RP504K231D-E2 [RICOH]

Switching Controller, Voltage-mode, 0.9A, 2550kHz Switching Freq-Max, CMOS, PDSO6, 1.20 X 1.60 MM, HALOGEN FREE AND ROHS COMPLIANT, DFN-6;
RP504K231D-E2
型号: RP504K231D-E2
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

Switching Controller, Voltage-mode, 0.9A, 2550kHz Switching Freq-Max, CMOS, PDSO6, 1.20 X 1.60 MM, HALOGEN FREE AND ROHS COMPLIANT, DFN-6

开关 光电二极管
文件: 总29页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RP504x SERIES  
600mAStep-down DC/DC Converter with Synchronous Rectifier  
NO.EA-259-130520  
OUTLINE  
The RP504x Series are low supply current CMOS-based 600mAstep-down DC/DC Converters with  
synchronous rectifier. Each of these ICs consists of an oscillator, a reference voltage unit, an error amplifier, a  
switching control circuit, a mode control circuit(Ver.A, D), a soft-start circuit, a "latch type" protection circuit, an  
under voltage lockout (UVLO) circuit, and switching transistors. A low ripple, high efficiency synchronous rectifier  
step-down DC/DC converter can be easily composed of this IC with only an inductor and capacitors. Since  
packages are SOT-23-5, DFN1616-6B, DFN(PLP)1216-6F, high density mounting on boards is possible.  
As protection circuits, the RP504x Series contain a current limit circuit which limits the Lx peak current in each  
clock cycle, and a latch type protection circuit which latches the built-in driver to the OFF state if the load current  
exceeds the limit value or the output short continues for a specified time (the protection delay time). The latch  
protective circuit can be released by once putting the IC into the standby mode with the CE pin and then into the  
active mode, or, by turning the power off and back on. Setting the supply voltage lower than the UVLO detector  
threshold can also release the latch protective circuit.  
In terms of the output voltage, since the feedback resistances are built-in, the voltage is fixed internally. 0.1V  
step output can be set by laser-trim and 1.5% or 18mV tolerance depending on the output voltage is  
guaranteed. By inputting a signal to a MODE pin, the RP504x Series can be switched between PWM/VFM auto  
switching control and Forced PWM control. PWM/VFM auto switching control switches to high-efficiency VFM  
mode in low output current. Forced PWM control switches to fixed-frequency Forced PWM mode for reducing  
noise in low output current.  
)This is an approximate value, because output current depends on conditions and external parts.  
FEATURES  
Supply Current...................................................... Typ. 25A(at VFM mode, at no load)  
Standby Current.................................................... Max. 5A  
Input Voltage Range ............................................. 2.3V to 5.5V (VOUT1.0V)  
Output Voltage Range........................................... 0.8V to 3.3V (With a 0.1V step)  
Output Voltage Accuracy....................................... 1.5% (VOUT1.2V), 18mV (VOUT<1.2V)  
Temperature-Drift Coefficient of Output Voltage... Typ. 40ppm/C  
Oscillator Frequency............................................. Typ. 2.25MHz  
Oscillator Maximum Duty Cycle............................ Min. 100%  
Built-in Driver ON Resistance ............................... Typ. Pch. 0.34Nch. 0.43(VIN=3.6V)  
UVLO Detector Threshold..................................... Typ. 2.0V  
Soft Start Time....................................................... Typ. 0.15ms  
LX Current Limit..................................................... Typ. 900mA  
Latch type Protection Circuit................................. Typ. 1.5ms  
Auto discharge function ........................................ Only for D Version  
Two choices of Switching Mode............................ DFN1616-6B and DFN(PLP)1216-6F are available in  
adjustable switching control options from PWM/VFM auto switching type or Forced PWM type by using  
MODE pin. SOT-23-5 is available in fixed switching control options: PWM/VFM auto switching type for B  
version or Forced PWM type for C version.  
Packages .............................................................. SOT-23-5, DFN1616-6B, DFN(PLP)1216-6F  
1
RP504x  
APPLICATIONS  
Power source for battery-powered equipment.  
Power source for hand-held communication equipment, cameras, VCRs, camcorders.  
Power source for HDD, portable equipment.  
BLOCK DIAGRAMS  
RP504xxxxA  
VIN  
CURRENT  
CHIP  
ENABLE  
RAMP  
COMPENSATION  
CE  
FEEDBACK  
OSCILLATOR  
CURRENT  
PROTECTION  
Lx  
VREF  
SWITCHING  
CONTROL  
PWM  
VOUT  
SOFT  
START  
UVLO  
MODE  
GND  
RP504xxxxB  
VIN  
CE  
CURRENT  
CHIP  
ENABLE  
RAMP  
COMPENSATION  
FEEDBACK  
OSCILLATOR  
CURRENT  
PROTECTION  
Lx  
VREF  
SWITCHING  
CONTROL  
PWM  
VOUT  
SOFT  
START  
UVLO  
MODE  
GND  
2
RP504x  
RP504xxxxC  
VIN  
CE  
CURRENT  
RAMP  
COMPENSATION  
CHIP  
ENABLE  
FEEDBACK  
OSCILLATOR  
CURRENT  
PROTECTION  
Lx  
VREF  
SWITCHING  
CONTROL  
PWM  
SOFT  
START  
VOUT  
UVLO  
MODE  
GND  
RP504xxxxD  
VIN  
CHIP  
ENABLE  
RAMP  
COMPENSATION  
CURRENT  
FEEDBACK  
CE  
OSCILLATOR  
CURRENT  
PROTECTION  
LX  
