AD745JR-16-REEL [ROCHESTER]

OP-AMP, 1500 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, SOIC-16;
AD745JR-16-REEL
型号: AD745JR-16-REEL
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 1500 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, SOIC-16

光电二极管
文件: 总14页 (文件大小:1026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise,  
High Speed, BiFET Op Amp  
a
AD745  
FEATURES  
CO NNECTIO N D IAGRAMS  
ULTRALOW NOISE PERFORMANCE  
2.9 nV/ ͙Hz at 10 kHz  
0.38 V p-p, 0.1 Hz to 10 Hz  
6.9 fA/ ͙Hz Current Noise at 1 kHz  
8-P in P lastic Mini-D IP (N) &  
8-P in Cerdip (Q) P ackages  
16-P in SO IC (R) P ackage  
NC  
1
16 NC  
15 NC  
14 NC  
OFFSET  
NULL  
OFFSET  
NULL  
1
8
NC  
+V  
2
AD745  
EXCELLENT AC PERFORMANCE  
12.5 V/ s Slew Rate  
20 MHz Gain Bandw idth Product  
THD = 0.0002% @ 1 kHz  
Internally Com pensated for Gains of +5 (or 4) or  
Greater  
– IN  
2
3
4
7
6
5
S
– IN  
3
4
5
6
7
8
AD745  
TOP VIEW  
+IN  
OUTPUT  
NC  
13  
+V  
S
OFFSET  
NULL  
–V  
S
+IN  
12 OUTPUT  
OFFSET  
11  
–V  
S
NULL  
NC  
NC  
TOP VIEW  
10 NC  
NC = NO CONNECT  
EXCELLENT DC PERFORMANCE  
0.5 m V m ax Offset Voltage  
9
NC  
250 pA m ax Input Bias Current  
2000 V/ m V m in Open Loop Gain  
Available in Tape and Reel in Accordance w ith  
EIA-481A Standard  
T he AD745s guaranteed, tested maximum input voltage noise  
of 4 nV/Hz at 10 kHz is unsurpassed for a FET -input mono-  
lithic op amp, as is its maximum 1.0 µV p-p noise in a 0.1 Hz to  
10 Hz bandwidth. T he AD745 also has excellent dc perfor-  
mance with 250 pA maximum input bias current and 0.5 mV  
maximum offset voltage.  
APPLICATIONS  
Sonar  
Photodiode and IR Detector Am plifiers  
Accelerom eters  
T he internal compensation of the AD745 is optimized for  
higher gains, providing a much higher bandwidth and a faster  
slew rate. T his makes the AD745 especially useful as a  
preamplifier where low level signals require an amplifier that  
provides both high amplification and wide bandwidth at these  
higher gains. T he AD745 is available in five performance  
grades. T he AD745J and AD745K are rated over the  
commercial temperature range of 0°C to +70°C. T he AD745A  
and AD745B are rated over the industrial temperature range of  
–40°C to +85°C. T he AD745S is rated over the military  
temperature range of –55°C to +125°C and is available  
processed to MIL-ST D-883B, Rev. C.  
Low Noise Pream plifiers  
High Perform ance Audio  
P RO D UCT D ESCRIP TIO N  
T he AD745 is an ultralow noise, high speed, FET input  
operational amplifier. It offers both the ultralow voltage noise  
and high speed generally associated with bipolar input op amps  
and the very low input currents of FET input devices. Its 20  
MHz bandwidth and 12.5 V/µs slew rate makes the AD745 an  
ideal amplifier for high speed applications demanding low noise  
and high dc precision. Furthermore, the AD745 does not  
exhibit an output phase reversal.  
T he AD745 is available in 8-pin plastic mini-DIP, 8-pin cerdip,  
16-pin SOIC, or in chip form.  
1000  
R
SOURCE  
OP37 &  
RESISTOR  
( — )  
120  
100  
80  
120  
100  
80  
E
O
R
SOURCE  
100  
10  
1
PHASE  
AD745 & RESISTOR  
OR  
AD745 + RESISTOR  
60  
60  
(
)
OP37 & RESISTOR  
GAIN  
40  
40  
20  
20  
0
RESISTOR NOISE ONLY  
(– – –)  
0
1k  
10k  
100k  
1M  
10M  
100  
SOURCE RESISTANCE –  
–20  
–20  
10M 100M  
REV. C  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD745–SPECIFICATIONS  
(@ +25؇C and ؎15 V dc, unless otherwise noted)  
Model  
AD 745J/A  
Conditions  
Min  
Typ  
Max  
Units  
INPUT OFFSET VOLT AGE1  
Initial Offset  
Initial Offset  
vs. T emp.  
vs. Supply (PSRR)  
vs. Supply (PSRR)  
0.25  
1.0/0.8  
1.5  
mV  
mV  
µV/°C  
dB  
T MIN to T MAX  
T MIN to T MAX  
12 V to 18 V2  
T MIN to T MAX  
2
96  
90  
88  
dB  
INPUT BIAS CURRENT 3  
Either Input  
VCM = 0 V  
150  
400  
pA  
Either Input  
@ T MAX  
Either Input  
Either Input, VS = ±5 V  
VCM = 0 V  
VCM = +10 V  
VCM = 0 V  
8.8/25.6  
600  
200  
nA  
pA  
pA  
250  
30  
INPUT OFFSET CURRENT  
Offset Current  
VCM = 0 V  
VCM = 0 V  
40  
150  
pA  
nA  
@ T MAX  
2.2/6.4  
FREQUENCY RESPONSE  
Gain BW, Small Signal  
Full Power Response  
Slew Rate  
G = –4  
VO = 20 V p-p  
G = –4  
20  
MHz  
kHz  
V/µs  
µs  
120  
12.5  
5
Settling T ime to 0.01%  
T otal Harmonic  
f = 1 kHz  
G = –4  
Distortion4  
0.0002  
%
INPUT IMPEDANCE  
Differential  
Common Mode  
1 × 1010ʈ20  
3 × 1011ʈ18  
ʈpF  
ʈpF  
INPUT VOLT AGE RANGE  
Differential5  
Common-Mode Voltage  
Over Max Operating Range6  
Common-Mode  
±20  
+13.3, –10.7  
V
V
V
–10  
+12  
Rejection Ratio  
VCM = ±10 V  
T MIN to T MAX  
80  
78  
95  
dB  
dB  
INPUT VOLT AGE NOISE  
