage  
0.7  
V
V
V
V
VCEL  
CE ”L” Input Voltage  
0.3  
VMODEH  
VMODEL  
MODE ”H” Input Voltage  
MODE ”L” Input Voltage  
1.0  
0.4  
95  
VIN = 3.0 V, VOUT = 3.3 V,  
Maxduty Oscillator Maximum Duty Cycle  
80  
88  
%
VFB = 0.6 V  
Measures the time when  
VOUT = 3.3 V,  
tstart  
Soft-start Time(1)  
0.25  
0.5  
0.70  
ms  
VCE = 0 V to 1.5 V,  
VOUT = 3.13 V  
RP402K001x  
RP402K002x  
-
-
2.7  
3.5  
3.3  
4.1  
3.9  
4.7  
ms  
ms  
Protection Delay  
Time(2)  
tprot  
RONA  
Anti-ringing Switch ON Resistance(3)  
Bypass Switch ON  
VIN = 2.5 V, VOUT = 3.3 V  
VIN = 3.0 V,  
100  
Ω
RONB  
RP402KxxxC/ D  
160  
0.1  
Ω
Resistance(4)  
VOUT = 0 V  
IINZERO  
VIN Zero Current  
VIN = 0 V, VOUT = 5.5 V  
1.0  
µA  
All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition (Tj ≈ Ta = 25°C).  
(1) Soft-start Time is VIN ≥ 1.7 V.  
(2) Quiescent Current 2 is not applicable to RP402K002x.  
(3) LX Limit Current fluctuates depending on Duty.  
(4) Bypass Switch ON Resistance is dependent on VIN.  
13  
RP402x  
No. EA-317-181205  
THEORY OF OPERATION  
Forced PWM Control Type (RP402xx2A/ B)  
While normal PWM control type prevents the reverse inductor current at light load, forced PWM control type  
makes the inductor current reverse in order to eliminate the discontinuous current period. Therefore, even at  
light load or when the voltage difference between input and output is less, forced PWM control type can  
provide PWM operation without bursting.  
IL  
x
Normal PWM  
Lx  
IL  
x
Forced PWM  
Lx  
Operating Waveform of Normal PWM/ Forced PWM Control Type  
There is a case that forced PWM control performs burst operation without PWM operation because of the  
conditions of use. The conditions which cause burst operation are various and differ in set output voltage, input  
voltage, ambient temperature and load current.  
Please note that forced PWM control type decreases the efficiency at light load and does not include anti-  
ringing switch. The graph below indicates the typical operational maximum input voltage of forced PWM control  
type.  
RP402Kxx1x: MODE = ”H” (Normal PWM), RP402Kxx2x: (Forced PWM)  
RP402K33xx  
RP402K18xx  
( Ta = 25°C)  
( Ta = 25°C)  
3.5  
3
1.8  
1.6  
1.4  
1.2  
1
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
RP402K331x  
RP402K332x  
RP402K181x  
RP402K182x  
0.5  
0
1
10  
Output Current IOUT [mA]  
100  
1
10  
Output Current IOUT [mA]  
100  
14  
RP402x  
No. EA-317-181205  
RP402K50xx  
RP402K55xx  
( Ta = 25°C)  
( Ta = 25°C)  
5
4.5  
4
6
5
4
3
2
1
0
3.5  
3
2.5  
2
1.5  
1
RP402K551x  
RP402K552x  
RP402K501x  
RP402K502x  
0.5  
0
1
10  
Output Current IOUT [mA]  
100  
1
10  
Output Current IOUT [mA]  
100  
MODE Pin (RP402K only)  
When setting the MODE pin “high” of RP402K, it is recommended to connect the MODE pin “high” with the  
OUT pin to ensure stability. Please note that a current flows through the pull-down resistor to consume power  
V
even in a standby state (CE=”low”) as the MODE pin is pulled down by an internal resistor when the Mode pin  
“high” is connected with VIN pin. Since RP402Kxx2A/B have only Forced PWM control type, the MODE pin  
“high” fixing is recommended to ensure safety, but also connecting the MODE pin to GND or using it in the  
open state are other options.  
Bypass Mode Application Example (RP402xxxxC/ D/ G/ H)  
The RP402xxxxC/ D/ G/ H is available in bypass mode when CE = L. The shown below is the application  
example of the device in bypass mode. In this application, when the main system is not in sleep, the  
RP402xxxxC/ D/ G/ H is set to active state to supply power to the main system and RTC. When the main  
system is in sleep, the RP 402xxxxC/ D/ G/ H is set to standby state to supply power to RTC in bypass mode.  
Using the device in the bypass mode can reduce the power loss and the consumption of battery. Also, using  
the device in bypass mode can eliminate external components for short-circuit protection.  
L
LX  
VIN  
Main System  
(VSET  
C1  
)
RP402xxxx  
C/ D/ G/ H  
VOUT  
VOUT  
CE  
C2  
CE Control  
RTC  
MODE  
(A small amount of  
current is required.)  
GND  
15  
RP402x  
No. EA-317-181205  
Regulation Operation at VIN > VOUT  
The RP402x regulates the output voltage to the set output voltage even when the input voltage is higher than  
the set output voltage. Please note that this regulation operation decreases the efficiency and the maximum  
output current driving ability. The maximum output current driving ability can be different due to the set output  
voltage, the input voltage and the ambient temperature.  
The following is the switching condition (Typ.) from step-up operation to the step-down regulation.  
VIN ≤ VOUT−150 mV: Step-down regulation → Step-up operation  
VIN > VOUT−100 mV: Step-up operation → Step-down regulation  
Output Current vs.Input Voltage  
RP402xxxxx  