VREF  
SWITCHING  
CONTROL  
PWM  
VOUT  
SOFT  
START  
UVLO  
MODE  
GND  
3
RP504x  
SELECTION GUIDE  
In the RP504x Series, output voltage, MODE control, auto discharge function, and package for the ICs are  
selectable at the user’s request.  
Product Name  
RP504Nxx1$-TR-FE  
RP504Lxx1$-TR  
Package  
SOT-23-5  
Quantity per Reel  
3,000 pcs  
Pb Free  
Yes  
Halogen Free  
Yes  
Yes  
Yes  
DFN1616-6B  
DFN(PLP)1216-6F  
5,000 pcs  
Yes  
RP504Kxx1$-E2  
5,000 pcs  
Yes  
1
xx : The output voltage can be designated in the range from 0.8V(08) to 3.3V(33) in 0.1V steps .  
Designation is possible in the range from 0.8V to 3.3V with a step of 0.1V  
(Refer to the marking information)  
$ : Designation of mask option  
Symbol  
Package  
Mode Control  
Auto discharge function  
Yes  
DFN1616-6B  
DFN(PLP)1216-6F  
A
(“H” forced PWM,  
“L” PWM/VFM automatic shift)  
No  
No  
B
C
SOT-23-5  
SOT-23-5  
No  
No  
(PWM/VFM automatic shift)  
No  
(forced PWM)  
Yes  
DFN1616-6B  
DFN(PLP)1216-6F  
D
(“H” forced PWM,  
“L” PWM/VFM automatic shift)  
Yes  
Auto-discharge function quickly lowers the output voltage to 0V, when the chip enable signal is switched from the active  
mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.  
1) 0.05V step is also available as a custom code.  
PIN CONFIGURATIONS  
SOT-23-5  
DFN1616-6B  
Top View Bottom View  
DFN(PLP)1216-6F  
Top View Bottom View  
Top View  
5
4
6
5
4
4
5
6
6
5
4
4
5
6
(mark side)  
1
2
3
3
2
1
1
2
3
3
2
1
1
2
3
4
RP504x  
PIN DESCRIPTIONS  
RP504Nxx1B, RP504Nxx1C : SOT-23-5  
Pin No.  
Symbol  
VOUT  
GND  
LX  
Description  
1
2
3
4
5
Output Pin  
Ground Pin  
LX Switching Pin  
Input Pin  
VIN  
CE  
Chip Enable Pin ("H" Active)  
RP504Lxx1A, RP504Lxx1D : DFN1616-6B  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
CE  
Chip Enable Pin ("H" Active)  
MODE  
VIN  
Mode Control Pin (“H” forced PWM, “L” PWM/VFM automatic shift)  
Input Pin  
LX  
LX Switching Pin  
Ground Pin  
Output Pin  
GND  
VOUT  
) Tab is GND level. (They are connected to the reverse side of this IC.)  
The tab is better to be connected to the GND, but leaving it open is also acceptable.  
RP504Kxx1A, RP504Kxx1D : DFN(PLP)1216-6F  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
VIN  
Input Pin  
MODE  
CE  
Mode Control Pin (“H” forced PWM, “L” PWM/VFM automatic shift)  
Chip Enable Pin ("H" Active)  
Output Pin  
VOUT  
GND  
LX  
Ground Pin  
LX Switching Pin  
5
RP504x  
ABSOLUTE MAXIMUM RATINGS  
(GND=0V)  
Symbol  
VIN  
Item  
Rating  
-0.3 to 6.5  
-0.3 to VIN + 0.3  
-0.3 to 6.5  
-0.3 to 6.5  
-0.3 to 6.5  
900  
Unit  
VIN Input Voltage  
LX Pin Voltage  
V
V
VLX  
VCE  
CE Pin Input Voltage  
Mode Control Pin Voltage  
VOUT Pin Voltage  
V
VMODE  
VOUT  
ILX  
V
V
LX Pin Output Current  
mA  
Power Dissipation (SOT-23-5)  
420  
Power Dissipation (DFN1616-6B)  
PD  
mW  
640  
Power Dissipation (DFN(PLP)1216-6F)  
Operating Temperature Range  
Storage Temperature Range  
385  
Ta  
-40 to 85  
-55 to 125  
C  
C  
Tstg  
) For Power Dissipation, please refer to PACKAGE INFORMATION.  
ABSOLUTE MAXIMUM RATINGS  
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the  
permanent damages and may degrade the life time and safety for both device and system using the device  
in the field. The functional operation at or over these absolute maximum ratings is not assured.  
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)  
All of electronic equipment should be designed that the mounted semiconductor devices operate within the  
recommended operating conditions. The semiconductor devices cannot operate normally over the  
recommended operating conditions, even if when they are used over such conditions by momentary  
electronic noise or surge. And the semiconductor devices may receive serious damage when they continue  
to operate over the recommended operating conditions.  
6
RP504x  
ELECTRICAL CHARACTERISTICS  
RP504xxxxA, RP504xxxxD  
(Ta=25C)  
Symbol  
Item  
Conditions  
Min.  
2.3  
Typ.  
Max.  
5.5  
Unit  
VOUT 1.0  
VIN  
Operating Input Voltage  
V
VOUT <1.0  
2.3  
4.5  
VOUT1.2V  
0.985  
-0.018  
1.015  
+0.018  
VIN=VCE=3.6V  
or VSET+1V  
VOUT  
Output Voltage  
V
VOUT<1.2V  
Output Voltage Temperature  
Coefficient  
±40  
VOUT/T  
-40C Ta 85C  
ppm/C  
fosc  
Oscillator Frequency  
Supply Current 1  
VIN=VCE=3.6V or VSET+1V  
1.95  
2.25  
400  
25  
400  
0
2.55  
800  
40  
800  
5
MHz  
IDD1  
VIN=VCE=5.5V, VOUT=VSET0.8  
A  
VMODE=0V  
IDD2  
Supply Current 2  
VIN=VCE=VOUT=5.5V  
A  
VMODE=5.5V  
VIN=5.5V,VCE=0V  
VIN=VCE=5.5V  
Istandby  
ICEH  
Standby Current  
A  
A  
A  
A  
A  
A  
A  
A  
A  
V
CE "H" Input Voltage  
CE "L" Input Voltage  
Mode "H" Input Current  
Mode "L" Input Current  
-1  
-1  
-1  
-1  
-1  
-1  
-1  
-5  
1.0  
0
1
ICEL  
VIN=5.5V,VCE=0V  
VIN=VMODE=5.5V  
0
1
IMODEH  
IMODEL  
IVOUTH  
IVOUTL  
ILXLEAKH  
ILXLEAKL  
VCEH  
0
1
VIN=5.5V, VMODE=0V  
VIN=VOUT=5.5V,VCE=0V  
VIN=5.5V,VCE=VOUT=0V  
VIN=VLX=5.5V,VCE=0V  
VIN=5.5V,VCE=VLX=0V  
VIN=5.5V  
0
1
VOUT "H" Input Current  
1
0
1
VOUT "L" Input Current  
LX Leakage Current "H"  
LX Leakage Current "L"  