0.1 to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.38  
5.5  
3.6  
3.2  
2.9  
µV p-p  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
5.0  
4.0  
f = 10 kHz  
INPUT CURRENT NOISE  
OPEN LOOP GAIN  
f = 1 kHz  
6.9  
fA/Hz  
VO = ±10 V  
RLOAD 2 kΩ  
T MIN to T MAX  
RLOAD = 600 Ω  
1000  
800  
4000  
1200  
V/mV  
V/mV  
V/mV  
OUT PUT CHARACT ERIST ICS  
Voltage  
RLOAD 600 Ω  
RLOAD 600 Ω  
T MIN to T MAX  
RLOAD 2 kΩ  
Short Circuit  
+13, –12  
V
+13.6, –12.6  
V
V
+12, –10  
±12  
20  
V
+13.8, –13.1  
40  
Current  
mA  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
±15  
8
V
V
mA  
±4.8  
±18  
10.0  
T RANSIST OR COUNT  
NOT ES  
# of T ransistors  
50  
1Input offset voltage specifications are guaranteed after 5 minutes of operations at T A = +25°C.  
2T est conditions: +VS = 15 V, –VS = 12 V to 18 V and +VS = 12 V to +18 V, –VS = 15 V.  
3Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at T A = +25°C. For higher temperature, the current doubles every 10°C.  
4Gain = –4, RL = 2 k, CL = 10 pF.  
5Defined as voltagc between inputs, such that neither exceeds ±10 V from common.  
6T he AD745 does not exhibit an output phase reversal when the negative common-mode limit is exceeded.  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
–2–  
REV. C  
AD745  
ESD SUSCEP TIBILITY  
ABSO LUTE MAXIMUM RATINGS1  
An ESD classification per method 3015.6 of MIL-ST D-883C  
has been performed on the AD745, which is a class 1 device.  
Using an IMCS 5000 automated ESD tester, the two null pins  
will pass at voltages up to 1000 volts, while all other pins will  
pass at voltages exceeding 2500 volts.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2  
Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
Cerdip Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 W  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 W  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage T emperature Range (Q) . . . . . . . . . –65°C to +150°C  
Storage T emperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating T emperature Range  
AD745J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD745A/B . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD745S . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . . +300°C  
NOT ES  
O RD ERING GUID E  
P ackage  
Model  
Tem perature Range  
O ption*  
AD745JN  
AD745AN  
AD745JR-16  
0°C to +70°C  
–40°C to +85°C  
0°C to +70°C  
N-8  
N-8  
R-16  
*N = Plastic DIP; R = Small Outline IC.  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
28-Pin Plastic Package: θJA = 100°C/W, θJC = 50°C/W  
8-Pin Cerdip Package: θJA = 110°C/W, θJC = 30°C/W  
8-Pin Plastic SOIC Package: θJA = 100°C/W, θJC = 30°C/W  
METALIZATIO N P H O TO GRAP H  
D imensions shown in inches and (mm).  
REV. C  
–3–  
(@ + 25؇C, V = ؎15 V unless otherwise noted)  
AD745  
Typical Characteristics  
S
20  
20  
15  
10  
5
35  
R
= 10k  
R
= 10k  
LOAD  
LOAD  
30  
25  
20  
15  
15  
10  
5
POSITIVE  
SUPPLY  
+V  
IN  
NEGATIVE  
SUPPLY  
–V  
IN  
10  
5
0
0
0
0
5
10  
15  
20  
0
100  
LOAD RESISTANCE –  
10k  
10  
1k  
10  
15  
20  
5
+
SUPPLY VOLTAGE VOLTS  
+
SUPPLY VOLTAGE VOLTS  
Figure 2. Output Voltage Swing vs.  
Supply Voltage  
Figure 3. Output Voltage Swing vs.  
Load Resistance  
Figure 1. Input Voltage Swing vs.  
Supply Voltage  
10 –6  
12  
9
200  
100  
10–7  
10–8  
10  
10–9  
6
3
0
1
10–10  
CLOSED-LOOP GAIN = –5  
0.1  
10–11  
10–12  
0.01  
80 100 120 140  
–60 –40 –20  
20 40 60  
0
10k  
100k  
1M  
10M  
100M  
5
10  
0
15  
20  
TEMPERATURE – °C  
FREQUENCY – Hz  
SUPPLY VOLTAGE ± VOLTS  
Figure 5. Input Bias Current vs.  
Tem perature  
Figure 6. Output Im pedance vs.  
Frequency  
Figure 4. Quiescent Current vs.  
Supply Voltage  
80  
70  
300  
200  
100  
0
28  
26  
24  
60  
+ OUTPUT  
CURRENT  
50  
22  
20  
18  
16  
14  
40  
30  
– OUTPUT  
CURRENT  
20  
10  
0
– 60 – 40  
0
20 40 60 80 100 120 140  
– 20  
–60 –40 –20  
20  
0
40 60 80 100 120 140  
–9  
–6  
–3  
3
6
9
12  
–12  
0
TEMPERATURE – °C  
TEMPERATURE –  
C
COMMON-MODE VOLTAGE – Volts  
Figure 8. Short Circuit Current Lim it  
vs. Tem perature  
Figure 9. Gain Bandwidth Product  
vs. Tem perature  
Figure 7. Input Bias Current vs.  
Com m on-Mode Voltage  
–4–  
REV. C  
AD745  
Typical Characteristics–  
120  
14  
12  
120  
100  
150  
RL = 2kΩ  
100  
80  
140  
PHASE  
80  
60  
40  
20  
0
130  
120  
100  
60  
GAIN  
CLOSED-LOOP GAIN = +5  
40  
10  
8
20  
0
–20  
100  
–20  
10M 100M  
80  
10  
15  
20  
1k  
10k  
100k  
1M  
0
5
–60 –40 –20  
0
20 40 60 80 100 120 140  
SUPPLY VOLTAGE ± VOLTS  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 10. Open-Loop Gain and  
Phase vs. Frequency  