ILX vs.Input Voltage  
RP402xxxxx  
VOUT = 3.3V  
VOUT = 3.3V  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
0
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
Input Voltage VIN [V]  
Input Voltage VIN [V]  
Output Voltage Setting for RP402K00xx  
The RP402K00xx can set the output voltage freely by the external divider resistors using the following equation.  
Output Voltage = VFB (R1 + R2) / R2  
(VFB = 1.0 V)  
Zero Input Complete Shutdown at VIN = 0 V  
The RP402x provides a zero input complete shutdown function that allows the device to shut down the output  
when VIN = 0 V or VIN = open. This function protects against reverse current flow from VOUT to VIN when a  
voltage is applied to the VOUT pin while VIN = 0 V or VIN = open.  
Overcurrent Protection  
The RP402x incorporates a LX peak current limit circuit as the overcurrent protection circuit which controls the  
duty of LX when the LX peak current (ILXPEAK) reaches typically 1.5 A.  
Latch Type Protection (RP402xxxxA/ C/ E/ G)  
The RP402xxxxA/ C/ E/ G provides a latch type protection circuit to latch the power MOSFET to the off state  
in order to stop the DC/DC operation. To release the latch type protection, switch the CE pin from high to low  
once and switch it back to high while the power is turned on. Please note that the LX peak current (ILXPEAK) and  
the protection delay time (tprot) are easily affected by the self-heating or heat radiation efficiency. The large  
reduction in input voltage (VIN) or the unstable input voltage caused by short-circuit may affect the protection  
operation or protection delay time.  
16  
RP402x  
No. EA-317-181205  
Short-circuit Protection  
The RP402x provides a short-circuit protection which stops the switching operation when a short circuit is  
detected. After a consecutive fixed period of the short-circuit state, the device performs a restart with soft-start  
operation. RP402xxxxA/ C/ E/ G latches the power in a stop state when the input voltage becomes lower than  
typically 1.6V and it is short-circuited.  
Overvoltage Protection  
The RP402x provides an overvoltage lockout (OVLO) circuit for monitoring the input pin voltage and an  
overvoltage protection (OVP) circuit for monitoring the output pin voltage. These circuits stops the switching  
operation when an overvoltage is detected. If the output voltage is dropped below the set output voltage when  
OVLO is released, the output voltage will be boosted to the set output voltage.  
17  
RP402x  
No. EA-317-181205  
OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS  
Operation of Step-up DC/DC Converter and Output Current  
Basic Circuit  
Pch Tr.  
Coil(L)  
OUT  
I
V
IN  
OUT  
V
CL  
Nch Tr.  
GND  
The inductor current (IL) flowing through the inductor (L)  
Discontinuous Mode Continuous Mode  
max  
IL  
IL  
IL  
IL  
max  
min  
IL  
ILmin  
tf  
Iconst  
t
t
on  
off  
on  
t
t
t
off  
t
t =1/fosc  
t =1/fosc  
A PWM control type step-up DC/DC converter has two operation modes characterized by the continuity of  
inductor current: discontinuous current mode and continuous current mode.  
The voltage applied to the inductor L, when transistor is ON, is described as “VIN”. So, the current is described  
as “VIN x t / L”.  
Therefore, the electric power (PON) supplied from the input side, while transistor is ON, is described as follows:  
PON  
tonVIN2 t/Ldt ··························································································· Equation 1  
0  
18  
RP402x  
No. EA-317-181205  
In step-up circuit, power source supplies the electric power (POFF) even while transistor is OFF. The input  
current supplied by power source while transistor is OFF is described as “(VOUT − VIN) x t / L”. Therefore, the  
electric power POFF is described as follows:  
tf  
P
OFF  
VIN(VOUTVIN)t/L dt  
0  
······································································ Equation 2  
The time of which the inductance L releases the saved energy is described as “tf”. Therefore, the average  
electric power (PAV) in a cycle is described as follows:  
tf  
PAV  
tonVIN2 t/L dt  
VIN(VOUTVIN)t/L dt} ···················· Equation 3  
1/(tontoff){0  
0
In PWM control, when “tf = toff”, the inductor current becomes continuous, so the switching regulator operation  
turns into continuous current mode. The current deviation between On time and Off time is equal under steady-  
state condition of continuous current mode as follows:  
VIN x ton/ L = (VOUT − VIN) x toff / L ··············································································· Equation 4  
The electric power (PAV) is equal to the output voltage (VOUTIOUT). Therefore, IOUT is as follows:  
I
OUT = fosc x VIN2 x ton2 / {2 x L (VOUT - VIN)} = VIN2 x ton / (2 x L x VOUT)································ Equation 5  
When IOUT becomes more than VIN ton toff / (2 L (ton + toff)), the inductor current becomes continuous,  
