AD8350ARM20 [ROCHESTER]

1000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, PLASTIC, MICRO SOIC-8;
AD8350ARM20
型号: AD8350ARM20
厂家: Rochester Electronics    Rochester Electronics
描述:

1000MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, PLASTIC, MICRO SOIC-8

放大器 射频 微波 功率放大器
文件: 总17页 (文件大小:909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Distortion  
1.0 GHz Differential Amplifier  
a
AD8350  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
8-Lead SOIC and SOIC Packages (with Enable)  
High Dynamic Range  
Output IP3: +28 dBm: Re 50 @ 250 MHz  
Low Noise Figure: 5.9 dB @ 250 MHz  
Two Gain Versions:  
AD8350-15: 15 dB  
AD8350-20: 20 dB  
–3 dB Bandwidth: 1.0 GHz  
Single Supply Operation: 5 V to 10 V  
Supply Current: 28 mA  
IN+  
IN–  
1
2
3
4
8
7
6
5
+
ENBL  
GND  
GND  
V
CC  
OUT–  
OUT+  
AD8350  
Input/Output Impedance: 200 ꢀ  
Single-Ended or Differential Input Drive  
8-Lead SOIC Package and 8-Lead microSOIC Package  
APPLICATIONS  
Cellular Base Stations  
Communications Receivers  
RF/IF Gain Block  
Differential A-to-D Driver  
SAW Filter Interface  
Single-Ended-to-Differential Conversion  
High Performance Video  
High Speed Data Transmission  
PRODUCT DESCRIPTION  
The amplifier can be operated down to 5 V with an OIP3 of  
+28 dBm at 250 MHz and slightly reduced distortion perfor-  
mance. The wide bandwidth, high dynamic range and temperature  
stability make this product ideal for the various RF and IF  
frequencies required in cellular, CATV, broadband, instrumen-  
tation and other applications.  
The AD8350 series are high performance fully-differential  
amplifiers useful in RF and IF circuits up to 1000 MHz. The  
amplifier has excellent noise figure of 5.9 dB at 250 MHz. It  
offers a high output third order intercept (OIP3) of +28 dBm  
at 250 MHz. Gain versions of 15 dB and 20 dB are offered.  
The AD8350 is designed to meet the demanding performance  
requirements of communications transceiver applications. It  
enables a high dynamic range differential signal chain, with  
exceptional linearity and increased common-mode rejection.  
The device can be used as a general purpose gain block, an  
A-to-D driver, and high speed data interface driver, among  
other functions. The AD8350 input can also be used as a single-  
ended-to-differential converter.  
The AD8350 is offered in an 8-lead single SOIC package and  
µSOIC package. It operates from 5 V and 10 V power supplies,  
drawing 28 mA typical. The AD8350 offers a power enable func-  
tion for power-sensitive applications. The AD8350 is fabricated  
using Analog Devices’ proprietary high speed complementary  
bipolar process. The device is available in the industrial (–40°C to  
+85°C) temperature range.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
(@ 25C, VS = 5 V, G = 15 dB, unless otherwise noted. All specifications refer to  
differential inputs and differential outputs unless noted.)  
AD8350–SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
0.9  
1.1  
90  
90  
2000  
10  
15  
0.003  
–0.002  
–18  
GHz  
GHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
V
OUT = 1 V p-p  
Settling Time  
0.1%, VOUT = 1 V p-p  
VS = 5 V, f = 50 MHz  
VS = 5 V to 10 V, f = 50 MHz  
TMIN to TMAX  
Gain (S21)1  
14  
16  
dB  
Gain Supply Sensitivity  
Gain Temperature Sensitivity  
Isolation (S12)1  
dB/V  
dB/°C  
dB  
f = 50 MHz  
NOISE/HARMONIC PERFORMANCE  
50 MHz Signal  
Second Harmonic  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V  
VS = 10 V  
VS = 5 V  
–66  
–67  
–65  
–70  
58  
58  
28  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
Third Harmonic  
Output Second Order Intercept2  
Output Third Order Intercept2  
VS = 10 V  
29  
250 MHz Signal  
Second Harmonic  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V  
VS = 10 V  
VS = 5 V  
VS = 10 V  
VS = 5 V  
VS = 10 V  
f = 150 MHz  
–48  
–49  
–52  
–61  
39  
40  
24  
28  
2
5
1.7  
6.8  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
nV/Hz  
dB  
Third Harmonic  
Output Second Order Intercept2  
Output Third Order Intercept2  
1 dB Compression Point (RTI)2  
Voltage Noise (RTI)  
Noise Figure  
f = 150 MHz  
INPUT/OUTPUT CHARACTERISTICS  
Differential Offset Voltage (RTI)  
Differential Offset Drift  
Input Bias Current  
Input Resistance  
CMRR  
V
OUT+ – VOUT–  
1
0.02  
15  
200  
–67  
200  
mV  
mV/°C  
µA  
TMIN to TMAX  
Real  
f = 50 MHz  
Real  
dB  
Output Resistance  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4
25  
3
27  
3
11.0  
32  
5.5  
34  
V
Powered Up, VS = 5 V  
Powered Down, VS = 5 V  
Powered Up, VS = 10 V  
Powered Down, VS = 10 V  
28  
3.8  
30  
4
15  
–58  
mA  
mA  
mA  
mA  
ns  
6.5  
Power-Up/Down Switching  
Power Supply Rejection Ratio  
f = 50 MHz, VS = 1 V p-p  
dB  
OPERATING TEMPERATURE RANGE  
–40  
+85  
°C  
NOTES  
1See Tables II–III for complete list of S-Parameters.  