CE "H" Input Voltage  
CE "L" Input Voltage  
Mode ”H” Input Voltage  
Mode ”L” Input Voltage  
0
1
0
5
0
1
VCEL  
VIN=2.3V  
0.4  
0.4  
V
VMODEH  
VMODEL  
RLOW  
VIN=VCE=5.5V  
1.0  
V
VIN=VCE=2.3V  
V
Nch On Resistance  
2
VIN=3.6V,VCE=0V  
VIN=3.6V, ILX=100mA  
VIN=3.6V, ILX=100mA  
30  
RONP  
On Resistance of Pch Tr.  
On Resistance of Nch Tr.  
0.34  
0.43  
RONN  
Maxduty Oscillator Maximum Duty Cycle  
100  
%
tstart  
ILXlim  
Soft-start Time  
VIN=VCE=3.6V or VSET+1V  
VIN=VCE=3.6V or VSET+1V  
VIN=VCE=3.6V or VSET+1V  
VIN=VCE  
150  
900  
1.5  
2.0  
2.1  
310  
s  
mA  
ms  
V
Lx Current Limit  
700  
0.5  
1.9  
2.0  
tprot  
Protection Delay Time  
UVLO Detector Threshold  
UVLO Released Voltage  
5
VUVLO1  
VUVLO2  
2.1  
2.2  
VIN=VCE  
V
Test circuit is "OPEN LOOP" and AGND=PGND=0V unless otherwise specified.  
1) without auto discharge version only  
2) with auto discharge version only  
7
RP504x  
RP504xxxxB, RP504xxxxC  
(Ta=25C)  
Symbol  
Item  
Conditions  
Min.  
2.3  
Typ.  
Max.  
5.5  
Unit  
VOUT 1.0  
VIN  
Operating Input Voltage  
V
VOUT <1.0  
2.3  
4.5  
VOUT  
1.2V  
0.985  
-0.018  
1.015  
VIN=VCE=3.6V  
or VSET+1V  
VOUT  
Output Voltage  
V
VOUT < 1.2V  
+0.018  
Output Voltage Temperature  
Coefficient  
±40  
VOUT/T  
-40C Ta 85C  
ppm/C  
fosc  
Oscillator Frequency  
Supply Current 1  
VIN=VCE=3.6V or VSET+1V  
1.95  
2.25  
400  
40  
500  
0
2.55  
800  
60  
840  
5
MHz  
IDD1  
VIN=VCE=5.5V, VOUT=VSET0.8  
A  
RP504xxxxB  
RP504xxxxC  
IDD2  
Supply Current 2  
VIN=VCE=VOUT=5.5V  
A  
Istandby  
ICEH  
Standby Current  
VIN=5.5V,VCE=0V  
VIN=VCE=5.5V  
A  
A  
A  
A  
A  
A  
A  
V
CE "H" Input Voltage  
CE "L" Input Voltage  
VOUT "H" Input Current  
VOUT "L" Input Current  
LX Leakage Current "H"  
LX Leakage Current "L"  
CE "H" Input Voltage  
CE "L" Input Voltage  
On Resistance of Pch Tr.  
On Resistance of Nch Tr.  
-1  
-1  
0
1
ICEL  
VIN=5.5V,VCE=0V  
0
1
IVOUTH  
IVOUTL  
ILXLEAKH  
ILXLEAKL  
VCEH  
VIN=VOUT=5.5V,VCE=0V  
VIN=5.5V,VCE=VOUT=0V  
VIN=VLX=5.5V,VCE=0V  
VIN=5.5V,VCE=VLX=0V  
VIN=5.5V  
-1  
0
1
-1  
0
1
-1  
0
5
-5  
0
1
1.0  
VCEL  
VIN=2.3V  
0.4  
V
RONP  
RONN  
VIN=3.6V, ILX=100mA  
VIN=3.6V, ILX=100mA  
0.34  
0.43  
Maxduty Oscillator Maximum Duty Cycle  
100  
%
tstart  
ILXlim  
Soft-start Time  
VIN=VCE=3.6V or VSET+1V  
VIN=VCE=3.6V or VSET+1V  
VIN=VCE=3.6V or VSET+1V  
VIN=VCE  
150  
900  
1.5  
2.0  
2.1  
310  
s  
mA  
ms  
V
LX Current Limit  
700  
0.5  
1.9  
2.0  
tprot  
Protection Delay Time  
UVLO Detector Threshold  
UVLO Released Voltage  
5
VUVLO1  
VUVLO2  
2.1  
2.2  
VIN=VCE  
V
Test circuit is "OPEN LOOP" and AGND=PGND=0V unless otherwise specified.  
8
RP504x  
TYPICAL APPLICATION  
RP504N:SOT-23-5 (MODE Pin is not included.)  
VOUT  
GND  
LX  
CE  
Control  
RP504N  
Series  
Load  
VIN  
VIN  
COUT 4.7F  
L 2.2H  
CIN 2.2F  
RP504L:DFN1616-6B / RP504K:DFN(PLP)1216-6F (MODE Pin is included.)  
VOUT  
CE  
Control  
Control  
RP504L,K  
Series  
MODE  
GND  
Load  
VIN  
VIN  
LX  
COUT 4.7F  
L 2.2H  
CIN 2.2F  
) MODE=“H” forced PWM  
MODE=“L” PWM/VFM automatic shift  
Symbol  
Recommendation components  
C1608JB0J225K (TDK)  
2.2F  
C1005JB0J225K (TDK)  
JMK105BJ225MV (Taiyo Yuden)  
2.2F2  
CIN  
Ceramic  
C1005X5R0J475M (TDK)  
JMK105BJ475MV (Taiyo Yuden)  
4.7F  
4.7F  
C1608JB0J475K (TDK)  
GRM188B30J475KE18 (Murata)  
COUT  
Ceramic  
Inductor  
MIPSZ2520D2R2 (FDK)  
MIPS2520D2R2 (FDK)  
MLP2520S2R2M (TDK)  
VLS252010T-2R2M (TDK)  
L
2.2H  
9
RP504x  
TECHNICAL NOTES  
When you use these ICs, consider the following issues:  
Set external components such as an inductor, CIN, COUT as close as possible to the IC, in particular, minimize  
the wiring to VIN pin and PGND pin. Reinforce the VIN, PGND, and VOUT lines sufficiently. Large switching  
current may flow in these lines. If the impedance of VIN and PGND lines is too large, the internal voltage level in  
this IC may shift caused by the switching current, and the operation might be unstable. The wiring between  
VOUT and load and between L and VOUT should be separated.  
The recommended capacitance value for the CIN capacitor connected between the VIN and PGND pins is  
2.2µF or more. Also, the recommended capacitance value for the COUT capacitor is 4.7µF ~ 10µF.Please be  
aware of the characteristics of bias dependence and temperature fluctuation of ceramic capacitor.  
Choose an inductor with inductance range from 2.2H to 4.7H. The phase compensation has been made by  
these values with output capacitors. The recommendation characteristics of the inductor are low DC resistance,  
large enough permissible current, and strong against the magnetic saturation. Inductance value may shift  
depending on an inductor. If the inductance value at an actual load current is low, LX peak current may increase  
and may overlap the LX current limit. As a result, over current protection may work.  
Over current protection circuit, Latch-type protection circuit may be affected by self-heating and heat radiation  
environment.  
The performance of power supply circuits using this IC largely depends on the peripheral circuits. Please be  