so the switching regulator operation turns into continuous current mode. The continuous inductor current is  
described as ICONST, so IOUT is described as follows:  
IOUT = fosc x VIN2 x ton2 / (2 x L (VOUT − VIN)) + VIN x Iconst / VOUT········································ Equation 6  
The peak current (ILmax) flowing through the inductor is described as follows:  
ILmax = Iconst + VIN x ton / L ····················································································· Equation 7  
Put Equation 4 into Equation 6 to solve ILmax. ILmax is described as follows:  
ILmax = VOUT / VIN x IOUT + VIN x ton / (2 x L) ·································································· Equation 8  
However, ton = (1 − VIN / VOUT) / fosc. The peak current is more than IOUT  
.
Please consider ILmax when setting conditions of input and output, as well as selecting the external  
components. The peak current in the discontinuous current mode in Equation 7 can be calculated by Iconst  
= 0.  
Please note: The above calculation formulas are based on the ideal operation of the device in continuous  
mode. The loss caused by the external components and the built-in Lx switch are not included. Please use the  
peak current in Equation 8 as a reference when selecting an inductor.  
19  
RP402x  
No. EA-317-181205  
TIMING CHART  
Soft-start Operation and Latch-type Protection Operation  
Input  
Voltage  
CE  
Voltage  
Output  
Current  
1.60V (Typ.)  
Output  
Voltage  
LX  
Voltage  
tprot  
RP402xxx1x 3.3ms (Typ.)  
RP402xxx2x 4.1ms (Typ.)  
0.5ms (Typ.)  
Latch Protect*2  
VFM Mode*1  
PWM Mode  
LX-Peak  
Current  
Limit  
Low-Boost  
Mode  
Soft Start Period  
Standby  
*1  
*2  
Only for RP402xxx1x (MODE = ”L”)  
Only for RP402xxxxA/ C/ E/ G  
< Start-up >  
When CE is changed from ”L” to ”H”, DC/DC converter starts up the operation. The RP402x has Low-Boost  
mode which can start up with low voltage such as 0.7 V. The DC/DC boosts up with Low-Boost mode until the  
output voltage reaches to typically 1.6 V. When the output voltage becomes more than or equal to typically 1.6  
V, the soft-start operation starts in order to control inrush current. The DC/DC boosts up the output voltage  
until it reaches to the setting output voltage.  
20  
RP402x  
No. EA-317-181205  
Please note: During Low-Boost mode, the oscillator frequency is dropped, so the step-up ability is low  
compared to the normal operation mode. Please pay attention to the step-up ratio and the load current. Soft-  
start time depends on “set output voltage”, “input voltage”, “ambient temperature”, and “load current”.  
VOUT = 3.3V  
IN = 1.8V  
RL = 5.5kΩ  
Soft Start Period vs.Input Voltage  
RP402xxxxx  
Soft Start Period vs.Ta  
RP402x33xx  
V
RL = 5.5kΩ  
( Ta = 25°C )  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
100.0  
10.0  
1.0  
VSET=1.8V  
VSET=3.3V  
VSET=5.5V  
0.1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
Input Voltage VIN [V]  
Ta []  
21  
RP402x  
No. EA-317-181205  
APPLICATION INFORMATION  
L
LX  
VIN  
C1  
RP402Kxxxx  
VOUT  
VOUT  
CE  
C2  
CE Control  
MODE  
MODE Control  
GND  
RP402Kxxxx Typical Application (Fixed Output Voltage Type)  
L
LX  
RP402K00xx  
VOUT  
VIN  
C1  
VOUT  
C2  
RSPD  
R1  
R2  
CE  
CE Control  
MODE Control  
MODE  
CSPD  
VFB  
GND  
RP402K00xx Typical Application (Adjustable Output Voltage Type)  
L
LX  
VIN  
C1  
RP402Nxx1x  
VOUT  
VOUT  
CE  
C2  
CE Control  
GND  
RP402Nxx1x Typical Application (Fixed Output Voltage Typ)  
22  
RP402x  
No. EA-317-181205  
Recommended Components  
Symbol  
Descriptions  
VLF403215MT-2R2M, 2.2 µH, TDK  
VLS3012HBX-2R2M, TDK  
NRS5020T2R2NMGJ, TAIYO YUDEN  
L
C1 (CIN)  
GRM188R60J106ME47, 10 µF, Murata  
GRM188R60J106ME47, 10 µF x 2, Murata  
C2 (COUT  
)
As for the fixed output voltage type (RP402x50xx), 10 µF x 1 can be used if the  
mounting area is limited.  
The speedup capacitor (CSPD) is required for the adjustable output voltage type.  
Connect CSPD in parallel with the output resistor (R1).  
To calculate the CSPD value, the following equation can be used:  
f = 1 / (2 π × CSPD × R1)  
Adjust the CSPD value to make the oscillator frequency (f) approximately 20 kHz.  
For example, VOUT = 5.0 V, R1 = 2 MΩ, R2 = 500 kΩ and CSPD = 4 pF.  
CSPD  
The R1 and R2 values are calculated based on the operation efficiency under a light  
load, therefore R1 and R2 are having high-resistance values. The feedback voltage  
(VFB) can be affected by noise. To stabilize the device operation, decrease the R1 and  
R2 values.  
The speedup resistor (RSPD) is required for the adjustable output voltage type.  
Using RSPD can prevent the deterioration of the characteristics due to noise.  
RSPD  
If there’s a possibility of generation of a spike noise, use an approximately 1 kΩ RSPD  
.
23  
RP402x  
