AD820ARMZ-RL [ROCHESTER]

OP-AMP, 1500 uV OFFSET-MAX, 1.9 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8;
AD820ARMZ-RL
型号: AD820ARMZ-RL
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 1500 uV OFFSET-MAX, 1.9 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8

光电二极管
文件: 总25页 (文件大小:1541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Supply, Rail-to-Rail,  
Low Power, FET Input Op Amp  
AD820  
FEATURES  
PIN CONFIGURATIONS  
True single-supply operation  
Output swings rail-to-rail  
Input voltage range extends below ground  
Single-supply capability from 5 V to 30 V  
Dual-supply capability from 2.5 V to 15 V  
Excellent load drive  
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
AD820  
+V  
S
+IN  
V
OUT  
TOP VIEW  
(Not to Scale)  
–V  
NULL  
S
NC = NO CONNECT  
Capacitive load drive up to 350 pF  
Minimum output current of 15 mA  
Excellent ac performance for low power  
800 μA maximum quiescent current  
Unity-gain bandwidth: 1.8 MHz  
Slew rate of 3 V/μs  
Figure 1. 8-Lead PDIP  
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
NC  
AD820  
+V  
S
V
OUT  
TOP VIEW  
–V  
NC  
S
Excellent dc performance  
(Not to Scale)  
800 μV maximum input offset voltage  
2 μV/°C typical offset voltage drift  
25 pA maximum input bias current  
Low noise: 13 nV/√Hz @ 10 kHz  
NC = NO CONNECT  
Figure 2. 8-Lead SOIC_N and 8-Lead MSOP  
APPLICATIONS  
Battery-powered precision instrumentation  
Photodiode preamps  
Active filters  
12-bit to 14-bit data acquisition systems  
Medical instrumentation  
Low power references and regulators  
GENERAL DESCRIPTION  
The AD820 is a precision, low power FET input op amp that  
can operate from a single supply of 5 V to 36 V, or dual supplies  
of 2.5 V to 18 V. It has true single-supply capability, with an  
input voltage range extending below the negative rail, allowing  
the AD820 to accommodate input signals below ground in the  
single-supply mode. Output voltage swing extends to within  
10 mV of each rail, providing the maximum output dynamic range.  
The AD820 is available in two performance grades. The A and  
B grades are rated over the industrial temperature range of  
−40°C to +85°C. The AD820 is offered in three 8-lead package  
options: plastic DIP (PDIP), surface mount (SOIC) and (MSOP).  
20µs  
1V  
1V  
100  
90  
Offset voltage of 800 μV maximum, offset voltage drift of  
2 μV/°C, typical input bias currents below 25 pA, and low input  
voltage noise provide dc precision with source impedances up  
to 1 GΩ. 1.8 MHz unity gain bandwidth, −93 dB THD at  
10 kHz, and 3 V/μs slew rate are provided for a low supply  
current of 800 μA. The AD820 drives up to 350 pF of direct  
capacitive load and provides a minimum output current of  
15 mA. This allows the amplifier to handle a wide range of load  
conditions. This combination of ac and dc performance, plus  
the outstanding load drive capability, results in an exceptionally  
versatile amplifier for the single-supply user.  
10  
0%  
1V  
Figure 3. Gain-of-2 Amplifier; VS = 5 V, 0 V, VIN = 2.5 V Sine Centered at 1.25 V  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1996–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD820  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 16  
Input Characteristics.................................................................. 16  
Output Characteristics............................................................... 17  
Single-Supply Half-Wave and Full-Wave Rectifiers .............. 17  
4.5 V Low Dropout, Low Power Reference............................. 18  
Low Power, 3-Pole, Sallen Key Low-Pass Filter...................... 18  
Offset Voltage Adjustment ............................................................ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
REVISION HISTORY  
3/11—Rev. G to Rev. H  
Changes to Figure 43...................................................................... 18  
Added Table 5; Renumbered Sequentially .....................................9  
Changes to Figure 26...................................................................... 13  
Changes to Figure 27...................................................................... 14  
Changed Application Notes Section to Applications  
2/10—Rev. F to Rev. G  
Changes to Features Section............................................................ 1  
Changes to Open-Loop Gain Parameter....................................... 3  
Changes to Input Voltage Parameter ............................................. 9  
Updated Outline Dimensions....................................................... 20  
Information Section ....................................................................... 16  
Changes to Figure 40, Figure 41, and Figure 42......................... 17  
Changes to Figure 44...................................................................... 18  
Moved Offset Voltage Adjustment Section................................. 19  
Updated Outline Dimensions....................................................... 20  
Added Figure 49; Renumbered Sequentially .............................. 21  
Changes to Ordering Guide.......................................................... 21  
11/08—Rev. E to Rev. F  
Added 8-Lead MSOP .........................................................Universal  
Changes to Features Section, Figure 2 Caption, and General  
Description Section.......................................................................... 1  
Changes to Settling Time Parameter, Common-Mode Voltage  
Range Parameter, and Power Supply Rejection Parameter in  
Table 1 ................................................................................................ 3  
Changes to Settling Time Parameter, Common-Mode Voltage  
Range Parameter, and Power Supply Rejection Parameter in  
Table 2 ................................................................................................ 5  
Changes to Settling Time Parameter, Common-Mode Voltage  
Range Parameter, and Power Supply Rejection Parameter in  
Table 3 ................................................................................................ 7  
Changes to Table 4............................................................................ 9  
Added Thermal Resistance Section ............................................... 9  
2/07—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Updated Outline Dimensions....................................................... 21  
Changes to the Ordering Guide ................................................... 22  
5/02—Rev. C to Rev. D  
Change to SOIC Package (R-8) Drawing .................................... 15  
Edits to Features.................................................................................1  
Edits to Product Description ...........................................................1  
Delete Specifications for AD820A-3 V...........................................5  
Edits to Ordering Guide ...................................................................6  
Edits to Typical Performance Characteristics................................8  
Rev. H | Page 2 of 24  
 