very careful when setting the peripheral parts. When designing the peripheral circuits of each part, PCB  
patterns, and this IC, please do not exceed the rated values (Voltage, Current, Power).  
10  
RP504x  
Operation of step-down DC/DC converter and Output Current  
The DC/DC converter charges energy in the inductor when LX transistor is ON, and discharges the energy  
from the inductor when LX transistor is OFF and controls with less energy loss, so that a lower output voltage  
than the input voltage is obtained. The operation will be explained with reference to the following diagrams:  
<Basic Circuit>  
<Current through L>  
IL  
ILmax  
i1  
ILmin  
topen  
VIN  
VOUT  
i1  
i2  
L
Pch Tr  
Nch Tr  
i2  
CL  
ton  
toff  
GND  
T=1/fosc  
Step 1: Pch Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases  
from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of Pch Tr.  
Step 2: When Pch Tr. turns off, Synchronous rectifier Nch Tr. turns on in order that L maintains IL at ILmax, and  
current IL (=i2) flows.  
Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and Nch Tr. turns off.  
Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not  
enough. In this case, IL value increases from this ILmin (>0).  
In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with  
the oscillator frequency (fosc) being maintained constant.  
The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the  
same as those when Pch Tr. turns on and off.  
The difference between ILmax and ILmin, which is represented by I:  
I = ILmax ILmin = VOUT topen / L = (VIN VOUT) ton / L ......................................... Equation 1  
wherein,  
T = 1 / fosc = ton + toff  
duty (%)= ton / T 100 = ton fosc 100  
topen toff  
In Equation 1, VOUT topen / L and (VIN VOUT) ton / L respectively show the change of the current at "ON", and  
the change of the current at "OFF".  
11  
RP504x  
Discontinuous mode and Continuous mode  
When the output current (IOUT) is relatively small, topen < toff as illustrated in the above diagram. In this case,  
the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time  
period of toff, therefore ILmin becomes to zero (ILmin=0). When IOUT is gradually increased, eventually, topen  
becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The  
former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.  
Discontinuous mode  
Continuous mode  
ILmax  
IL  
IL  
ILmax  
ILmin  
ILmin  
topen  
Iconst  
t
t
ton  
T=1/fosc  
toff  
ton  
toff  
T=1/fosc  
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc,  
tonc = T VOUT / VIN .......................................................................................................Equation 2  
When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode.  
12  
RP504x  
Output Current and selection of External components  
The relation between the output current and external components is as follows:  
(Wherein, Ripple Current p-p value is described as IRP, ON resistance of Pch Tr. and Nch Tr. of LX are  
respectively described as RONP and RONN, and the DC resistor of the inductor is described as RL.)  
When Pch Tr. of LX is ON:  
VIN = VOUT + (RONP + RL) IOUT + L IRP / ton ................................................................. Equation 3  
When Pch Tr. of LX is "OFF" (Nch Tr. is "ON"):  
L IRP / toff = RONN IOUT + VOUT + RL IOUT ................................................................. Equation 4  
Put Equation 4 to Equation 3 and solve for ON duty of Pch transistor, DON = ton / (toff + ton),  
DON = (VOUT + RONN IOUT + RL IOUT) / (VIN + RONN IOUT RONP IOUT)....................... Equation 5  
Ripple Current is as follows:  
IRP = (VIN VOUT RONP IOUT RL IOUT) DON / fosc / L............................................. Equation 6  
wherein, peak current that flows through L, and LX Tr. is as follows:  
ILXmax = IOUT + IRP / 2 .................................................................................................... Equation 7  
Consider ILXmax, condition of input and output and select external components.  
The above explanation is directed to the calculation in an ideal case in continuous mode.  
13  
RP504x  
TIMING CHART  
(1) Soft Start Time  
In the case of starting this IC with CE  
In the case of starting this IC with CE, the operation can be as in the timing chart below.  
When the voltage of CE pin (VCE) is beyond the threshold level, the operation of the IC starts. The threshold  
voltage of CE pin is in between CE "H" input voltage (VCEH) and CE "L" input voltage (VCEL) described in the  
electrical characteristics table. Soft-start circuit operates, and after the certain time, the reference voltage  
inside the IC (VREF) is rising gradually up to the constant value.  
VCEH  
Threshold Level  
VCEL  
CE Pin  
Input Voltage  
(VCE)  
Soft-start Time  
IC Internal Voltage  
Reference  
Soft-start Circuit  
operating  
(VREF)  
Lx Voltage  
(VLX)  
PWM mode operating  
during the Soft-start Time  
Output Voltage  
Depending on Power supply,  
Load Current, External Components  
(VOUT)  