2Re: 50 .  
Specifications subject to change without notice.  
–2–  
REV. A  
AD8350  
(@ 25C, VS = 5 V, G = 20 dB, unless otherwise noted. All specifications refer to  
AD8350-20–SPECIFICATIONS  
differential inputs and differential outputs unless noted.)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VOUT = 1 V p-p  
0.1%, VOUT = 1 V p-p  
VS = 5 V, f = 50 MHz  
0.7  
0.9  
90  
90  
2000  
15  
20  
GHz  
GHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time  
Gain (S21)1  
19  
21  
dB  
Gain Supply Sensitivity  
Gain Temperature Sensitivity  
Isolation (S12)1  
VS = 5 V to 10 V, f = 50 MHz  
0.003  
–0.002  
–22  
dB/V  
dB/°C  
dB  
TMIN to TMAX  
f = 50 MHz  
NOISE/HARMONIC PERFORMANCE  
50 MHz Signal  
Second Harmonic  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V  
VS = 10 V  
VS = 5 V  
VS = 10 V  
–65  
–66  
–66  
–70  
56  
56  
28  
29  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
Third Harmonic  
Output Second Order Intercept2  
Output Third Order Intercept2  
250 MHz Signal  
Second Harmonic  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V, VOUT = 1 V p-p  
VS = 10 V, VOUT = 1 V p-p  
VS = 5 V  
VS = 10 V  
VS = 5 V  
VS = 10 V  
VS = 5 V  
–45  
–46  
–55  
–60  
37  
38  
24  
28  
–2.6  
1.8  
1.7  
5.6  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
nV/Hz  
dB  
Third Harmonic  
Output Second Order Intercept2  
Output Third Order Intercept2  
1 dB Compression Point (RTI)2  
VS = 10 V  
f = 150 MHz  
f = 150 MHz  
Voltage Noise (RTI)  
Noise Figure  
INPUT/OUTPUT CHARACTERISTICS  
Differential Offset Voltage (RTI)  
Differential Offset Drift  
Input Bias Current  
Input Resistance  
CMRR  
VOUT+ – VOUT–  
TMIN to TMAX  
1
0.02  
15  
200  
–52  
200  
mV  
mV/°C  
µA  
Real  
f = 50 MHz  
Real  
dB  
Output Resistance  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4
25  
3
27  
3
11.0  
32  
5.5  
34  
V
Powered Up, VS = 5 V  
Powered Down, VS = 5 V  
Powered Up, VS = 10 V  
Powered Down, VS = 10 V  
28  
3.8  
30  
4
15  
–45  
mA  
mA  
mA  
mA  
ns  
6.5  
Power-Up/Down Switching  
Power Supply Rejection Ratio  
f = 50 MHz, VS = 1 V p-p  
dB  
OPERATING TEMPERATURE RANGE  
–40  
+85  
°C  
NOTES  
1See Tables II–III for complete list of S-Parameters.  
2Re: 50 .  
–3–  
REV. A  
AD8350  
PIN FUNCTION DESCRIPTIONS  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage, VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V  
Input Power Differential . . . . . . . . . . . . . . . . . . . . . . +8 dBm  
Internal Power Dissipation . . . . . . . . . . . . . . . . . . . . 400 mW  
Pin Function  
1, 8 IN+, IN–  
Description  
Differential Inputs. IN+ and IN–  
should be ac-coupled (pins have a dc  
bias of midsupply). Differential input  
impedance is 200 .  
Power-up Pin. A high level (5 V) enables  
the device; a low level (0 V) puts device  
in sleep mode.  
θ
θ
JA SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100°C/W  
JA µSOIC (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133°C/W  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 125°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C  
2
3
ENBL  
VCC  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Positive Supply Voltage. 5 V to 10 V.  
