AD534JHZ [ROCHESTER]

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, ROHS COMPLIANT, HERMETIC SEALED, METAL CAN, MO-100, 10 PIN;
AD534JHZ
型号: AD534JHZ
厂家: Rochester Electronics    Rochester Electronics
描述:

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, ROHS COMPLIANT, HERMETIC SEALED, METAL CAN, MO-100, 10 PIN

PC
文件: 总21页 (文件大小:1398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Internally Trimmed  
Precision IC Multiplier  
AD534  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
STABLE  
REFERENCE  
AND BIAS  
+V  
S
Pretrimmed to 0.2ꢀ5 maximum 4-quadrant error (ADꢀ34L)  
All inputs (X, Y, and Z) differential, high impedance for  
[(X1 − X2)(Y1 − Y2)/10 V] + Z2 transfer function  
Scale factor adjustable to provide up to ×100 gain  
Low noise design: 90 μV rms, 10 Hz to10 kHz  
Low cost, monolithic construction  
SF  
–V  
S
TRANSFER FUNCTION  
X
X
1
2
V-TO-1  
V-TO-1  
V-TO-1  
(X – X ) (Y – Y )  
1
2
1
2
– (Z – Z )  
V
= A  
A
1
2
OUT  
SF  
TRANSLINEAR  
MULTIPLIER  
ELEMENT  
Y
Y
1
2
Excellent long-term stability  
OUT  
HIGH GAIN  
OUTPUT  
AMPLIFIER  
APPLICATIONS  
Z
Z
1
2
0.75 ATTEN  
High quality analog signal processing  
Differential ratio and percentage computations  
Algebraic and trigonometric function synthesis  
Wideband, high crest rms-to-dc conversion  
Accurate voltage controlled oscillators and filters  
Available in chip form  
Figure 1.  
GENERAL DESCRIPTION  
The AD534 is a monolithic laser trimmed four-quadrant multi-  
plier divider having accuracy specifications previously found  
only in expensive hybrid or modular products. A maximum  
multiplication error of ±±.ꢀ5ꢁ is guaranteed for the AD534L  
without any external trimming. Excellent supply rejection, low  
temperature coefficients and long-term stability of the on-chip  
thin film resistors and buried Zener reference preserve accuracy  
even under adverse conditions of use. It is the first multiplier to  
offer fully differential, high impedance operation on all inputs,  
including the Z input, a feature that greatly increases its  
standard value of 1±.±± V; by means of an external resistor, this  
can be reduced to values as low as 3 V.  
The wide spectrum of applications and the availability of several  
grades commend this multiplier as the first choice for all new  
designs. The AD534J (±1ꢁ maximum error), AD534K (±±.5ꢁ  
maximum), and AD534L (±±.ꢀ5ꢁ maximum) are specified for  
operation over the ±°C to +7±°C temperature range. The AD534S  
(±1ꢁ maximum) and AD534T (±±.5ꢁ maximum) are specified  
over the extended temperature range, −55°C to +1ꢀ5°C. All  
grades are available in hermetically sealed TO-1±± metal cans  
and SBDIP packages. AD534K, AD534S, and AD534T chips are  
also available.  
flexibility and ease of use. The scale factor is pretrimmed to the  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1977–2011 Analog Devices, Inc. All rights reserved.  
 
 
AD534  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Functional Description.................................................................. 12  
Provides Gain with Low Noise ..................................................... 12  
Operation as a Multiplier .......................................................... 12  
Operation as a Squarer .............................................................. 13  
Operation as a Divider............................................................... 13  
Operation as a Square Rooter................................................... 14  
Unprecedented Flexibility ......................................................... 14  
Applications Information.............................................................. 15  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
REVISION HISTORY  
4/11—Rev. B to Rev. C  
Changes to Features Section, Figure 1, and  
General Description Section........................................................... 1  
Added Pin Configurations and Function Descriptions  
Section................................................................................................ 8  
Moved Provides Gain with Low Noise Section .......................... 12  
Moved Unprecedented Flexibility Section .................................. 14  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
Rev. C | Page 2 of 20  
 
AD534  
SPECIFICATIONS  
TA = 25°C, ±±S = ±15 ±, R ≥ 2 kΩ, all minimum and maximum specifications are guaranteed, unless otherwise noted.  
Table 1.  
AD534J  
Min Typ  
AD534K  
Typ  
AD534L  
Typ  
Parameter  
Max  
Min  
Max Min  
Max  
Unit  
MULTIPLIER PERFORMANCE  
Transfer Function  
(X1 X2 )(Y1 Y2 )  
(X1 X2 )(Y1 Y2 )  
(X1 X2 )(Y1 Y2 )  
+ Z2  
+ Z2  
0.ꢀ2  
+ Z2  
10 ±  
10 ±  
10 ±  
Total Error 1 (−10 V ≤ X, Y ≤ +10 V)  
TA = TMIN to TMAX  
1.02  
0.2ꢀ2  
%
%
1.ꢀ  
1.0  
0.ꢀ  
Total Error vs. Temperature  
Scale Factor Error  
0.022  
0.01ꢀ  
0.00ꢁ  
%/°C  
(SF = 10.000 V Nominal)3  
Temperature Coefficient of  
Scaling Voltage  
Supply Rejection ( 1ꢀ V 1 V)  
Nonlinearity, X (X = 20 V p-p,  
Y = 10 V)  
Nonlinearity, Y (Y = 20 V p-p, X = 10 V  
Feedthrough, X (Y Nulled,  
X = 20 V p-p ꢀ0 Hz)  
0.2ꢀ  
0.1  
0.1  
%
0.02  
0.01  
0.ꢂ  
0.01  
0.01  
0.2  
0.00ꢀ  
0.01  
0.10  
%/°C  
%
%
0.32  
0.122  
0.2  
0.3  
0.1  
0.1ꢀ  
0.12  
0.32  
0.00ꢀ  
0.0ꢀ  
0.12  
0.122  
%
%
Feedthrough, Y (X Nulled,  
Y = 20 V p-p, ꢀ0 Hz)  
Output Offset Voltage  
Output Offset Voltage Drift  
DYNAMICS  
0.01  
0.01  
0.12  
1ꢀ2  
0.003  
0.12  
102  
%
200  
302  
2
100  
2
100  
mV  
μV/°C  
Small Signal BW (VOUT = 0.1 rms)  
1% Amplitude Error (CLOAD = 1000 pF)  
Slew Rate (VOUT 20 p-p)  
Settling Time (to 1%, D VOUT = 20 V)  
NOISE  
1
1
1
MHz  
kHz  
V/μs  
μs  
ꢀ0  
20  
2
ꢀ0  
20  
2
ꢀ0  
20  
2
Noise Spectral Density  
SF = 10 V  
SF = 3 Vꢀ  
0.ꢁ  
0.ꢂ  
0.ꢁ  
0.ꢂ  
0.ꢁ  
0.ꢂ  
μV/√Hz  
μV/√Hz  
Wideband Noise  
f = 10 Hz to ꢀ MHz  
f = 10 Hz to 10 kHz  
1
90  
1
90  
1
90  
mV rms  
μV rms  
OUTPUT  
Output Voltage Swing  
Output Impedance (f ≤ 1 kHz)  
Output Short-Circuit Current  
112  
0.1  
112  
112  
0.1  
V
Ω
0.1  
(RL = 0 Ω, TA = TMIN to TMAX  
)
30  
70  
30  
70  
30  
70  
mA  
dB  
Amplifier Open-Loop Gain (f = ꢀ0 Hz)  
INPUT AMPLIFIERS (X, Y, and Z)6  
Signal Voltage Range  
Differential or Common Mode  
Operating Differential  
Offset Voltage (X, Y)  
Offset Voltage Drift (X, Y)  
Offset Voltage (Z)  
10  
12  
100  
10  
12  
2
ꢀ0  
2
10  
12  
2
ꢀ0  
2
V
V
202  
302  
102  
1ꢀ2  
102  
102  
mV  
μV/°C  
mV  
μV/°C  
dB  
Offset Voltage Drift (Z)  
CMRR  
200  
ꢁ0  
100  
90  
100  
90  
602  
702  
702  
Rev. C | Page 3 of 20  
 