Soft-start time is the time interval from soft start circuit starting point to the reference voltage level reaching  
point up to this constant level.  
Soft start time is not always equal to the turn-on speed of DC/DC converter.  
The power supply capacity for this IC, load current, inductance and capacitance values affect the turn-on  
speed.  
In the case of starting with power supply  
In the case of starting with power supply, when the input voltage (VIN) is larger than UVLO released voltage  
(VUVLO2), soft start circuit operates, and after that, the same explanation above is applied to the operation.  
Soft-start time is the time interval from soft start circuit starting point to the reference voltage level reaching  
point up to this constant level.  
Set VOUT  
VUVLO2  
VUVLO1  
Input Voltage  
(VIN)  
Soft-start Time  
IC Internal Voltage  
Reference  
(VREF)  
Lx Voltage  
(VLX)  
PWM mode operating during the Soft-start Time  
Set VOUT  
Output Voltage  
Depending on Power supply,  
Load Current, External Components  
(VOUT)  
Turn-on speed is affected by next conditions;  
(a) Input Voltage (VIN) rising speed depending on the power supplier to the IC and input capacitor CIN.  
(b) Output Capacitor COUT value and load current value.  
14  
RP504x  
(2) Under Voltage Lockout (UVLO) Circuit  
The step-down DC/DC converter stops and ON duty becomes 100%, if input voltage (VIN) becomes less  
than the set output voltage (Set VOUT), the output voltage (VOUT) gradually drops according to the input  
voltage (VIN). If the input voltage drops more and becomes less than UVLO detector threshold (VUVLO1), the  
under voltage lockout circuit (UVLO) operates, the IC internal reference voltage (VREF) stops, switching  
transistors turn off and the output voltage drops according to the load and output capacitor COUT value.  
To restart the normal operation, the input voltage (VIN) must be more than the UVLO released voltage  
(VUVLO2).  
The timing chart below describes the operation with varying the input voltage (VIN).  
Set VOUT  
VUVLO2  
VUVLO1  
Input Voltage  
(VIN)  
Soft-start Time  
IC Internal Voltage  
Reference  
(VREF)  
Lx Voltage  
(VLX)  
Output Voltage  
Set VOUT  
(VOUT)  
Depending on Power supply,  
Load Current, External Components  
Actually, the waveform of VOUT at UVLO working and releasing varies depending on the initial voltage of  
COUT and load current situation.  
15  
RP504x  
(3) Over Current Protection Circuit, Latch Type Protection Circuit  
Over current protection circuit supervises the inductor peak current (the current flowing through Pch  
transistor) in each switching cycle, and if the current exceeds the LX current limit (I  
transistor. The LX current limit of RP504x is Typ.900mA.  
), turns off Pch  
LXlim  
Latch type protection circuit latches the built-in driver to the OFF state and stops the operation of DC/DC  
converter if the over current status continues or the output voltage continues being the half of the setting  
voltage for equal or longer than protection delay time (tprot).  
LX current limit (I ) and protection delay time (tprot) could be easily affected by self-heating or ambient  
LXlim  
environment. If the input voltage (VIN) drops drastically or becomes unstable due to short-circuit, the  
protection operation and protection delay time may be affected.  
Protection Delay Time (tprot)  
Lx Current  
Lx Current Limit (ILXlim)  
Pch Tr. Current  
Lx Voltage  
(VLX)  
To release the condition of latch type protection, restart this IC by inputting "L" signal to CE pin, or restart  
this IC with power-on or make the supply voltage lower than UVLO detector threshold (VUVLO1) level.  
The timing chart shown below describes the changing process of input voltage rising, stable operating,  
operating with large current, reset with CE pin, stable operating, input voltage falling, input voltage  
recovering, and stable operating.  
Point(1) : If the large current flows through the circuit or the IC goes into low output voltage condition due to  
short-circuit or other reasons, the latch type protection circuit latches the built-in driver to OFF state after the  
protection delay time (tprot). Then, VLX becomes "L" and the output voltage turns OFF. In this timing chart  
below, the latch protective circuit can be released by once putting the IC into "L" with the CE pin and then  
into "H" again.  
Point(2) : The latch type protection can be released by UVLO reset by making the input voltage lower than  
the UVLO detector threshold(VUVLO1).  
(1)  
(2)  
Set VOUT  
UVLORelease Voltage (VUVLO2)  
UVLODetect Voltage (VUVLO1)  
Input Voltage  
(VIN)  
UV LO Reset  
CE Pin  
Input Voltage  
(VCE)  
Set VOUT  
CE Reset  
Threshold Level  
Protection Delay Time Protection Delay Time  
Set VOUT  
Set VOUT  
Lx Voltage  
(VLX )  
Latch-type Protection  
Latch-type Protection  
Output Voltage  
(VOUT)  
Stable  
operation  
Stable  
operation  
Stable  
operation  
Soft-start Time Soft-start Time  
Soft-start Time  
16  
RP504x  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
RP504x VOUT=0.8V  
RP504x VOUT=0.8V  
MODE=“L”PWM/VFM automatic shift  