No. EA-317-181205  
TECHNICAL NOTES  
The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A  
peripheral component or the device mounted on PCB should not exceed its rated voltage, rated current or  
rated power. When designing a peripheral circuit, please be fully aware of the following points. (Refer to PCB  
Layout Considerations below.)  
Ensure the VIN and GND lines are firmly connected. A large switching current flows through the GND lines  
and the VIN line. If their impedance is too high, noise pickup or unstable operation may result. When the  
built-in switch is turned off, the inductor may generate a spike-shaped high voltage. Use the high-  
breakdown voltage capacitor (COUT) which output voltage is 1.5 times or more than the set output voltage.  
After a boosting of the step-up converter, the converter uses VOUT as a main power source. Therefore,  
the ceramic capacitor between the VOUT pin and the GND pin acts as a bypass capacitor. Considering the  
bias dependence, place a 10 µF or more ceramic capacitor (COUT) between the VOUT pin - the GND pin as  
close as possible. Also, place an approximately 10 µF ceramic capacitor (CIN) between the VIN pin - the  
GND pin.  
Use a 2.2 µH inductor (L) which is having a low equivalent series resistance, having enough tolerable  
current and which is less likely to cause magnetic saturation.  
The MODE pin is controlled with a logic voltage. To make it "H", 1.0 V or more must be forced to the  
MODE pin. If power supply is less than 1.0 V, MODE pin must be pulled up to VOUT  
When using Forced PWM Control Type, the MODE pin should be “H”.  
.
The RP402x can reset the latch protection circuit by setting the CE signal ‘L’ (VCE < 0.3 V) once while the  
power is switched on (VIN > 0.8 V). If setting the CE pin when VIN does not reach 0.8 V due to too large  
CIN, the latch protection circuit cannot be reset correctly. Likewise, if starting the device up when the CE  
pin is shorted to the VIN pin or VOUT pin, the latch protection circuit cannot be reset.  
If controlling the CE pin by input voltage, the gradient of the power supply at rising must be considered.  
So, the CE pin must be connected via the delay circuit or the voltage detector to become the CE pin  
voltage less than 0.3 V until the VIN becomes more than 0.8V.  
24  
RP402x  
No. EA-317-181205  
PCB Layout Considerations  
Current Path on PCB  
Figure 1 and Figure 2 show the current pathways of application circuits when MOSFET is turned ON or when  
MOSFET is turned OFF, respectively. As shown in Figure 1 and Figure 2, the currents flow in the directions of  
blue or green arrows. The parasitic components (impedance, inductance or capacitance) formed in the  
pathways indicated by the red arrows affect the stability of the system and become the cause of noise. Reduce  
the parasitic components as much as possible. The current pathways should be made by short and thick  
wirings.  
Figure 1. MOSFET-ON  
Figure 2. MOSFET-OFF  
25  
RP402x  
No. EA-317-181205  
RP402Kxxxx (PKG: DFN(PLP)2020-8pin) Typical Board Layout  
Top Layer  
Bottom Layer  
Bottom Layer  
Bottom Layer  
RP402K00xx (PKG: DFN(PLP)2020-8pin) Typical Board Layout  
Top Layer  
RP402Nxxxx (PKG: SOT-23-5pin) Typical Board Layout  
Top Layer  
26  
RP402x  
No. EA-317-181205  
TYPICAL CHARACTERISTICS  
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.  
1) Output Voltage vs. Output Current  
RP402x181x  
MODE = "L" ( VFM / PWM )  
RP402K181x  
MODE = "H" ( Normal PWM )  
(Ta = 25°C)  
Input Voltage  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
(Ta = 25°C)  
Input Voltage  
1.9  
1.88  
1.86  
1.84  
1.82  
1.8  
0.7V  
0.8V  
1.0V  
1.2V  
1.5V  
0.7V  
0.8V  
1.0V  
1.2V  
1.5V  
1.78  
1.76  
1.74  
1.72  
1.7  
1.78  
1.76  
1.74  
1.72  
1.7  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
OUT(mA)  
1000  
10000  
Output Current IOUT(mA)  
Output Current  
I
RP402K182x  
( Forced PWM )  
(Ta = 25°C)  
1.9  
Input Voltage  
1.88  
1.86  
1.84  
1.82  
1.8  
0.7V  
0.8V  
1.0V  
1.2V  
1.5V  
1.78  
1.76  
1.74  
1.72  
1.7  
0.1  
1
10  
100  
OUT(mA)  
1000  
10000  
Output Current  
I
RP402x331x  
MODE = "L" ( VFM / PWM )  
RP402K331x  
MODE = "H" ( Normal PWM )  
(Ta = 25°C)  
Input Voltage  
(Ta = 25°C)  
3.5  
3.5  
Input Voltage  
3.45  
3.4  
3.45  
0.7V  
0.8V  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
3.0V  
0.7V  
0.8V  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
3.0V  
3.4  
3.35  
3.3  
3.35  
3.3  
3.25  
3.2  
3.25  
3.2  
3.15  
3.1  
3.15  
3.1  
0.1  
1
10  
Output Current  
100  
OUT(mA)  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
I
Output Current IOUT(mA)  
RP402K332x  
( Forced PWM )  
(Ta = 25°C)  
3.5  
Input Voltage  
3.45  
3.4  
0.7V  
0.8V  
1.2V  
3.35  
3.3  
1.5V  
1.8V  
3.25  
3.2  
2.0V  
2.5V  
3.15  
3.1  
3.0V  
0.1  
1
10  
Output Current  