Figure 11. Slew Rate vs.  
Tem perature  
Figure 12. Open-Loop Gain vs.  
Supply Voltage  
120  
110  
100  
90  
120  
100  
80  
35  
30  
25  
20  
15  
10  
+ SUPPLY  
R
= 2k  
L
60  
40  
20  
0
– SUPPLY  
80  
Vcm = ±10V  
70  
60  
50  
5
0
1k  
100  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 14. Power Supply Rejection  
vs. Frequency  
Figure 13. Com m on-Mode Rejection  
vs. Frequency  
Figure 15. Large Signal Frequency  
Response  
1.0  
–40  
–60  
–80  
1k  
100  
0.1  
CLOSED-LOOP GAIN = +5  
10  
100  
0.01  
GAIN = +10  
–100  
0.001  
10  
GAIN = +100  
1.0  
0.1  
0.0001  
0.00001  
–120  
–140  
GAIN = –4  
1k  
1.0  
10  
100  
10k  
100k  
1
100  
1k  
10k  
100k  
10  
10  
100  
1k  
10k 100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 16. Total Harm onic Distortion  
vs. Frequency  
Figure 17. Input Noise Voltage  
Spectral Density  
Figure 18. Input Noise Current  
Spectral Density  
REV. C  
–5–  
AD745  
Typical Characteristics  
72  
648  
594  
+V  
S
1µF  
0.1µF  
TOTAL UNITS = 760  
66  
60  
54  
48  
42  
36  
30  
24  
18  
12  
6
+
540  
486  
432  
378  
TOTAL UNITS = 4100  
2
7
6
324  
270  
216  
162  
108  
54  
AD745  
5
1
3
2MΩ  
V
4
OS  
ADJUST  
1µF  
0.1µF  
1MΩ  
+
0
–15  
0
2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4  
INPUT VOLTAGE NOISE @ 10kHz – nV/Hz  
–10  
–5  
0
5
10  
15  
–V  
S
INPUT OFFSET VOLTAGE DRIFT – µV/ oC  
Figure 21. Offset Null Configuration,  
8-Pin Package Pinout  
Figure 19. Distribution of Offset  
Voltage Drift. TA = +25°C to +125°C  
Figure 20. Typical Input Noise  
Voltage Distribution @ 10 kHz  
+V  
S
0.1µF  
V
IN  
3
2
7
2µs  
500nS  
V
OUT  
100  
90  
100  
90  
AD745  
6
SQUARE  
WAVE  
C
L
INPUT  
4
10pF  
0.1µF  
–V  
S
10  
10  
2kΩ  
20pF  
0%  
0%  
50mV  
5V  
499Ω  
Figure 22a. Gain of 5 Follower,  
8-Pin Package Pinout  
Figure 22b. Gain of 5 Follower  
Large Signal Pulse Response  
Figure 22c. Gain of 5 Follower Sm all  
Signal Pulse Response  
20pF  
2k  
500nS  
2µs  
100  
90  
100  
90  
+V  
S
0.1  
µF  
499Ω  
7
2
3
V
V
OUT  
IN  
AD745  
6
10  
10  
C
SQUARE  
WAVE  
INPUT  
L
0%  
0%  
4
0.1µF  
10pF  
50mV  
5V  
–V  
S
Figure 23a. Gain of 4 Inverter,  
8-Pin Package Pinout  
Figure 23b. Gain of 4 Inverter Large  
Signal Pulse Response  
Figure 23c. Gain of 4 Inverter Sm all  
Signal Pulse Response  
–6–  
REV. C  
AD745  
O P AMP P ERFO RMANCE JFET VS. BIP O LAR  
D ESIGNING CIRCUITS FO R LO W NO ISE  
T he AD745 offers the low input voltage noise of an industry  
standard bipolar op amp without its inherent input current  
errors. T his is demonstrated in Figure 24, which compares  
input voltage noise vs. input source resistance of the OP37 and  
the AD745 op amps. From this figure, it is clear that at high  
source impedance the low current noise of the AD745 also  
provides lower total noise. It is also important to note that with  
the AD745 this noise reduction extends all the way down to low  
source impedances. T he lower dc current errors of the AD745  
also reduce errors due to offset and drift at high source  
impedances (Figure 25).  
An op amp’s input voltage noise performance is typically  
divided into two regions: flatband and low frequency noise. T he  
AD745 offers excellent performance with respect to both. T he  
figure of 2.9 nV/͙Hz @ 10 kHz is excellent for a JFET input  
amplifier. T he 0.1 Hz to 10 Hz noise is typically 0.38 µV p-p.  
T he user should pay careful attention to several design details in  
order to optimize low frequency noise performance. Random air  
currents can generate varying thermocouple voltages that appear  
as low frequency noise: therefore sensitive circuitry should be  
well shielded from air flow. Keeping absolute chip temperature  
low also reduces low frequency noise in two ways: first, the low  
frequency noise is strongly dependent on the ambient temperature  
and increases above +25°C. Secondly, since the gradient of  
temperature from the IC package to ambient is greater, the  
noise generated by random air currents, as previously mentioned,  
will be larger in magnitude. Chip temperature can be reduced  
both by operation at reduced supply voltages and by the use of a  
suitable clip-on heat sink, if possible.  
T he internal compensation of the AD745 is optimized for  
higher gains, providing a much higher bandwidth and a faster  
slew rate. T his makes the AD745 especially useful as a  
preamplifier, where low level signals require an amplifier that  
provides both high amplification and wide bandwidth at these  
higher gains.  
1000  
Low frequency current noise can be computed from the  
OP37 &  
RESISTOR  
( — )  
~
R
SOURCE  
=
2qIBf  
and increases  
In  
magnitude of the dc bias current  