 
 
AD534  
AD534J  
Min Typ  
AD534K  
Typ  
AD534L  
Typ  
Parameter  
Max  
Min  
Max Min  
Max  
2.02  
0.22  
Unit  
μA  
μA  
Bias Current  
Offset Current  
Differential Resistance  
DIVIDER PERFORMANCE  
Transfer Function (X1 > X2)  
0.ꢁ  
0.1  
10  
2.02  
0.ꢁ  
0.1  
10  
2.02  
0.ꢁ  
0.0ꢀ  
10  
MΩ  
(Z2 Z1 )  
(Z2 Z1 )  
(Z2 Z1 )  
10 ±  
+Y1  
10 ±  
+Y1  
10 ±  
+Y1  
(X1 X 2 )  
(X1 X 2 )  
(X1 X 2 )  
Total Error1  
X = 10 V, −10 V ≤ Z ≤ +10 V  
X = 1 V, −1 V ≤ Z ≤ +1 V  
0.1 V ≤ X ≤ 10 V, −10 V ≤ Z ≤ +10 V  
SQUARER PERFORMANCE  
Transfer Function  
0.7ꢀ  
2.0  
2.ꢀ  
0.3ꢀ  
1.0  
1.0  
0.2  
0.ꢁ  
0.ꢁ  
%
%
%
(X1 X2 )2  
(X1 X2 )2  
(X1 X2 )2  
+Z2  
+Z2  
+Z2  
10 ±  
10 ±  
10 ±  
Total Error (−10 V ≤ X ≤ +10 V)  
SQUARE-ROOTER PERFORMANCE  
Transfer Function (Z1 ≤ Z2)  
Total Error1 (1 V ≤ Z ≤ 10 V)  
POWER SUPPLY SPECIFICATIONS  
Supply Voltage  
0.6  
0.3  
0.2  
%
%
√(10 V(Z2 Z1)) + X2  
√(10 V(Z2 Z1)) + X2  
√(10 V(Z2 Z1)) + X2  
1.0  
0.ꢀ  
0.2ꢀ  
Rated Performance  
Operating  
Supply Current  
Quiescent  
1ꢀ  
1ꢀ  
1ꢀ  
V
V
1ꢁ2  
62  
1ꢁ2  
62  
1ꢁ2  
62  
mA  
1 Specifications given are percent of full scale, 10 V (that is, 0.01% = 1 mV).  
2 Tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.  
3 Can be reduced down to 3 V using external resistor between –VS and SF.  
Irreducible component due to nonlinearity; excludes effect of offsets.  
Using external resistor adjusted to give SF = 3 V.  
6 See Figure 1 for definition of sections.  
Rev. C | Page ꢂ of 20  
AD534  
TA = 25°C, ±±S = ±15 ±, R ≥ 2 kΩ, all minimum and maximum specifications are guaranteed, unless otherwise noted.  
Table 2.  
AD534S  
Min Typ  
AD534T  
Min Typ  
Parameter  
Max  
Max  
Unit  
MULTIPLIER PERFORMANCE  
Transfer Function  
(X1 X2 )(Y1 Y2 )  
(X1 X2 )(Y1 Y2 )  
+ Z2  
+ Z2  
0.ꢀ2  
10 ±  
10 ±  
Total Error 1 (−10 V ≤ X, Y ≤ +10 V)  
TA = TMIN to TMAX  
Total Error vs. Temperature  
1.02  
2.02  
0.022  
%
%
1.0  
0.012 %/°C  
Scale Factor Error  
(SF = 10.000 V Nominal)3  
Temperature Coefficient of Scaling Voltage  
Supply Rejection ( 1ꢀ V 1 V)  
Nonlinearity, X (X = 20 V p-p, Y = 10 V)  
Nonlinearity, Y (Y = 20 V p-p, X = 10 V  
Feedthrough, X (Y Nulled,  
X = 20 V p-p, ꢀ0 Hz)  
0.2ꢀ  
0.02  
0.01  
0.ꢂ  
0.1  
%
%/°C  
%
%
%
0.01  
0.01  
0.2  
0.32  
0.12  
0.2  
0.1  
0.3  
0.1ꢀ  
0.32  
%
Feedthrough, Y (X Nulled,  
Y = 20 V p-p, ꢀ0 Hz)  
0.01  
0.01  
2
0.12  
1ꢀ2  
3002  
%
mV  
μV/°C  
Output Offset Voltage  
Output Offset Voltage Drift  
DYNAMICS  
302  
ꢀ002  
Small Signal BW (VOUT = 0.1 rms)  
1% Amplitude Error (CLOAD = 1000 pF)  
Slew Rate (VOUT 20 p-p)  
Settling Time (to 1%, ΔVOUT = 20 V)  
NOISE  
1
1
MHz  
kHz  
V/μs  
μs  
ꢀ0  
20  
2
ꢀ0  
20  
2
Noise Spectral Density  
SF = 10 V  
SF = 3 Vꢀ  
0.ꢁ  
0.ꢂ  
0.ꢁ  
0.ꢂ  
μV/√Hz  
μV/√Hz  
Wideband Noise  
f = 10 Hz to ꢀ MHz  
f = 10 Hz to 10 kHz  
1
90  
1
90  
mV/rms  
μV/rms  
OUTPUT  
Output Voltage Swing  
Output Impedance (f ≤ 1 kHz)  
Output Short-Circuit Current (RL = 0 Ω, TA = TMIN to TMAX  
Amplifier Open-Loop Gain (f = ꢀ0 Hz)  
INPUT AMPLIFIERS (X, Y, and Z)6  
Signal Voltage Range  
112  
112  
V
0.1  
30  
70  
0.1  
30  
70  
Ω
mA  
dB  
)
Differential or Common Mode  
Operating Differential  
Offset Voltage (X, Y)  
Offset Voltage Drift (X, Y)  
Offset Voltage (Z)  
Offset Voltage Drift (Z)  
CMRR  
Bias Current  
10  
12  
100  
10  
12  
2
1ꢀ0  
2
V
V
202  
102  
mV  
μV/°C  
mV  
μV/°C  
dB  
μA  
μA  
MΩ  
302  
ꢀ002  
1ꢀ2  
3002  
602  
ꢁ0  
0.ꢁ  
0.1  
10  
702  
90  
2.02  
0.ꢁ  
0.1  
10  
2.02  
Offset Current  
Differential Resistance  
Rev. C | Page ꢀ of 20  
 