100  
OUT(mA)  
1000  
10000  
I
27  
RP402x  
No. EA-317-181205  
RP402x501x  
MODE = "L" ( VFM / PWM )  
RP402K501x  
MODE = "H" ( Normal PWM )  
(Ta = 25°C)  
Input Voltage  
(Ta = 25°C)  
Input Voltage  
5.2  
5.15  
5.1  
5.2  
5.15  
5.1  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
5.05  
5
5.05  
5
4.95  
4.9  
4.95  
4.9  
4.85  
4.8  
4.85  
4.8  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
OUT(mA)  
1000  
10000  
Output Current IOUT(mA)  
Output Current  
I
RP402K502x  
( Forced PWM )  
(Ta = 25°C)  
5.2  
5.15  
5.1  
Input Voltage  
0.8V  
1.2V  
1.8V  
5.05  
5
2.4V  
2.7V  
4.95  
4.9  
3.2V  
3.7V  
4.85  
4.8  
4.2V  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
RP402K551x  
MODE = "H" ( Nomal PWM )  
RP402x551x  
MODE = "L" ( VFM / PWM )  
(Ta = 25°C)  
Input Voltage  
(Ta = 25°C)  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
Input Voltage  
0.8V  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
4.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
4.8V  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
RP402K552x  
( Forced PWM  
)
(Ta = 25°C)  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
Input Voltage  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
4.8V  
0.1  
1
10  
100  
1000  
10000  
Output Current IOUT(mA)  
28  
RP402x  
No. EA-317-181205  
2) Efficiency vs. Output Current  
RP402K181x  
MODE = "H" ( Normal PWM )  
RP402x181x  
MODE = "L" ( VFM / PWM )  
(Ta = 25°C)  
Input Voltage  
(Ta = 25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Voltage  
0.7V  
0.8V  
1.0V  
1.2V  
1.5V  
0.7V  
0.8V  
1.0V  
1.2V  
1.5V  
0.01  
0.1  
1
10  
IOUT(mA)  
100  
1000  
0.01  
0.1  
1
10  
IOUT(mA)  
100  
1000  
Output Current  
Output Current  
RP402K182x  
( Forced PWM )  
(Ta = 25°C)  
Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.7V  
0.8V  
1.0V  
1.2V  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
RP402K331x  
MODE = "H" ( Normal PWM )  
RP402x331x  
MODE = "L" ( VFM / PWM )  
(Ta = 25°C)  
(Ta = 25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Voltage  
Input Voltage  
0.7V  
0.7V  
0.8V  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
3.0V  
0.8V  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
3.0V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
IOUT(mA)  
100  
1000  
Output Current IOUT(mA)  
Output Current  
RP402K332x  
( Forced PWM )  
(Ta = 25°C)  
Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.7V  
0.8V  
1.2V  
1.5V  
1.8V  
2.0V  
2.5V  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
29  
RP402x  
No. EA-317-181205  
RP402x501x  
RP402K501x  
MODE = "L" ( VFM / PWM )  
MODE = "H" ( Normal PWM )  
(Ta = 25°C)  
Input Voltage  
(Ta = 25°C)  
Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
0.01  
0.1  
1
10  
OUT(mA)  
100  
1000  
0.01  
0.1  
1
10  
OUT(mA)  
100  
1000  
Output Current  
I
Output Current  
I
RP402K502x  
( Forced PWM )  
(Ta = 25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Voltage  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
0.01  
0.1  
1
10  
IOUT(mA)  
100  
1000  
Output Current  
RP402K551x  
MODE = "H" ( Normal PWM )  
RP402x551x  
MODE = "L" ( VFM / PWM )  
(Ta = 25°C)  
(Ta = 25°C)  
Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
Input Voltage  
0.8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
4.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
4.8V  
0.01  
0.1  
1
10  
IOUT(mA)  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current  
Output Current IOUT(mA)  
RP402K552x  
( Forced PWM )  
(Ta = 25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Voltage  
0.8V  
1.2V  
1.8V  
2.4V  
2.7V  
3.2V  
3.7V  
4.2V  
0.01  
0.1  
1
10  
IOUT(mA)  
100  
1000  
Output Current  
30  
RP402x  
No. EA-317-181205  
3) Standby Current vs. Ambient Temperature  
RP402x33xA/B/E/F  
RP402x33xC/D/G/H  
VIN = 4.8V / VOUT = OPEN  
VIN = 4.8V / VOUT = GND  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
4) Supply Current 1 vs. Ambient Temperature  
RP402x33xx  
VIN = VSET - 0.4V / VOUT = 0.95 × VSET  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
5) Supply Current 2 vs. Ambient Temperature  
RP402x331x  
VIN = VSET - 0.4V / VOUT = VSET + 0.2V  
30  
25  
20  
15  
10  
5
0
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
6) Start-up vs. Ambient Temperature  
RP402x33xx  
( RL = 5.5kΩ )  
0.8  
0.75  
0.7  
0.65  
0.6  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
31  
RP402x  
No. EA-317-181205  
7) Hold-on Voltage vs. Ambient Temperature  
RP402x33xx  
( RL = 5.5kΩ )  
0.41  
0.39  
0.37  
0.35  
0.33  
0.31  
0.29  
0.27  
0.25  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
8) Oscillator Frequency vs. Ambient Temperature  
RP402K331x  
MODE = "H" ( Normal PWM )  
RP402K332x  
( Forced PWM  
VIN = 1.5V  
)
VIN = 1.5V  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