4, 5 OUT+, OUT– Differential Outputs. OUT+ and  
OUT– should be ac-coupled (pins have  
a dc bias of midsupply). Differential  
input impedance is 200 .  
Common External Ground Reference.  
PIN CONFIGURATION  
6, 7 GND  
1
2
3
4
8
7
6
5
IN  
IN+  
GND  
GND  
OUT–  
ENBL  
AD8350  
TOP VIEW  
(Not to Scale)  
V
CC  
OUT+  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
Brand Code  
AD8350AR15  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
SO-8  
SO-8  
SO-8  
RM-8  
RM-8  
RM-8  
SO-8  
SO-8  
SO-8  
RM-8  
RM-8  
RM-8  
Standard  
Standard  
Standard  
J2N  
J2N  
J2N  
Standard  
Standard  
Standard  
J2P  
J2P  
J2P  
AD8350AR15-REEL  
AD8350AR15-REEL7  
AD8350ARM15  
AD8350ARM15-REEL  
AD8350ARM15-REEL7  
AD8350AR20  
AD8350AR20-REEL  
AD8350AR20-REEL7  
AD8350ARM20  
AD8350ARM20-REEL  
AD8350ARM20-REEL7  
AD8350-EVAL  
8-Lead SOIC 13" Reel  
8-Lead SOIC 7" Reel  
8-Lead microSOIC  
8-Lead microSOIC 13" Reel  
8-Lead microSOIC 7" Reel  
8-Lead SOIC  
8-Lead SOIC 13" Reel  
8-Lead SOIC 7" Reel  
8-Lead microSOIC  
8-Lead microSOIC 13" Reel  
8-Lead microSOIC 7" Reel  
SOIC Evaluation Board  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8350 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
Typical Performance CharacteristicsAD8350  
20  
15  
10  
25  
50  
40  
30  
20  
V
= 10V  
CC  
20  
15  
10  
5
V
= 10V  
V
= 10V  
CC  
CC  
V
= 5V  
CC  
V
= 5V  
CC  
5
0
10  
0
V
= 5V  
CC  
0
40  
20  
20  
40  
60  
80  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
TEMPERATURE C  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 2. AD8350-15 Gain (S21) vs.  
Frequency  
TPC 3. AD8350-20 Gain (S21) vs.  
Frequency  
TPC 1. Supply Current vs.  
Temperature  
350  
300  
250  
500  
350  
300  
400  
SOIC  
300  
250  
200  
150  
100  
SOIC  
V
= 10V  
CC  
V
= 10V  
CC  
200  
100  
0
200  
150  
100  
V
= 5V  
CC  
V
= 5V  
CC  
0
10  
100  
1000  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY MHz  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 4. AD8350-15 Input Imped-  
ance vs. Frequency  
TPC 5. AD8350-20 Input Impedance  
vs. Frequency  
TPC 6. AD8350-15 Output Impedance  
vs. Frequency  
5  
10  
15  
10  
15  
800  
SOIC  
600  
V
= 10V  
= 5V  
CC  
400  
200  
0
SOIC  
20  
25  
30  
V
= 10V  
CC  
V
20  
25  
CC  
V
= 5V  
CC  
0
10  
100  
1000  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY MHz  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 7. AD8350-20 Output Imped-  
ance vs. Frequency  
TPC 8. AD8350-15 Isolation (S12)  
vs. Frequency  
TPC 9. AD8350-20 Isolation (S12)  
vs. Frequency  
–5–  
REV. A  
AD8350  
45  
55  
65  
75  
85  
40  
40  
45  
50  
55  
60  
65  
70  
75  
80  
F
= 50MHz  
O
V
= 1V p-p  
V
= 1V p-p  
OUT  
OUT  
45  
50  
55  
60  
65  
70  
75  
80  
HD2 (V = 10V)  
CC  
HD3 (V = 5V)  
CC  
HD2 (V = 5V)  
CC  
HD2 (V = 5V)  
HD2 (V = 5V)  
CC  
CC  
HD2 (V = 10V)  
CC  
HD3 (V = 5V)  
CC  
HD2 (V = 10V)  
CC  
HD3 (V = 5V)  
CC  
HD3 (V = 10V)  
CC  
HD3 (V = 10V)  
CC  
HD3 (V = 10V)  
CC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
OUTPUT VOLTAGE V p-p  
FUNDAMENTAL FREQUENCY MHz  
FUNDAMENTAL FREQUENCY MHz  