 
AD534  
AD534S  
AD534T  
Parameter  
Min Typ  
Max  
Min Typ  
Max  
Unit  
DIVIDER PERFORMANCE  
Transfer Function (X1 > X2)  
(Z2 Z1 )  
(X1 X 2)  
(Z2 Z1 )  
(X1 X 2)  
10 ±  
+Y1  
10 ±  
+Y1  
Total Error1  
X = 10 V, −10 V ≤ Z ≤ +10 V  
X = 1 V, −1 V ≤ Z ≤ +1 V  
0.1 V ≤ X ≤ 10 V, −10 V ≤ Z ≤ +10 V  
SQUARER PERFORMANCE  
Transfer Function  
0.7ꢀ  
2.0  
2.ꢀ  
0.3ꢀ  
1.0  
1.0  
%
%
%
(X1 X2 )2  
(X1 X2 )2  
+Z2  
+Z2  
10 ±  
10 ±  
Total Error (−10 V ≤ X ≤ +10 V)  
SQUARE-ROOTER PERFORMANCE  
Transfer Function (Z1 ≤ Z2)  
Total Error1 (1 V ≤ Z ≤ 10 V)  
POWER SUPPLY SPECIFICATIONS  
Supply Voltage  
0.6  
0.3  
%
%
√(10 V(Z2 Z1)) + X2  
√(10 V(Z2 Z1)) + X2  
1.0  
0.ꢀ  
Rated Performance  
Operating  
Supply Current  
Quiescent  
1ꢀ  
1ꢀ  
V
V
222  
62  
222  
62  
mA  
1 Specifications given are percent of full scale, 10 V (that is, 0.01% = 1 mV).  
2 Tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels.  
3 Can be reduced down to 3 V using external resistor between –VS and SF.  
Irreducible component due to nonlinearity: excludes effect of offsets.  
Using external resistor adjusted to give SF = 3 V.  
6 See Figure 1 for definition of sections.  
Rev. C | Page 6 of 20  
AD534  
ABSOLUTE MAXIMUM RATINGS  
X
+V  
OUT  
1
S
Table 3.  
X
2
5
3
4
AD534J,  
AD534K,  
AD534L  
AD534S,  
AD534T  
8
A
Parameter  
0.076  
(1.93)  
Supply Voltage  
Internal Power Dissipation  
1ꢁ V  
ꢀ00 mW  
22 V  
ꢀ00 mW  
SF  
Output Short Circuit to  
Ground  
Input Voltages (X1, X2, Y1, Y2,  
Z1, Z2)  
Z
1
Indefinite  
VS  
Indefinite  
VS  
Rated Operating  
Temperature Range  
Storage Temperature  
Range  
Lead Temperature Range,  
60 sec Soldering  
0°C to +70°C  
−6ꢀ°C to +1ꢀ0°C  
300°C  
−ꢀꢀ°C to +12ꢀ°C  
−6ꢀ°C to +1ꢀ0°C  
300°C  
Y
1
Y
–V  
Z
2
2
S
0.100 (2.54)  
Figure 2. Chip Dimensions and Bonding Diagram  
Dimensions shown in inches and (mm)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Contact factory for latest dimensions.  
+V  
S
470k  
TO APPROPRIATE  
INPUT TERMINAL  
50kΩ  
1kΩ  
THERMAL RESISTANCE  
–V  
S
Figure 3. Optional Trimming Configuration  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
ESD CAUTION  
Table 4. Thermal Resistance  
Package Type  
θJA  
1ꢀ0  
9ꢀ  
θJC  
2ꢀ  
2ꢀ  
2ꢀ  
Unit  
°C/W  
°C/W  
°C/W  
10-Pin TO-100 (H-10)  
1ꢂ-Lead SBDIP (D-1ꢂ)  
20-Terminal LCC (E-20-1)  
9ꢀ  
Rev. C | Page 7 of 20  
 