1200  
1150  
1100  
1050  
1000  
950  
900  
850  
800  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
9) Maxduty vs. Ambient Temperature  
RP402x33xx  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
10) Lx Current Limit vs. Duty  
RP402xxxxx  
(Ta = 25°C)  
2500  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
RP402K001x (5.0V)  
RP402K001x (3.3V)  
RP402K001x (2.9V)  
RP402K001x (2.5V)  
RP402K001x (2.3V)  
RP402K001x (2.0V)  
RP402K001x (1.8V)  
700  
500  
20  
30  
40  
50  
60  
70  
80  
90  
Duty [%]  
32  
RP402x  
No. EA-317-181205  
11) Lx Current Limit vs. Ambient Temperature  
RP402x33xx  
VIN = 1.65V  
2500  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
700  
500  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
12) CE ”H” Input Voltage vs. Ambient Temperature  
RP402xxxxx  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
13) MODE ”H” Input Voltage vs. Ambient Temperature  
RP402Kxxxx  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
14) Output Voltage vs. Ambient Temperature  
RP402x33xx  
VIN = 1.5V  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
33  
RP402x  
No. EA-317-181205  
15) Feedback Voltage vs. Ambient Temperature  
RP402K00xx (VSET = 5.0V)  
VIN = 3.0V  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
16) Start-up Waveform (COUT = 20 μF)  
RP402K331A  
RP402K331A  
(Ta = 25°C)  
VIN = 1.2V / IOUT = 1mA)  
(Ta = 25°C)  
Output Voltage  
VIN = 1.8V / IOUT = 1mA)  
4
3
2
1
0
Output Voltage  
4
3
2
1
0
CE Input Voltage  
CE Input Voltage  
1.5  
1
1.5  
1
Inductor Current  
Inductor Current  
0.5  
0
0.5  
0
-0.5  
-0.5  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
-0.5  
0
0.5  
1
1.5  
2
Time t [ms]  
Time t [ms]  
17) Load Transient Response (COUT = 20 μF)  
RP402x181x  
MODE = "L" (VFM / PWM)  
RP402x181x  
MODE = "L" (VFM / PWM)  
(Ta = 25°C)  
V
IN = 0.9V  
(Ta = 25°C)  
VIN = 0.9V  
1.9  
1.85  
1.8  
1.9  
1.85  
1.8  
Output Voltage  
Output Voltage  
1.75  
1.7  
1.75  
1.7  
Output Current  
1mA <-> 50mA  
Output Current  
50mA <-> 1mA  
50  
0
50  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time t [ms]  
RP402K181x  
MODE = "H" (Normal PWM)  
RP402K181x  
MODE = "H" (Normal PWM)  
(Ta = 25°C)  
VIN = 0.9V  
(Ta = 25°C)  
VIN = 0.9V  
1.9  
1.85  
1.8  
1.9  
1.85  
1.8  
Output Voltage  
Output Voltage  
1.75  
1.7  
1.75  
1.7  
Output Current  
1mA <-> 50mA  
Output Current  
50mA <-> 1mA  
50  
0
50  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time t [ms]  
34  
RP402x  
No. EA-317-181205  
RP402K182x  
RP402K182x  
(Forced PWM)  
(Forced PWM)  
(Ta = 25°C)  
(Ta = 25°C)  
VIN = 0.9V  
VIN = 0.9V  
1.9  
1.85  
1.8  
1.9  
1.85  
1.8  
Output Voltage  
Output Voltage  
1.75  
1.7  
1.75  
1.7  
Output Current  
1mA <-> 50mA  
Output Current  
50mA <-> 1mA  
50  
0
50  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [ms]  
RP402x331x  
RP402x331x  
MODE = "L" (VFM / PWM)  
MODE = "L" (VFM / PWM)  
(Ta = 25°C)  
VIN = 1.8V  
(Ta = 25°C)  
VIN = 1.8V  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
Output Voltage  
Output Voltage  
Output Current  
1mA <-> 200mA  
Output Current  
200mA <-> 1mA  
200  
0
200  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time t [ms]  
RP402K331x  
MODE = "H" (Normal PWM)  
RP402K331x  
MODE = "H" (Normal PWM)  
(Ta = 25°C)  
VIN = 1.8V  
(Ta = 25°C)  
VIN = 1.8V  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
Output Voltage  
Output Voltage  
Output Current  
1mA <-> 200mA  
Output Current  
200mA <-> 1mA  
200  
0
200  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time t [ms]  
RP402K332x  
RP402K332x  
(Forced PWM)  
(Forced PWM)  
(Ta = 25°C)  
(Ta = 25°C)  
VIN = 1.8V  
VIN = 1.8V  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
Output Voltage  
Output Voltage  
Output Current  
1mA <-> 200mA  
Output Current  
200mA <-> 1mA  
200  
0
200  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [ms]  
35  
RP402x  
No. EA-317-181205  
RP402K501x  
MODE = "L" (VFM / PWM)  
RP402K501x  
MODE = "L" (VFM / PWM)  
(Ta = 25°C)  
VIN = 3.7V  
(Ta = 25°C)  
VIN = 3.7V  
5.1  
5.2  
5.15  
5.1  
Output Voltage  
5.05  
5
Output Voltage  
5.05  
5
4.95  
4.9  
4.95  
4.9  
4.85  
Output Current  
1mA <-> 250mA  
Output Current  
250mA <-> 1mA  
4.85  
250  
0
250  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time t [ms]  
RP402K501x  
MODE = "H" (Normal PWM)  
RP402K501x  
MODE = "H" (Normal PWM)  
(Ta = 25°C)  
VIN = 3.7V  
(Ta = 25°C)  
V
IN = 3.7V  
5.2  
5.15  
5.1  
5.1  
5.05  
5
Output Voltage  
Output Voltage  
5.05  
5
4.95  
4.9  
4.95  
4.9  
4.85  
Output Current  
1mA <-> 250mA  
Output Current  
250mA <-> 1mA  
4.85  
250  
0
250  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Time t [ms]  
RP402K502x  
(Forced PWM)  
RP402K502x  
(Forced PWM)  
(Ta = 25°C)  
VIN = 3.7V  
(Ta = 25°C)  
VIN = 3.7V  
