AD5203AR10-REEL [ROCHESTER]

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, SOIC-24;
AD5203AR10-REEL
型号: AD5203AR10-REEL
厂家: Rochester Electronics    Rochester Electronics
描述:

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, SOIC-24

光电二极管 转换器 电阻器
文件: 总13页 (文件大小:942K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4-Channel, 64-Position  
Digital Potentiometer  
a
AD5203  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
64 Position  
Replaces Four Potentiometers  
10 k, 100 k⍀  
DAC 1  
A1  
W1  
B1  
AGND1  
6-BIT  
AD5203  
6
Power Shutdown—Less than 5 A  
3-Wire SPI-Compatible Serial Data Input  
10 MHz Update Data Loading Rate  
+2.7 V to +5.5 V Single Supply Operation  
Midscale Preset  
LATCH  
V
DD  
RS  
CK  
SHDN  
DGND  
1
2
3
4
DAC 2  
DAC  
SELECT  
A2  
W2  
B2  
AGND2  
6-BIT  
LATCH  
6
APPLICATIONS  
CK RS  
Mechanical Potentiometer Replacement  
Programmable Filters, Delays, Time Constants  
Volume Control, Panning  
Line Impedance Matching  
Power Supply Adjustment  
SHDN  
A1, A0  
2
DAC 3  
8-BIT  
SERIAL  
LATCH  
A3  
W3  
B3  
AGND3  
6-BIT  
LATCH  
6
6
6
D
SDI  
RS  
CK  
SHDN  
CK  
Q
RS  
GENERAL DESCRIPTION  
CLK  
DAC 4  
CS  
A4  
W4  
B4  
AGND4  
The AD5203 provides a quad channel, 64-position digitally-  
controlled variable resistor (VR) device. These parts perform the  
same electronic adjustment function as a potentiometer or vari-  
able resistor. The AD5203 contains four independent variable  
resistors in a 24-lead SOIC and the compact TSSOP-24 pack-  
ages. Each part contains a fixed resistor with a wiper contact  
that taps the fixed resistor value at a point determined by a digi-  
tal code loaded into the controlling serial input register. The  
resistance between the wiper and either endpoint of the fixed  
resistor varies linearly with respect to the digital code transferred  
into the VR latch. Each variable resistor offers a completely  
programmable value of resistance, between the A terminal and  
the wiper or the B terminal and the wiper. The fixed A-to-B  
terminal resistance of 10 k, or 100 khas a ±1% channel-to-  
channel matching tolerance with a nominal temperature coeffi-  
cient of 700 ppm/°C.  
6-BIT  
LATCH  
CK RS  
SHDN  
SHDN  
SDO  
RS  
The reset RS pin forces the wiper to the midscale position by  
loading 20H into the VR latch. The SHDN pin forces the resis-  
tor to an end-to-end open circuit condition on terminal A and  
shorts the wiper to terminal B, achieving a microwatt power  
shutdown state. When shutdown is returned to logic-high the  
previous latch settings put the wiper in the same resistance set-  
ting prior to shutdown.  
The AD5203 is available in a narrow body P-DIP-24, the  
24-lead surface mount package, and the compact 1.1 mm thin  
TSSOP-24 package. All parts are guaranteed to operate over the  
extended industrial temperature range of –40°C to +85°C.  
Each VR has its own VR latch which holds its programmed  
resistance value. These VR latches are updated from an internal  
serial-to-parallel shift register that is loaded from a standard  
3-wire serial-input digital interface. Eight data bits make up the  
data word clocked into the serial input register. The data word is  
decoded where the first two bits determine the address of the VR  
latch to be loaded, the last 6-bits are data. A serial data output  
pin at the opposite end of the serial register allows simple daisy-  
chaining in multiple VR applications without additional external  
decoding logic.  
For pin compatible higher resolution applications, see the 256-  
position AD8403 product.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD5203–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (V = +3 V ؎ 10% or +5 V ؎ 10%, V = +V , V = 0 V, –40؇C < T < +85؇C unless  