below approximately 100 Hz with a 1/f power spectral density.  
E
O
For the AD745 the typical value of current noise is 6.9 fA/Hz  
~
R
100  
SOURCE  
at 1 kHz. Using the formula,  
, to compute the  
4kT/Rf  
I n  
=
Johnson noise of a resistor, expressed as a current, one can see  
that the current noise of the AD745 is equivalent to that of a  
3.45 × 108 source resistance.  
AD745 & RESISTOR  
AD745 + RESISTOR  
OR  
)
(
OP37 & RESISTOR  
At high frequencies, the current noise of a FET increases  
proportionately to frequency. T his noise is due to the “real” part  
of the gate input impedance, which decreases with frequency.  
T his noise component usually is not important, since the voltage  
noise of the amplifier impressed upon its input capacitance is an  
apparent current noise of approximately the same magnitude.  
10  
RESISTOR NOISE ONLY  
(– – –)  
1
100  
10M  
1M  
10k  
SOURCE RESISTANCE –  
1k  
100k  
In any FET input amplifier, the current noise of the internal  
bias circuitry can be coupled externally via the gate-to-source  
capacitances and appears as input current noise. T his noise is  
totally correlated at the inputs, so source impedance matching  
will tend to cancel out its effect. Both input resistance and input  
capacitance should be balanced whenever dealing with source  
capacitances of less than 300 pF in value.  
Figure 24. Total Input Noise Spectral Density @ 1 kHz  
vs. Source Resistance  
100  
ADOP37G  
LO W NO ISE CH ARGE AMP LIFIERS  
As stated, the AD745 provides both low voltage and low current  
noise. T his combination makes this device particularly suitable  
in applications requiring very high charge sensitivity, such as  
capacitive accelerometers and hydrophones. When dealing with  
a high source capacitance, it is useful to consider the total input  
charge uncertainty as a measure of system noise.  
10  
1.0  
Charge (Q) is related to voltage and current by the simply stated  
fundamental relationships:  
AD745 KN  
dQ  
Q = CV and I =  
dt  
0.1  
As shown, voltage, current and charge noise can all be directly  
related. T he change in open circuit voltage (V) on a capacitor  
will equal the combination of the change in charge (Q/C) and  
the change in capacitance with a built-in charge (Q/C).  
100  
1M  
SOURCE RESISTANCE – Ω  
10M  
1k  
10k  
100k  
Figure 25. Input Offset Voltage vs. Source Resistance  
REV. C  
–7–  
AD745  
Figures 26 and 27 show two ways to buffer and amplify the  
output of a charge output transducer. Both require using an  
amplifier which has a very high input impedance, such as the  
AD745. Figure 26 shows a model of a charge amplifier circuit.  
Here, amplification depends on the principle of conservation of  
charge at the input of amplifier A1, which requires that the  
charge on capacitor CS be transferred to capacitor CF, thus  
yielding an output voltage of Q/CF. T he amplifiers input  
voltage noise will appear at the output amplified by the noise  
gain (1 + (CS/CF)) of the circuit.  
Figure 28 shows that these two circuits have an identical  
frequency response and the same noise performance (provided  
that CS/CF = R1/ R2). One feature of the first circuit is that a  
“T ” network is used to increase the effective resistance of RB  
and improve the low frequency cutoff point by the same factor.  
–100  
–110  
–120  
–130  
–140  
TOTAL OUTPUT  
–150  
C
F
NOISE  
–160  
–170  
–180  
R
R 1  
B
R 2  
–190  
NOISE DUE TO  
–200  
R
ALONE  
B
NOISE DUE TO  
ALONE  
–210  
–220  
I
B
0.01  
1k  
0.1  
1
10  
100  
10k  
100k  
C
FREQUENCY – Hz  
S
A1  
Figure 28. Noise at the Outputs of the Circuits of Figures  
26 and 27. Gain = 10, CS = 3000 pF, RB = 22 MΩ  
R1  
C
S
R
C
*
*
B
B
=
R2  
C
F
However, this does not change the noise contribution of RB  
which, in this example, dominates at low frequencies. T he  
graph of Figure 29 shows how to select an RB large enough to  
minimize this resistor’s contribution to overall circuit noise.  
When the equivalent current noise of RB ((͙4 kT)/R) equals  
Figure 26. A Charge Am plifier Circuit  
R1  
C *  
B
IB 2qIB  
the noise of  
RB larger.  
, there is diminishing return in making  
(
)
10  
5.2 x 10  
*
R
B
R2  
A2  
9
8
C
S
5.2 x 10  
R
B
*OPTIONAL, SEE TEXT  
5.2 x 10  
Figure 27. Model for A High Z Follower with Gain  
T he second circuit, Figure 27, is simply a high impedance  
follower with gain. Here the noise gain (1 + (R1/R2)) is the  
same as the gain from the transducer to the output. Resistor RB,  
in both circuits, is required as a dc bias current return.  
7
5.2 x 10  
5.2 x 10  
6
T here are three important sources of noise in these circuits.  
Amplifiers A1 and A2 contribute both voltage and current  