5.2  
5.15  
5.1  
5.1  
5.05  
5
Output Voltage  
Output Voltage  
5.05  
5
4.95  
4.9  
4.95  
4.9  
4.85  
Output Current  
250mA <-> 1mA  
Output Current  
1mA <-> 250mA  
4.85  
250  
0
250  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
-40 -20  
0
20 40 60 80 100 120 140 160  
Time t [μs]  
Time t [μs]  
18) Output Voltage Waveform (COUT = 20 μF)  
RP402x331x  
MODE = "L" (VFM / PWM )  
RP402x331x  
MODE = "L" (VFM / PWM )  
(Ta = 25°C)  
(Ta = 25°C)  
3.34  
3.32  
3.3  
3.4  
VIN = 1.5V / IOUT = 100mA  
VIN = 1.5V / IOUT = 1mA  
Output Voltage  
Output Voltage  
3.35  
3.3  
LX Voltage  
LX Voltage  
3.28  
4
3.25  
4
2
2
0
0
-2  
-2  
0
1
2
3
4
5
0
1
2
3
4
5
Time t [μs]  
Time t [ms]  
36  
RP402x  
No. EA-317-181205  
RP402K331x  
MODE = "H" (Normal PWM )  
RP402K331x  
MODE = "H" (Normal PWM )  
(Ta = 25°C)  
(Ta = 25°C)  
3.34  
3.32  
3.3  
3.4  
3.35  
3.3  
VIN = 1.5V / IOUT = 100mA  
Output Voltage  
VIN = 1.5V / IOUT = 1mA  
Output Voltage  
LX Voltage  
3.28  
4
LX Voltage  
3.25  
4
2
2
0
0
-2  
-2  
0
1
2
3
4
5
0
1
2
3
4
5
Time t [μs]  
Time t [μs]  
RP402K332x  
(Forced PWM )  
RP402K332x  
(Forced PWM )  
(Ta = 25°C)  
(Ta = 25°C)  
3.4  
3.34  
VIN = 1.5V / IOUT = 1mA  
VIN = 1.5V / IOUT = 100mA  
Output Voltage  
Output Voltage  
3.35  
3.32  
3.3  
3.3  
LX Voltage  
LX Voltage  
3.25  
4
3.28  
4
2
2
0
0
-2  
-2  
0
1
2
3
4
5
0
1
2
3
4
5
Time t [μs]  
Time t [μs]  
19) Mode Switching Waveform  
RP402K331x  
( Ta = 25°C )  
4
VIN = 1.5V / IOUT = 1mA  
2
0
MODE Input Voltage  
3.4  
3.35  
3.3  
Output Voltage  
3.25  
3.2  
-2  
-1  
0
1
2
3
4
5
6
7
8
Time t [ms]  
20) Bypass Switch ON Resistance  
RP402xxxxC/D/G/H  
300.0  
(Ta= 25°C)  
Vin=2  
V
250.0  
200.0  
150.0  
100.0  
50.0  
Vin=3.  
2V  
0.0  
0
2
4
6
VOUT [V]  
37  
RP402x  
No. EA-317-181205  
21) PWM Operable Maximum Input Voltage vs. Ambient Temperature  
RP402Kxx2x: (Forced PWM)  
RP402Kxx1x: MODE = "H" (Normal PWM)  
RP402K50xx  
( IOUT = 1mA)  
RP402K50xx  
( IOUT = 10mA)  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
RP402K502x  
RP402K501x  
RP402K502x  
RP402K501x  
0.5  
0
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
RP402K50xx  
( IOUT = 100mA)  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
RP402K502x  
RP402K501x  
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
22) Reverse Current at VIN = 0 vs. Ambient Temperature  
RP402xxxxx  
VIN = 0V / VOUT = 5.5V  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
23) Latch Protection Delay Time vs. Ambient Temperature  
RP402xxx2A/C/E/G  
RP402xxx1A/C/E/G  
VIN = 4.5V  
VIN = 4.5V  
4.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ta [°C]  
Ta [°C]  
38  
POWER DISSIPATION  
DFN(PLP)2020-8  
Ver. A  
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.  
The following measurement conditions are based on JEDEC STD. 51-7.  
Measurement Conditions  
Item  
Measurement Conditions  
Mounting on Board (Wind Velocity = 0 m/s)  
Environment  
Board Material  
Board Dimensions  
Glass Cloth Epoxy Plastic (Four-Layer Board)  
76.2 mm × 114.3 mm × 0.8 mm  
Outer Layer (First Layer): Less than 95% of 50 mm Square  
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square  
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square  
Copper Ratio  
Through-holes  
0.3 mm × 23 pcs  
Measurement Result  
(Ta = 25°C, Tjmax = 125°C)  
Item  
Measurement Result  
Power Dissipation  
1800 mW  
Thermal Resistance (ja)  
ja = 53°C/W  
Thermal Characterization Parameter (ψjt)  
ψjt = 27°C/W  
ja: Junction-to-Ambient Thermal Resistance  
ψjt: Junction-to-Top Thermal Characterization Parameter  
2000  
1800  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
85  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Power Dissipation vs. Ambient Temperature  
Measurement Board Pattern  
i
PACKAGE DIMENSIONS  
DFN (PLP) 2020-8  
Ver. B  
*
*
DFN (PLP) 2020-8 Package Dimensions  
The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this  
tab be connected to the ground plane on the board but it is possible to leave the tab floating.  
i
POWER DISSIPATION  
SOT-23-5  
Ver. A  
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.  
The following measurement conditions are based on JEDEC STD. 51-7.  
Measurement Conditions  
Item  
Measurement Conditions  
Mounting on Board (Wind Velocity = 0 m/s)  
Environment  
Board Material  
Board Dimensions  
Glass Cloth Epoxy Plastic (Four-Layer Board)  
76.2 mm × 114.3 mm × 0.8 mm  
Outer Layer (First Layer): Less than 95% of 50 mm Square  
Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square  
Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square  
0.3 mm × 7 pcs  
Copper Ratio  
Through-holes  
Measurement Result  
(Ta = 25°C, Tjmax = 125°C)  
Item  
Measurement Result  
Power Dissipation  
660 mW  
Thermal Resistance (ja)  
ja = 150°C/W  
Thermal Characterization Parameter (ψjt)  