AD820  
SPECIFICATIONS  
VS = 0 V, 5 V @ TA = 25°C, VCM = 0 V, V OUT = 0.2 V, unless otherwise noted.  
Table 1.  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
Maximum Offset over Temperature  
Offset Drift  
Input Bias Current  
At TMAX  
Input Offset Current  
At TMAX  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.2  
0.1  
0.5  
2
2
0.5  
2
0.4  
0.9  
mV  
mV  
μV/°C  
pA  
nA  
pA  
VCM = 0 V to 4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
VOUT = 0.2 V to 4 V  
RL = 100 kΩ  
400  
400  
80  
80  
15  
1000  
150  
30  
500  
400  
80  
80  
15  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
10  
10  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ to 2.5 V  
VOUT = 0.25 V to 4.75 V  
−93  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.8  
210  
3
1.8  
210  
3
MHz  
kHz  
V/μs  
VOUT p-p = 4.5 V  
Settling Time  
VOUT = 0.2 V to 4.5 V  
To 0.1%  
To 0.01%  
1.4  
1.8  
1.4  
1.8  
μs  
μs  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
TMIN to TMAX  
CMRR  
TMIN to TMAX  
−0.2  
66  
66  
+4  
–0.2  
72  
66  
+4  
V
dB  
dB  
VCM = 0 V to 2 V  
80  
80  
Input Impedance  
Differential  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Common Mode  
Rev. H | Page 3 of 24  
 
AD820  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
ISOURCE = 20 μA  
ISINK = 2 mA  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
15  
12  
15  
12  
25  
25  
350  
350  
TMIN to TMAX  
V+ = 5 V to 15 V  
620  
80  
800  
620  
80  
800  
μA  
dB  
dB  
70  
70  
66  
66  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ((V+) − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. H | Page 4 of 24  
 