MODE=“H” forced PWM  
0.820  
0.820  
0.815  
0.810  
0.805  
0.800  
0.795  
0.790  
0.785  
0.780  
VIN=3.6V  
0.815  
VIN=4.5V  
0.810  
VIN=3.6V  
VIN=4.5V  
0.805  
0.800  
0.795  
0.790  
0.785  
0.780  
0.01  
0.1  
1
10  
100  
0
100 200  
300 400 500 600  
Output Current IOUT (mA)  
Output Current IOUT (mA)  
RP504x VOUT=1.2V  
RP504x VOUT=1.2V  
MODE=“L”PWM/VFM automatic shift  
MODE=“H” forced PWM  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
1.220  
VIN=3.6V  
VIN=5.0V  
VIN=3.6V  
VIN=5.0V  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
0.01  
0.1  
1
10  
100  
0
100 200  
300  
400 500  
600  
Output Current IOUT (mA)  
Output Current IOUT (mA)  
RP504x VOUT=1.8V  
RP504x VOUT=1.8V  
MODE=“L”PWM/VFM automatic shift  
MODE=“H” forced PWM  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.830  
VIN=3.6V  
VIN=5.0V  
VIN=3.6V  
1.820  
1.810  
1.800  
1.790  
1.780  
VIN=5.0V  
0
100 200 300 400 500 600  
Output Current IOUT (mA)  
0.01  
0.1  
1
10  
100  
Output Current IOUT (mA)  
17  
RP504x  
RP504x VOUT=3.3V  
MODE=“L”PWM/VFM automatic shift  
RP504x VOUT=3.3V  
MODE=“H” forced PWM  
3.320  
3.310  
3.300  
3.290  
3.280  
3.270  
3.320  
VIN=4.3V  
VIN=4.3V  
VIN=5.0V  
3.310  
3.300  
3.290  
3.280  
3.270  
VIN=5.0V  
0
100 200 300 400 500 600  
Output Current IOUT (mA)  
0.01  
0.1  
1
10  
100  
Output Current IOUT (mA)  
2) Output Voltage vs. Input Voltage  
RP504x VOUT=0.8V  
RP504x VOUT=1.2V  
MODE=“H” forced PWM  
MODE=“H” forced PWM  
0.820  
0.815  
0.810  
0.805  
0.800  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
IOUT=1mA  
0.795  
IOUT=1mA  
IOUT=50mA  
0.790  
IOUT=50mA  
IOUT=250mA  
IOUT=250mA  
0.785  
0.780  
2
2.5  
3
3.5  
4
4.5  
2
2.5  
3
3.5  
4
4.5  
(V)  
5
5.5  
Input Voltage VIN(V)  
Input Voltage VIN  
RP504x VOUT=1.8V  
RP504x VOUT=3.3V  
MODE=“H” forced PWM  
MODE=“H” forced PWM  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
1.83  
1.82  
1.81  
1.8  
3.29  
3.28  
3.27  
3.26  
3.25  
IOUT=1mA  
IOUT=1mA  
1.79  
1.78  
1.77  
IOUT=50mA  
IOUT=250mA  
IOUT=50mA  
IOUT=250mA  
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage VIN(V)  
Input Voltage VIN(V)  
18  
RP504x  
3) Output Voltage vs. Temperature  
1.830  
1.820  
VIN=3.6V  
1.810  
1.800  
1.790  
1.780  
1.770  
-50  
-25  
0
25  
50  
75  
100  
Temperature Ta(°C)  
4) Efficiency vs. Output Current  
RP504x VOUT=0.8V  
RP504x VOUT=1.2V  
IN  
MODE  
V =5.0V, V  
=0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
IN  
MODE  
V =4.5V, V  
=0V  
90  
IN  
MODE  
V =3.6V, V  
=0V  
IN  
MODE  
V =3.6V, V  
=0V  
80  
70  
60  
50  
40  
30  
20  
10  
0
IN  
MODE  
V =V  
=4.5V  
IN  
V =V  
MODE  
=5.0V  
IN  
V =V  
MODE  
=3.6V  
IN  
V =V  
MODE  
=3.6V  
0.01  
0.1  
1
10  
OUT  
100  
(mA)  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT (mA)  
Output Current I  
RP504x VOUT=1.8V  
RP504x VOUT=3.3V  
IN  
MODE  
V =5.0V, V  
=0V  
=0V  
IN  
MODE  
V =5.0V, V  
=0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IN  
MODE  
V =4.3V, V  
IN  
MODE  
V =3.6V, V  
=0V  
IN  
V =V  
MODE  
=4.3V  
IN  
V =V  
MODE  
=5.0V  
IN MODE  
V =V  
=3.6V  
IN  
V =V  
MODE  
=3.6V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
(mA)  
1000  
OUT  
OUT  
Output Current I  
Output Current I  
(mA)  
19  
RP504x  
5) Supply Current vs. Temperature  
RP504x VOUT=1.8V(VIN=5.5V)  
6) Supply Current vs. Input Voltage  
RP504x VOUT=1.8V  
MODE=“L”PWM/VFM automatic shift  
MODE=“L”PWM/VFM automatic shift  
40  
40  
35  
30  
25  
20  
15  
10  
Closed Loop  
35  
Closed Loop  
Open Loop  
Open Loop  
30  
25  
20  
15  
10  
-50  
-25  
0
25  
50  
75  
100  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage VIN (V)  
Temperature Ta(°C)  
7) Output Ripple Voltage Vripple  
RP504x VOUT=0.8V(VIN=3.6V)  
MODE=“L”PWM/VFM automatic shift  
RP504x VOUT=0.8V(VIN=3.6V)  
MODE=“H” forced PWM  
OUT  
OUT  
I
=10mA  
I
=10mA  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
Output Voltage  
IL  
Output Voltage  
IL  
100  
50  
0
300  
200  
100  
0
-50  
-100  
10  
-100  
0
5
10  
15  
20  
0
1
2
3
4
5
6
7
8
9
Time t (µs)  
Time t (µs)  
RP504x VOUT=1.2V(VIN=3.6V)  
MODE=“L”PWM/VFM automatic shift  
RP504x VOUT=1.2V(VIN=3.6V)  
MODE=“H” forced PWM  
IOUT=10mA  
OUT  
I
=10mA  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
Output Voltage  
IL  
Output Voltage  
IL  
100  
50  
0
-50  
-100  
300  
200  
100  
0
-100  
0
1
2
3
4
5
6
7
8
9 10  
0
5
10  
15  
20  
Time t (µs)  
Time t (µs)  
20  
RP504x  
RP504x VOUT=1.8V(VIN=3.6V)  
MODE=“L”PWM/VFM automatic shift  
OUT  
RP504x VOUT=1.8V(VIN=3.6V)  
MODE=“H” forced PWM  
IOUT=10mA  
I
=10mA  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
Output Voltage  
IL  
Output Voltage  
IL  
100  
50  
300  
200  
100  
0
0
-50  
-100  
-100  
0
1
2
3
4
5
6
7
8
9 10  
0
5
10  
15  
20  
Time t (µs)  
Time t (µs)  
RP504x VOUT=3.3V(VIN=5.0V)  
RP504x VOUT=3.3V(VIN=5.0V)  
MODE=“H” forced PWM  
MODE=“L”PWM/VFM automatic shift  
OUT  
I
=10mA  
OUT  
I
=10mA  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
Output Voltage  
IL  
Output Voltage  