TPC 12. AD8350-15 Harmonic Distor-  
tion vs. Differential Output Voltage  
TPC 10. AD8350-15 Harmonic  
Distortion vs. Frequency  
TPC 11. AD8350-20 Harmonic Dis-  
tortion vs. Frequency  
66  
61  
45  
55  
65  
75  
85  
66  
61  
F
= 50MHz  
O
HD2 (V = 5V)  
CC  
HD3 (V = 5V)  
CC  
V
= 10V  
CC  
V
= 10V  
CC  
56  
51  
46  
41  
36  
56  
51  
46  
41  
36  
HD2 (V = 10V)  
CC  
V
= 5V  
V
= 5V  
CC  
CC  
HD3 (V = 10V)  
CC  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
FREQUENCY MHz  
OUTPUT VOLTAGE V p-p  
FREQUENCY MHz  
TPC 15. AD8350-20 Output Referred  
IP2 vs. Frequency  
TPC 13. AD8350-20 Harmonic Distor-  
tion vs. Differential Output Voltage  
TPC 14. AD8350-15 Output Referred  
IP2 vs. Frequency  
41  
36  
41  
36  
10.0  
INPUT REFERRED  
V
= 10V  
7.5  
CC  
V
= 10V  
V
= 10V  
CC  
CC  
31  
26  
21  
16  
11  
31  
26  
21  
16  
11  
5.0  
2.5  
0
V
= 5V  
CC  
V
= 5V  
CC  
V
= 5V  
200  
CC  
2.5  
5.0  
0
0
0
100  
200  
300  
400  
500  
600  
50  
100  
150  
200  
250  
300  
50  
100  
150  
250  
300  
FREQUENCY MHz  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 18. AD8350-15 1 dB Compres-  
sion vs. Frequency  
TPC 16. AD8350-15 Output Referred  
IP3 vs. Frequency  
TPC 17. AD8350-20 Output Referred  
IP3 vs. Frequency  
–6–  
REV. A  
AD8350  
10  
9
7.5  
10  
9
INPUT REFERRED  
5.0  
2.5  
0
V
= 10V  
CC  
8
8
V
= 10V  
CC  
V
= 10V  
CC  
7
7
2.5  
V
= 5V  
CC  
V
= 5V  
CC  
6
V
= 5V  
6
CC  
5.0  
7.5  
5
5
0
0
0
100  
200  
300  
400  
500  
600  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY MHz  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 19. AD8350-20 1 dB Compres-  
sion vs. Frequency  
TPC 20. AD8350-15 Noise Figure  
vs. Frequency  
TPC 21. AD8350-20 Noise Figure  
vs. Frequency  
20  
25  
100  
50  
AD8350-20  
V
= 5V  
CC  
20  
15  
30  
40  
50  
60  
70  
V
+ (V = 5V)  
CC  
OUT  
0
50  
10  
5
AD8350-15  
V
(V = 5V)  
CC  
OUT  
AD8350-20  
0
100  
150  
V
+ (V = 10V)  
CC  
OUT  
5  
AD8350-15  
10  
15  
20  
V
(V = 10V)  
CC  
OUT  
80  
90  
200  
250  
1
2
3
4
5
6
7
8
9
10  
0
40  
20  
20  
40  
60  
80  
1
10  
100  
1k  
V
Volts  
TEMPERATURE C  
FREQUENCY MHz  
CC  
TPC 22. AD8350 Gain (S21) vs.  
Supply Voltage  
TPC 23. AD8350 Output Offset Volt-  
age vs. Temperature  
TPC 24. AD8350 PSRR vs. Frequency  
20  
V
= 5V  
V
= 5V  
500mV  
CC  
CC  
30  
40  
50  
60  
70  
AD8350-20  
V
OUT  
AD8350-15  
ENBL  
80  
90  
5V  
30ns  
1
10  
100  
1k  
FREQUENCY MHz  
TPC 25. AD8350 CMRR vs. Frequency  
TPC 26. AD8350 Power-Up/Down  
Response Time  
REV. A  
–7–  
AD8350  
C
C
AC  
L
/2  
L /2  
S
AC  
APPLICATIONS  
S
Using the AD8350  
8
7
6
5
Figure 1 shows the basic connections for operating the AD8350.  
A single supply in the range 5 V to 10 V is required. The power  
supply pin should be decoupled using a 0.1 µF capacitor. The  
R
/2  
S
S
AD8350  
C
C
P
P
V
R
S
LOAD  
ENBL pin is tied to the positive supply or to 5 V (when VCC  
=
10 V) for normal operation and should be pulled to ground to  
put the device in sleep mode. Both the inputs and the outputs  
have dc bias levels at midsupply and should be ac-coupled.  