ψjt = 51°C/W  
ja: Junction-to-Ambient Thermal Resistance  
ψjt: Junction-to-Top Thermal Characterization Parameter  
Power Dissipation vs. Ambient Temperature  
Measurement Board Pattern  
i
PACKAGE DIMENSIONS  
SOT-23-5  
Ver. A  
2.9±0.2  
1.9±0.2  
1.1±0.1  
0.8±0.1  
(0.95)  
(0.95)  
5
4
3
00.1  
1
2
+0.1  
0.15-0.05  
0.4±0.1  
SOT-23-5 Package Dimensions  
i
1. The products and the product specifications described in this document are subject to change or discontinuation of  
production without notice for reasons such as improvement. Therefore, before deciding to use the products, please  
refer to Ricoh sales representatives for the latest information thereon.  
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written  
consent of Ricoh.  
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise  
taking out of your country the products or the technical information described herein.  
4. The technical information described in this document shows typical characteristics of and example application circuits  
for the products. The release of such information is not to be construed as a warranty of or a grant of license under  
Ricoh's or any third party's intellectual property rights or any other rights.  
5. The products listed in this document are intended and designed for use as general electronic components in standard  
applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products,  
amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality  
and reliability, for example, in a highly specific application where the failure or misoperation of the product could result  
in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and  
transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.  
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products  
are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from  
such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy  
feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or  
damage arising from misuse or inappropriate use of the products.  
7. Anti-radiation design is not implemented in the products described in this document.  
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and  
characteristics in the evaluation stage.  
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and  
characteristics of the products under operation or storage.  
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the  
case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting  
to use AOI.  
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or  
the technical information.  
Ricoh is committed to reducing the environmental loading materials in electrical devices  
with a view to contributing to the protection of human health and the environment.  
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since  
Halogen Free  
April 1, 2012.  
https://www.e-devices.ricoh.co.jp/en/  
Sales & Support Offices  
Ricoh Electronic Devices Co., Ltd.  
Shin-Yokohama Office (International Sales)  
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan  
Phone: +81-50-3814-7687 Fax: +81-45-474-0074  
Ricoh Americas Holdings, Inc.  
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.  
Phone: +1-408-610-3105  
Ricoh Europe (Netherlands) B.V.  
Semiconductor Support Centre  
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands  
Phone: +31-20-5474-309  
Ricoh International B.V. - German Branch  
Semiconductor Sales and Support Centre  
Oberrather Strasse 6, 40472 Düsseldorf, Germany  
Phone: +49-211-6546-0  
Ricoh Electronic Devices Korea Co., Ltd.  
3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea  
Phone: +82-2-2135-5700 Fax: +82-2-2051-5713  
Ricoh Electronic Devices Shanghai Co., Ltd.  
Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,  
People's Republic of China  
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299  
Ricoh Electronic Devices Shanghai Co., Ltd.  
Shenzhen Branch  
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,  
Shenzhen, China  
Phone: +86-755-8348-7600 Ext 225  
Ricoh Electronic Devices Co., Ltd.  
Taipei office  
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan  
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623  

相关型号:

RP402N511A-TR

Switching Regulator,
RICOH

RP402N512A-TR

Switching Regulator,
RICOH

RP402N521A-TR

Switching Regulator,
RICOH

RP402N522A-TR

Switching Regulator,
RICOH

RP40Q-11005SRUW/N

40 Watt Quarter Brick Single Output
RECOM

RP40Q-11012SRUW/N

40 Watt Quarter Brick Single Output
RECOM

RP40Q-11015SRUW/N

40 Watt Quarter Brick Single Output
RECOM

RP40Q-11024SRUW/N

40 Watt Quarter Brick Single Output
RECOM

RP40Q-11048SRUW/N

40 Watt Quarter Brick Single Output
RECOM

RP40Q-RUW

40 Watt Quarter Brick Single Output
RECOM

RP41.1KOHM0.5%

Fixed Resistor, Wire Wound, 3W, 1100ohm, 200V, 0.5% +/-Tol, -25,25ppm/Cel,
VISHAY

RP410024

Power PCB Relay RPII/1
MACOM