IL  
200  
150  
100  
50  
0
-50  
-100  
300  
200  
100  
0
-100  
0
1
2
3
4
5
6
7
8
9 10  
0
5
10  
15  
20  
Time t (µs)  
Time t (µs)  
8) Frequency vs. Temperature  
9) Frequency vs. Input Voltage  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.5  
-40°C  
VIN=3.6V  
2.4  
2.3  
2.2  
2.1  
2
25°C  
85°C  
-50  
-25  
0
25  
50  
75  
100  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature Ta (°C)  
Input Voltage VIN (V)  
21  
RP504x  
10) Soft Start Time vs. Temperature  
220  
210  
200  
190  
180  
170  
-50  
-25  
0
25  
50  
75  
100  
Temperature Ta(°C)  
11) UVLO Detector Threshold / Released Voltage vs. Temperature  
UVLO Detector Threshold Voltage UVLO Released Voltage  
2.3  
2.2  
2.1  
2.0  
1.9  
2.3  
2.2  
2.1  
2.0  
1.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Ta(°C)  
Temperature Ta(°C)  
12) CE Input Voltage vs. Temperature  
CE“H” Input Voltage(VIN=5.5V)  
CE“H” Input Voltage (VIN=2.3V)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Ta(°C)  
Temperature Ta(°C)  
22  
RP504x  
13) L Current Limit vs. Temperature  
X
1000  
950  
900  
850  
800  
-50  
-25  
0
25  
50  
75  
100  
Temperature Ta(°C)  
14) Nch Tr. ON Resistance vs. Temperature  
15) Pch Tr. ON Resistance vs. Temperature  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature Ta(°C)  
Temperature Ta(°C)  
16) Load Transient Response  
RP504x081x (VIN=3.6V)  
RP504x081x (VIN=3.6V)  
MODE=“L”PWM/VFM automatic shift  
MODE=“L”PWM/VFM automatic shift  
400  
400  
200  
0
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
1.00  
0.90  
0.80  
0.70  
0.60  
1.00  
0.90  
0.80  
0.70  
0.60  
Output Voltage  
Output Voltage  
-10  
0
10 20 30 40 50 60 70 80 90  
Time t (µs)  
-100  
0
100 200 300 400 500 600 700 800 900  
Time t (µs)  
23  
RP504x  
RP504x081x (VIN=3.6V)  
MODE=“H” forced PWM  
RP504x081x (VIN=3.6V)  
MODE=“H” forced PWM  
400  
200  
0
400  
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
1.00  
0.90  
0.80  
0.70  
0.60  
1.00  
0.90  
0.80  
0.70  
0.60  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x081x (VIN=3.6V)  
RP504x081x (VIN=3.6V)  
600  
400  
200  
0
600  
400  
200  
0
Output Current  
200mA-->500mA  
Output Current  
500mA-->200mA  
1.00  
0.90  
0.80  
0.70  
0.60  
1.00  
0.90  
0.80  
0.70  
0.60  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x121x (VIN=3.6V)  
RP504x121x (VIN=3.6V)  
MODE=“L”PWM/VFM automatic shift  
MODE=“L”PWM/VFM automatic shift  
400  
400  
200  
0
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
1.30  
1.25  
1.20  
1.15  
1.10  
1.30  
1.25  
1.20  
1.15  
1.10  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-100  
0
100 200 300 400 500 600 700 800 900  
Time t (µs)  
24  
RP504x  
RP504x121x (VIN=3.6V)  
MODE=“H” forced PWM  
RP504x121x (VIN=3.6V)  
MODE=“H” forced PWM  
400  
200  
0
400  
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
1.30  
1.25  
1.20  
1.15  
1.10  
1.30  
1.25  
1.20  
1.15  
1.10  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x121x (VIN=3.6V)  
RP504x121x (VIN=3.6V)  
600  
400  
200  
0
600  
400  
200  
0
Output Current  
200mA-->500mA  
Output Current  
500mA-->200mA  
1.30  
1.25  
1.20  
1.15  
1.10  
1.30  
1.25  
1.20  
1.15  
1.10  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x181x (VIN=3.6V)  
RP504x181x (VIN=3.6V)  
MODE=“L”PWM/VFM automatic shift  
MODE=“L”PWM/VFM automatic shift  
400  
400  
200  
0
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
1.90  
1.85  
1.80  
1.75  
1.70  
1.90  
1.85  
1.80  
1.75  
1.70  
Output Voltage  
Output Voltage  
-100  
0
100 200 300 400 500 600 700 800 900  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
25  
RP504x  
RP504x181x (VIN=3.6V)  
MODE=“H” forced PWM  
RP504x181x (VIN=3.6V)  
MODE=“H” forced PWM  
400  
200  
0
400  
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x181x (VIN=3.6V)  
RP504x181x (VIN=3.6V)  
600  
400  
200  
0
600  
400  
200  
0
Output Current  
500mA-->200mA  
Output Current  
200mA-->500mA  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x331x (VIN=5.0V)  
RP504x331x (VIN=5.0V)  
MODE=“L”PWM/VFM automatic shift  
MODE=“L”PWM/VFM automatic shift  
400  
400  
200  
0
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
3.50  
3.40  
3.30  
3.20  
3.10  
3.50  
3.40  
3.30  
3.20  
3.10  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-100  
0
100 200 300 400 500 600 700 800 900  
Time t (µs)  
26  
RP504x  
RP504x331x (VIN=5.0V)  
MODE=“H” forced PWM  
RP504x331x (VIN=5.0V)  
MODE=“H” forced PWM  
400  
200  
0
400  
200  
0
Output Current  
1mA-->300mA  
Output Current  
300mA-->1mA  
3.50  
3.40  
3.30  
3.20  
3.10  
3.50  
3.40  
3.30  
3.20  
3.10  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
RP504x331x (VIN=5.0V)  
RP504x331x (VIN=5.0V)  
600  
400  
200  
0
600  
400  
200  
0
Output Current  
200mA-->500mA  
Output Current  
500mA-->200mA  
3.50  
3.40  
3.30  
3.20  
3.10  
3.50  
3.40  
3.30  
3.20  
3.10  
Output Voltage  
Output Voltage  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
-10 0 10 20 30 40 50 60 70 80 90  
Time t (µs)  
17) Mode Switching Waveform  