AD820  
VS = 5 V @ TA = 25°C, VCM = 0 V, V OUT = 0 V, unless otherwise noted.  
Table 2.  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
Maximum Offset over Temperature  
Offset Drift  
Input Bias Current  
At TMAX  
Input Offset Current  
At TMAX  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.5  
0.3  
0.5  
2
2
0.5  
2
0.4  
1
mV  
mV  
μV/°C  
pA  
nA  
pA  
VCM = −5 V to +4 V  
25  
5
20  
10  
2.5  
10  
0.5  
0.5  
nA  
Open-Loop Gain  
VOUT = −4 V to +4 V  
RL = 100 kΩ  
400  
400  
80  
80  
20  
1000  
150  
30  
400  
400  
80  
80  
20  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
10  
10  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VOUT = 4.5 V  
−93  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
105  
3
1.8  
105  
3
MHz  
kHz  
V/μs  
VOUT p-p = 9 V  
Settling Time  
VOUT = 0 V to 4.5 V  
To 0.1%  
To 0.01%  
1.4  
1.8  
1.4  
1.8  
μs  
μs  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
TMIN to TMAX  
CMRR  
TMIN to TMAX  
−5.2  
66  
66  
+4  
−5.2  
72  
66  
+4  
V
dB  
dB  
VCM = −5 V to +2 V  
80  
80  
Input Impedance  
Differential  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Common Mode  
Rev. H | Page 5 of 24  
AD820  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
ISOURCE = 20 μA  
ISINK = 2 mA  
10  
40  
80  
300  
800  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
15  
12  
15  
12  
30  
30  
350  
350  
TMIN to TMAX  
V+ = 5 V to 15 V  
650  
80  
800  
620  
80  
800  
μA  
dB  
dB  
70  
70  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ((V+) − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. H | Page 6 of 24  
 
AD820  
VS = 15 V @ TA = 25°C, VCM = 0 V, V OUT = 0 V, unless otherwise noted.  
Table 3.  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
Maximum Offset over Temperature  
Offset Drift  
0.4  
0.5  
2
2
3
0.3  
0.5  
2
1.0  
2
mV  
mV  
μV/°C  
pA  
pA  
nA  
Input Bias Current  
VCM = 0 V  
VCM = −10 V  
VCM = 0 V  
2
25  
2
10  
40  
0.5  
2
40  
0.5  
2
At TMAX  
Input Offset Current  
At TMAX  
5
20  
2.5  
10  
pA  
nA  
0.5  
0.5  
Open-Loop Gain  
VOUT = −10 V to +10 V  
RL = 100 kΩ  
500  
500  
100  
100  
30  
2000  
500  
45  
500  
500  
100  
100  
30  
2000  
500  
45  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
20  
20  
2
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VOUT = 10 V  
−85  
−85  
dB  
DYNAMIC PERFORMANCE  
Unity Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
45  
3
1.9  
45  
3
MHz  
kHz  
V/μs  
VOUT p-p = 20 V  
Settling Time  
VOUT = 0 V to 10 V  
To 0.1%  
To 0.01%  
4.1  
4.5  
4.1  
4.5  
μs  
μs  
INPUT CHARACTERISTICS  
Common-Mode Voltage Range1  
TMIN to TMAX  
CMRR  
TMIN to TMAX  
−15.2  
70  
70  
+14  
−15.2  
74  
74  
+14  
V
dB  
dB  
VCM = –15 V to +12 V  
80  
90  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. H | Page 7 of 24  
AD820  
AD820A  
Typ  
AD820B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
5
7
10  
5
7
10  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
ISOURCE = 20 μA  
ISINK = 2 mA  
10  
40  
80  
300  
800  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
10  
40  
80  
300  
800  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current  
Power Supply Rejection  
TMIN to TMAX  
20  
15  
20  
15  
45  
45  
350  
350  
TMIN to TMAX  
V+ = 5 V to 15 V  
700  
80  
900  
700  
80  
900  
μA  
dB  
dB  
70  
70  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range ((V+) − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. H | Page 8 of 24  
 
AD820  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation  
8-Lead PDIP (N)  
8-Lead SOIC_N (R)  
8-Lead MSOP (RM)  
Input Voltage1  
Table 5. Thermal Resistance  
Package Type  
1.6 W  
1.0 W  
0.8 W  
((V+) + 0.2 V) to  
(V−) − 20 V  
θJA  
90  
160  
190  
Unit  
°C/W  
°C/W  
°C/W  
8-Lead PDIP (N)  
8-Lead SOIC_N (R)  
8-Lead MSOP (RM)  
Output Short-Circuit Duration  
Differential Input Voltage  
Storage Temperature Range  
8-Lead PDIP (N)  
8-Lead SOIC_N (R)  
8-Lead MSOP (RM)  
Operating Temperature Range  
AD820A/AD820B  
Lead Temperature(Soldering, 60 sec)  
Indefinite  
30 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
−65°C to +125°C  
−65°C to +150°C  
−65°C to +150°C  
−40°C to +85°C  
260°C  
1 See Input Characteristics section.  
ESD CAUTION  
Rev. H | Page 9 of 24  
 