noise, while resistor RB contributes a current noise of:  
1pA  
10pA  
INPUT BIAS CURRENT  
10nA  
100pA  
1nA  
Figure 29. Graph of Resistance vs. Input Bias Current  
Where the Equivalent Noise ͙4 kT/R, Equals the Noise  
T
RB  
~
=
4 k  
f  
N
IB 2qIB  
of the Bias Current  
(
)
where:  
T o maximize dc performance over temperature, the source  
resistances should be balanced on each input of the amplifier.  
T his is represented by the optional resistor RB in Figures 26 and  
27. As previously mentioned, for best noise performance care  
should be taken to also balance the source capacitance  
designated by CB T he value for CB in Figure 26 would be equal  
to CS in Figure 27. At values of CB over 300 pF, there is a  
diminishing impact on noise; capacitor CB can then be simply a  
large mylar bypass capacitor of 0.01 µF or greater.  
k = Boltzman’s Constant = 1.381 × 10–23 Joules/Kelvin  
T = Absolute T emperature, Kelvin (0°C = +273.2 Kelvin)  
f = Bandwidth – in Hz (Assuming an Ideal “Brick Wall”  
Filter)  
T his must be root-sum-squared with the amplifier’s own  
current noise.  
–8–  
REV. C  
AD745  
H O W CH IP P ACKAGE TYP E AND P O WER D ISSIP ATIO N  
AFFECT INP UT BIAS CURRENT  
300  
200  
As with all JFET input amplifiers, the input bias current of the  
AD745 is a direct function of device junction temperature, IB  
approximately doubling every 10°C. Figure 30 shows the  
relationship between bias current and junction temperature for  
the AD745. T his graph shows that lowering the junction  
temperature will dramatically improve IB.  
T = +25°C  
A
θ
= 165°C/W  
JA  
–6  
10  
= 115°C/W  
θ
JA  
100  
–7  
10  
+
= 15V  
-
= +25°C  
V
S
T
A
= 0°C/W  
θ
JA  
–8  
10  
10  
10  
0
10  
SUPPLY VOLTAGE – ±Volts  
5
15  
–9  
Figure 32. Input Bias Current vs. Supply Voltage for  
–10  
Various Values of θJ A  
T
J
–11  
10  
–12  
θ
A
10  
20  
40 60  
80 100 120 140  
–60  
–20  
0
–40  
(J TO  
JUNCTION TEMPERATURE – °C  
DIE MOUNT)  
θ
B
Figure 30. Input Bias Current vs. J unction Tem perature  
(DIE MOUNT  
TO CASE)  
T
A
T he dc thermal properties of an IC can be closely approximated  
by using the simple model of Figure 31 where current represents  
power dissipation, voltage represents temperature, and resistors  
represent thermal resistance (θ in °C/watt).  
+
θ
=
θ
θ
A
B
JC  
CASE  
θ
T
θ
JC  
J
CA  
Figure 33. Breakdown of Various Package Therm al  
Resistance  
θ
JA  
T
P
A
IN  
RED UCED P O WER SUP P LY O P ERATIO N FO R  
LO WER IB  
Reduced power supply operation lowers IB in two ways: first, by  
lowering both the total power dissipation and, second, by  
reducing the basic gate-to-junction leakage (Figure 32). Figure  
34 shows a 40 dB gain piezoelectric transducer amplifier, which  
operates without an ac coupling capacitor, over the –40°C to  
+85°C temperature range. If the optional coupling capacitor,  
C1, is used, this circuit will operate over the entire –55°C to  
+125°C temperature range.  
WHERE:  
P
= DEVICE DISSIPATION  
= AMBIENT TEMPERATURE  
= JUNCTION TEMPERATURE  
= THERMAL RESISTANCE – JUNCTION TO CASE  
= THERMAL RESISTANCE – CASE TO AMBIENT  
IN  
T
A
T
θ
J
JC  
θ
CA  
Figure 31. Device Therm al Model  
From this model TJ = T A+θJA PIN. T herefore, IB can be  
determined in a particular application by using Figure 30  
together with the published data for θJA and power dissipation.  
T he user can modify θJA by use of an appropriate clip-on heat  
sink such as the Aavid # 5801. θJA is also a variable when using  
the AD745 in chip form. Figure 32 shows bias current vs.  
supply voltage with θJA as the third variable. T his graph can be  
used to predict bias current after θJA has been computed. Again  
bias current will double for every 10°C. T he designer using the  
AD745 in chip form (Figure 33) must also be concerned with  
both θJC and θCA, since θJC can be affected by the type of die  
mount technology used.  
100Ω  
10kΩ  
C1*  
CT**  
+5V  
108  
**  
AD745  
TRANSDUCER  
C
T
–5V  
108  
*OPTIONAL DC BLOCKING CAPACITOR  
**OPTIONAL, SEE TEXT  
T ypically, θJC’s will be in the 3°C to 5°C/watt range; therefore,  
for normal packages, this small power dissipation level may be  
ignored. But, with a large hybrid substrate, θJC will dominate  
proportionately more of the total θJA.  
Figure 34. A Piezoelectric Transducer  
REV. C  
–9–  
AD745  
A dc servo loop (Figure 35b) can be used to assure a dc output  
<10 mV, without the need for a large compensating resistor  
when dealing with bias currents as large as 100 nA. For optimal  
low frequency performance, the time constant of the servo loop  
(R4C2 = R5C3) should be:  
TWO H IGH P ERFO RMANCE ACCELERO METER  
AMP LIFIERS  