R
/2  
1
2
3
4
L
/2  
L /2  
S
S
Also shown in Figure 1 are the impedance balancing requirements,  
either resistive or reactive, of the input and output. With an  
input and output impedance of 200 , the AD8350 should be  
driven by a 200 source and loaded by a 200 impedance. A  
reactive match can also be implemented.  
C
C
AC  
AC  
0.1F  
ENBL (5V)  
+V (5V TO 10V)  
S
Figure 3. Reactively Matching the Input and Output  
C2  
0.001F  
C4  
0.001F  
SOURCE  
Z = 100ꢀ  
LOAD  
C
C
AC  
L
AC  
L
S
S
8
7
6
5
8
7
6
AD8350  
5
R
S
AD8350  
Z = 200ꢀ  
C
C
P
P
V
R
S
LOAD  
1
2
3
4
Z = 100ꢀ  
1
2
3
4
C1  
C3  
0.001F  
0.001F  
C5  
C
C
AC  
AC  
0.1F  
ENBL (5V)  
0.1F  
ENBL (5V)  
+V (5V TO 10V)  
S
+V (5VTO 10V)  
S
Figure 1. Basic Connections for Differential Drive  
Figure 4. Single-Ended Equivalent Circuit  
Figure 2 shows how the AD8350 can be driven by a single-  
ended source. The unused input should be ac-coupled to ground.  
When driven single-endedly, there will be a slight imbalance in  
the differential output voltages. This will cause an increase in  
When the source impedance is smaller than the load impedance,  
a step-up matching network is required. A typical step-up network  
is shown on the input of the AD8350 in Figure 3. For purely  
resistive source and load impedances the resonant approach may  
be used. The input and output impedance of the AD8350 can be  
modeled as a real 200 resistance for operating frequencies less  
than 100 MHz. For signal frequencies exceeding 100 MHz, classi-  
cal Smith Chart matching techniques should be invoked in order  
to deal with the complex impedance relationships. Detailed S  
parameter data measured differentially in a 200 system can be  
found in Tables II and III.  
the second order harmonic distortion (at 50 MHz, with VCC  
=
10 V and VOUT = 1 V p-p, –59 dBc was measured for the second  
harmonic on AD8350-15).  
LOAD  
C2  
0.001F  
C4  
0.001F  
8
1
7
6
5
4
AD8350  
For the input matching network the source resistance is less  
than the input resistance of the AD8350. The AD8350 has a  
nominal 200 input resistance from Pins 1 to 8. The reactance  
of the ac-coupling capacitors, CAC, should be negligible if 100 nF  
capacitors are used and the lowest signal frequency is greater  
than 1 MHz. If the series reactance of the matching network  
inductor is defined to be XS = 2 π f LS, and the shunt reactance  
of the matching capacitor to be XP = (2 π f CP)–1, then:  
Z = 200ꢀ  
2
3
SOURCE  
Z = 200ꢀ  
C3  
0.001F  
C5  
0.1F  
C1  
0.001F  
ENBL (5V)  
+V (5V TO 10V)  
S
RS × RLOAD  
RS  
XS =  
where XP = RLOAD ×  
Figure 2. Basic Connections for Single-Ended Drive  
(1)  
XP  
RLOAD RS  
Reactive Matching  
For a 70 MHz application with a 50 source resistance, and  
assuming the input impedance is 200 , or RLOAD = RIN = 200 ,  
then XP = 115.5 and XS = 86.6 , which results in the follow-  
ing component values:  
In practical applications, the AD8350 will most likely be matched  
using reactive matching components as shown in Figure 3.  
Matching components can be calculated using a Smith Chart or  
by using a resonant approach to determine the matching network  
that results in a complex conjugate match. In either situation,  
the circuit can be analyzed as a single-ended equivalent circuit  
to ease calculations as shown in Figure 4.  
CP = (2 π × 70 × 106 × 115.5)1 = 19.7 pF and  
LS = 86.6 × (2 π × 70 × 106)1 = 197 nH  
–8–  
REV. A  
AD8350  
For the output matching network, if the output source resis-  
tance of the AD8350 is greater than the terminating load  
resistance, a step-down network should be employed as shown  
on the output of Figure 3. For a step-down matching network,  
the series and parallel reactances are calculated as:  
The same results could be found using a Smith Chart as shown  
in Figure 7. In this example, a shunt capacitor and a series inductor  
are used to match the 200 source to a 50 load. For a fre-  
quency of 10 MHz, the same capacitor and inductor values  
previously found using the resonant approach will transform the  
200 source to match the 50 load. At frequencies exceeding  
100 MHz, the S parameters from Tables II and III should be  
used to account for the complex impedance relationships.  