 
 
 
AD820  
TYPICAL PERFORMANCE CHARACTERISTICS  
50  
5
V
= 0V, 5V  
S
40  
30  
20  
10  
0
0
V
= 0V, +5V AND ±5V  
S
V
= ±5V  
S
–5  
–5  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
OFFSET VOLTAGE (mV)  
COMMON-MODE VOLTAGE (V)  
Figure 4. Typical Distribution of Offset Voltage (248 Units)  
Figure 7. Input Bias Current vs. Common-Mode Voltage;  
VS = +5 V, 0 V and VS = 5 V  
48  
1k  
V
V
= ±5V  
S
= ±15V  
40  
32  
24  
16  
8
S
100  
10  
1
0
–10  
0.1  
–16  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–12  
–8  
–4  
0
4
8
12  
16  
OFFSET VOLTAGE DRIFT (µV/ºC)  
COMMON-MODE VOLTAGE (V)  
Figure 5. Typical Distribution of Offset Voltage Drift (120 Units)  
Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = 15 V  
100k  
10k  
1k  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
10  
1
0.1  
20  
40  
60  
80  
100  
120  
140  
0
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (ºC)  
INPUT BIAS CURRENT (pA)  
Figure 6. Typical Distribution of Input Bias Current (213 Units)  
Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0 V  
Rev. H | Page 10 of 24  
 
 
AD820  
10M  
1M  
40  
20  
POSITIVE  
RAIL  
R
= 2kΩ  
L
R
= 20kΩ  
L
V
= ±15V  
S
NEGATIVE  
RAIL  
POSITIVE  
RAIL  
0
V
= 0V, +5V  
S
100k  
10k  
POSITIVE  
RAIL  
NEGATIVE  
RAIL  
–20  
–40  
R
= 100kΩ  
L
NEGATIVE RAIL  
100  
1k  
10k  
100k  
0
60  
120  
180  
240  
300  
LOAD RESISTANCE (Ω)  
OUTPUT VOLTAGE FROM RAILS (mV)  
Figure 10. Open-Loop Gain vs. Load Resistance  
Figure 13. Input Error Voltage vs. Output Voltage Within 300 mV of Either  
Supply Rail for Various Resistive Loads; VS = 5 V  
10M  
1M  
1k  
100  
10  
V
= ±15V  
S
R
R
= 100kΩ  
= 10kΩ  
L
L
V
= 0V, +5V  
= ±15V  
S
V
S
V
= 0V, +5V  
= ±15V  
S
100k  
10k  
V
S
R
= 600Ω  
L
V
= 0V, +5V  
S
1
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
1k  
10k  
TEMPERATURE (ºC)  
FREQUENCY (Hz)  
Figure 11. Open-Loop Gain vs. Temperature  
Figure 14. Input Voltage Noise vs. Frequency  
300  
200  
100  
0
–40  
–50  
R
A
= 10kΩ  
L
= –1  
CL  
–60  
R
= 10kΩ  
L
R
= 100kΩ  
L
–70  
–80  
V
= ±15V; V = 20V p-p  
OUT  
S
–100  
–200  
–300  
–90  
V
V
= ±5V; V = 9V p-p  
OUT  
S
R
= 600Ω  
L
= 0V, +5V; V  
OUT  
= 4.5V p-p  
–100  
–110  
S
–16  
–12  
–8  
–4  
0
4
8
12  
16  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
OUTPUT VOLTAGE (V)  
Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads  
Figure 15. Total Harmonic Distortion vs. Frequency  
Rev. H | Page 11 of 24  
 
 
 