T wo of the most popular charge-out transducers are hydro-  
phones and accelerometers. Precision accelerometers are typi-  
cally calibrated for a charge output (pC/g).* Figures 35a and  
35b show two ways in which to configure the AD745 as a low  
noise charge amplifier for use with a wide variety of piezoelectric  
accelerometers. T he input sensitivity of these circuits will be de-  
termined by the value of capacitor C1 and is equal to:  
R2  
R3  
Time Constant 10 R1 1+  
C1  
A LO W NO ISE H YD RO P H O NE AMP LIFIER  
QOUT  
C1  
Hydrophones are usually calibrated in the voltage-out mode.  
T he circuit of Figures 36a can be used to amplify the output of  
a typical hydrophone. If the optional ac coupling capacitor CC is  
used, the circuit will have a low frequency cutoff determined by  
an RC time constant equal to:  
VOUT  
=
T he ratio of capacitor C1 to the internal capacitance (CT ) of the  
transducer determines the noise gain of this circuit (1 + CT /C1).  
T he amplifiers voltage noise will appear at its output amplified  
by this amount. T he low frequency bandwidth of these circuits  
will be dependent on the value of resistor R1. If a “T ” network  
is used, the effective value is: R1 (1 + R2/R3).  
1
Time Constant =  
2π × CC × 100 Ω  
where the dc gain is 1 and the gain above the low frequency  
cutoff (1/(2π CC(100 ))) is equal to (1 + R2/R3). T he circuit  
of Figure 36b uses a dc servo loop to keep the dc output at 0 V  
and to maintain full dynamic range for IB’s up to 100 nA. T he  
time constant of R7 and C1 should be larger than that of R1  
and CT for a smooth low frequency response.  
*pC = Picocoulombs  
g = Earths Gravitational Constant  
C1 1250pF  
R2  
R1  
110M  
9kΩ  
(5x22M)  
1900Ω  
1kΩ  
R3  
R3  
R2  
100Ω  
R4*  
C1*  
C
C
AD745  
B&K MODEL  
4370 OR  
EQUIVALENT  
B&K TYPE 8100 HYDROPHONE  
OUTPUT  
AD745  
OUTPUT  
0.8mV/pC  
C
T
108  
R1  
INPUT SENSITIVITY = –179dB RE. 1V/µPa**  
*OPTIONAL, SEE TEXT  
** 1 VOLT PER MICROPASCAL  
Figure 35a. A Basic Accelerom eter Circuit  
Figure 36a. A Low Noise Hydrophone Am plifier  
C1 1250pF  
T he transducer shown has a source capacitance of 7500 pF. For  
smaller transducer capacitances (300 pF), lowest noise can be  
achieved by adding a parallel RC network (R4 = R1, C1 = CT )  
in series with the inverting input of the AD745.  
R2  
R1  
110M  
9kΩ  
(5x22M)  
1kΩ  
R3  
1900Ω  
C2  
2.2µF  
R3  
100Ω  
R2  
108  
R4*  
18MΩ  
C1*  
OUTPUT  
R4  
R5  
AD711  
16MΩ  
18MΩ  
2.2µF  
AD745  
R4  
C3  
0.27µF  
C2  
AD745  
B&K MODEL  
4370 OR  
EQUIVALENT  
108  
R1  
B&K TYPE  
8100  
HYDROPHONE  
OUTPUT = 0.8mV/pC  
R5  
AD711K  
100kΩ  
R6  
1MΩ  
C
T
16MΩ  
*pC = PICOCOULOMBS  
g = EARTH'S GRAVITATIONAL CONSTANT  
DC OUTPUT 1mV FOR I (AD745) 100nA  
B
*OPTIONAL, SEE TEXT  
Figure 35b. An Accelerom eter Circuit Em ploying a DC  
Servo Am plifier  
Figure 36b. A Hydrophone Am plifier Incorporating a DC  
Servo Loop  
–10–  
REV. C  
AD745  
1µF  
+
D esign Consider ations for I-to-V Conver ter s  
T here are some simple rules of thumb when designing an I-V  
converter where there is significant source capacitance (as with a  
photodiode) and bandwidth needs to be optimized. Consider the  
circuit of Figure 37. T he high frequency noise gain (1 + CS/CL)  
is usually greater than five, so the AD745, with its higher slew  
rate and bandwidth is ideally suited to this application.  
+12V  
0.01  
µF  
16  
15  
14  
13  
12  
11  
10  
9
1
2
–12V  
0.01µF  
+12V  
AD1862  
20 BIT D/A  
CONVERTER  
0.1µF  
OUTPUT  
3
4
5
6
0.01  
µF  
ANALOG  
COMMON  
10µF  
+
Here both the low current and low voltage noise of the AD745  
can be taken advantage of, since it is desirable in some instances  
to have a large RF (which increases sensitivity to input current  
noise) and, at the same time, operate the amplifier at high noise  
gain.  
+12V  
3 POLE  
LOW  
PASS  
AD745  
0.1µF  
DIGITAL  
INPUTS  
3kΩ  
FILTER  
7
8
–12V  
TOP VIEW  
R
F
–12V  
100pF  
INPUT SOURCE: PHOTO DIODE,  
ACCELEROMETER, ECT.  
0.01µF  
DIGITAL  
COMMON  
2000pF  
C
L
AD745  
R
B
I
C
S
S
Figure 38. A High Perform ance Audio DAC Circuit  
An important feature of this circuit is that high frequency  
energy, such as clock feedthrough, is shunted to common via a  
high quality capacitor and not the output stage of the amplifier,  
greatly reducing the error signal at the input of the amplifier and  
subsequent opportunities for intermodulation distortions.  
Figure 37. A Model for an l-to-V Converter  
In this circuit, the RF CS time constant limits the practical  
bandwidth over which flat response can be obtained, in fact:  
40  
fC  
f B  
2π RF CS  
30  
where:  
fB = signal bandwidth  
UNBALANCED  
20  