RS × RLOAD  
RLOAD  
XS =  
where XP = RS ×  
(2)  
XP  
RS RLOAD  
For a 10 MHz application with the 200 output source resistance  
of the AD8350, RS = 200 , and a 50 load termination, RLOAD  
50 , then XP = 115.5 and XS = 86.6 , which results in  
the following component values:  
=
CP = (2 π × 10 × 106 × 115.5)1 = 138 pF and  
LS = 86.6 × (2 π × 10 × 106)1 = 1.38 µH  
SOURCE  
LOAD  
The same results can be obtained using the plots in Figure 5  
and Figure 6. Figure 5 shows the normalized shunt reactance  
versus the normalized source resistance for a step-up matching  
network, RS < RLOAD. By inspection, the appropriate reactance  
can be found for a given value of RS/RLOAD. The series reactance  
is then calculated using XS = RS RLOAD/XP. The same technique  
can be used to design the step-down matching network using  
Figure 6.  
SHUNT C  
SERIES L  
2
Figure 7. Smith Chart Representation of Step-Down Network  
1.8  
1.6  
1.4  
1.2  
1
R
SOURCE  
X
S
After determining the matching network for the single-ended  
equivalent circuit, the matching elements need to be applied in a  
differential manner. The series reactance needs to be split such  
that the final network is balanced. In the previous examples, this  
simply translates to splitting the series inductor into two equal  
halves as shown in Figure 3.  
R
X
LOAD  
P
0.8  
0.6  
0.4  
0.2  
0
Gain Adjustment  
The effective gain of the AD8350 can be reduced using a num-  
ber of techniques. Obviously a matched attenuator network will  
reduce the effective gain, but this requires the addition of a  
separate component which can be prohibitive in size and cost.  
The attenuator will also increase the effective noise figure resulting  
in an SNR degradation. A simple voltage divider can be imple-  
mented using the combination of the driving impedance of the  
previous stage and a shunt resistor across the inputs of the AD8350  
as shown in Figure 8. This provides a compact solution but  
suffers from an increased noise spectral density at the input  
of the AD8350 due to the thermal noise contribution of the  
shunt resistor. The input impedance can be dynamically altered  
through the use of feedback resistors as shown in Figure 9. This  
will result in a similar attenuation of the input signal by virtue  
of the voltage divider established from the driving source imped-  
ance and the reduced input impedance of the AD8350. Yet  
this technique does not significantly degrade the SNR with  
the unnecessary increase in thermal noise that arises from a truly  
resistive attenuator network.  
NORMALIZED SOURCE RESISTANCE R  
/R  
LOAD  
SOURCE  
Figure 5. Normalized Step-Up Matching Components  
3.2  
R
SOURCE  
X
S
3
2.8  
2.6  
2.4  
2.2  
2
R
X
LOAD  
P
NORMALIZED SOURCE RESISTANCE R  
/R  
LOAD  
SOURCE  
Figure 6. Normalized Step-Down Matching Components  
REV. A  
–9–  
AD8350  
C
C
AC  
AC  
The insertion loss and the resultant power gain for multiple  
shunt resistor values is summarized in Table I. The source  
resistance and input impedance need careful attention when  
using Equation 1. The reactance of the input impedance of the  
AD8350 and the ac-coupling capacitors need to be considered  
before assuming they have negligible contribution. Figure 10  
shows the effective power gain for multiple values of RSHUNT for  
the AD8350-15 and AD8350-20.  