AD820  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PHASE  
GAIN  
V
= 0V, +5V  
V = ±15V  
S
S
R
C
= 2kΩ  
= 100pF  
L
L
–20  
10  
–20  
10M  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 19. Common-Mode Rejection vs. Frequency  
1k  
5
4
3
2
1
0
A
= +1  
CL  
= ±15V  
V
S
100  
10  
NEGATIVE  
RAIL  
POSITIVE  
RAIL  
1
+25ºC  
+125ºC  
+125ºC  
0.1  
0.01  
–55ºC  
–55ºC  
100  
1k  
10k  
100k  
1M  
10M  
–1  
0
1
2
3
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE FROM SUPPLY RAILS (V)  
Figure 17. Output Impedance vs. Frequency  
Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage  
from Supply Rails (VS − VCM  
)
16  
12  
8
1k  
100  
10  
1%  
4
V
– V  
OH  
S
0.1%  
0.01%  
ERROR  
0
V
– V  
S
–4  
–8  
–12  
–16  
OL  
1%  
1
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
10  
100  
SETTLING TIME (µs)  
LOAD CURRENT (mA)  
Figure 18. Output Swing and Error vs. Settling Time  
Figure 21. Output Saturation Voltage vs. Load Current  
Rev. H | Page 12 of 24  
 
AD820  
1k  
100  
10  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
= 10mA  
SOURCE  
= 10mA  
SINK  
I
= 1mA  
SOURCE  
+PSRR  
I
= 1mA  
SINK  
–PSRR  
I
I
= 10µA  
SOURCE  
= 10µA  
SINK  
1
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (ºC)  
FREQUENCY (Hz)  
Figure 22. Output Saturation Voltage vs. Temperature  
Figure 25. Power Supply Rejection vs. Frequency  
80  
30  
25  
20  
15  
10  
5
R
= 2kΩ  
L
70  
60  
50  
40  
30  
20  
10  
0
V
V
= ±15V  
S
S
V
= ±15V  
S
–OUT  
= ±15V  
V
= 0V, +5V  
S
+
V
= 0V, +5V  
S
+
V
= 0V, +5V  
S
0
10k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (ºC)  
Figure 23. Short-Circuit Current Limit vs. Temperature  
Figure 26. Large Signal Frequency Response  
800  
700  
600  
500  
400  
300  
200  
100  
0
T = +125ºC  
T = +25ºC  
T = –55ºC  
0
4
8
12  
16  
20  
24  
28  
32  
36  
TOTAL SUPPLY VOLTAGE (V)  
Figure 24. Quiescent Current vs. Supply Voltage over Different Temperatures  
Rev. H | Page 13 of 24  
AD820  
5V  
5µs  
+V  
7
100  
90  
S
0.01µF  
3
2
+
+
V
6
IN  
+
AD820  
4
V
OUT  
100pF  
0.01µF  
R
L
10  
–V  
S
0%  
Figure 27. Unity-Gain Follower, Used for Figure 28 Through Figure 32  
Figure 30. Large Signal Response Unity-Gain Follower; VS = 15 V, RL = 10 kΩ  
5V  
10µs  
10mV  
500ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 28. 20 V, 25 kHz Sine Input; Unity-Gain Follower; RL = 600 Ω, V = 15 V  
Figure 31. Small Signal Response Unity-Gain Follower; VS = 15 V, RL = 10 kΩ  
S
1V  
2µs  
1V  
2µs  
100  
90  
100  
90  
10  
10  
0%  
0%  
GND  
GND  
Figure 29. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 4 V Step  
Figure 32. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 5 V Step  
Rev. H | Page 14 of 24  
 
 
 
AD820  
10kΩ  
20kΩ  
+
+V  
7
S
V
IN  
V
OUT  
+V  
7
S
0.01µF  
6
3
2
0.01µF  
+
V
IN  
2
3
+
AD820  
V
6
OUT  
100pF  
R
L
AD820  
4
100pF  
R
+
4
L
Figure 33. Unity-Gain Follower, Used for Figure 34  
Figure 35. Gain-of-2 Inverter, Used for Figure 36 and Figure 37  
10mV  
2µs  
1V  
2µS  
100  
90  
100  
90  
10  
10  
0%  
0%  
GND  
GND  
Figure 34. VS = 5 V, 0 V; Unity-Gain Follower Response to 40 mV Step  
Centered 40 mV Above Ground  
Figure 36. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step,  
Centered −1.25 V Below Ground  
10mV  
2µs  
100  
90  
10  
0%  
GND  
Figure 37. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step, Centered  
20 mV Below Ground  
Rev. H | Page 15 of 24  
 
 
 