fC = gain bandwidth product of the amplifier  
With CL 1/(2 π RF CS) the net response can be adjusted to a  
provide a two pole system with optimal flatness that has a corner  
frequency of fB. Capacitor CL adjusts the damping of the  
circuit’s response. Note that bandwidth and sensitivity are  
directly traded off against each other via the selection of RF. For  
example, a photodiode with CS = 300 pF and RF = 100 kwill  
have a maximum bandwidth of 360 kHz when capacitor  
CL 4.5 pF. Conversely, if only a 100 kHz bandwidth were  
required, then the maximum value of RF would be 360 kand  
that of capacitor CL still 4.5 pF.  
BALANCED  
2.9nV/ Hz  
10  
0
10  
100  
INPUT CAPACITANCE – pF  
1000  
Figure 39. RTI Noise Voltage vs. Input Capacitance  
BALANCING SO URCE IMP ED ANCES  
In either case, the AD745 provides impedance transformation,  
the effective transresistance, i.e., the I/V conversion gain, may be  
augmented with further gain. A wideband low noise amplifier  
such as the AD829 is recommended in this application.  
As mentioned previously, it is good practice to balance the  
source impedances (both resistive and reactive) as seen by the  
inputs of the AD745. Balancing the resistive components will  
optimize dc performance over temperature because balancing  
will mitigate the effects of any bias current errors. Balancing  
input capacitance will minimize ac response errors due to the  
amplifier’s input capacitance and, as shown in Figure 39, noise  
performance will be optimized. Figure 40 shows the required  
external components for noninverting (A) and inverting (B)  
configurations.  
T his principle can also be used to apply the AD745 in a high  
performance audio application. Figure 38 shows that an I-V  
converter of a high performance DAC, here the AD1862, can be  
designed to take advantage of the low voltage noise of the  
AD745 (2.9 nV/͙Hz) as well as the high slew rate and  
bandwidth provided by decompensation. T his circuit, with  
component values shown, has a 12 dB/octave rolloff at 728 kHz,  
with a passband ripple of less than 0.001 dB and a phase  
deviation of less than 2 degrees @ 20 kHz.  
REV. C  
–11–  
AD745  
R
1
C
R
= C II C  
S
C F  
B
F
C
R
FOR  
= C  
= R  
B
B
S
S
= R II R  
C
B
1 S  
B
R
1
R
>> R OR R  
S
R
C
1
2
B
OUTPUT  
OUTPUT  
AD745  
C
S
AD745  
R
S
R
2
C
B
S
R
INVERTING  
CONNECTION  
B
R
NONINVERTING  
CONNECTION  
S
Figure 40. Optional External Com ponents for Balancing Source Im pedances  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-P in P lastic Mini-D IP (N) P ackage  
8
5
4
0.31  
0.25  
(7.87)  
(6.35)  
1
0.39 (9.91)  
MAX  
0.30 (7.62)  
REF  
+
0.035 0.01  
-
+
+
(0.89 0.25)  
0.165 0.01  
-
-
+
(4.19 0.25)  
-
SEATING  
PLANE  
+
0.011 0.003  
-
0.125 (3.18)  
MIN  
+
(0.28 0.08)  
-
+
0.18 0.03  
+
0.100  
-
0
- 15  
O.018 0.003  
-
+
(4.57 0.76)  
+
(2.54)  
TYP  
-
(0.46 0.08)  
-
8-P in Cer dip (Q ) P ackage  
16-P in SO IC (R) P ackage  
0.005 (0.13) MIN  
0.055 (1.35) MAX  
16  
1
9
8
8
5
0
- 8  
0.419 (10.64)  
0.394 (10.01)  
0.292 (7.42)  
0.300 (7.62)  
0.320 (8.13)  
0.290 (7.37)  
0.0500 (1.27)  
0.0157 (0.40)  
4
1
0.070 (1.78)  
0.030 (0.76)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45  
SEE  
0.413 (10.49)  
0.396 (10.11)  
0.310 (7.87)  
0.220 (5.59)  
0.011 (0.279)  
0.004 (0.102)  
0.405 (10.29) MAX  
0.104 (2.64)  
0.003 (2.36)  
0.200  
(5.08)  
MAX  
0.060 (1.52)  
0.015 (0.38)  
0.019 (0.483)  
0.014 (0.356)  
0.060  
(1.27)  
REF  
0.0125 (0.32)  
0.0091 (0.23)  
DETAIL  
ABOVE  
SEATING  
PLANE  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
0.023 (0.58)  
0.014 (0.36)  
0.100 (2.54)  
BSC  
0
- 15  
SEATING PLANE  
–12–  
REV. C  
Package/Price Information  
Ultralow Noise, High Speed, BiFET Op Amp  
Package  
Description  
Pin  
Count  
Temperature  
Range  
Price*  
(100-499)  
Model  
AD745AN  
Status  
OBSOLETE  
OBSOLETE  
PLASTIC/EPOXY DIP  
PLASTIC/EPOXY DIP  
8
COMMERCIAL  
COMMERCIAL  
-
-
AD745JN  
8
AD745JR-16  
PRODUCTION STD S.O. PKG (SOIC)  
PRODUCTION STD S.O. PKG (SOIC)  
PRODUCTION STD S.O. PKG (SOIC)  
PRODUCTION STD S.O. PKG (SOIC)  
PRODUCTION PLASTIC QUAD FLATPACK  
16  
16  
16  
16  
-
COMMERCIAL $4.79  
AD745JR-16-REEL  
AD745JR-16-REEL7  
AD745KR-16  
COMMERCIAL  
COMMERCIAL  
-
-
COMMERCIAL $6.51  
AD745KR-16-REEL  
COMMERCIAL  
COMMERCIAL  
COMMERCIAL  
-
-
-
AD745KR-16-REEL7 PRODUCTION PLASTIC QUAD FLATPACK  
AD745SCHIPS OBSOLETE SINGLE IN-LINE PACKAGE  
-
-
* This price is provided for budgetary purposes as recommended list price in U.S. Dollars per unit in the stated volume. Pricing displayed for Evaluation  
Boards and Kits is based on 1-piece pricing. View Pricing and Availability for further information.  