8
7
6
5
R
R
R
S
L
L
R
SHUNT  
AD8350  
V
S
R
R
S
SHUNT  
1
2
3
4
Table I. Gain Adjustment Using Shunt Resistor,  
RS = 100 and RIN = 100 Single-Ended  
C
C
AC  
AC  
0.1F  
ENBL (5V)  
Power Gain–dB  
+V (5VTO 10V)  
S
RSHUNTꢀ  
IL–dB  
AD8350-15  
AD8350-20  
Figure 8. Gain Reduction Using Shunt Resistor  
50  
6.02  
3.52  
1.94  
1.34  
1.02  
8.98  
13.98  
16.48  
18.06  
18.66  
18.98  
100  
200  
300  
400  
11.48  
13.06  
13.66  
13.98  
R
FEXT  
C
C
AC  
AC  
8
7
6
5
20  
18  
16  
14  
12  
10  
8
R
R
R
S
S
L
L
AD8350  
V
AD8350-20  
S
R
1
2
3
4
AD8350-15  
0.1F  
C
C
AC  
AC  
ENBL  
(5V)  
+V  
6
S
(5V TO 10V)  
4
R
FEXT  
2
Figure 9. Dynamic Gain Reduction  
0
0
100  
200  
300  
400  
500  
600  
700  
800  
R
ꢀ  
SHUNT  
Figure 8 shows a typical implementation of the shunt divider  
concept. The reduced input impedance that results from the  
parallel combination of the shunt resistor and the input impedance  
of the AD8350 adds attenuation to the input signal effectively  
reducing the gain. For frequencies less than 100 MHz, the input  
impedance of the AD8350 can be modeled as a real 200 resis-  
tance (differential). Assuming the frequency is low enough to  
ignore the shunt reactance of the input, and high enough such  
that the reactance of moderately sized ac-coupling capacitors  
can be considered negligible, the insertion loss, IL, due to the  
shunt divider can be expressed as:  
Figure 10. Gain for Multiple Values of Shunt Resistance  
for Circuit in Figure 8  
The gain can be adjusted dynamically by employing external  
feedback resistors as shown in Figure 9. The effective attenua-  
tion is a result of the lowered input impedance as with the shunt  
resistor method, yet there is no additional noise contribution at  
the input of the device. It is necessary to use well-matched resistors  
to minimize common-mode offset errors. Quality 1% tolerance  
resistors should be used along with a symmetric board layout to  
help guarantee balanced performance. The effective gain for mul-  
tiple values of external feedback resistors is shown in Figure 11.  
RIN  
(RIN + RS )  
RINRSHUNT  
IL(dB) = 20 × Log10  
(RINRSHUNT + RS )  
(3)  
where  
RIN × RSHUNT  
RIN + RSHUNT  
RINRSHUNT  
=
and RIN = 100singleended  
–10–  
REV. A  
AD8350  
20  
18  
16  
14  
12  
10  
8
Driving Lighter Loads  
It is not necessary to load the output of the AD8350 with a  
200 differential load. Often it is desirable to try to achieve a  
complex conjugate match between the source and load in order  
to minimize reflections and conserve power. But if the AD8350  
is driving a voltage responding device, such as an ADC, it is no  
longer necessary to maximize power transfer. The harmonic  
distortion performance will actually improve when driving  
loads greater than 200 . The lighter load requires less cur-  
rent driving capability on the output stages of the AD8350  
resulting in improved linearity. Figure 12 shows the improve-  
ment in second and third harmonic distortion for increasing  
differential load resistance.  
AD8350-20  
AD8350-15  
6
4
2
0
0
500  
1000  
ꢀ  
1500  
2000  
66  
68  
R
FEXT  
Figure 11. Power Gain vs. External Feedback Resistors  
for the AD8350-15 and AD8350-20 with RS = 100 and  
RL = 100 Ω  
70  
HD3  
72  
The power gain of any two-port network is dependent on the  
source and load impedance. The effective gain will change if the  
differential source and load impedance is not 200 . The single-  
ended input and output resistance of the AD8350 can be modeled  
using the following equations:  
74  
76  
78  
HD2  
80  
RF + RL  
RIN  
=
RF + RL   
(4)  
+1+ gm × RL  
82  
200  
RINT  
300  
400  
500  
600  
ꢀ  
700  
800  
900  
1000  
R
LOAD  
and  
Figure 12. Second and Third Harmonic Distortion vs.  
Differential Load Resistance for the AD8350-15 with  
VS = 5 V, f = 70 MHz, and VOUT = 1 V p-p  
1
RF +  
1
1
+
RF + RS  
1+ gm × RS  
RS RINT  
ROUT  
=
for RS 1kΩ  
1
(5)  
1+ gm ×  
1
1
+
RS RINT  
where  
RF  
= RFEXT//RFINT  
RFEXT = R Feedback External  
RFINT = 662 for the AD8350-15  
= 1100 for the AD8350-20  
RINT = 25000 Ω  
gm  
= 0.066 mhos for the AD8350-15  
= 0.110 mhos for the AD8350-20  
= R Source (Single-Ended)  
= R Load (Single-Ended)  
RS  
RL  
RIN  
= R Input (Single-Ended)  
ROUT = R Output (Single-Ended)  
The resultant single-ended gain can be calculated using the  
following equation:  
R × g × R 1  
RL + RS + RF + RL × RS × gm  
(
)
L
m
F
GV =  
(6)  
REV. A  
–11–  
AD8350  
EVALUATION BOARD  
To drive and load the board differentially, transformers T1 and  
T2 should be removed and replaced with four 0 resistors  
(0805 size); Resistors R1 and R4 (0 ) should also be removed.  
This yields a circuit with a broadband input and output impedance  
of 200 . To match to impedances other than this, matching  
components (0805 size) can be placed on pads C1, C2, C3, C4,  
L1, and L2.  