AD820  
APPLICATIONS INFORMATION  
INPUT CHARACTERISTICS  
1V  
2µs  
In the AD820, N-channel JFETs are used to provide a low offset,  
low noise, high impedance input stage. Minimum input common-  
mode voltage extends from 0.2 V below –VS to 1 V less than  
+VS. Driving the input voltage closer to the positive rail causes a  
loss of amplifier bandwidth (as can be seen by comparing the  
large signal responses shown in Figure 29 and Figure 32) and  
increased common-mode voltage error, as illustrated in  
Figure 20.  
100  
90  
10  
0%  
The AD820 does not exhibit phase reversal for input voltages  
up to and including +VS. Figure 38a shows the response of an  
AD820 voltage follower to a 0 V to 5 V (+VS) square wave input.  
The input and output are superimposed. The output polarity  
tracks the input polarity up to +VS with no phase reversal. The  
reduced bandwidth above a 4 V input causes the rounding of  
the output waveform. For input voltages greater than +VS, a  
resistor in series with the AD820 positive input prevents phase  
reversal, at the expense of greater input voltage noise. This is  
illustrated in Figure 38b.  
GND  
1V  
(a)  
1V  
1V  
10µs  
100  
90  
+V  
S
Because the input stage uses N-channel JFETs, input current  
during normal operation is negative; the current flows out from  
the input terminals. If the input voltage is driven more positive  
than +VS − 0.4 V, the input current reverses direction as internal  
device junctions become forward biased. This is illustrated in  
Figure 7.  
10  
0%  
GND  
1V  
A current-limiting resistor should be used in series with the  
input of the AD820 if there is a possibility of the input voltage  
exceeding the positive supply by more than 300 mV, or if an  
input voltage is applied to the AD820 when VS = 0 V. The  
amplifier can be damaged if left in that condition for more than  
10 seconds. A 1 kΩ resistor allows the amplifier to withstand up  
to 10 V of continuous overvoltage, and increases the input  
voltage noise by a negligible amount.  
(b)  
+
5V  
R
P
+
V
IN  
+
AD820  
V
OUT  
Input voltages less than −V are a completely different story.  
S
Figure 38. (a) Response with RP = 0 Ω; VIN from 0 V to +VS  
(b) VIN = 0 V to +VS + 200 mV,  
The amplifier can safely withstand input voltages 20 V below  
the negative supply voltage as long as the total voltage from  
the positive supply to the input terminal is less than 36 V. In  
addition, the input stage typically maintains picoamp level  
input currents across that input voltage range.  
VOUT = 0 V to +VS, RP = 49.9 kΩ  
100k  
WHENEVER JOHNSON NOISE IS GREATER THAN  
AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE  
CONSIDERED NEGLIGIBLE FOR APPLICATION.  
10k  
1k  
1kHz  
The AD820 is designed for 13 nV/√Hz wideband input voltage  
noise and maintains low noise performance to low frequencies  
(refer to Figure 14). This noise performance, along with the  
AD820 low input current and current noise, means that the  
AD820 contributes negligible noise for applications with source  
resistances greater than 10 kΩ and signal bandwidths greater  
than 1 kHz. This is illustrated in Figure 39.  
RESISTOR JOHNSON  
NOISE  
100  
10  
10Hz  
1
AMPLIFIER-GENERATED  
NOISE  
0.1  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
SOURCE IMPEDANCE (Ω)  
Figure 39. Total Noise vs. Source Impedance  
Rev. H | Page 16 of 24  
 
 
 