 
AD534  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
+V  
S
OUT  
X1  
9
8
10  
Z1  
7
6
AD534  
TOP VIEW  
(Not to  
X2  
1
Z2  
2
Scale)  
SF  
5
3
4
–V  
S
Y1  
Y2  
Figure 4. TO-100 (H-10) Pin Configuration  
Table 5. H-10 Package Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
6
7
9
10  
X2  
SF  
Y1  
Y2  
−VS  
Z2  
Z1  
OUT  
+VS  
X1  
Inverting Differential Input of the X Multiplicand Input.  
Scale Factor Input.  
Noninverting Differential Input of the Y Multiplicand Input.  
Inverting Differential Input of the Y Multiplicand Input.  
Negative Supply Rail.  
Inverting Differential Input of the Z Reference Input.  
Noninverting Differential Input of the Z Reference Input.  
Product Output.  
Positive Supply Rail.  
Noninverting Differential Input of the X Multiplicand Input.  
X1  
X2  
NC  
SF  
NC  
Y1  
Y2  
1
2
3
4
5
6
7
14 +V  
S
13 NC  
12 OUT  
11 Z1  
AD534  
TOP VIEW  
(Not to Scale)  
10 Z2  
9
8
NC  
–V  
S
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
Figure 5. TO-100 (D-14) Pin Configuration  
Table 6. D-14 Package Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
X1  
X2  
NC  
SF  
Noninverting Differential Input of the X Multiplicand Input.  
Inverting Differential Input of the X Multiplicand Input.  
No Connect. Do not connect to this pin.  
Scale Factor Input.  
3, ꢀ, 9, 13  
6
7
10  
11  
12  
1ꢂ  
Y1  
Y2  
−VS  
Z2  
Z1  
Noninverting Differential Input of the Y Multiplicand Input.  
Inverting Differential Input of the Y Multiplicand Input.  
Negative Supply Rail.  
Inverting Differential Input of the Z Reference Input.  
Noninverting Differential Input of the Z Reference Input.  
Product Output.  
OUT  
+VS  
Positive Supply rail.  
Rev. C | Page ꢁ of 20  
 
AD534  
3
2
1
20 19  
18  
17  
16  
15  
14  
4
5
6
7
8
OUT  
NC  
Z1  
NC  
NC  
SF  
NC  
NC  
AD534  
TOP VIEW  
(Not to Scale)  
NC  
Z2  
9
10 11 12 13  
NC = NO CONNECT. DO NOT  
CONNECT TO THIS PIN.  
Figure 6. LCC (E-20-1) Pin Configuration  
Table 7. E-20-1 Package Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, ꢂ, ꢀ, 7, ꢁ, 11, 13, 1ꢀ, 17, 19  
2
3
6
NC  
X1  
X2  
No Connect. Do not connect to this pin.  
Noninverting Differential Input of the X Multiplicand Input.  
Inverting Differential Input of the X Multiplicand Input.  
Scale Factor Input.  
SF  
9
Y1  
Y2  
−VS  
Z2  
Z1  
Noninverting Differential Input of the Y Multiplicand Input.  
Inverting Differential Input of the Y Multiplicand Input.  
Negative Supply Rail.  
Inverting Differential Input of the Z Reference Input.  
Noninverting Differential Input of the Z Reference Input.  
Product Output.  
10  
12  
1ꢂ  
16  
19  
20  
OUT  
+VS  
Positive Supply Rail.  
Rev. C | Page 9 of 20  
AD534  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical at 25°C, with ±±S = ±15 ± dc, unless otherwise noted.  
14  
1000  
100  
10  
OUTPUT, R 2kΩ  
L
12  
10  
8
ALL INPUTS, SF = 10V  
X-FEEDTHROUGH  
Y-FEEDTHROUGH  
1
6
4
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
8
10  
12  
14  
16  
18  
20  
FREQUENCY (Hz)  
POSITIVE OR NEGATIVE SUPPLY (V)  
Figure 7. Input/Output Signal Range vs. Supply Voltages  
Figure 10. AC Feedthrough vs. Frequency  
800  
1.5  
700  
600  
500  
400  
SCALING VOLTAGE = 10V  
1
SCALING VOLTAGE = 10V  
SCALING VOLTAGE = 3V  
300  
200  
100  
0
0.5  
SCALING VOLTAGE = 3V  
0
10  
100  
1k  
10k  
100k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 11. Noise Spectral Density vs. Frequency  
Figure 8. Bias Current vs. Temperature (X, Y, or Z Input)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
CONDITIONS:  
10Hz TO 10kHz BANDWIDTH  
TYPICAL FOR  
ALL INPUTS  
50  
2.5  
100  
1k  
10k  
100k  
1M  
5.0  
7.5  
10.0  
FREQUENCY (Hz)  
SCALING VOLTAGE, SF (V)  
Figure 9. Common-Mode Rejection Ratio vs. Frequency  
Figure 12. Wideband Noise vs. Scaling Voltage  
Rev. C | Page 10 of 20  
 
 
AD534  
10  
0
60  
40  
0dB = 0.1V RMS, R = 2kΩ  
L
V
V
= 100mV dc  
= 10mV rms  
X
Z
C
= 0pF  
L
–10  
20  
0
V
V
= 1V dc  
= 100mV rms  
C
C
1000pF  
= 0pF  
C
L
1000pF  
200pF  
X
Z
L
F
C
F
–20  
–30  
NORMAL  
CONNECTION  
WITH ×10  
FEEDBACK  
ATTENUATOR  
V
V
= 10V dc  
= 1V rms  
X
Z
–20  
1k  
100k  
1M  
10M  
10k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 14. Frequency Response vs. Divider Denominator Input Voltage  
Figure 13. Frequency Response as a Multiplier  
Rev. C | Page 11 of 20  
 
AD534  
FUNCTIONAL DESCRIPTION  
inputs is now fully utilized. Bandwidth is unaffected by the use  
of this option.  
Figure 1 shows a functional block diagram of the AD534. Inputs  
are converted to differential currents by three identical voltage-  
to-current converters, each trimmed for zero offset. The product  
of the X and Y currents is generated by a multiplier cell using  
Gilberts translinear technique. An on-chip buried Zener  
provides a highly stable reference, which is laser trimmed to  
provide an overall scale factor of 10 ±. The difference between  
XY/SF and Z is then applied to the high gain output amplifier.  
This permits various closed-loop configurations and dramati-  
cally reduces nonlinearities due to the input amplifiers, a  
dominant source of distortion in earlier designs.  
Supply voltages of ±15 ± are generally assumed. However,  
satisfactory operation is possible down to ±8 ± (see Figure 7).  
Because all inputs maintain a constant peak input capability of  
±1.25 SF, some feedback attenuation is necessary to achieve  
output voltage swings in excess of ±12 ± when using higher  
supply voltages.  
PROVIDES GAIN WITH LOW NOISE  
The AD534 is the first general-purpose multiplier capable of  
providing gains up to ×100, frequently eliminating the need for  
separate instrumentation amplifiers to precondition the inputs.  
The AD534 can be very effectively employed as a variable gain  
differential input amplifier with high common-mode rejection.  
The gain option is available in all modes and simplifies the  
implementation of many function-fitting algorithms such as  
those used to generate sine and tangent. The utility of this  
feature is enhanced by the inherent low noise of the AD534:  
90 μ± rms (depending on the gain), a factor of 10 lower than  
previous monolithic multipliers. Drift and feedthrough are also  
substantially reduced over earlier designs.  
The effectiveness of the new scheme can be judged from the  
fact that, under typical conditions as a multiplier, the nonlinear-  
ity on the Y input, with X at full scale (±10 ±), is ±0.005ꢀ of FS.  
Even at its worst point, which occurs when X = ±.4 ±, nonlinear-  
ity is typically only ±0.05ꢀ of FS. Nonlinearity for signals applied  
to the X input, on the other hand, is determined almost entirely  
by the multiplier element and is parabolic in form. This error is a  
major factor in determining the overall accuracy of the unit and  
therefore is closely related to the device grade.  
The generalized transfer function for the AD534 is given by  
(
X1 X2 )(Y1 Y2  
)
OPERATION AS A MULTIPLIER  
VOUT = A  
(
Z1 Z2  
)
SF  
Figure 15 shows the basic connection for multiplication. Note  
that the circuit meets all specifications without trimming.  
where:  
A is the open-loop gain of the output amplifier, typically  
70 dB at dc.  
X1, Y1, Z1, X2, Y2, and Z2 are the input voltages (full scale = ±SF,  
peak = ±1.25 SF).  
SF is the scale factor, pretrimmed to 10.00 ± but adjustable by  
the user down to 3 ±.  
X
+V  
+15V  
1
S
X INPUT  
±10V FS  
±12V PK  
OUTPUT, ±12V PK =  
(X1 – X ) (Y1 – Y )  
X
2
OUT  
2
2
+ Z  
AD534  
2
10V  
Z
Z
1
2
SF  
OPTIONAL SUMMING  
INPUT, Z, ±10V PK  
Y
1
Y INPUT  
±10V FS  
±12V PK  
–15V  
Y
–V  
2
S
In most cases, the open-loop gain can be regarded as infinite,  
and SF is 10 ±. The operation performed by the AD534, can  
then be described in terms of the following equation:  
Figure 15. Basic Multiplier Connection  
To reduce ac feedthrough to a minimum (as in a suppressed  
carrier modulator), apply an external trim voltage (±30 m±  
range required) to the X or Y input (see Figure 3). Figure 10  
shows the typical ac feedthrough with this adjustment mode.  
Note that the Y input is a factor of 10 lower than the X input  
and should be used in applications where null suppression is  
critical.  
(X1 X2)(Y1 Y2 ) = 10 ± (Z1 Z2)  
The user can adjust SF for values between 10.00 ± and 3 ± by  
connecting an external resistor in series with a potentiometer  
between SF and −±S. The approximate value of the total  
resistance for a given value of SF is given by the relationship:  
SF  
10 SF  
RS = 5.4kꢂ  
The high impedance Z2 terminal of the AD534 can be used to  
sum an additional signal into the output. In this mode, the  
output amplifier behaves as a voltage follower with a 1 MHz  
small signal bandwidth and a 20 ±/μs slew rate. This terminal  
should always be referenced to the ground point of the driven  
system, particularly if this is remote. Likewise, the differential  
inputs should be referenced to their respective ground poten-  
tials to realize the full accuracy of the AD534.  
F
Due to device tolerances, allowance should be made to vary RSF  
by ±25ꢀ using the potentiometer. Considerable reduction in  
bias currents, noise, and drift can be achieved by decreasing SF.  
This has the overall effect of increasing signal gain without the  
customary increase in noise. Note that the peak input signal is  
always limited to 1.25 SF (that is, ±5 ± for SF = 4 ±) so the  
overall transfer function shows a maximum gain of 1.25. The  
performance with small input signals, however, is improved by  
using a lower scale factor because the dynamic range of the  
A much lower scaling voltage can be achieved without any  
reduction of input signal range using a feedback attenuator as  
shown in Figure 1ꢁ. In this example, the scale is such that ±OUT  
=
Rev. C | Page 12 of 20  
 
 
 
AD534  
(X1 – X2)(Y1 – Y2), so that the circuit can exhibit a maximum  
gain of 10. This connection results in a reduction of bandwidth  
to about 80 kHz without the peaking capacitor CF = 200 pF. In  
addition, the output offset voltage is increased by a factor of 10  
making external adjustments necessary in some applications.  
Adjustment is made by connecting a 4.7 MΩ resistor between  
Z1 and the slider of a potentiometer connected across the  
supplies to provide ±300 m± of trim range at the output.  
If the application depends on accurate operation for inputs that  
are always less than ±3 ±, the use of a reduced value of SF is recom-  
mended as described in the Functional Description section.  
Alternatively, a feedback attenuator can be used to raise the  
output level. This is put to use in the difference-of-squares  
application to compensate for the factor of 2 loss involved in  
generating the sum term (see Figure 20).  
The difference of squares function is also used as the basis for a  
novel rms-to-dc converter shown in Figure 27. The averaging  
filter is a true integrator, and the loop seeks to zero its input. For  
this to occur, (±IN)2 − (±OUT)2 = 0 ± (for signals whose period is  
well below the averaging time constant). Therefore, ±OUT is  
forced to equal the rms value of ±IN. The absolute accuracy of  
this technique is very high; at medium frequencies and for  
signals near full scale, it is determined almost entirely by the  
ratio of the resistors in the inverting amplifier. The multiplier  
scaling voltage affects only open-loop gain. The data shown is  
typical of performance that can be achieved with an AD534K,  
but even using an AD534J, this technique can readily provide  
better than 1ꢀ accuracy over a wide frequency range, even for  
crest factors in excess of 10.  
X
+V  
+15V  
1
S
X INPUT  
±10V FS  
±12V PK  
OUTPUT, ±12V PK =  
(X – X ) (Y – Y )  
X
2
OUT  
1
2
1
2
(SCALE = 1V)  
90k  
10kΩ  
AD534  
Z
SF  
1
2
OPTIONAL PEAKING  
CAPACITOR C = 200pF  
F
Z
Y
1
Y INPUT  
±10V FS  
±12V PK  
–15V  
Y
2
–V  
S
Figure 16. Connections for Scale Factor of Unity  
Feedback attenuation also retains the capability for adding a  
signal to the output. Signals can be applied to the high impedance  
Z2 terminal where they are amplified by +10 or to the common  
ground connection where they are amplified by +1. Input signals  
can also be applied to the lower end of the 10 kΩ resistor, giving  
a gain of −9. Other values of feedback ratio, up to ×100, can be  
used to combine multiplication with gain.  
OPERATION AS A DIVIDER  
Figure 18 shows the connection required for division. Unlike  
earlier products, the AD534 provides differential operation on  
both numerator and denominator, allowing the ratio of two  
floating variables to be generated. Further flexibility results  
from access to a high impedance summing input to Y1. As with  
all dividers based on the use of a multiplier in a feedback loop,  
the bandwidth is proportional to the denominator magnitude,  
as shown in Figure 14.  
Occasionally, it may be desirable to convert the output to a  
current into a load of unspecified impedance or dc level. For  
example, the function of multiplication is sometimes followed  
by integration; if the output is in the form of a current, a simple  
capacitor provides the integration function. Figure 17 shows  
how this can be achieved. This method can also be applied in  
squaring, dividing, and square rooting modes by appropriate  
choice of terminals. This technique is used in the voltage  
controlled low-pass filter and the differential input voltage-to-  
frequency converter shown in the Applications Information  
section.  
+
OUTPUT, ±12V PK =  
10V (Z – Z )  
X INPUT  
(DENOMINATOR)  
±10V FS  
X
+V  
+15V  
1
S
2
1
+ Y  
1
(X – X )  
1
2
X
±12V PK  
2
OUT  
AD534  
Z INPUT  
(NUMERATOR)  
±10V FS  
Z
Z
SF  
1
2
OPTIONAL  
SUMMING  
INPUT  
X
+V  
S
1
X INPUT  
±10V FS  
±12V PK  
CURRENT-SENSING  
RESISTOR, RS, 2kMIN  
±12V PK  
Y
1
X
2
±10V PK  
OUT  
–15V  
Y
–V  
2
S
AD534  
Z
Z
SF  
1
2
(X – X ) (Y – Y )  
1
RS  
1
2
1
2
I
=
×
OUT  
10V  
Figure 18. Basic Divider Connection  
Y
1
Y INPUT  
±10V FS  
±12V PK  
INTEGRATOR  
CAPACITOR  
(SEE TEXT)  
Without additional trimming, the accuracy of the AD534K and  
AD534L is sufficient to maintain a 1ꢀ error over a 10 ± to 1 ±  
denominator range. This range can be extended to 100:1 by  
simply reducing the X offset with an externally generated trim  
voltage (range required is ±3.5 m± maximum) applied to the  
unused X input (see Figure 3). To trim, apply a ramp of +100 m±  
to +± at 100 Hz to both X1 and Z1 (if X2 is used for offset adjust-  
ment; otherwise, reverse the signal polarity) and adjust the trim  
voltage to minimize the variation in the output  
Y
–V  
2
S
Figure 17. Conversion of Output to Current  
OPERATION AS A SQUARER  
Operation as a squarer is achieved in the same fashion as the  
multiplier except that the X and Y inputs are used in parallel.  
The differential inputs can be used to determine the output  
polarity (positive for X1 = Yl and X2 = Y2, negative if either one  
of the inputs is reversed). Accuracy in the squaring mode is  
typically a factor of 2 better than in the multiplying mode and  
the largest errors occurring with small values of output for  
input below 1 ±.  
Because the output is near 10 ±, it should be ac-coupled for  
this adjustment. The increase in noise level and reduction in  
bandwidth preclude operation much beyond a ratio of 100 to 1.  
Rev. C | Page 13 of 20  
 
 
 
 
AD534  
As with the multiplier connection, overall gain can be introduced  
by inserting a simple attenuator between the output and Y2  
terminal. This option and the differential ratio capability of the  
AD534 are used in the percentage computer application shown  
in Figure 24. This configuration generates an output propor-  
tional to the percentage deviation of one variable (A) with  
respect to a reference variable (B), with a scale of 1ꢀ per volt.  
In contrast to earlier devices, which were intolerant of capacitive  
loads in the square root modes, the AD534 is stable with all  
loads up to at least 1000 pF. For critical applications, a small  
adjustment to the Z input offset (see Figure 3) improves  
accuracy for inputs below 1 ±.  
UNPRECEDENTED FLEXIBILITY  
The precise calibration and differential Z input provide a degree  
of flexibility found in no other currently available multiplier.  
Standard multiplication, division, squaring, square-rooting  
(MDSSR) functions are easily implemented while the restriction  
to particular input/output polarities imposed by earlier designs  
has been eliminated. Signals can be summed into the output,  
with or without gain and with either a positive or negative  
sense. Many new modes based on implicit function synthesis  
have been made possible, usually requiring only external  
passive components. The output can be in the form of a current,  
if desired, facilitating such operations as integration.  
OPERATION AS A SQUARE ROOTER  
The operation of the AD534 in the square root mode is shown  
in Figure 19. The diode prevents a latching condition, which  
may occur if the input momentarily changes polarity. As shown,  
the output is always positive; it can be changed to a negative  
output by reversing the diode direction and interchanging the X  
inputs. Because the signal input is differential, all combinations  
of input and output polarities can be realized, but operation is  
restricted to the one quadrant associated with each combination  
of inputs.  
OUTPUT, ±12V PK =  
10V (Z – Z ) + X  
2
2
1
R
L
REVERSE THIS  
AND X INPUTS  
FOR NEGATIVE  
OUTPUTS  
X
X
+V  
+15V  
(MUST BE  
PROVIDED)  
1
S
2
OUT  
AD534  
OPTIONAL  
SUMMING  
INPUT  
+
Z
Z INPUT  
±10V FS  
±12V PK  
SF  
1
2
Z
X, ±10V PK  
Y
Y
1
–15V  
–V  
2
S
Figure 19. Square-Rooter Connection  
Rev. C | Page 1ꢂ of 20  
 
 
AD534  
APPLICATIONS INFORMATION  
The versatility of the AD534 allows the creative designer to implement a variety of circuits such as wattmeters, frequency doublers, and  
automatic gain controls.  
X
+V  
+15V  
1
S
MODULATION  
INPUT, ±E  
M
E
M
X
2
OUT  
OUTPUT = 1 ±  
E sin ωt  
C
10V  
AD534  
X
X
+V  
+15V  
A
B
1
S
Z
SF  
A – B  
2
1
2
2
2
A
– B  
10V  
OUTPUT =  
2
Z
OUT  
CARRIER INPUT  
sin ωt  
Y
1
E
30k  
10kΩ  
C
AD534  
Z
SF  
1
2
–15V  
Y
–V  
2
S
Z
Y
Y
1
A + B  
2
THE SF PIN OR A Z ATTENUATOR CAN BE USED TO PROVIDE OVERALL  
SIGNAL AMPLIFICATION. OPERATION FROM A SINGLE SUPPLY POSSIBLE;  
–15V  
–V  
2
S
BIAS Y TO V /2.  
2
S
Figure 23. Linear AM Modulator  
Figure 20. Difference of Squares  
X
+V  
+15V  
1
2
S
CONTROL INPUT,  
, 0V TO ±5V  
E
E
E
S
C
C
X
OUTPUT, ±12V PK =  
0.005µF  
OUT  
0.1V  
SET GAIN  
1k  
39kΩ  
1kΩ  
AD534  
X
X
+V  
+15V  
1
2
S
2kΩ  
9k  
1kΩ  
Z
–V  
SF  
1
2
S
A – B  
B
OUTPUT = (100V)  
(1% PER VOLT)  
OUT  
Z
Y
1
AD534  
SIGNAL INPUT,  
Z
E , ±5V PK  
SF  
1
2
S
–15V  
Y
–V  
2
S
A INPUT (±)  
Z
NOTES  
1. GAIN IS × 10 PER VOLT OF E , ZERO TO × 50.  
B INPUT,  
(+V ONLY)  
Y
Y
1
2
C
E
2. WIDEBAND (10Hz TO 30kHz) OUTPUT NOISE IS 3mV rms,  
TYP CORRESPONDING TO A.F.S. SNR OF 70dB.  
–15V  
–V  
S
3. NOISE REFERRED TO SIGNAL INPUT, WITH E = ±5V, IS  
C
60µV rms, TYP.  
OTHER SCALES, FROM 10% PER VOLT TO 0.1% PER VOLT  
CAN BE OBTAINED BY ALTERING THE FEEDBACK RATIO.  
4. BANDWIDTH IS DC TO 20kHz, –3dB, INDEPENDENT OF GAIN.  
Figure 24. Percentage Computer  
Figure 21. Voltage-Controlled Amplifier  
X
X
+V  
+15V  
1
2
S
OUT  
OUTPUT = (10V) sin θ  
X
X
+V  
+15V  
1
S
18kΩ  
4.7kΩ  
4.3kΩ  
E
θ
π
AD534  
WHERE θ =  
×
Z
10kΩ  
10V  
SF  
1
2
2
OUTPUT, ±5V/PK =  
y
2
OUT  
INPUT, E  
θ
AD534  
Z
(10V)  
Y
Y
1
2
1 + y  
WHERE y =  
0V TO +10V  
Z
Z
SF  
3kΩ  
1
2
Y
(10V)  
–15V  
–V  
S
Y
1
INPUT, Y ±10V FS  
–15V  
USING CLOSE TOLERANCE RESISTORS AND AD543L,  
ACCURACY OF FIT IS WITHIN ±0.5% AT ALL POINTS.  
θ IS IN RADIANS.  
Y
–V  
2
S
Figure 22. Sine Function Generator  
Figure 25. Bridge Linearization Function  
Rev. C | Page 1ꢀ of 20  
 
 
 
 
AD534  
+15V  
2k  
ADJ 8kHz  
39kΩ  
X
X
+V  
+15V  
3pF to 30pF  
2
1
S
82kΩ  
2
OUT  
ADJ  
1kHz  
7
OUTPUT  
±15V APPROX.  
AD534  
3
Z
1
SF  
5002.2kΩ  
AD211  
(= R)  
PINS 5, 6, 8 TO +15V  
PINS 1, 4 TO –15V  
Z
2
+
Y
Y
1
0.01  
(= C)  
CONTROL INPUT,  
100mV TO 10V  
E
1
CR  
C
f =  
×
= 1kHz PER VOLT  
E
C
40  
–15V  
–V  
2
S
WITH VALUES SHOWN  
CALIBRATION PROCEDURE:  
WITH E = 1.0V, ADJUST POTENTIOMETER TO SET f = 1.000kHz WITH  
C
E
= 8.0V, ADJUST TRIMMER CAPACITOR TO SET f = 8.000kHz. LINEARITY  
C
WILL TYPICALLY BE WITHIN ±0.1% OF FS FORANY OTHER INPUT.  
DUE TO DELAYS IN THE COMPARATOR, THIS TECHNIQUE IS NOT SUITABLE  
FOR MAXIMUM FREQUENCIES ABOVE 10kHz. FOR FREQUENCIES ABOVE  
10kHz THE AD537 VOLTAGE-TO-FREQUENCY CONVERTER IS RECOMMENDED.  
A TRIANGLE-WAVE OF ±5V PK APPEARS ACROSS THE 0.01µF CAPACITOR: IF  
USED AS AN OUTPUT, A VOLTAGE-FOLLOWER SHOULD BE INTERPOSED.  
Figure 26. Differential Input Voltage-to-Frequency Converter  
MATCHED TO 0.025%  
20k  
10kΩ  
10kΩ  
AD741K  
5kΩ  
X
X
+V  
+15V  
10kΩ  
1
S
10µF  
NONPOLAR  
INPUT  
5V RMS FS  
±10V PEAK  
+
OUT  
2
10µF SOLID Ta  
RMS + DC  
MODE  
AC RMS  
AD534  
SF  
10kΩ  
OUTPUT  
0V TO 5V  
Z
Z
1
10kΩ  
2
AD741J  
+15V  
Y
Y
1
10MΩ  
–V  
S
2
ZERO  
ADJ  
–15V  
20kΩ  
CALIBRATION PROCEDURE:  
WITH MODE SWITCH IN ‘RMS + DCPOSITION, APPLY AN INPUT OF +1.00V DC.  
ADJUST ZERO UNTIL OUTPUT READS SAME AS INPUT. CHECK FOR INPUTS  
OF ±10V; OUTPUT SHOULD BE WITHIN ±0.05% (5mV).  
ACCURACY IS MAINTAINED FROM 60Hz TO 100kHz, AND IS TYPICALLY HIGH  
BY 0.5% AT 1MHz FOR V = 4V RMS (SINE, SQUARE, OR TRIANGLULAR-WAVE).  
IN  
PROVIDED THAT THE PEAK INPUT IS NOT EXCEEDED, CREST FACTORS UP  
TO AT LEAST 10 HAVE NO APPRECIABLE EFFECT ON ACCURACY.  
INPUT IMPEDANCE IS ABOUT 10k; FOR HIGH (10M) IMPEDANCE, REMOVE  
MODE SWITCH AND INPUT COUPLING COMPONENTS.  
FOR GUARANTEED SPECIFICATIONS THE AD536A AND AD636 ARE OFFERED  
AS A SINGLE PACKAGE RMS-TO-DC CONVERTER.  
Figure 27. Wideband, High-Crest Factor, RMS-to-DC Converter  
Rev. C | Page 16 of 20  
 
AD534  
OUTLINE DIMENSIONS  
REFERENCE PLANE  
0.500 (12.70)  
MIN  
0.160 (4.06)  
0.110 (2.79)  
0.185 (4.70)  
0.165 (4.19)  
6
7
5
8
0.021 (0.53)  
0.016 (0.40)  
0.115  
(2.92)  
BSC  
4
0.045 (1.14)  
0.025 (0.65)  
9
3
10  
0.034 (0.86)  
0.025 (0.64)  
2
1
0.230 (5.84)  
BSC  
BASE & SEATING PLANE  
0.040 (1.02) MAX  
0.050 (1.27) MAX  
36° BSC  
DIMENSIONS PER JEDEC STANDARDS MO-006-AF  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 28. 10-Pin Metal Header Package [TO-100]  
(H-10)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) MIN  
0.080 (2.03) MAX  
8
14  
0.310 (7.87)  
1
0.220 (5.59)  
7
PIN 1  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.765 (19.43) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 29. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
(D-14)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 30. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 17 of 20  
 
AD534  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
D-1ꢂ  
D-1ꢂ  
D-1ꢂ  
D-1ꢂ  
D-1ꢂ  
D-1ꢂ  
H-10  
H-10  
H-10  
H-10  
H-10  
H-10  
ADꢀ3ꢂJD  
0°C to +70°C  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
Chip  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
1ꢂ-Lead Side Brazed Ceramic Dual In-Line Package [SBDIP]  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
Chip  
ADꢀ3ꢂJDZ  
ADꢀ3ꢂKD  
0°C to +70°C  
0°C to +70°C  
ADꢀ3ꢂKDZ  
ADꢀ3ꢂLD  
0°C to +70°C  
0°C to +70°C  
ADꢀ3ꢂLDZ  
ADꢀ3ꢂJH  
0°C to +70°C  
0°C to +70°C  
ADꢀ3ꢂJHZ  
ADꢀ3ꢂKH  
0° C to +70°C  
0°C to +70°C  
ADꢀ3ꢂKHZ  
ADꢀ3ꢂLH  
0°C to +70°C  
0°C to +70°C  
ADꢀ3ꢂLHZ  
ADꢀ3ꢂK Chips  
ADꢀ3ꢂSD  
ADꢀ3ꢂSD/ꢁꢁ3B  
ADꢀ3ꢂTD  
ADꢀ3ꢂTD/ꢁꢁ3B  
ADꢀ3ꢂSE/ꢁꢁ3B  
ADꢀ3ꢂTE/ꢁꢁ3B  
ADꢀ3ꢂSH  
ADꢀ3ꢂSH/ꢁꢁ3B  
ADꢀ3ꢂTH  
0°C to +70°C  
0°C to +70°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
−ꢀꢀ°C to +12ꢀ°C  
D-1ꢂ  
D-1ꢂ  
D-1ꢂ  
D-1ꢂ  
E-20-1  
E-20-1  
H-10  
H-10  
H-10  
H-10  
ADꢀ3ꢂTH/ꢁꢁ3B  
ADꢀ3ꢂS Chips  
ADꢀ3ꢂT Chips  
Chip  
1 Z = RoHS Compliant Part.  
Rev. C | Page 1ꢁ of 20  
 
AD534  
NOTES  
Rev. C | Page 19 of 20  
AD534  
NOTES  
©1977–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09675-0-4/11(C)  
Rev. C | Page 20 of 20  
 
 
 
 

相关型号:

AD534K

Internally Trimmed Precision IC Multiplier
ADI

AD534KCHIP

Internally Trimmed Precision IC Multiplier
ADI

AD534KCHIPS

Internally Trimmed Precision IC Multiplier
ADI

AD534KD

Internally Trimmed Precision IC Multiplier
ADI

AD534KD

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, CDIP14, SIDE BRAZED, CERAMIC, TO-116, DIP-14
ROCHESTER

AD534KD/+

Analog Multiplier/Divider
ETC

AD534KDZ

Internally Trimmed Precision IC Multiplier
ADI

AD534KH

Internally Trimmed Precision IC Multiplier
ADI

AD534KH

ANALOG MULTIPLIER OR DIVIDER, 1 MHz BAND WIDTH, MBCY10, HERMETIC SEALED, METAL CAN, TO-100, 10 PIN
ROCHESTER

AD534KH+

Internally Trimmed Precision IC Multiplier
ADI

AD534KH/+

Analog Multiplier/Divider
ETC

AD534KHZ

Internally Trimmed Precision IC Multiplier
ADI