otherwise noted)  
DD  
A
DD  
B
A
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs  
Resistor Differential NL2  
Resistor Nonlinearity Error2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
RAB  
RAB/T  
RW  
RWB, VA = No Connect  
RWB, VA = No Connect  
–0.25  
–0.5  
–30  
±0.1  
±0.1  
+0.25  
+0.5  
+30  
LSB  
LSB  
%
ppm/°C  
VAB = VDD, Wiper = No Connect  
IW = 1 V/RAB  
CH 1 to CH 2, VAB = VDD , TA = +25°C  
700  
45  
0.2  
100  
1
Nominal Resistance Match  
R/RO  
%
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications Apply to All VRs  
Resolution  
N
DNL  
INL  
6
Bits  
LSB  
LSB  
ppm/°C  
LSB  
Differential Nonlinearity Error4  
–0.25  
–0.75  
±0.1  
±0.1  
20  
–0.2  
+0.1  
+0.25  
+0.75  
Integral Nonlinearity Error4  
Voltage Divider Temperature Coefficient VW/T  
Full-Scale Error  
Zero-Scale Error  
Code = 20H  
Code = 3FH  
Code = 00H  
VWFSE  
VWZSE  
–0.75  
0
0
+0.75  
LSB  
RESISTOR TERMINALS  
Voltage Range5  
VA, VB, VW  
CA, CB  
CW  
IA_SD  
RW_SD  
0
VDD  
V
Capacitance6 Ax, Bx  
Capacitance6 Wx  
f = 1 MHz, Measured to GND, Code = 20H  
f = 1 MHz, Measured to GND, Code = 20H  
VA = VDD, VB = 0 V, SHDN = 0  
75  
pF  
pF  
µA  
120  
0.01  
45  
Shutdown Supply Current7  
Shutdown Wiper Resistance  
5
100  
VA = VDD, VB = 0 V, SHDN = 0, VDD = +5 V  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = +5 V  
VDD = +5 V  
VDD = +3 V  
VDD = +3 V  
RL = 2.2 kto VDD  
IOL = 1.6 mA, VDD = +5 V  
VIN = 0 V or +5 V, VDD = +5 V  
2.4  
V
V
V
V
V
V
µA  
pF  
0.8  
0.6  
2.1  
Output Logic High  
Output Logic Low  
Input Current  
VDD–0.1  
0.4  
±1  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
VDD Range  
IDD  
IDD  
PDISS  
PSS  
PSS  
2.7  
5.5  
5
4
V
µA  
mA  
µW  
%/%  
%/%  
Supply Current (CMOS)  
Supply Current (TTL)8  
Power Dissipation (CMOS)9  
Power Supply Sensitivity  
VIH = VDD or VIL = 0 V  
0.01  
0.9  
VIH = 2.4 V or VIL = 0.8 V, VDD = +5.5 V  
VIH = VDD or VIL = 0 V, VDD = +5.5 V  
VDD = +5 V ± 10%  
27.5  
0.0002 0.001  
VDD = +3 V ± 10%  
0.006  
0.03  
DYNAMIC CHARACTERISTICS6, 10  
Bandwidth –3 dB  
BW_10K  
BW_100K RAB = 100 kΩ  
THDW  
tS_10K  
tS_100K  
eNWB  
RAB = 10 kΩ  
600  
71  
0.003  
2
18  
9
kHz  
kHz  
%
µs  
µs  
nV/Hz  
nV/Hz  
dB  
Total Harmonic Distortion  
VW Settling Time  
VA =1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz  
VA = VDD, VB = 0 V, ±1 LSB Error Band  
VA = VDD, VB = 0 V, ±1 LSB Error Band  
RWB = 5 k, f = 1 kHz, RS = 0  
RWB = 50 k, f = 1 kHz, RS = 0  
VA = VDD, VB = 0 V  
Resistor Noise Voltage  
Crosstalk11  
29  
–65  
CT  
INTERFACE TIMING CHARACTERISTICS Applies to All Parts6, 12  
Input Clock Pulsewidth  
Data Setup Time  
tCH, tCL  
tDS  
tDH  
Clock Level High or Low  
10  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
CLK to SDO Propagation Delay13  
CS Setup Time  
tPD  
RL = 2.2 k, CL < 20 pF  
1
25  
tCSS  
tCSW  
tRS  
tCSH  
tCS1  
10  
10  
50  
0
CS High Pulsewidth  
Reset Pulsewidth  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
10  
–2–  
REV. 0  
AD5203  
NOTES  
1Typicals represent average readings at +25°C and VDD = +5 V.  
2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper posi-  
tions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 27 test circuit. I W = VDD/R  
for both VDD = +3 V or VDD = +5 V.  
3VAB = VDD, Wiper (VW) = No connect.  
4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = 0 V.  
DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions. See Figure 26 test circuit.  
5Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6Guaranteed by design and not subject to production test.  
7Measured at the AX terminals. All AX terminals are open-circuited in shutdown mode.  
8Worst case supply current consumed when all logic-input levels set at 2.4 V, standard characteristic of CMOS logic. See Figure 19 for a plot of I DD vs. logic voltage  
inputs result in minimum power dissipation.  
9PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10All dynamic characteristics use VDD = +5 V.  
11Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.  
12See timing diagrams for location of measured values. All input control voltages are specified with t R = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level  
of 1.6 V. Switching characteristics are measured using both VDD = +3 V or +5 V. Input logic should have a 1 V/µs minimum slew rate.  
13Propagation delay depends on value of VDD, RL and CL. See Operation section.  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C, unless otherwise noted)  
1
SDI  
A1 A0 D5 D4 D3 D2 D1 D0  
0
1
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.3 V, +8 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, VDD  
IAB, IAW, IBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Digital Input and Output Voltage to GND . . . . . . . 0 V, +8 V  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Maximum Junction Temperature (TJ MAX) . . . . . . . .+150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . .+300°C  
Package Power Dissipation . . . . . . . . . . . . . . (TJ max–TA)/θJA  
Thermal Resistance θJA  
CLK  
0
1
DAC REGISTER LOAD  
CS  
0
V
DD  
V
OUT  
0V  
Figure 1a. Timing Diagram  
1
0
SDI  
(DATA IN)  
Ax OR Dx  
Ax OR Dx  
tDS  
P-DIP (N-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63°C/W  
SOIC (SOL-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W  
TSSOP-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143°C/W  
tDH  
1
0
SDO  
(DATA OUT)  
A'x OR D'x  
A'x OR D'x  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
tPD  
tPD  
MIN  
MAX  
tCH  
tCS1  
1
0
CLK  
tCL  
tCSH  
tCSS  
1
0
tCSW  
CS  
Table I. Serial-Data Word Format  
tS  
؎1 LSB  
V
DD  
ADDR  
B7  
DATA  
B5  
V
OUT  
؎ 1 LSB ERROR BAND  
0V  
B6  
B4  
B3  
B2  
B1  
B0  
Figure 1b. Detail Timing Diagram  
A1  
A0  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
20  
MSB LSB  
MSB  
27 26  
25  
tRS  
1
RS  
0
tS  
؎1 LSB  
V
DD  
V
OUT  
؎1 LSB ERROR BAND  
0V  
Figure 1c. Reset Timing Diagram  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD5203 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD5203  
PIN CONFIGURATION  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin  
No. Name  
24 B1  
AGND2  
B2  
1
2
23  
22  
21  
20  
19  
18  
A1  
1
2
3
4
5
6
7
8
9
AGND2  
Analog Ground #2*  
3
A2  
W1  
B2  
A2  
W2  
B Terminal RDAC #2  
A Terminal RDAC #2  
Wiper RDAC #2, addr = 012  
Analog Ground #4*  
B Terminal RDAC #4  
A Terminal RDAC #4  
Wiper RDAC #4, addr = 112  
Digital Ground*  
4
W2  
AGND1  
B3  
5
AGND4  
B4  
AD5203  
(Not to Scale)  
6
A3  
AGND4  
B4  
7
A4  
W3  
8
17 AGND3  
W4  
16  
15  
14  
DGND  
9
V
DD  
A4  
W4  
10  
11  
SHDN  
CS  
RS  
CLK  
DGND  
SHDN  
13 SDO  
SDI 12  
10  
Active Low Input. Terminal A open circuit.  
Shutdown controls Variable Resistors #1  
through #4.  
11  
CS  
Chip Select Input, Active Low. When CS  
returns high data in the serial input register  
is decoded based on the address bits and  
loaded into the target DAC register.  
12  
13  
SDI  
SDO  
Serial Data Input  
Serial Data Output. Open drain transistor  
requires pull-up resistor.  
14  
15  
CLK  
RS  
Serial Clock Input, positive edge triggered.  
Active low reset to midscale; sets RDAC  
registers to 20H.  
16  
VDD  
Positive power supply, specified for opera-  
tion at both +3 V and +5 V.  
17  
18  
19  
20  
21  
22  
23  
24  
AGND3  
W3  
A3  
B3  
AGND1  
W1  
Analog Ground #3*  
Wiper RDAC #3, addr =102  
A Terminal RDAC #3  
B Terminal RDAC #3  
Analog Ground #1*  
Wiper RDAC #1, addr = 002  
A Terminal RDAC #1  
B Terminal RDAC #1  
A1  
B1  
*All AGNDs must be connected to DGND voltage potential.  
ORDERING GUIDE  
Model  
k⍀  
Temperature Range  
Package Descriptions  
Package Options  
AD5203AN10  
AD5203AR10  
AD5203ARU10  
AD5203AN100  
AD5203AR100  
AD5203ARU100  
10  
10  
10  
100  
100  
100  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
24-Lead Narrow Body Plastic DIP  
24-Lead Wide Body (SOIC)  
24-Lead Thin Surface Mount Package (TSSOP)  
24-Lead Narrow Body Plastic DIP  
24-Lead Wide Body (SOIC)  
N-24  
SOL-24  
RU-24  
N-24  
SOL-24  
RU-24  
24-Lead Thin Surface Mount Package (TSSOP)  
–4–  
REV. 0  
Typical Performance Characteristics–  
AD5203  
0.25  
10  
9
8
7
6
5
4
3
2
1
0
5
4.5  
4
3F  
H
V
R
= +3V, OR +5V  
= 10k⍀  
DD  
V
= +3.0V  
0.2  
DD  
AB  
20  
H
0.15  
10  
H
0.1  
3.5  
3
08  
H
T
= +85؇C  
0.05  
0
A
05  
H
2.5  
2
02  
–0.05  
–0.1  
–0.15  
–0.2  
–0.25  
H
1.5  
1
T
= –55؇C  
R
R
A
WB  
WA  
R
= 10k⍀  
AB  
T
= +25؇C  
A
V
T
= +5V  
DD  
= +25؇C  
0.5  
0
A
0
0
8
16  
24 32  
40 48  
56  
64  
1
2
I
3
4
5
6
7
48  
0
8
16  
24  
32  
40  
56 64  
DIGITAL INPUT CODE – Decimal  
CURRENT – mA  
CODE – Decimal  
WA  
Figure 2. Wiper to End Terminal  
Resistance vs. Code  
Figure 4. Resistance Step Position  
Nonlinearity Error vs. Code  
Figure 3. Resistance Linearity vs.  
Conduction Current  
0.25  
80  
12  
AD5203-10K VERSION  
SS = 544 UNITS  
V
= +3.0V  
0.2  
0.15  
0.1  
DD  
V
= +4.5V  
DD  
10  
T
= +25؇C  
A
R
(END-TO-END)  
AB  
60  
40  
20  
0
8
6
4
2
0
0.05  
0
+25؇C  
–0.05  
–0.1  
–0.15  
–0.2  
–0.25  
R
(WIPER-TO-END)  
WB  
–55؇C  
CODE = 20  
H
+85؇C  
0
8
16  
24  
32  
40  
48  
56 64  
30 31 32 33 34 35 36 37 38 39  
–75 –50 –25  
0
25  
50 75 100 125  
WIPER RESISTANCE – ⍀  
DIGITAL INPUT CODE – Decimal  
TEMPERATURE – ؇C  
Figure 5. Wiper-Contact-Resistance  
Histogram  
Figure 6. Nominal Resistance vs.  
Temperature  
Figure 7. Potentiometer Divider  
Nonlinearity Error vs. Code  
0.25  
120  
50  
V
= +3.0V  
= –40؇C/+85؇C  
= +2.0V  
V
T
= +3.0V  
= +25؇C, +85؇C, –40؇C  
DD  
V
= +3.0V  
= –40؇C/+85؇C  
= NO CONNECT  
MEASURED  
DD  
DD  
0.2  
0.15  
0.1  
T
A
T
A
A
100  
80  
60  
40  
20  
0
V
V
A
B
V
40  
30  
20  
10  
0
A
= 0V  
R
WB  
0.05  
0
–0.05  
–0.1  
–0.15  
–0.2  
–0.25  
0
8
16  
24  
32  
40  
48  
56 64  
0
8
16 24  
32 40  
48  
56 64  
0
8
16  
24  
32 40  
48  
56 64  
DIGITAL INPUT CODE – Decimal  
CODE – Decimal  
CODE – Decimal  
Figure 8. Potentiometer Divider  
Differential Nonlinearity Error vs.  
Code  
Figure 9. VWB/T Potentiometer  
Mode Tempco  
Figure 10. RWB/T Rheostat Mode  
Tempco  
REV. 0  
–5–  
–Typical Performance Characteristics  
AD5203  
0
0.75  
0.5  
CODE = 3F  
H
V
= +5V  
DD  
CODE = 3F  
SS = 77 UNITS  
H
20  
H
–10  
10  
08  
H
H
AVG +2 ⌺  
0.25  
0
R
W
(20mV/DIV)  
–20  
–30  
AVG  
04  
02  
H
H
H
AVG –2 ⌺  
–0.25  
–0.5  
–0.75  
CS  
(5V/DIV)  
01  
–40  
–50  
T
= +25؇C  
A
TIME 500ns/DIV  
SEE TEST CIRCUIT FIGURE 32  
0
100  
200  
300  
400  
500  
600  
10  
100  
1k  
10k  
100k  
1M  
10M  
HOURS OF OPERATION @ 150؇C  
FREQUENCY – Hz  
Figure 13. Long-Term Drift  
Accelerated by Burn-In  
Figure 11. One Position Step Change  
at Half-Scale (Code 1FH to 20H)  
Figure 12. Gain vs. Frequency for  
R = 10 kΩ  
10  
FILTER = 22kHz  
V
= +5V  
DD  
T
= +25؇C  
= 10k⍀  
A
1
0.1  
R
AB  
OUTPUT  
V
OUT  
(20mV/DIV)  
SEE TEST CIRCUIT FIGURE 31  
SEE TEST CIRCUIT FIGURE 30  
CS  
0.01  
0.001  
TIME 100ns/DIV  
TIME 5s/DIV  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
Figure 14. Large Signal Settling Time  
Figure 16. Digital Feedthrough vs.  
Time  
Figure 15. Total Harmonic Distortion  
Plus Noise vs. Frequency  
0
10  
0
CODE = 3F  
H
R
= 10k⍀  
AB  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
20  
10  
H
–10  
–20  
–30  
–40  
–50  
V
= +5.0V  
DD  
H
1
R
= 100k⍀  
AB  
08  
04  
H
H
V
= +3.0V  
DD  
02  
H
H
0.1  
V
= +5V  
DD  
01  
CODE = 3F  
H
V
= +5V  
= +25؇C  
DD  
T
= +25؇C  
A
T
A
SEE TEST CIRCUIT FIGURE 32  
5dB/DIV  
0.01  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
INPUT LOGIC VOLTAGE – Volts  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 17. 100 kGain vs. Frequency  
vs. Code  
Figure 19. Supply Current vs. Logic  
Input Voltage  
Figure 18. Normalized Gain Flat-  
ness vs. Frequency  
–6–  
REV. 0  
AD5203  
1200  
1000  
800  
600  
400  
200  
0
80  
60  
40  
20  
0
0
A – V = +5.5V  
DD  
T
= +25؇C  
–5  
A
CODE = 15  
H
B – V = +3.3V  
DD  
–10  
–15  
CODE = 15  
H
f
= 65kHz,  
R = 100k⍀  
–3dB  
C – V = +5.5V  
DD  
CODE = 3F  
–20  
–25  
H
D – V = +3.3V  
DD  
f
= 625kHz,  
–3dB  
CODE = 3F  
H
R = 10k⍀  
–30  
–35  
V
T
= +5V DC ؎1V p-p AC  
= +25؇C  
V
= +5V  
DD  
DD  
B
A
V
= 100mV rms  
A
IN  
CODE = 80  
–40  
H
CODE = 20  
H
C
V
= 10pF  
L
C
T
= +25؇C  
A
= 4V, V = 0V  
–45  
–50  
A
B
D
1k  
10k  
100k  
1M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 20. Power Supply Rejection  
vs. Frequency  
Figure 21. –3 dB Frequency at  
Half-Scale  
Figure 22. Supply Current vs. Clock  
Frequency  
100  
100  
1
V
= +5V  
T
= +25؇C  
DD  
A
LOGIC INPUT  
VOLTAGE = 0, V  
DD  
80  
60  
40  
20  
0
V
= +2.7V  
DD  
0.1  
10  
V
= +5.5V  
DD  
0.01  
V
V
= +5.5V  
= +3.3V  
DD  
DD  
1
–55 –35 –15  
0.001  
–55 –35 –15  
5
25 45 65 85 105 125  
0
1
2
3
– Volts  
4
5
6
5
25 45 65 85 105 125  
V
TEMPERATURE – ؇C  
DD  
TEMPERATURE – ؇C  
Figure 24. Shutdown Current vs.  
Temperature  
Figure 23. Incremental Wiper ON  
Resistance vs. VDD  
Figure 25. Supply Current vs.  
Temperature  
REV. 0  
–7–  
–Parametric Test Circuits  
AD5203  
A
B
DUT  
+5V  
V+ = V  
W
DUT  
A
DD  
V
~
IN  
1LSB = V+/64  
V
W
OP279  
OUT  
V+  
OFFSET  
GND  
B
V
2.5V DC  
MS  
Figure 26. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Figure 30. Inverting Programmable Gain Test Circuit  
+5V  
NO CONNECT  
DUT  
V
OP279  
OUT  
W
I
V
W
~
IN  
A
W
OFFSET  
GND  
B
DUT  
A
B
2.5V  
V
MS  
Figure 27. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
Figure 31. Noninverting Programmable Gain Test Circuit  
I
MS  
V+ Ϸ V  
A
B
+15V  
OP42  
–15V  
DD  
DUT  
W
I
= 1V/R  
V – [V  
+ I (R II R )]  
W1 W AW BW  
V
W
NOMINAL  
W2  
~
IN  
A
R
= ––––––––––––––––––––––––––  
DUT  
V
W
W
W
I
W
V
V+  
OUT  
OFFSET  
GND  
WHERE V = V WHEN I = 0  
B
W1  
MS  
W
AND V = V WHEN I = 1/R  
2.5V  
V
W2  
MS  
W
MS  
Figure 32. Gain vs. Frequency Test Circuit  
Figure 28. Wiper Resistance Test Circuit  
0.1V  
V
A
R
=
SW  
I
DUT  
SW  
V+ = V ± 10%  
DD  
CODE = ØØ  
H
V  
W
MS  
A
B
V
DD  
PSRR (dB) = 20 LOG ( ––––– )  
W
V  
V+  
~
B
DD  
0.1V  
I
V  
%
SW  
MS  
PSS (%/%) = –––––––  
V  
V
MS  
%
DD  
0 TO V  
DD  
Figure 29. Power Supply Sensitivity Test Circuit (PSS,  
PSRR)  
Figure 33. Incremental ON Resistance Test Circuit  
–8–  
REV. 0  
AD5203  
tap point located at 201 [= RBA(nominal resistance)/64 + RW  
= 156 + 45 )] for data 01H. The third connection is the next  
tap point representing 312 + 45 = 357 for data 02H. Each  
LSB data value increase moves the wiper up the resistor ladder  
until the last tap point is reached at 9889 . The wiper does not  
directly connect to the B Terminal. See Figure 34 for a simpli-  
fied diagram of the equivalent RDAC circuit.  
OPERATION  
The AD5203 provides a quad channel, 64-position digitally-  
controlled variable resistor (VR) device. Changing the pro-  
grammed VR settings is accomplished by clocking in an 8-bit  
serial data word into the SDI (Serial Data Input) pin. The for-  
mat of this data word is two address bits, MSB first, followed by  
six data bits, MSB first. Table I provides the serial register data  
word format. The AD5203 has the following address assign-  
ments for the ADDR decode, which determines the location of  
VR latch receiving the serial register data in Bits B5 through B0:  
The general transfer equation that determines the digitally pro-  
grammed output resistance between Wx and Bx is:  
R
WB(Dx) = (Dx)/64 × RBA + RW  
(1)  
VR# = A1 × 2 + A0 + 1  
where Dx is the data contained in the 6-bit RDACx latch and  
RBA is the nominal end-to-end resistance.  
VR outputs can be changed one at a time in random sequence.  
The serial clock running at 10 MHz makes it possible to load all  
four VRs in under 3.2 µs (8 × 4 × 100 ns) for the AD5203. The  
exact timing requirements are shown in Figure 1.  
For example, when VB = 0 V and A–terminal is open circuit the  
following output resistance values will be set for the following  
RDAC latch codes (applies to the 10K potentiometer):  
The AD5203 resets to a midscale by asserting the RS pin, sim-  
plifying initial conditions at power-up. Both parts have a power  
shutdown SHDN pin that places the RDAC in a zero power  
consumption state where terminals Ax are open-circuited and  
the wiper Wx is connected to Bx, resulting in only leakage cur-  
rents being consumed in the VR structure. In shutdown mode  
the VR latch settings are maintained so that, returning to opera-  
tional mode from power shutdown, the VR settings return to  
their previous resistance values.  
D (DEC) RWB ()  
Output State  
63  
32  
1
9889  
5045  
201  
45  
Full-Scale  
Midscale (RS = 0 Condition)  
1 LSB  
0
Zero-Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition a finite wiper resistance of  
45 is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum value of 5 mA to  
avoid degradation or possible destruction of the internal switch  
contact.  
Ax  
R
S
SHDN  
R
S
Like the mechanical potentiometer the RDAC replaces, it is  
totally symmetrical. The resistance between the wiper W and  
D5  
D4  
D3  
D2  
D1  
D0  
terminal A also produces a digitally controlled resistance RWA  
.
R
S
When these terminals are used the B–terminal should be tied to  
the wiper. Setting the resistance value for RWA starts at a maxi-  
mum value of resistance and decreases as the data loaded in the  
latch is increased in value. The general transfer equation for this  
operation is:  
Wx  
RDAC  
LATCH  
&
DECODER  
R
WA(Dx) = (64-Dx)/64 × RBA + RW  
(2)  
where Dx is the data contained in the 6-bit RDACx latch and  
RBA is the nominal end-to-end resistance. For example, when  
VA = 0 V and B–terminal is tied to the wiper W, the following  
output resistance values will be set for the following RDAC  
latch codes:  
R
S
Bx  
R
= R /64  
AB  
S
Figure 34. Equivalent RDAC Circuit  
D (DEC)  
RWA ()  
Output State  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
63  
32  
1
201  
Full-Scale  
Midscale (RS = 0 Condition)  
1 LSB  
5045  
9889  
10045  
The nominal resistance of the RDAC between Terminals A and  
B are available with values of 10 k, and 100 k. The final  
digits of the part number determine the nominal resistance  
value, e.g., 10 k= 10; 100 k= 100. The nominal resistance  
(RAB) of the VR has 64 contact points accessed by the wiper  
terminal, plus the B terminal contact. The 6-bit data word in  
the RDAC latch is decoded to select one of the 64 possible  
settings. The wiper’s first connection starts at the B terminal for  
data 00H. This B–terminal connection has a wiper contact resis-  
tance of 45 . The second connection (10 kpart) is the first  
0
Zero-Scale  
The typical distribution of RBA from channel to channel matches  
within ±1%. However, device-to-device matching is process-lot-  
dependent, having a ±30% variation. The change in RBA with  
temperature has a 700 ppm/°C temperature coefficient.  
REV. 0  
–9–  
AD5203  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The serial-data-output (SDO) pin contains an open drain  
n-channel FET. This output requires a pull-up resistor in order  
to transfer data to the next package’s SDI pin. The pull-up  
resistor termination voltage may be larger than the VDD supply  
of the AD5203 SDO output device, e.g., the AD5203 could  
operate at VDD = 3.3 V and the pull-up for interface to the next  
device could be set at +5 V. This allows for daisy chaining sev-  
eral RDACs from a single processor serial data line. Clock pe-  
riod needs to be increased when using a pull-up resistor to the  
SDI pin of the following device in the series. Capacitive loading  
at the daisy chain node SDO-SDI between devices must be  
accounted for to successfully transfer data. When daisy chaining  
is used, the CS should be kept low until all the bits of every  
package are clocked into their respective serial registers insuring  
that the address bits and data bits are in the proper decoding  
location. This would require 16 bits of address and data comply-  
ing to the word format provided in Table I if two AD5203 four-  
channel RDACs are daisy chained. During shutdown, SHDN  
the SDO output pin is forced to the off (logic high state) to  
disable power dissipation in the pull-up resistor. See Figure 37  
for equivalent SDO output circuit schematic.  
The digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example connecting A–terminal to +5 V and B–terminal to  
ground produces an output voltage at the wiper which can be  
any value starting at zero volts up to 1 LSB less than +5 V.  
Each LSB of voltage is equal to the voltage applied across ter-  
minal AB divided by the 64 position resolution of the potenti-  
ometer divider. The general equation defining the output  
voltage with respect to ground for any given input voltage ap-  
plied to terminals AB is:  
VW(Dx) = Dx/64 × VAB + VB  
Operation of the digital potentiometer in the divider mode  
results in more accurate operation over temperature. Here the  
output voltage is dependent on the ratio of the internal resistors  
not the absolute value, therefore the drift improves to 20 ppm/°C.  
DIGITAL INTERFACING  
The AD5203 contains a standard three-wire serial input control  
interface. The three inputs are clock (CLK), CS and serial data  
input (SDI). The positive-edge sensitive CLK input requires  
clean transitions to avoid clocking incorrect data into the serial  
input register. Standard logic families work well. If mechanical  
switches are used for product evaluation they should be de-  
bounced by a flip-flop or other suitable means. The Figure 35  
block diagram shows more detail of the internal digital cir-  
cuitry. When CS is taken active low the clock loads data into  
the serial register on each positive clock edge, see Table III.  
Table II. Input Logic Control Truth Table  
CLK CS  
RS SHDN Register Activity  
L
P
L
L
H
H
H
H
No SR effect, enables SDO pin.  
Shift one bit in from the SDI pin.  
The eighth previously entered bit  
is shifted out of the SDO pin.  
Load SR data into RDAC latch  
based on A1, A0 decode (Table III).  
No Operation.  
Sets all RDAC latches to midscale,  
wiper centered and SDO latch  
cleared.  
X
P
H
H
X
X
H
X
H
L
H
H
AD5203  
V
CS  
DD  
A1  
W1  
B1  
CLK  
D5  
D0  
R
EN  
DAC  
LAT  
#1  
ADDR  
DEC  
X
X
H
H
P
H
H
L
Latches all RDAC latches to 20H.  
Open circuits all Resistor A–termi-  
nals, connects W to B, turns off  
SDO output transistor.  
A1  
A0  
DO  
SDO  
R
D5  
SER  
REG  
NOTE: P = positive edge, X = don’t care, SR = shift register.  
A4  
W4  
B4  
D5  
D0  
R
Table III. Address Decode Table  
DAC  
LAT  
#4  
DI  
SDI  
D0  
A1  
A0  
Latch Decoded  
6