相关型号:

AD745JR-16-REEL7

OP-AMP, 1500 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16
ROCHESTER

AD745JRZ-16

Ultralow Noise, High Speed, BiFET Op Amp
ADI

AD745JRZ-16-REEL

Ultralow Noise, High Speed, BiFET Op Amp
ADI

AD745JRZ-16-REEL7

OP-AMP, 1500 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, PLASTIC, SOIC-16
ROCHESTER

AD745KN

Operational Amplifier, 1 Func, 1000uV Offset-Max, BIPolar, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD745KN

IC OP-AMP, 1000 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8, Operational Amplifier
ADI

AD745KR-16

Ultralow Noise, High Speed, BiFET Op Amp
ADI

AD745KR-16-REEL

OP-AMP, 1000 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, SOIC-16
ROCHESTER

AD745KR-16-REEL7

OP-AMP, 1000 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, SOIC-16
ROCHESTER

AD745KRZ-16

Ultralow Noise, High Speed, BiFET Op Amp
ADI

AD745KRZ-16-REEL

OP-AMP, 1000 uV OFFSET-MAX, 20 MHz BAND WIDTH, PDSO16, SOIC-16
ROCHESTER

AD745SCHIPS

OP-AMP, 1000 uV OFFSET-MAX, 20 MHz BAND WIDTH, UUC7, DIE-7
ROCHESTER