 
AD820  
5
4
3
2
1
OUTPUT CHARACTERISTICS  
The AD820 unique bipolar rail-to-rail output stage swings  
within 5 mV of the negative supply and 10 mV of the positive  
supply with no external resistive load. The approximate output  
saturation resistance of the AD820 is 40 Ω sourcing and 20 Ω  
sinking. This can be used to estimate output saturation voltage  
when driving heavier current loads. For instance, when sourcing  
5 mA, the saturation voltage to the positive supply rail is 200 mV;  
when sinking 5 mA, the saturation voltage to the negative rail  
is 100 mV.  
The open-loop gain characteristic of the amplifier changes  
as a function of resistive load, as shown in Figure 10 through  
Figure 13. For load resistances over 20 kΩ, the AD820 input  
error voltage is virtually unchanged until the output voltage is  
driven to 180 mV of either supply.  
300  
1k  
3k  
10k  
30k  
CAPACITIVE LOAD FOR 20º PHASE MARGIN (pF)  
+
If the AD820 output is driven hard against the output saturation  
voltage, it recovers within 2 μs of the input returning to the  
linear operating region of the amplifier.  
R
F
Direct capacitive load interacts with the effective output imped-  
ance of the amplifier to form an additional pole in the amplifier  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stability. The worst case occurs when the  
amplifier is used as a unity-gain follower. Figure 40 shows  
AD820 pulse response as a unity-gain follower driving 350 pF.  
This amount of overshoot indicates approximately 20 degrees  
of phase margin—the system is stable, but is nearing the edge.  
Configurations with less loop gain, and as a result less loop  
bandwidth, are much less sensitive to capacitance load effects.  
Figure 41 is a plot of noise gain vs. the capacitive load that results  
in a 20 degree phase margin for the AD820. Noise gain is the  
inverse of the feedback attenuation factor provided by the  
feedback network in use.  
R1  
Figure 41. Noise Gain vs. Capacitive Load Tolerance  
Figure 42 shows a possible configuration for extending  
capacitance load drive capability for a unity-gain follower. With  
these component values, the circuit drives 5000 pF with a 10%  
overshoot.  
+V  
S
0.01µF  
7
3
2
+
+
100  
V
6
IN  
+
AD820  
4
V
OUT  
0.01µF  
–V  
S
20pF  
20mV  
2µs  
20kΩ  
100  
90  
Figure 42. Extending Unity-Gain Follower Capacitive Load Capability  
Beyond 350 pF  
SINGLE-SUPPLY HALF-WAVE AND FULL-WAVE  
RECTIFIERS  
An AD820 configured as a unity-gain follower and operated  
with a single supply can be used as a simple half-wave rectifier.  
The AD820 inputs maintain picoamp level input currents even  
when driven well below the negative supply. The rectifier puts  
that behavior to good use, maintaining an input impedance of  
over 1011 Ω for input voltages from 1 V from the positive supply  
to 20 V below the negative supply.  
10  
0%  
Figure 40. Small Signal Response of AD820 as Unity-Gain Follower Driving  
350 pF Capacitive Load  
The full- and half-wave rectifier shown in Figure 43 operates as  
follows: when VIN is above ground, R1 is bootstrapped through  
the unity-gain follower, A1, and the loop of Amplifier A2. This  
forces the inputs of A2 to be equal; thus, no current flows through  
R1 or R2, and the circuit output tracks the input. When VIN is  
below ground, the output of A1 is forced to ground. The  
Rev. H | Page 17 of 24  
 
 
 
 
 