R
0
0
1
1
0
1
0
1
RDAC#1  
RDAC#2  
RDAC#3  
RDAC#4  
SHDN  
AGND  
DGND  
RS  
Figure 35. Block Diagram  
–10–  
REV. 0  
AD5203  
The data setup and data hold times in the specification table  
determine the data valid time requirements. The last eight bits  
of the data word entered into the serial register are held when  
CS returns high. At the same time CS goes high it gates the  
address decoder which enables one of four positive edge trig-  
gered RDAC latches, see Figure 36 detail.  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structure shown in Figure 38. Applies to  
digital input pins CS, SDI, SDO, RS, SHDN, CLK.  
1k⍀  
LOGIC  
AD5203  
RDAC 1  
RDAC 2  
CS  
Figure 38. Equivalent ESD Protection Circuit  
ADDR  
DECODE  
RDAC 4  
DYNAMIC CHARACTERISTICS  
CLK  
SDI  
The total harmonic distortion plus noise (THD+N) measures  
0.003% using an offset ground with a rail-to-rail OP279 invert-  
ing op amp test circuit, see Figure 30. Figure 15 plots THD  
versus frequency for both inverting and noninverting amplifier  
topologies. Thermal noise is primarily Johnson noise, typically  
9 nV/Hz for the 10 kversion measured at 1 kHz. For the  
100 kdevice, thermal noise measures 29 nV/Hz. Channel-to-  
channel crosstalk measures less than –65 dB at f = 100 kHz. To  
achieve this isolation, the extra ground pins (AGND) located  
between the potentiometer terminals (A, B, W) must be con-  
nected to circuit ground. The AGND and DGND pins should  
be at the same voltage potential. Any unused potentiometers in  
a package should be connected to ground. Power supply rejec-  
tion is typically –50 dB at 10 kHz (care is needed to minimize  
power supply ripple injection in high accuracy applications).  
SERIAL  
REGISTER  
Figure 36. Equivalent Input Control Logic  
The target RDAC latch is loaded with the last six bits of the  
serial data word completing one RDAC update. Four separate  
8-bit data words must be clocked in to change all four VR  
settings.  
SHDN  
CS  
SDO  
SERIAL  
REGISTER  
Q
D
SDI  
CK  
RS  
CLK  
RS  
Figure 37. Detail, SDO Output Schematic of the AD5203  
REV. 0  
–11–  
AD5203  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead Narrow Body Plastic DIP  
(N-24)  
1.275 (32.30)  
1.125 (28.60)  
24  
1
13  
0.280 (7.11)  
0.240 (6.10)  
12  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.100 (2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77) SEATING  
PLANE  
0.045 (1.15)  
24-Lead SOIC  
(SOL-24)  
0.6141 (15.60)  
0.5985 (15.20)  
24  
13  
12  
1
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0138 (0.35)  
0.0091 (0.23)  
24-Lead Thin Surface Mount TSSOP  
(RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
12  
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
–12–  
REV. 0  

相关型号:

AD5203AR100

4-Channel, 64-Position Digital Potentiometer
ADI

AD5203AR100

100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, SOIC-24
ROCHESTER

AD5203AR100-REEL

100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, SOIC-24
ROCHESTER

AD5203ARU10

4-Channel, 64-Position Digital Potentiometer
ADI

AD5203ARU10

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24
ROCHESTER

AD5203ARU10-REEL

IC 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24, Digital Potentiometer
ADI

AD5203ARU10-REEL

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24
ROCHESTER

AD5203ARU100

4-Channel, 64-Position Digital Potentiometer
ADI

AD5203ARU100

100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24
ROCHESTER

AD5203ARU100-REEL

IC 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24, Digital Potentiometer
ADI

AD5203ARU100-REEL

100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24
ROCHESTER

AD5203ARUZ10

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, TSSOP-24
ROCHESTER