RP504x (VIN=1.2V, IOUT=1mA)  
MODE=“L” --> MODE=“H”  
RP504x (VIN=1.2V, IOUT=1mA)  
MODE=“H" --> MODE=“L”  
5
5
0
Mode Input Voltage  
0
Mode Input Voltage  
1.30  
1.25  
1.30  
1.25  
1.20  
1.15  
1.20  
Output Voltage  
Output Voltage  
1.15  
-100  
0
100  
200  
300  
400  
-200  
0
200  
400  
600  
800  
Time t (µs)  
Time t (µs)  
27  
RP504x  
RP504x (VIN=1.8V, IOUT=1mA)  
MODE="L" --> MODE="H"  
RP504x (VIN=1.8V, IOUT=1mA)  
MODE="H" --> MODE="L"  
5
0
5
0
Mode Input Voltage  
Mode Input Voltage  
1.90  
1.85  
1.80  
1.75  
1.90  
1.85  
1.80  
1.75  
Output Voltage  
Output Voltage  
-200  
0
200  
400  
600  
800  
-100  
0
100  
200  
300  
400  
Time t (µs)  
Time t (µs)  
28  
1.The products and the product specifications described in this document are subject to change or  
discontinuation of production without notice for reasons such as improvement. Therefore, before  
deciding to use the products, please refer to Ricoh sales representatives for the latest  
information thereon.  
2.The materials in this document may not be copied or otherwise reproduced in whole or in part  
without prior written consent of Ricoh.  
3.Please be sure to take any necessary formalities under relevant laws or regulations before  
exporting or otherwise taking out of your country the products or the technical information  
described herein.  
4.The technical information described in this document shows typical characteristics of and  
example application circuits for the products. The release of such information is not to be  
construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual  
property rights or any other rights.  
5.The products listed in this document are intended and designed for use as general electronic  
components in standard applications (office equipment, telecommunication equipment,  
measuring instruments, consumer electronic products, amusement equipment etc.). Those  
customers intending to use a product in an application requiring extreme quality and reliability,  
for example, in a highly specific application where the failure or misoperation of the product  
could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system,  
traffic control system, automotive and transportation equipment, combustion equipment, safety  
devices, life support system etc.) should first contact us.  
6.We are making our continuous effort to improve the quality and reliability of our products, but  
semiconductor products are likely to fail with certain probability. In order to prevent any injury to  
persons or damages to property resulting from such failure, customers should be careful enough  
to incorporate safety measures in their design, such as redundancy feature, firecontainment  
feature and fail-safe feature. We do not assume any liability or responsibility for any loss or  
damage arising from misuse or inappropriate use of the products.  
7.Anti-radiation design is not implemented in the products described in this document.  
8.Please contact Ricoh sales representatives should you have any questions or comments  
concerning the products or the technical information.  
For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material.  
After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.  
Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are  
also Antimony Free.)  
Halogen Free  
RICOH COMPANY, LTD.  
Electronic Devices Company  
http://www.ricoh.com/LSI/  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Higashi-Shinagawa Office (International Sales)  
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan  
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502  
RICOH EUROPE (NETHERLANDS) B.V.  
● Semiconductor Support Centre  
“Nieuw KronenburgProf. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands  
P.O.Box 114, 1180 AC Amstelveen  
Phone: +31-20-5474-309 Fax: +31-20-5474-791  
RICOH ELECTRONIC DEVICES KOREA Co., Ltd.  
11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea  
Phone: +82-2-2135-5700 Fax: +82-2-2135-5705  
RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.  
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,  
People's Republic of China  
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299  
RICOH COMPANY, LTD.  
Electronic Devices Company  
● Taipei office  
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)  
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623  

相关型号:

RP504K231D-TR

Switching Controller
RICOH

RP504K241A-TR

Switching Controller
RICOH

RP504K241D-TR

Switching Controller
RICOH

RP504K251D-TR

Switching Controller
RICOH

RP504K261A-E2

Switching Controller, Voltage-mode, 0.9A, 2550kHz Switching Freq-Max, CMOS, PDSO6, 1.20 X 1.60 MM, HALOGEN FREE AND ROHS COMPLIANT, DFN-6
RICOH

RP504K261A-TR

Switching Controller
RICOH

RP504K261AD-TR

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, HALOGEN FREE AND ROHS COMPLIANT, DFN-6
RICOH

RP504K261D-TR

Switching Controller
RICOH

RP504K271A-TR

Switching Controller
RICOH

RP504K271D-TR

Switching Controller
RICOH

RP504K281A-TR

Switching Controller
RICOH

RP504K291D-TR

Switching Controller
RICOH