AD820  
noninverting input of Amplifier A2 sees the ground level output  
of A1; therefore, A2 operates as a unity-gain inverter. The output at  
Node C is then a full-wave rectified version of the input. Node B is  
a buffered half-wave rectified version of the input. Input voltages  
up to 18 V can be rectified, depending on the voltage supply used.  
With a 1 mA load, this reference maintains the 4.5 V output  
with a supply voltage down to 4.7 V. The amplitude of the  
recovery transient for a 1 mA to 10 mA step change in load  
current is under 20 mV, and settles out in a few microseconds.  
Output voltage noise is less than 10 μV rms in a 25 kHz noise  
bandwidth.  
R1  
R2  
100kΩ  
100kΩ  
LOW POWER, 3-POLE, SALLEN KEY LOW-PASS  
FILTER  
+V  
7
S
+V  
7
S
0.01µF  
0.01µF  
2
3
The high input impedance of the AD820 makes it a good  
selection for active filters. High value resistors can be used to  
construct low frequency filters with capacitors much less than  
1 μF. The AD820 picoamp level input currents contribute  
minimal dc errors.  
A
V
3
2
6
+
C
+
+
A2  
6
IN  
FULL-WAVE  
RECTIFIED OUPUT  
+
A1  
AD820  
4
AD820  
4
B
+
Figure 45 shows an example of a 10 Hz three-pole Sallen Key  
filter. The high value used for R1 minimizes interaction with  
signal source resistance. Pole placement in this version of the  
filter minimizes the Q associated with the two-pole section of  
the filter. This eliminates any peaking of the noise contribution  
of Resistor R1, Resistor R2, and Resistor R3, thus minimizing  
the inherent output voltage noise of the filter.  
HALF-WAVE  
RECTIFIED OUPUT  
100  
A
90  
C2  
0.022µF  
+V  
7
S
B
C
0.01µF  
R1  
243kΩ  
R2  
R3  
243kΩ  
243kΩ  
3
2
+
+
V
6
IN  
C1  
0.022µF  
C3  
0.022µF  
+
10  
AD820  
4
V
OUT  
0%  
0.01µF  
–V  
S
Figure 43. Single-Supply Half- and Full-Wave Rectifier  
4.5 V LOW DROPOUT, LOW POWER REFERENCE  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
The rail-to-rail performance of the AD820 can be used to  
provide low dropout performance for low power reference  
circuits powered with a single low voltage supply. Figure 44  
shows a 4.5 V reference using the AD820 and the AD680, a low  
power 2.5 V band gap reference. R2 and R3 set up the required  
gain of 1.8 to develop the 4.5 V output. R1 and C2 form a low-  
pass RC filter to reduce the noise contribution of the AD680.  
2.5V  
OUTPUT  
U2  
AD820  
4.5V  
OUTPUT  
6
5V  
7
+
4
2
R2  
90kΩ  
(20kΩ)  
2
0.1  
1
10  
100  
1k  
3
2.5V ± 10mV  
FREQUENCY (Hz)  
3
6
U1  
C3  
10µF/25V  
AD680  
R1  
100kΩ  
Figure 45. 10 Hz Sallen Key Low-Pass Filter  
R3  
100kΩ  
(25kΩ)  
C2  
0.1µF FILM  
4
C1  
0.1µF  
REF  
COMMON  
Figure 44. Single Supply 4.5 V Low Dropout Reference  
Rev. H | Page 18 of 24  
 
 
 
 
 
AD820  
OFFSET VOLTAGE ADJUSTMENT  
+V  
7
S
The offset voltage of the AD820 is low, so external offset voltage  
nulling is not usually required. Figure 46 shows the recommended  
technique for the AD820 packaged in plastic DIP. Adjusting offset  
voltage in this manner changes the offset voltage temperature drift  
by 4 μV/°C for every millivolt of induced offset. The null pins  
are not functional for the AD820 in the 8-lead SOIC and MSOP  
packages.  
3
2
+
6
AD820  
1
5
20kΩ  
4
–V  
S
Figure 46. Offset Null  
Rev. H | Page 19 of 24  
 
 
AD820  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 47. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 48. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. H | Page 20 of 24  
 
AD820  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 49. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description Package Option  
Branding  
AD820AN  
AD820ANZ  
AD820AR  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead PDIP  
8-Lead PDIP  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
AD820AR-REEL  
AD820AR-REEL7  
AD820ARZ  
AD820ARZ-REEL  
AD820ARZ-REEL7  
AD820ARMZ  
AD820ARMZ-RL  
AD820ARMZ-R7  
AD820BR  
AD820BR-REEL  
AD820BRZ  
AD820BRZ-REEL  
AD820BRZ-REEL7  
A2L  
A2L  
A2L  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
Rev. H | Page 21 of 24  
 
 
AD820  
NOTES  
Rev. H | Page 22 of 24  
AD820  
NOTES  
Rev. H | Page 23 of 24  
AD820  
NOTES  
©1996–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00873-0-3/11(H)  
Rev. H | Page 24 of 24  

相关型号:

AD820ARZ

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820ARZ-REEL

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820ARZ-REEL7

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820ARZ-REEL7

OP-AMP, 1500 uV OFFSET-MAX, 1.9 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD820B

Operational Amplifiers Selection Guide
ADI

AD820BN

Single Supply, Rail to Rail Low Power FET-Input Op Amp
ADI

AD820BQ

IC OP-AMP, 500 uV OFFSET-MAX, 2 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

AD820BR

Single Supply, Rail to Rail Low Power FET-Input Op Amp
ADI

AD820BR-REEL

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820BR-REEL7

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820BRZ

Single-Supply, Rail-to-Rail, Low Power FET-Input Op Amp
ADI

AD820BRZ

OP-AMP, 1000 uV OFFSET-MAX, 1.8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER