RV5VH301-E1 [RICOH]

DC/DC CONVERTER CONTROLLER; DC / DC转换器控制器
RV5VH301-E1
型号: RV5VH301-E1
厂家: RICOH ELECTRONICS DEVICES DIVISION    RICOH ELECTRONICS DEVICES DIVISION
描述:

DC/DC CONVERTER CONTROLLER
DC / DC转换器控制器

转换器 控制器
文件: 总47页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DC/DC CONVERTER  
CONTROLLER  
RV5VH SERIES  
APPLICATION MANUAL  
NO. EA-049-0006  
DC/DC CONVERTER CONTROLLER  
RV5VH SERIES  
OUTLINE  
Each of the RV5VH series is dual output CMOS DC/DC converter ICs integrating Step-up and inverting DC/DC convert-  
ers.  
The RV5VH3×× series ICs consists of an oscillator, two VFM control circuits, control transistors(EXT switches), a phase  
shift circuit, a voltage reference unit, an error amplifier, and voltage sensing resistors. The package for the RV5VH series  
is 8pin SSOP(0.65mm pitch), and it is suitable for power supply systems with positive and negative output, such as pager,  
PDA, which need power supplies for LCD.  
RV5VH1×× and RV5VH2×× series are able to provide two DC/DC converters, one is a step-up DC/DC converter with  
internally fixed output and the other is an inverting DC/DC converter with adjustable output by external resistors. A volt-  
age detector with sensing pin is also included. RV5VH3××series are able to provide two DC/DC converters, both of them  
require external drivers, DC/DC1, and inverting one, DC/DC2, can be adjustable by resistors.  
FEATURES  
• Dual DC/DC converter system  
.................................  
DC/DC1 : step-up  
DC/DC2 : inverting(negative voltage)  
Nch. Open Drain Output  
..........................................................  
• Voltage Detector  
• Low voltage operation available  
..........................................  
RV5VH1××,RV5VH2××  
oscillator start-up from 0.8V  
oscillator start-up from 1.8V  
TYP. 80%  
.................................................................  
RV5VH3××  
• High Efficiency  
.............................................................  
• Low Supply Current  
• High accuracy feedback sensing  
• Sleep Mode  
...............................  
TYP. 2.5%  
..........................................  
RV5VH1××, RV5VH2××  
DC/DC 2  
.................................................................  
RV5VH3××  
DC/DC1, 2  
.........................  
• Available to adjust temperature drift  
DC/DC2 : with external resistor (RV5VH2××, RV5VH3××)  
coefficient of output voltage  
..............................................................  
• Small Package  
8pin SSOP(0.65mm pitch)  
APPLICATIONS  
• Power source for telecommunication systems  
• Power source for portable data processing systems, e.g. PDA, Electronic Data Banks  
• Power source for Audio-Visual systems, e.g. CD players, Video cameras  
• Power source for Notebook PCs, Word processing systems  
• Gadgets which need two power supplies, e.g. CPU and LCD  
1
DC/DC CONVERTER CONTROLLER  
(BOOST / INVERTING)  
RV5VH1××/RV5VH2××  
BLOCK DIAGRAM  
• RV5VH1××  
CSW  
1
2
3
4
+
8
7
6
5
DOUT  
FB  
VSEN  
VOUT1  
LX1  
+
Vref  
Error Amp.2  
Error Amp.1  
EXT2  
VFM2  
+
VLX lim.  
VFM1  
GND  
p_shift  
OSC  
• RV5VH2××  
CSW  
VSEN  
1
2
3
4
+
8
7
6
5
DOUT  
FB  
+
Vref  
Error Amp.2  
Error Amp.1  
VOUT1  
EXT1  
EXT2  
VFM2  
+
GND  
p_shift  
VFM1  
OSC  
2
RV5VH1××/RV5VH2××  
PIN CONFIGURATION  
• 8 pin SSOP (0.65mm pitch)  
1
2
3
4
8
7
6
5
PIN DESCRIPTION  
• RV5VH1××  
Pin No.  
Symbol  
CSW  
VSEN  
VOUT1  
LX1  
Description  
1
2
3
4
5
6
7
8
Control switch for DC/DC2  
Sensing Pin for Voltage Detector  
Output for DC/DC1, Power supply for the device  
Output for DC/DC1, switching (Nch Open-Drain)  
Ground  
GND  
EXT2  
FB  
External Transistor drive pin for DC/DC2 (CMOS output)  
Input for DC/DC2 Error Amplifier  
Output for Voltage detector  
DOUT  
• RV5VH2××  
Pin No.  
Symbol  
CSW  
VSEN  
VOUT1  
EXT1  
GND  
EXT2  
FB  
Description  
Contol switch for DC/DC2  
1
2
3
4
5
6
7
8
Sensing Pin for Voltage Detector  
Output for DC/DC1, Power supply for the device  
External Transistor drive pin for DC/DC1 (CMOS output)  
Ground  
External Transistor drive pin for DC/DC2 (CMOS output)  
Input for DC/DC2 Error Amplifier  
DOUT  
Output for Voltage Detector  
3
RV5VH1××/RV5VH2××  
ABSOLUTE MAXIMUM RATINGS  
• RV5VH1××  
Symbol  
VOUT1  
VLX1  
Item  
Ratings  
Unit  
V
VOUT1 Pin Voltage  
12  
LX1 Pin Voltage  
12  
V
VSEN  
DOUT  
VCSW  
VEXT2  
VFB  
VSEN Pin Voltage  
12  
12  
V
DOUT Pin Voltage  
V
CSW Pin Voltage  
–0.3 to VOUT1 +0.3  
–0.3 to VOUT1 +0.3  
–0.3 to VOUT1 +0.3  
400  
V
EXT2 Pin Voltage  
V
FB Pin Voltage  
V
ILX1  
LX1 Output Current  
EXT2 Output Current  
Power Dissipation  
Operating Temperature  
Storage Temperature  
Lead Temperature (Soldering)  
mA  
mA  
mW  
˚C  
˚C  
IEXT2  
PD  
50  
300  
Topt  
–40 to +85  
–55 to +125  
260˚C 10sec  
Tstg  
Tsolder  
4
RV5VH1××/RV5VH2××  
• RV5VH2××  
Symbol  
VOUT1  
VSEN  
Item  
VOUT1 Pin Voltage  
Ratings  
Unit  
V
12  
12  
VSEN Pin Voltage  
V
DOUT  
DOUT Pin Voltage  
12  
V
VCSW  
CSW Pin Voltage  
–0.3 to VOUT1 +0.3  
–0.3 to VOUT1 +0.3  
–0.3 to VOUT1 +0.3  
50  
V
VEXT1, 2  
VFB  
EXT1, 2 Pin Voltage  
FB Pin Voltage  
V
V
IEXT1, 2  
PD  
EXT1, 2 Output Current  
Power Dissipation  
mA  
mW  
˚C  
˚C  
300  
Topt  
Operating Temperature  
Storage Temperature  
Lead Temperature (Soldering)  
–40 to +85  
–55 to +125  
260˚C 10sec  
Tstg  
Tsolder  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under  
any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation  
above these absolute maximum ratings may cause degradation or permanent damage to the device. These  
are stress ratings only and do not necessarily imply functional operation below these limits.  
5
RV5VH1××/RV5VH2××  
ELECTRICAL CHARACTERISTICS  
• RV5VH101  
DC/DC Converter 1  
VOUT1=3.0V, Topt=25˚C  
Symbol  
VOUT1  
VINmax  
Vstart  
Vhold  
ISS1  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
3.075  
10  
Unit  
V
Step-up Output Voltage  
Maximum Input Voltage  
Oscillator Start-up Voltage  
Hold-on Input Voltage  
Supply Current1 *1  
2.925  
3.000  
V
No Load  
0.7  
10  
0.8  
V
IOUT=1mA, VIN : 20V  
No Load, CSW=“L”  
VLX=0.4V  
0.7  
V
µA  
mA  
µA  
kHz  
%
ILX  
LX Switching Current  
LX Leakage Current  
100  
ILXleak  
fosc  
VLX=6.0V, VIN=3.5V  
0.03  
130  
65  
1
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
Efficiency  
110  
50  
150  
80  
Maxdty  
η
ON (VLX=“L”)  
80  
%
VLXlim  
Voltage Limit for LX Switch  
for LX pin  
0.4  
0.8  
V
VOUT1  
Output Voltage Temp. Coefficient  
–40˚CTopt85˚C  
100  
ppm/˚C  
Topt  
) VIN=1.2V, IOUT=10mA, Topt=25˚C, unless otherwise specified. (See Typical Application)  
*
*
1 ) This value only shows the supply current of DC/DC1, not include the supply current of Voltage Detector and external resistors.  
6
RV5VH1××/RV5VH2××  
DC/DC Converter 2  
VOUT1=3.0V, Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
0
Unit  
V
1
VSET  
VFB  
Set Output Voltage  
*
Feed Back Voltage  
–20  
0
20  
mV  
V
VIN  
Maximum Input Voltage  
Minimum Operating Voltage  
Supply Current2  
10  
VOPTmin  
ISS2  
IOUT=1mA  
CSW= “H” at No Load  
CSW=“L”  
1.8  
V
10  
0.3  
4
µA  
µA  
mA  
mA  
kHz  
%
Istandby  
IEXT2H  
IEXT2L  
fosc  
Standby Current  
EXT2 “H” Output Current  
EXT2 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
CSW “H” Input Voltage  
CSW “L” Input Voltage  
CSW Input Leakage Current  
VEXT2=VOUT1–0.4V  
VEXT2=0.4V  
2
4
8
110  
40  
1.6  
0
130  
50  
150  
60  
Maxdty  
VCSWH  
VCSWL  
ICSWleak  
VEXT2=“H”  
VOUT1=3.0V  
VOUT1=3.0V  
VOUT1=3.0V  
VOUT1  
0.4  
V
V
–0.5  
0.5  
µA  
VFB  
Feed Back Voltage Temp.Coefficient  
–40˚CTopt85˚C  
30  
µV/˚C  
Topt  
) VOUT1=3.0V, IOUT=1mA, Topt=25˚C, unless otherwise specified. (See Typical Application)  
1 ) Adjustable by external resistors to -30V.  
*
*
7
RV5VH1××/RV5VH2××  
Voltage Detector  
VOUT1=3.0V, Topt=25˚C  
Symbol  
VDET  
Item  
Conditions  
MIN.  
2.633  
0.081  
TYP.  
2.700  
0.135  
1.2  
MAX.  
2.767  
0.189  
Unit  
V
Detector Threshold  
VHYS  
Detector Threshold Hysteresis  
Supply Current3  
V
ISS3  
µA  
V
VINmax  
VOPTmin  
Maximum Input Voltage  
Minimum Operating Voltage  
10  
1.8  
V
VDS=0.5V, VOUT1=1.5V  
VDS=0.5V, VOUT1=3.0V  
VSEN=3.0V  
1.0  
4.0  
2.0  
5.0  
0.3  
mA  
mA  
µA  
V
IOUT  
Output Current  
ISEN  
VSEN  
tPLH  
Sensing pin Input Current  
Sensing pin Input Voltage  
Output Delay  
1.2  
10  
0.7  
100  
µs  
VOUT1  
DetectorThresholdTemp.Coefficient  
DOUT Leakage Current  
–40˚CTopt85˚C  
100  
ppm/˚C  
µA  
Topt  
IDOUTleak  
0.03  
0.5  
) VOUT1=3.0V, Topt=25˚C, unless otherwise specified. (See Typical Application)  
*
8
RV5VH1××/RV5VH2××  
• RV5VH102  
DC/DC Converter 1  
Symbol  
VOUT1=5.0V, Topt=25˚C  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
5.125  
10  
Unit  
V
VOUT1  
VINmax  
Vstart  
Vhold  
ISS1  
Step-up Output Voltage  
Maximum Input Voltage  
Oscillator Start-up Voltage  
Hold-on Input Voltage  
Supply Current1 *1  
4.875  
5.000  
V
No Load  
IOUT=1mA, VIN : 20V  
No Load, CSW=“L”  
VLX=0.4V  
0.7  
15  
0.8  
V
1.2  
V
µA  
mA  
µA  
kHz  
%
ILX  
LX Switching Current  
LX Leakage Current  
100  
ILXleak  
fosc  
VLX=6.0V, VIN=5.5V  
0.03  
130  
70  
1
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
Efficiency  
110  
55  
150  
85  
Maxdty  
η
ON (VLX=“L”)  
80  
%
VLXlim  
Voltage Limit for LX Switch  
0.4  
0.8  
V
VOUT1  
Output Voltage Temp. Coefficient  
–40˚CTopt85˚C  
100  
ppm/˚C  
Topt  
) VIN=1.2V, IOUT=10mA, Topt=25˚C, unless otherwise specified. (See Typical Application)  
*
*
1 ) This value only shows the supply current of DC/DC1, not include the supply current of Voltage Detector and external resistors.  
9
RV5VH1××/RV5VH2××  
DC/DC Converter 2  
VOUT1=5.0V, Topt=25˚C  
Symbol  
VSET  
Item  
Conditions  
MIN.  
TYP.  
–3.000  
0
MAX.  
Unit  
V
1
Set Output Voltage  
*
0
VFB  
Feed Back Voltage  
mV  
V
VIN  
Maximum Input Voltage  
Minimum Operating Voltage  
Supply Current2  
10  
VOPTmin  
ISS2  
IOUT=1mA  
CSW= “H” at No Load  
CSW=“L”  
1.8  
V
25  
0.3  
6
µA  
µA  
mA  
mA  
kHz  
%
Istandby  
IEXT2H  
IEXT2L  
fosc  
Standby Current  
EXT2 “H” Output Current  
EXT2 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
CSW “H” Input Voltage  
CSW “L” Input Voltage  
CSW Input Leakage Current  
VEXT2=VOUT1–0.4V  
VEXT2=0.4V  
3
7
14  
130  
50  
110  
40  
1.6  
0
150  
60  
Maxdty  
VCSWH  
VCSWL  
ICSWleak  
VEXT2=“H”  
VOUT1=5.0V  
VOUT1=5.0V  
VOUT1=5.0V  
VOUT1  
0.4  
V
V
–0.5  
0.5  
µA  
VFB  
Feed Back Voltage Temp.Coefficient  
–40˚CTopt85˚C  
30  
µV/˚C  
Topt  
) VOUT1=3.0V, IOUT=1mA, Topt=25˚C, unless otherwise specified. (See Typical Application)  
1 ) Adjustable by external resistors to -30V.  
*
*
10  
RV5VH1××/RV5VH2××  
Voltage Detector  
VOUT1=5.0V, Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
4.388  
0.135  
TYP.  
4.500  
0.225  
1.8  
MAX.  
4.612  
0.315  
Unit  
V
VDET  
VHYS  
Detector Threshold  
Detector Threshold Hysteresis  
Supply Current3*1  
V
ISS3  
µA  
V
VINmax  
VOPTmin  
Maximum Input Voltage  
Minimum Operating Voltage*2  
10  
1.8  
V
VDS=0.5V, VOUT1=1.5V  
VDS=0.5V, VOUT1=5.0V  
VSEN=5.0V  
1.0  
7.0  
2.0  
10.0  
0.7  
mA  
mA  
µA  
µs  
IOUT  
Output Current  
ISEN  
tPLH  
Sensing Pin Input Current  
Output Delay  
2.0  
100  
VOUT1  
DetectorThresholdTemp.Coefficient  
DOUT Leakage Current  
–40˚CTopt85˚C  
100  
ppm/˚C  
µA  
Topt  
IDOUTleak  
0.03  
0.5  
) VOUT1=3.0V, Topt=25˚C, unless otherwise specified. (See Typical Application)  
*
11  
RV5VH1××/RV5VH2××  
• RV5VH201  
DC/DC Converter 1  
VOUT1=3.0V, Topt=25˚C  
Symbol  
VOUT1  
VINmax  
Vstart  
Vhold  
ISS1  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
3.075  
10  
Unit  
V
Step-up Output Voltage  
Maximum Input Voltage  
Oscillator Start-up Voltage  
Hold-on Input Voltage  
IOUT=0mA  
2.925  
3.000  
V
No Load  
IOUT=1mA  
0.7  
0.8  
V
0.7  
V
Supply Current1 *1  
IOUT=0mA, CSW=“L”  
VEXT2=VOUT1–0.4V  
VEXT2=0.4V  
80  
3
µA  
mA  
mA  
kHz  
%
IEXT1H  
IEXT1L  
fosc  
EXT1 “H” Output Current  
EXT1 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
1.5  
4
8
110  
50  
130  
65  
150  
80  
Maxdty  
ON (VLX=“L”)  
VOUT1  
Output Voltage Temp. Coefficient  
–40˚CTopt85˚C  
100  
ppm/˚C  
Topt  
) VIN=1.2V, IOUT=10mA, unless otherwise specified. (See Typical Application)  
*
*
1 ) This value shows only the supply current of DC/DC1, not include the supply current of Voltage Detector and external resistors.  
12  
RV5VH1××/RV5VH2××  
DC/DC Converter 2  
VOUT1=3.0V, Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
0
Unit  
V
1
VSET  
VFB  
Output Voltage Setting Range  
Feed Back Voltage  
*
–20  
0
20  
mV  
V
VIN  
Maximum Input Voltage  
Minimum Operating Voltage*2  
Supply Current2*3  
10  
VOPTmin  
ISS2  
IOUT=1mA  
CSW= “H” IOUT=0mA  
CSW=“L”  
1.8  
V
10  
0.3  
4
µA  
µA  
mA  
mA  
kHz  
%
Istandby  
IEXT2H  
IEXT2L  
fosc  
Standby Current  
EXT2 “H” Output Current  
EXT2 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
VEXT2=VOUT1–0.4V  
VEXT2=0.4V  
2
4
8
110  
40  
1.6  
0
130  
50  
150  
60  
Maxdty  
VCSWH  
VCSWL  
ICSWleak  
VEXT2=“H”  
VOUT1=3.0V  
VOUT1=3.0V  
CSW=3.0V  
CSW “H” Input Voltage  
CSW “L” Input Voltage  
CSW Input Leakage Current  
VOUT1  
0.4  
V
V
–0.5  
0.5  
µA  
VFB  
Feed Back Voltage Temp. Coefficient  
–40˚CTopt85˚C  
30  
µV/˚C  
Topt  
) VOUT1=3.0V, VOUT2=-0.3V, IOUT2=1mA, unless otherwise specified. (See Typical Application)  
1 ) Adjustable by external resistors to -30V.  
*
*
*
*
2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin.  
3 ) This value shows only the supply current of DC/DC2, not include the supply current of external resistors.  
13  
RV5VH1××/RV5VH2××  
Voltage Detector  
VOUT1=3.0V, Topt=25˚C  
Symbol  
VDET  
Item  
Conditions  
MIN.  
2.633  
0.081  
TYP.  
2.700  
0.135  
1.2  
MAX.  
2.767  
0.189  
Unit  
V
Detector Threshold  
VHYS  
Detector Threshold Hysteresis  
Supply Current3*1  
V
ISS3  
µA  
V
VINmax  
VOPTmin  
Maximum Input Voltage  
Minimum Operating Voltage*2  
10  
1.8  
V
VDS=0.5V, VOUT1=1.5V  
VDS=0.5V, VOUT1=3.0V  
VSEN=3.0V  
1.0  
4.0  
2.0  
5.0  
0.3  
mA  
mA  
µA  
µs  
IOUT  
Output Current  
ISEN  
tPLH  
Sensing Pin Input Current  
Output Delay  
1.2  
100  
VOUT1  
DetectorThresholdTemp.Coefficient  
DOUT Leakage Current  
–40˚CTopt85˚C  
100  
ppm/˚C  
µA  
Topt  
IDOUTleak  
0.03  
0.5  
) VOUT1=3.0V : unless otherwise specified. (See Typical Application)  
1 ) This value only shows the supply current of voltage detector.  
2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin.  
*
*
*
14  
RV5VH1××/RV5VH2××  
• RV5VH202  
DC/DC Converter 1  
Symbol  
VOUT1=5.0V, Topt=25˚C  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
5.125  
10  
Unit  
V
VOUT1  
VINmax  
Vstart  
Vhold  
ISS1  
Step-up Output Voltage  
Maximum Input Voltage  
Oscillator Start-up Voltage  
Hold-on Input Voltage  
Supply Current1 *1  
IOUT=0mA  
4.875  
5.000  
V
No Load  
IOUT=1mA  
0.7  
0.8  
V
0.7  
V
IOUT=0mA, CSW=“L”  
VEXT2=VOUT1–0.4V  
VEXT2=0.4V  
40  
4
µA  
mA  
mA  
kHz  
%
IEXT1H  
IEXT1L  
fosc  
EXT1 “H” Output Current  
EXT1 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
Efficiency  
2
7
14  
130  
70  
80  
110  
55  
150  
85  
Maxdty  
η
ON (VLX=“L”)  
%
VOUT1  
Output Voltage Temp. Coefficient  
–40˚CTopt85˚C  
100  
ppm/˚C  
Topt  
) VIN=3.0V, IOUT=10mA : unless otherwise specified. (See Typical Application)  
*
*
1 ) This value only shows the supply current of DC/DC1, does not include the supply current of Voltage Detector and external resistors.  
15  
RV5VH1××/RV5VH2××  
DC/DC Converter 2  
VOUT1=5.0V, Topt=25˚C  
Symbol  
VSET  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
1
Output Voltage Setting Range  
Feed Back Voltage  
*
0
VFB  
0
mV  
V
VIN  
Maximum Input Voltage  
Minimum Operating Voltage*2  
Supply Current2*3  
10  
VOPTmin  
ISS2  
IOUT=1mA  
CSW= “H”, No Load  
CSW=“L”  
1.8  
V
25  
0.3  
6
µA  
µA  
mA  
mA  
kHz  
%
Istandby  
IEXT2H  
IEXT2L  
fosc  
Standby Current  
EXT2 “H” Output Current  
EXT2 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
VEXT2=VOUT1–0.4V  
VEXT2=0.4V  
3
7
14  
130  
50  
110  
40  
1.6  
0
150  
60  
Maxdty  
VCSWH  
VCSWL  
ICSWleak  
VEXT2=“H”  
VOUT1=5.0V  
VOUT1=5.0V  
CSW=5.0V  
CSW “H” Input Voltage  
CSW “L” Input Voltage  
CSW Input Leakage Current  
VOUT1  
0.4  
V
V
–0.5  
0.5  
µA  
VFB  
Feed Back Voltage Temp.Coefficient  
–40˚CTopt85˚C  
±30  
µV/˚C  
Topt  
) VOUT1=5.0V, VOUT2=–3.0V, IOUT2=1mA : unless otherwise specified. (See Typical Application)  
1 ) Adjustable by external resistors to -30V.  
*
*
*
*
2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin.  
3 ) This value shows only the supply current of DC/DC2, not include the supply current of external resistors.  
16  
RV5VH1××/RV5VH2××  
Voltage Detector  
VOUT1=5.0V, Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
4.388  
0.135  
TYP.  
4.500  
0.225  
1.8  
MAX.  
4.612  
0.315  
Unit  
V
VDET  
VHYS  
Detector Threshold  
Detector Threshold Hysteresis  
Supply Current3*1  
V
ISS3  
µA  
V
VINmax  
VOPTmin  
Maximum Input Voltage  
Minimum Operating Voltage*2  
10  
1.8  
V
VDS=0.5V, VOUT1=1.5V  
VDS=0.5V, VOUT1=5.0V  
VSEN=5.0V  
1.0  
7.0  
2.0  
10.0  
0.7  
mA  
mA  
µA  
µs  
IOUT  
Output Current  
ISEN  
tPLH  
Sensing Pin Input Current  
Output Delay  
2.0  
100  
VOUT1  
Detector Threshold Temp.Coefficient  
DOUT Leakage Current  
–40˚CTopt85˚C  
100  
ppm/˚C  
µA  
Topt  
IDOUTleak  
0.03  
0.5  
) VOUT1=5.0V : unless otherwise specified. (See Typical Application)  
1 ) This value only shows the supply current of voltage detector.  
2 ) “Minimum Operating Voltage”means a voltage for the “VOUT1” pin.  
*
*
*
17  
RV5VH1××/RV5VH2××  
OPERATION  
• DC/DC Converter 1  
RV5VH1××  
Vref  
VOUT1  
3
4
+
VOUT1  
OSC  
R
SBD  
C
Error Amp.1  
L
p_shift  
VLX lim.  
LX1  
VFM1  
VIN  
RV5VH2××  
Vref  
VOUT1  
3
4
+
VOUT1  
OSC  
R
SBD  
C
L1  
Error Amp.1  
EXT1  
Rb  
p_shift  
NPN Tr.  
VIN  
VFM1  
Cb  
The DC/DC1 uses input voltage as an initial power supply, once boost operation is started, the boost output will be used  
for the power supply of device itself. A change in the VOUT1 will feed back to the internal error amplifier through external  
voltage setting resistors and internal feed back resistors. When the feed back voltage is lower than the reference voltage  
the error amplifier enables oscllation or otherwise will stop oscillation. The internal feed back resistor “R” which is fixed  
and adjusted by laser trim can make the feed back input voltage to “Error Amp.1” stable. Pulses from the “OSC” circuit  
have a duty cycle of 50% and it becomes 65 to 75%(at high side) through the “P_shift” circuit. The duty cycle may be  
smaller with light load spontaneously.  
These clook pulses control VFM circuit and make it possible to operate as a boost converter. The output of LX1 is Nch open  
drain, while the output of “EXT1” is driven by CMOS buffer and an external NMOS driver is also available instead of an  
NPN transistor, in such cases the Rb and the Cb are not necessary. A recommended Rb is 300Ω. When you use a MOS-  
FET for the EXT1, the input voltage should be high enough and you can get high effiiciency applications.  
A current limit is available only for the RV5VH1 series, to prevent an excess current from flowing through Nch driver tran-  
sistor.  
The DC/DC1 can be shut down by CSW pin. When the CSW pin is High, VDD level, the DC/DC1 is enabled and when the  
CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT1 pin outputs “L” while the DC/DC1 is disabled.  
18  
RV5VH1××/RV5VH2××  
• DC/DC Converter 2  
VOUT1  
RV5VH1××/RV5VH2××  
CSW  
FB  
1
7
R1  
R2  
OSC  
C2  
+
Error Amp.2  
PMOS  
L
SBD  
EXT2  
VOUT2  
6
VFM2  
C1  
+
The DC/DC2 can operate by a voltage of “VOUT1”. A change in the VOUT2 will feed back to the internal error amplifier  
through external voltage setting resistors. The reference voltage should be provided from externally fixed power supply  
such as VOUT1.  
When the feed back voltage to the cmp2 is higher than the ground voltage the error amplifier enables oscillation or other-  
wise will stop oscillation.  
Pulses from the “OSC” circuit have a duty cycle of 50% and it makes VFM operation allowable. There might be certain  
cases that the duty cycles becomes smaller temporarily at light load current. The output of “EXT2” is driven by CMOS  
buffer operated VOUT1 and GND.  
A PMOS driver will be connected to the “EXT2” pin and its switching operation generates negative output voltage through  
energy accumulated in an inductor.  
The DC/DC1 can be shut down by CSW pin. When the CSW pin is “H”, VDD level, the DC/DC1 is enabled and when the  
CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT2 pin outputs High while the DC/DC2 is disabled.  
• Set output voltage DC/DC Converter2  
VOUT2 is described as follows:  
VOUT1:R1=|–VOUT2| : R2 / The FB voltage is controlled to 0V and VOUT1 is provided externally  
|–VOUT2|=VOUT1 × R2/R1  
thus, any output voltage of DC/DC2 can be set by changing R1 or/and R2.  
Certain temperature coefficient of VOUT2 can be set by using R1,R2 having such temperature characteristics.  
19  
RV5VH1××/RV5VH2××  
• Voltage Detector  
RV5VH1××/RV5VH2××  
VSEN  
DOUT  
2
8
Ra  
Pull-up  
Output Tr.  
+
Vref  
Tr.1  
Rb  
Rc  
The VD can operate by the voltage of “VOUT1”. The detector threshold and the reset voltage are internally adjusted by  
trimmed resistors and the VD monitors VSEN pin voltage.  
The DOUT is Nch open-drain output and a pull up resistor is necessary.  
Oepration Diagram  
VSEN pin is pulled up to VOUT1 voltage  
Step  
Step 1  
Step 2  
Step 3  
Step 4  
Step 5  
1
2
3
4
5
Comparator(+) Pin  
Input Voltage  
A
B
B
B
A
B
Reset Voltage  
Detector Threshold –VDET  
+VDET  
Hysteresis Range  
A
Comparator Output  
Tr. 1  
H
L
L
L
H
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
GND  
Output Tr  
ON Indefinite ON  
Output Voltage  
Rb+Rc  
Ra+Rb+Rc  
Rb  
×
×
A :  
B :  
VSEN  
GND  
VSEN  
Ra+Rb+Rc  
Step 1. Output Voltage is equal to Pull-up Voltage.  
Step 2. When Input voltage (VSEN) reaches the state of VrefVSEN×(Rb×Rc)/(Ra+Rb+Rc) at point A, the output of the comparator is reversed. so that the  
output voltage becomes to GND.  
Step 3. Output VoItage becomes indefinite when Power source Voltage (VSEN) is smaller than Minimum Operating VoItage. When the output is pulIed up,  
Output becomes pull-up voltage and GND.  
Step 4. Output VoItage becomes to GND.  
Step 5. When input voltage(VSEN) reaches the state of VrefVSEN×Rb/(Ra+Rb) at point B, the output of the comparator is reversed, so that the output voltage  
becomes to pull-up voltage.  
20  
RV5VH1××/RV5VH2××  
OPERATION OF STEP-UP DC/DC CONVERTER  
Step-up DC/DC Converter charges energy in the inductor when Lx Transistor (LxTr) is on, and discharges the  
energy with the addition of the energy from Input Power Source thereto, so that a higher output voltage than the  
input voltage is obtained.  
The operation will be explained with reference to the following diagrams :  
< Basic Circuits >  
< Current through L >  
IL  
i2  
SD  
ILmax  
ILmin  
topen  
IOUT  
L
VIN  
VOUT  
i1  
t
Lx Tr  
CL  
toff  
ton  
T=1/fosc  
Step 1 : LxTr is turned ON and current IL (=i1 ) flows, so that energy is charged in L. At this moment, IL(=i1 )  
is increased from ILmin (=0) to reach ILmax in protection to the on-time period (ton) of LxTr.  
Step 2 : When LxTr is turned OFF, Schottky diode (SD) is turned on in order that L maintains IL at ILmax, so that  
current IL (=i2) is released.  
Step 3 : IL (=i2) is gradually decreased, and IL reaches ILmin (=0) after a time period of topen, so that SD is  
turned OFF.  
In the case of VFM control system, the output voltage is maintained constant by controlling the oscillator fre-  
quency (fosc) with the on-time period (ton) being maintained constant.  
In the above two diagrams, the maximum value (ILmax) and the minimum value (ILmin) of the current which  
flows through the inductor are the same as those when LxTr is ON and also when LxTr is OFF.  
The difference between ILmax and ILmin, which is represented by I, is:  
..........................................  
Equation 1  
I=ILmax–ILmin=VIN · ton/L=(VOUT–VIN) · topen/L  
wherein T=1/fosc=ton+toff  
duty (%)=ton/T · 100=ton · fosc · 100  
topentoff  
In Equation 1,VIN · ton/L and (VOUT–VIN) · topen/L are respectively the change in the current at ON, and the  
change in the current at OFF.  
In the VFM system, topen < toff as illustrated in the above diagram. In this case, the energy charged in the  
inductor during the time period of ton is discharged in its entirely during the time period of toff, so that ILmin  
becomes zero (ILmin=0).  
21  
RV5VH1××/RV5VH2××  
SELECTION OF PERIPHERAL COMPONENTS  
When LxTr is on, the energy PON charged in the inductor is provided by Equation 2 as follows :  
2
PON=0ton (VIN · IL (t)) dt=ton (VIN · t/L) dt  
......0..............................................................................................  
2
=VIN · ton2/(2 · L)  
Equation 2  
In the case of the step-up DC/DC converter, the energy is also supplied from the input power source at the time  
of OFF.  
Thus, POFF =0topen(VIN · IL (t)) dt=0topen (VIN · (VOUT–VIN) · t/L)dt  
=VIN · (VOUT–VIN) · topen2/(2 · L)  
Here, topen=VIN · ton/(VOUT–VIN) from Equation 1, and when this is substituted into the above equation.  
3
2
............................................................................  
=VIN · ton /(2 · L · (VOUT–VIN))  
Input power PIN is (PON+POFF)/T. When this is converted in its entirely to the output.  
PIN=(PON+POFF)/T=VOUT · IOUT=POUT .........................................................................  
Equation 3  
Equation 4  
Equation 5 can be obtained as follows by solving Equation 4 for IOUT by substituting Equation 2 and 3 into  
Equation 4 :  
IOUT=VIN · ton2/(2 · L · T · (VOUT–VIN)  
2
2
2
...................................................  
=VIN · maxdty /(20000 · fosc · L · (VOUT–VIN))  
Equation 5  
The peak current which flows through L · LxTr · SD is  
..........................................................................................................  
ILmax=VIN · ton/L  
Equation 6  
Therefore, it is necessary that the setting of the input/output conditions and the selection of peripheral compo-  
nents be made with ILmax taken into consideration.  
HINTS  
The above explanation is directed to the calculation in an ideal case where it is supposed that there is no  
energy loss in the external components and LxSW. In an actual case, the maximum output current will be 50  
to 80% of the above calculated maximum output current. In particular, care must be taken because VIN is  
decreased in an amount corresponding to the voltage reduction caused by LxSW when IL is large or VIN is  
small. Furthermore, It is required that with respect to VOUT, Vf of the diode (about 0.3V in the case of a  
Schottky type diode) be taken into consideration.  
When ILX and VLX exceed their respective ratings, use the RV5VH with the attachment of an external tran-  
sistor with a low saturation voltage thereto.  
22  
RV5VH1××/RV5VH2××  
TYPICAL APPLICATION  
• RV5VH1××  
R3  
R1  
DOUT  
CSW  
VSEN  
FB  
PMOS  
Output DC/DC1  
R2  
C3  
VOUT1  
LX1  
EXT2  
GND  
D2  
D1  
Output DC/DC2  
C2  
L1  
C1  
L2  
<Components>  
CoiIs  
L1 : 100µH, L2 : 220µH  
Schottky type  
C1, C2 : 22µF(tantalum type), C3 : 0.01µF(ceramic type)  
PMOS : 2SJ238  
Diodes  
Capacitors  
Tr  
Resistors  
R1, R2 : several hundreds k, R3 : 100kΩ  
• RV5VH2××  
R3  
R1  
R2  
DOUT  
FB  
CSW  
VSEN  
PMOS  
Output DC/DC1  
C3  
VOUT1  
EXT2  
GND  
L1  
SBD  
SBD  
EXT1  
C4  
Output DC/DC2  
C2  
C1  
L2  
NPN Tr.  
R4  
<Components>  
Coils  
Diodes  
Capacitors  
L1 : 27µH, L2 : 220µH  
Schottky type  
C1 : 47µF(tantalum type), C2 : 22µF(tantalum type)  
C3 : 0.01µF(ceramic type)  
C4 : 0.01µF(ceramic type)  
2SJ238(TOSHIBA), etc.  
2SD1628G(SANYO), etc.  
R1 : 100KΩ  
PMOS  
NPN Tr.  
Resistors  
R2 : 0-500KΩ  
R3 : 100KΩ  
R4 : 300Ω  
23  
RV5VH1××/RV5VH2××  
TEST CIRCUITS  
CSW  
VSEN  
VOUT1  
LX1  
DOUT  
FB  
EXT2  
GND  
22µF  
L1  
V
A
L1=100µH,220µH  
Fig.1 Test Circuit 1  
100k  
CSW  
DOUT  
FB  
A
VSEN  
5Ω  
VOUT1  
EXT2  
GND  
*
(150)  
150Ω  
LX1(EXT1)  
V
V
EXT1  
*
Oscilloscope  
Fig.2 Test Circuit 2  
CSW  
VSEN  
VOUT1  
LX1  
DOUT  
FB  
A
EXT2  
GND  
0.5V  
Fig.3 Test Circuit 3  
24  
RV5VH1××/RV5VH2××  
100kΩ  
CSW  
VSEN  
VOUT1  
LX1  
DOUT  
FB  
EXT2  
GND  
Oscilloscope  
Pulse Input  
Fig.4 Test Circuit 4  
CSW  
VSEN  
DOUT  
FB  
VOUT1  
EXT1  
EXT2  
GND  
2200pF  
96µF  
27µH  
V
A
300Ω  
Fig.5 Test Circuit 5  
Test Circuit 1:  
Test Circuit 2:  
Test Circuit 3:  
Test Circuit 4:  
Test Circuit 5:  
Typical Characteristics 1), 3), 5), 10), 11)  
Typical Characteristics 6), 7), 8), 9), 13), 14), 15), 16), 17), 18), 19), 21)  
Typical Characteristics 20)  
Typical Characteristics 22)  
Typical Characteristics 2), 4)  
Typical Application : Typical Characteristics 12)  
25  
RV5VH1××/RV5VH2××  
TYPICAL CHARACTERISTICS  
• DC/DC Converter 1  
1) Output Voltage vs. Output Current (RV5VH1××)  
Topt=25˚C  
Topt=25˚C  
L1=220µH  
C1=22µF  
L1=100µH  
C1=22µF  
RV5VH101  
RV5VH101  
3.6  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.4  
3.2  
3.0  
VIN=1.2V  
2.8  
VIN=1.2V  
VIN=2.0V  
VIN=0.9V  
2.6  
2.4  
2.2  
2.0  
VIN=1.5V VIN=2.0V  
VIN=0.9V  
VIN=1.5V  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
Topt=25˚C  
L1=100µH  
C1=22µF  
Topt=25˚C  
L1=220µH  
C1=22µF  
RV5VH102  
RV5VH102  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VIN=1.5V  
VIN=0.9V  
VIN=4.0V  
VIN=4.0V  
VIN=1.5V  
VIN=2.0V  
VIN=3.0V  
VIN=2.0V  
VIN=0.9V  
VIN=3.0V  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
2) Output Voltage vs. Output Current (RV5VH2××)  
Topt=25˚C  
L1=27µH  
C1=96µF  
Topt=25˚C  
L1=27µH  
RV5VH202  
RV5VH201  
C1=96µF  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
3.6  
3.4  
3.2  
3.0  
VIN=4.0V  
VIN=3.0V  
VIN=2.0V  
VIN=1.5V  
VIN=1.2V VIN=1.5V VIN=2.0V  
VIN=0.9V  
2.8  
2.6  
2.4  
2.2  
2.0  
VIN=0.9V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
26  
RV5VH1××/RV5VH2××  
3) Efficiency vs. Output Current (RV5VH1××)  
Topt=25˚C  
Topt=25˚C  
L1=100µH  
C1=22µF  
L1=220µH  
RV5VH101  
RV5VH101  
C1=22µF  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
VIN=1.5V  
VIN=2.0V  
85  
80  
75  
70  
65  
60  
55  
50  
VIN=2.0V  
VIN=1.2V  
VIN=0.9V  
VIN=0.9V  
VIN=1.2V  
1
VIN=1.5V  
10  
Output Current IOUT(mA)  
0.01  
0.1  
1
100  
0.01  
0.1  
10  
100  
Output Current IOUT(mA)  
Topt=25˚C  
L1=100µH  
C1=22µF  
Topt=25˚C  
L1=220µH  
C1=22µF  
RV5VH102  
RV5VH102  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN=4.0V  
VIN=4.0V  
VIN=1.5V  
VIN=3.0V  
VIN=2.0V  
VIN=0.9V  
VIN=0.9V  
VIN=3.0V  
VIN=2.0V  
VIN=1.5V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
4) Efficiency vs. Output Current (RV5VH2××)  
Topt=25˚C  
L1=27µH  
C1=96µF  
Topt=25˚C  
L1=27µH  
RV5VH202  
RV5VH201  
C1=96µF  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
VIN=4.0V  
VIN=1.5V  
80  
VIN=1.2V  
VIN=2.0V  
VIN=3.0V  
VIN=2.0V  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=1.5V  
VIN=0.9V  
VIN=0.9V  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current IOUT(mA)  
Output Current IOUT(mA)  
27  
RV5VH1××/RV5VH2××  
5) DC/DC1 Output Voltage vs. Temperature  
VIN=1.2V  
VIN=3V  
L1=100µH  
C1=22µF  
L1=100µH  
RV5VH1××/2××  
RV5VH1××/2××  
C1=22µF  
3.3  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
3.2  
3.1  
IOUT=1mA  
IOUT=10mA  
3.0  
IOUT=10mA  
IOUT=5mA  
IOUT=0A  
2.9  
2.8  
2.7  
IOUT=0A  
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
6) Oscillator Frequency vs. Temperature  
RV5VH1××/2××  
RV5VH1××/2××  
VOUT1=5V  
VOUT1=3V  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
7) Oscillator Duty Cycle vs. Temperature  
RV5VH1××/2××  
RV5VH1××/2××  
VOUT1=5V  
VOUT1=3V  
80  
75  
70  
65  
60  
55  
50  
80  
75  
70  
65  
60  
55  
50  
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
28  
RV5VH1××/RV5VH2××  
8) On Resistance of LX vs. Supply Voltage  
RV5VH1××  
5.0  
85˚C  
4.5  
4.0  
25˚C  
3.5  
3.0  
–40˚C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Supply Voltage VOUT1(V)  
9) EXT1 Output Current vs. Temperature  
RV5VH201  
RV5VH202  
VOUT1=3V  
VOUT1=5V  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
“L” Output Current  
“L” Output Current  
“H” Output Current  
“H” Output Current  
6
6
4
4
2
2
0
0
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
10) Start-up/Hold-on Voltage vs. Output Current  
11) Input Current vs. Intput Voltage  
Topt=25˚C  
VOUT1=3V  
Topt=25˚C  
CSW=GND  
L1=100µH  
C1=22µF  
L1=100µH  
RV5VH1××/2××  
RV5VH101  
C1=22µF  
10–0  
2
1.8  
IOUT=30mA  
10–1  
1.6  
Vstart  
IOUT=5mA  
1.4  
1.2  
1
IOUT=1mA  
10–2  
10–3  
10–4  
0.8  
0.6  
IOUT=0A  
10–5  
0.4  
Vhold  
0.2  
0
10–6  
0
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current IOUT(mA)  
Input Voltage VIN(V)  
29  
RV5VH1××/RV5VH2××  
• DC/DC Converter 2  
12) Output Voltage vs. Output Current  
Topt=25˚C  
VIN=1.2V  
VOUT1=3V  
RV5VH101  
0
–2  
VSET –3V  
–4  
VSET –6V  
VSET –9V  
–6  
–8  
–10  
–12  
–14  
VSET –12V  
0
2
4
6
8
10  
12  
14  
Output Current IOUT(mA)  
13) DC/DC2 Feed Back Voltage vs. Temperature  
RV5VH1××/2××  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
14) EXT2 Output Current vs. Temperature  
RV5VH1××/2××  
RV5VH1××/2××  
VOUT1=3V  
VOUT1=5V  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
“L” Output Current  
“L” Output Current  
“H” Output Current  
“H” Output Current  
6
6
4
4
2
2
0
0
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
30  
RV5VH1××/RV5VH2××  
15) EXT2 Oscillator Frequency vs. Temperature  
RV5VH1××/2××  
RV5VH1××/2××  
VOUT1=3V  
VOUT1=5V  
150  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
Temperature Topt(˚C)  
16) EXT2 Oscillator Duty Cycle vs. Temperature  
RV5VH1××/2××  
RV5VH1××/2××  
VOUT1=3V  
VOUT1=5V  
60  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
–60 –40 –20  
0
20 40 60 80 100  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
17) CSW ON/OFF Voltage vs. Temperature  
RV5VH1××/2××  
Temperature Topt(˚C)  
VOUT1=3V  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
–60 –40 –20  
0
20 40 60 80 100  
Temperature Topt(˚C)  
31  
RV5VH1××/RV5VH2××  
• Voltage Detector  
18) Detector Threshold Voltage vs. Temperature  
19) VOUT1 Output Voltage vs. Output Current  
RV5VH1××/2××  
RV5VH1××/2××  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.9  
+VDET  
2.8  
–VDET  
2.7  
2.0  
25˚C  
1.5  
85˚C  
2.6  
2.5  
1.0  
–40˚C  
0.5  
0.0  
–60 –40 –20  
0
20 40 60 80 100  
0
1
2
3
4
5
Temperature Topt(˚C)  
VOUT1 Output Voltage VOUT1(V)  
20) DOUT Output Current vs. VOUT1 Output Voltage  
21) VSEN Output Current vs. VSEN Output Voltage  
RV5VH1××/2××  
RV5VH1××/2××  
20  
0.7  
18  
16  
14  
12  
10  
8
–40˚C  
25˚C  
0.6  
0.5  
0.4  
85˚C  
0.3  
85˚C  
6
0.2  
25˚C  
4
–40˚C  
3
0.1  
0.0  
2
0
0
1
2
3
4
5
6
7
0
1
2
4
5
6
7
VOUT1 Output Voltage VOUT1(V)  
VSEN Output Voltage VSEN(V)  
22) Output Delay Time vs. Load Capacitance  
RV5VH1××/2××  
VOUT1=3V  
10  
1
tPLH  
0.1  
tPHL  
0.01  
0.0001  
0.001  
0.01  
0.1  
Load Capacitance COUT(µF)  
32  
DC/DC CONVERTER CONTROLLER  
(BOOST / INVERTING OUTPUT FOR LCD)  
RV5VH3××  
BLOCK DIAGRAM  
CSW  
1
2
3
4
+
8
7
6
5
DOUT  
FB1  
VDD  
FB2  
+
Vref  
Error Amp.2  
+
EXT2  
VFM2  
Error Amp.1  
EXT1  
GND  
p_shift  
VFM1  
OSC  
PIN CONFIGURATION  
• 8 pin SSOP (0.65mm pitch)  
1
2
3
4
8
7
6
5
33  
RV5VH3××  
PIN DESCRIPTION  
Pin No.  
Symbol  
CSW  
FB1  
Description  
1
2
3
4
5
6
7
8
Control Switch for DC/DC1, 2  
Input for DC/DC1 Error Amplifier  
VDD  
Power Supply for Device Itself. Sensing Pin for Reset.  
External Transistor Drive Pin for DC/DC1 (CMOS Output)  
Ground Pin  
EXT1  
GND  
EXT2  
FB2  
External Transistor Drive Pin for DC/DC2 (CMOS Output)  
Input for DC/DC2 Error Amplifier  
DOUT  
Output for Voltage Detector  
ABSOLUTE MAXIMUM RATINGS  
GND=0V  
Symbol  
Item  
Ratings  
12  
Unit  
VDD  
VDD Pin Voltage  
V
V
DOUT  
VCSW  
VEXT1, 2  
VFB  
DOUT Pin Voltage  
12  
CSW Pin Voltage  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
50  
V
EXT1, 2 Pin Voltage  
FB1,2 Pin Voltage  
V
V
IEXT1, 2  
PD  
EXT1, 2 Output Current  
Power Dissipation  
mA  
mΩ  
˚C  
˚C  
300  
Topt  
Operating Temperature  
Storage Temperature  
Lead Temperature (Soldering)  
–40 to +85  
–55 to +125  
260˚C 10sec  
Tstg  
Tsolder  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under  
any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation  
above these absolute maximum ratings may cause degradation or permanent damage to the device. These  
are stress ratings only and do not necessarily imply functional operation below these limits.  
34  
RV5VH3××  
ELECTRICAL CHARACTERISTICS  
• RV5VH301  
DC/DC Converter 1  
VDD=3.0V, Topt=25˚C  
Symbol  
VSET1  
Item  
Conditions  
MIN.  
2.05  
TYP.  
MAX.  
Unit  
V
1
Output Voltage Setting 1  
Feed Back Volatage 1  
Maximum Input Voltage  
*
VFB1  
1.950  
2.000  
2.050  
10  
V
VINmax  
V
Specified as a VDD  
VOPTmin  
Minimum Operating Voltage  
1.8  
60  
V
Voltage for Device Operation  
ISS11  
ISS12  
Supply Current11*2  
CSW=“H”, FB1=1.9V  
CSW=“H”, FB1=2.1V  
CSW=“L”  
15  
4
µA  
µA  
µA  
mA  
mA  
kHz  
%
Supply Current12*2  
Istandby  
IEXT1H  
IEXT1L  
fosc  
Standby Current*3  
4
11  
EXT1 “H” Output Current  
EXT1 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
VEXT1=VDD–0.4V  
VEXT1=0.4V  
1.5  
4
3
8
110  
50  
130  
65  
150  
80  
Maxdty  
ON (VEXT1=“L”)  
VFB1  
Topt  
Feed Back Voltage Temp.Coefficient  
–40˚CTopt85˚C  
100  
ppm/˚C  
VCSWH  
VCSWL  
CSW “H” Input Voltage  
CSW “L” Input Voltage  
CSW Input Leakage Current  
1.6  
0
VDD  
0.4  
V
V
ICSWleak  
CSW=3.0V or CSW=0V  
–0.5  
0.5  
µA  
) VDD=3.0V, IOUT=10mA : unless otherwise specified. (See Typical Application)  
1 ) Adjustable by external resistors (to 30V).  
*
*
*
*
2 ) Supply current for DC/DC1. Supply current for VD or external resistors are excluded.  
3 ) Standby current includes supply current for DC/DC1, 2 and VD.  
35  
RV5VH3××  
DC/DC Converter 2  
VDD=3.0V, Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
TYP.  
MAX.  
0
Unit  
V
1
VSET2  
VFB2  
Output Voltage Setting 1  
Feed Back Volatage 1  
Maximum Input Voltage  
*
–20  
0
20  
mV  
V
VINmax  
10  
Specified as the VDD  
VOPTmin  
Minimum Operating Voltage  
1.8  
60  
V
Voltage for Device Operation  
ISS21  
ISS22  
Supply Current21*2  
CSW=“H”, FB2=0.1V  
CSW=“H”, FB2=–0.1V  
VEXT2=VDD–0.4V  
VEXT2=0.4V  
15  
4
µA  
µA  
Supply Current22*2  
IEXT2H  
IEXT2L  
fosc  
EXT2 “H” Output Current  
EXT2 “L” Output Current  
Maximum Oscillator Frequency  
Oscillator Duty Cycle  
2
4
4
mA  
mA  
kHz  
%
8
110  
40  
130  
50  
150  
60  
Maxdty  
ON (VEXT2=“L”)  
VFB2  
Topt  
Feed Back Voltage Temp.Coefficient  
–40˚CTopt85˚C  
30  
µV/˚C  
) VDD=3.0V : unless otherwise specified. (See Typical Application)  
1 ) Adjustable by external resistors (to -30V).  
*
*
*
2 ) This value shows only the supply current of DC/DC2, not include the supply current of external resistors.  
36  
RV5VH3××  
Voltage Detector  
VDD=3.0V, Topt=25˚C  
Symbol  
Item  
Conditions  
MIN.  
2.633  
0.081  
TYP.  
2.700  
0.135  
1.2  
MAX.  
2.767  
0.189  
Unit  
V
VDET  
VHYS  
Detector Threshold  
Detector Threshold Hysteresis  
Supply Current3*1  
V
ISS3  
µA  
V
VINmax  
Maximum Input Voltage  
10  
Specified as the VDD  
VOPTmin  
Minimum Operating Voltage  
Output Current  
1.8  
V
Voltage for Device Operation  
VDS=0.5V, VDD=1.5V  
VDS=0.5V, VDD=3.0V  
1.0  
4.0  
2.0  
5.0  
mA  
mA  
µs  
IOUT  
tPLH  
Output Delay  
100  
0.5  
VOUT1  
Detector Threshold Temp.Coefficient  
DOUT Leakage Current  
–40˚CTopt85˚C  
100  
ppm/˚C  
µA  
Topt  
IDOUTleak  
0.03  
) VDD=3.0V : unless otherwise specified.  
*
*
1 ) This value only shows the supply current of voltage detector.  
37  
RV5VH3××  
OPERATION  
• DC/DC Converter 1  
VDD  
RV5VH3××  
3
1
CSW  
Vref  
FB1  
VOUT1  
R1  
R2  
+
2
OSC  
SBD  
L1  
C
Error Amp.1  
p_shift  
EXT1  
Rb  
Cb  
4
NPN Tr.  
VFM1  
VIN  
The DC/DC1 can operate by an input voltage to the VDD pin. A change in the VOUT1 will feed back to the internal error  
amplifier through external voltage setting resistors and internal feed back resistors. When the feed back voltage is lower  
than the reference voltage, the error amplifier enables oscillation or otherwise, it will stop oscillation. The internal feed back  
resistor “R” which is fixed and adjusted by laser trim can make the feed back input voltage to “Error Amp.1” stable.  
Pulses from the “OSC” circuit have a duty cycle of 50% and it becomes 65 to 75%(at high side) through the “P_shift” circuit.  
These clock pulses control VFM circuit and make it possible to operate as a boost converter.  
The output of “EXT1” is driven by CMOS buffer and an external NMOS driver is also available instead of an NPN transis-  
tor, in such cases the Rb and the Cb are not necessary. The DC/DC1 can be shut down by CSW pin. When the CSW pin  
is “H”, VDD level, the DC/DC1 is enabled and when the CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT1  
pin outputs “L” while the DC/DC1 is disabled.  
• Set Output Voltage DC/DC1  
VOUT1 is described as follows :  
VOUT1 : R1+R2=VFB1 : R2  
DC/DC1 controls VFB1 to be a constant voltage,  
VOUT1=VFB1 × (R1+R2) / R2  
thus, any output voltage of DC/DC1 can be set by changing R1 or/and R2.  
Certain temperature coefficient of VOUT1 can be set by using R1, R2 having such temperature characteristics.  
38  
RV5VH3××  
• DC/DC Converter 2  
VDD  
VREF  
RV5VH3××  
CSW  
FB2  
1
7
R1  
R2  
+
OSC  
C2  
Error Amp.2  
PMOS  
L
SBD  
EXT2  
VOUT2  
6
VFM2  
C1  
+
The DC/DC2 can operate by an input voltage to the VDD pin. A change in the VOUT2 will feed back to the internal error  
amplifier through external voltage setting resistors. The VREF voltage should be provided from externally fixed power sup-  
ply such as VOUT1.  
When the feed back voltage to the Error Amp.2 is higher than the ground voltage, the error amplifier enables oscillation  
otherwise, it will stop oscillation.  
Pulses from the “OSC” circuit have a duty cycle of 50% and it makes VFM operation allowable.  
There might be certain cases that the duty cycles become smaller temporarily at light load current. The output of “EXT2”  
is driven by CMOS buffer operated VDD and GND.  
A PMOS driver will be connected to the “EXT2” pin and its switching operation generates negative output voltage through  
energy accumulated in an inductor.  
The DC/DC1 can be shut down by CSW pin. When the CSW pin is High, VDD level, the DC/DC1 is enabled and when the  
CSW pin is “L”, GND level, the DC/DC1 is disabled. The EXT2 pin outputs “H” while the DC/DC2 is disabled.  
• Set Output Voltage DC/DC 2  
VOUT2 is described as follows:  
VREF : R1=|–VOUT2| : R2 The FB2 voltage is controlled to 0V and VREF is provided externally  
|–VOUT2|=VREF×R2/R1,  
thus, any output voltage of DC/DC2 can be set by R1 and R2.  
Certain temperature coefficient of VOUT2 can be set by using R1, R2 having such temperature characteristics.  
39  
RV5VH3××  
• Voltage Detector  
RV5VH3××  
VDD  
Pull-up  
3
8
R1  
DOUT  
Output Tr.  
+
Vref  
Tr.1  
R2  
R3  
The Voltage Detector can operate by an input voltage to the VDD pin. The detector threshold and the reset voltage  
are internally adjusted by trimmed resistors and the VD monitors VDD pin voltage.  
The DOUT is Nch open-drain output and a pull up resistor is necessary.  
Oepration Diagram  
The output is pulled up to VDD voltage  
Step  
Step 1  
Step 2  
Step 3  
Step 4  
B
Step 5  
A
1
2
3
4
5
Comparator(+) Pin  
Input Voltage  
A
B
B
B
Reset Voltage  
+VDET  
Hysteresis Range  
Detector Threshold –VDET  
Comparator Output  
Tr. 1  
H
L
L
L
H
A
OFF  
OFF  
ON  
ON  
ON OFF  
GND  
Output Tr.  
ON Indefinite ON OFF  
Output Voltage  
R2+R3  
R1+R2+R3  
R2  
×
×
A :  
B :  
VDD  
GND  
VDD  
R1+R2+R3  
Step 1. Output Voltage is equal to Pull-up Voltage  
Step 2. When Input voltage(VDD) reaches to the state of VREFVDD×(R2+R3)/(R1+R2+R3) at point A, the output of the comparator is reversed, so that the  
output voltage becomes to GND.  
Step 3. Output Voltage becomes indefinite when Power Source Voltage (VDD) is smaller than Minimum Operating Voltage. When the output is pulIed up,  
Output becomes pull-up voltage and GND.  
Step 4. Output Voltage becomes to GND.  
Step 5. When Input voltage(VDD) reaches to the state of VREFVDD×R2/(R1+R2) at point B, the output of the comparator is reversed, so that the output voltage  
becomes to pull-up voltage.  
40  
RV5VH3××  
TYPICAL APPLICATION 1  
Output DC/DC 1  
R3  
R5  
R6  
C5  
CSW  
FB1  
DOUT  
FB2  
R1  
R2  
SBD  
L1  
PMOS  
C3  
VDD  
EXT2  
GND  
SBD  
R4  
C4  
NPN Tr.  
EXT1  
Output DC/DC 2  
C2  
C1  
L2  
CoiI  
Diode  
L1 : 100µH, L2 : 100µH  
Schottky type  
capacitor  
C1 : 22µF(Ta), C2 : 22µF(Ta)  
C3 : 0.01µF (ceramic)  
C4 : 0.01µF (ceramic)  
C5 : 0.01µF (ceramic)  
2SJ238 (TOSHIBA)  
2SK1470 (SANYO)  
R1 : 100k, R2 : 0 to 500kΩ  
R3 : 100kΩ  
PMOS  
NMOS  
Resistor  
R4 : 300Ω  
R5 : 0 to 500kΩ, R6 : 50kΩ  
41  
RV5VH3××  
TYPICAL APPLICATION 2  
VIN  
Output DC/DC 1  
R3  
R5  
R6  
C5  
CSW  
FB1  
DOUT  
FB2  
R1  
R2  
SBD  
L1  
PMOS  
C3  
VDD  
EXT2  
GND  
SBD  
R4  
C4  
NPN Tr.  
EXT1  
Output DC/DC 2  
C2  
C1  
L2  
CoiI  
Diode  
L1 : 100µH, L2 : 100µH  
Schottky type  
capacitor  
C1 : 22µF(Ta), C2 : 22µF(Ta)  
C3 : 0.01µF (ceramic)  
C4 : 0.01µF (ceramic)  
C5 : 0.01µF (ceramic)  
2SJ238 (TOSHIBA)  
2SD1628G (SANYO)  
R1 : 100k, R2 : 0 to 500kΩ  
R3 : 100kΩ  
PMOS  
NPN Tr.  
Resistor  
R4 : 300Ω  
R5 : 0 to 500kΩ, R6 : 50kΩ  
Description  
• Step up DC/DC converter : DC/DC1  
The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT1 outputs GND.  
The output voltage can be adjusted by R5 and R6 with FB1 of two volt.  
• Invering DC/DC converter : DC/DC2  
The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT2 outputs VDD.  
The output voltage can be adjusted by R1 and R2 with FB2 of zero volt.  
• VoItage Detector  
VDD pin can be monitored. This could be always operated with VDD.  
The DOUT pin outputs “L” when low voltage is detected with Nch open-drain output.  
42  
RV5VH3××  
TYPICAL APPLICATION 3  
VIN  
Output DC/DC 1  
R3  
CSW  
FB1  
DOUT  
FB2  
R1  
R5  
R6  
PMOS  
L1  
C5  
PNP Tr.  
SBD1  
SBD3  
R2  
R4  
C3  
VDD  
EXT2  
GND  
SBD2  
C4  
EXT1  
Output DC/DC 2  
C2  
NMOS  
C1  
L2  
R1 : 820k, R2 : 820k, R3 : 100k, R4 : 1k, R5 : 750k(AdjustabIe)  
R6 : 100kΩ  
L1 : 68µH, L2 : 27µH  
C1 : 22µF, C2 : 22µF, C3 : 1000pF, C4 : 2200pF, C5 : 1000pF  
PMOS : 2SJ238, NMOS : 2SK1470, PNPTr. : 2SB1120F  
Operation  
The VDD voltage can be supplied from another source than battery output and a reference voltage for DC/DC2 is  
supplied by the output of DC/DC1.  
The PMOS transistor can operate as a switch when the CSW is “L”.  
• Step up DC/DC converter : DC/DC1  
The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT1 outputs GND.  
The output voltage can be adjusted by R5 and R6 with FB1 of two volt.  
• Invering DC/DC converter : DC/DC2  
The oscillator can operate when CSW is “H”. When the CSW is “L” the EXT2 outputs VDD.  
The output voltage can be adjusted by R1 and R2 with FB2 of zero volt.  
• VoItage Detector  
VDD pin can be monitored. This could be operated all the time by VDD.  
The DOUT pin outputs “L” when low voltage is detected with Nch open-drain output.  
43  
RV5VH3××  
TYPICAL CHARACTERISTICS  
1) Output Voltage vs. Output Current  
2) Efficiency vs. Output Current  
VIN=3.6V  
VIN=3.6V  
100  
90  
25  
20  
15  
±10V  
VOUT±5.0V  
80  
10  
±15V  
70  
60  
50  
40  
30  
5
0
–5  
±20V  
–10  
–15  
–20  
–25  
20  
0.0001  
0.001  
0.01  
0.1  
0
10  
20  
Output Current IOUT(A)  
Output Current IOUT(mA)  
3) CSW Load Transient Responce 1  
4) CSW Load Transient Responce 2  
VIN=3.6V, IOUT=1mA  
VIN=3.6V, IOUT=1mA  
20  
15  
20  
15  
VOUT1  
VOUT1  
10  
10  
CSW  
CSW  
5
5
0
0
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
VOUT2  
VOUT2  
–50  
0
50  
100  
150  
200  
0
500  
1000  
1500  
Time t(ms)  
Time t(ms)  
) Please refer to Typical Application.  
*
44  
RV5VH3××  
SELECTION GUIDE  
The output voltage, the type of DC/DC1 and the taping type for the ICs can be selected at the user's request.  
The selection can be made by designating the part number as shown below:  
RV5VH ××××× Part Number  
↑ ↑  
a b  
c
Code  
Contents  
DC/DC1 type  
1 : Internal LX Driver Transister Type  
2 : External EXT Driver Transister Type  
3 : Variable Output Voltage Type  
a
b
c
Serial (01, 02, 03) Number of Setting DC/DC1 Output Voltage and Setting VD Detect Voltage.  
Designation of Taping type  
Ex. E1, E2 (refer to Taping Specifications, E2 type is prescribed as a standard.)  
45  
RV5VH3××  
APPLICATION HINTS  
When using these ICs, be sure to take care of the following points.  
Set external components as close as possible to the IC and minimize the connection between the  
components and the IC. In particular, when an external component is connected to VOUT Pin, make  
minimum connection with the capacitor.  
Make sufficient grounding. A large current flows through GND Pin byswitching. When the impedance  
of the GND connection is high, the potential within the IC is varied by switching current. This may  
result in unstableoperation of the IC.  
Use capacitor with good high frequency characteristics such as tantalum capacitor, aluminium  
electrolytic capacitor and ceramic capacitor. We recommend the use of a capacitor with an allowable  
voltage which is at least three times the output set voltage. This is because there may be the case  
where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned OFF.  
Take the utmost care when choosing an inductor. Namely, choose such an inductor that has  
sufficiently small d.c. resistance and large allowable current, and hardly reaches magnetic saturation.  
When the inductance value of the inductor is small, there may be the case where ILX exceeds the  
absolute maximum ratings at the maximum load. Use an inductor with an appropriate inductance. (See  
OUTPUT CURRENT and SELECTION OF PERIPHERAL COMPONENTS sections.)  
Use a diode of a Schottky type with high switching speed, and also take care of the rated current. (See  
OUTPUT CURRENT and SELECTION OF PERIPHERAL COMPONENTS sections.)  
The performance of power source circuits using these ICs largely depends upon the peripheral components. Take  
the utmost care in the selection of the peripheral components. In particular, design the peripheral circuits in such  
a manner that the values such as voltage, current and power of each component, PCB patterns and the IC do not  
exceed their respective rated values.  
46  

相关型号:

RV5VH301-E2

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH301E1

SMPS Controller
ETC

RV5VH301E2

SMPS Controller
ETC

RV5VH302

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH302-E1

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH302-E2

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH302E1

SMPS Controller
ETC

RV5VH302E2

SMPS Controller
ETC

RV5VH303

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH303-E1

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH303-E2

DC/DC CONVERTER CONTROLLER
RICOH

RV5VH303E1

SMPS Controller
ETC