Figure 13 shows the schematic of the AD8350 evaluation board,  
for SOIC, as it is shipped from the factory. The board is config-  
ured to allow easy evaluation using single-ended 50 test  
equipment. The input and output transformers have a 4-to-1  
impedance ratio and transform the AD8350s 200 input and  
output impedances to 50 . In this mode, 0 resistors (R1 and  
R4) are required.  
To allow compensation for the insertion loss of the transform-  
ers, a calibration path is provided at Test In and Test Out. This  
consists of two transformers connected back to back.  
C3  
0.001F  
C1  
0.001F  
8
1
7
6
5
4
R1  
0ꢀ  
R4  
0ꢀ  
T1: TC4-1W  
T2: TC4-1W  
(MINI CIRCUITS)  
AD8350  
(MINI CIRCUITS)  
6
1
R2  
0ꢀ  
R3  
0ꢀ  
IN  
OUT–  
L2  
(OPEN)  
L1  
(OPEN)  
1
6
IN+  
OUT+  
2
3
C2  
0.001F  
C4  
0.001F  
C5  
0.1F  
A
B
3
2
+V  
S
SW1  
1
+V  
S
T3: TC4-1W  
T4: TC4-1W  
(MINI CIRCUITS)  
(MINI CIRCUITS)  
6
1
TEST IN  
TEST OUT  
1
6
Figure 13. Evaluation Board  
–12–  
REV. A  
AD8350  
Table II. Typical Scattering Parameters for the AD8350-15: VCC = 5 V, Differential Input and Output, ZSOURCE(diff) = 200 ,  
ZLOAD(diff) = 200 ꢀ  
Frequency – MHz  
S11  
S12  
S21  
S22  
25  
50  
75  
0.01548.8°  
0.02865.7°  
0.04375.3°  
0.05787.5°  
0.07391.8°  
0.08095.6°  
0.10097.4°  
0.11199.1°  
0.128103.2°  
0.141106.7°  
0.151109.7°  
0.161111.9°  
0.179114.7°  
0.187117.4°  
0.194121°  
0.199121.2°  
0.215122.6°  
0.225127.0°  
0.225127.7°  
0.244129.9°  
0.119176.3°  
0.119171.1°  
0.119166.9°  
0.120163.5°  
0.119159.8°  
0.120154.8°  
0.117151.2°  
0.121147.3°  
0.120143.7°  
0.120140.3°  
0.120136.6°  
0.123132.9°  
0.121130.7°  
0.122126.6°  
0.123123.6°  
0.124120.1°  
0.126117.2°  
0.126113.9°  
0.126112°  
5.604.3°  
5.618.9°  
5.6113.5°  
5.6117.9°  
5.6522.6°  
5.6827.0°  
5.7331.8°  
5.7836.3°  
5.8341.0°  
5.9045.6°  
6.0250.2°  
6.1455.1°  
6.1960.2°  
6.2765.0°  
6.4370.1°  
6.6175.8°  
6.7781.7°  
6.9187.6°  
7.0693.8°  
7.2799.8°  
0.0344.8°  
0.03214.3°  
0.03630.2°  
0.04339.6°  
0.05340.6°  
0.05837°  
0.07245.1°  
0.07747.7°  
0.09152.5°  
0.10455.1°  
0.10854.2°  
0.12251.5°  
0.13555.6°  
0.15056.9°  
0.16260.9°  
0.18760.3°  
0.21563.3°  
0.24263.9°  
0.26865.2°  
0.30468.2°  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
350  
375  
400  
425  
450  
475  
500  
0.128108.1°  
Table III. Typical Scattering Parameters for the AD8350-20: VCC = 5 V, Differential Input and Output, ZSOURCE(diff) = 200 ,  
LOAD(diff) = 200 ꢀ  
Z
Frequency – MHz  
S11  
S12  
S21  
S22  
25  
50  
75  
0.017142.9°  
0.033114.9°  
0.055110.6°  
0.073109.4°  
0.089112.1°  
0.098116.5°  
0.124118.1°  
0.141119.4°  
0.159122.6°  
0.170128.5°  
0.186131.6°  
0.203132.9°  
0.215135.0°  
0.222136.9°  
0.242142.4°  
0.240145.2°  
0.267146.7°  
0.266150.7°  
0.267153.7°  
0.285161.1°  
0.074174.9°  
0.074171.0°  
0.075167.0°  
0.075163.1°  
0.075159.2°  
0.076153.8°  
0.075150.2°  
0.076147.2°  
0.077142.2°  
0.078139.5°  
0.078135.8°  
0.080132.5°  
0.080129.3°  
0.082125.9°  
0.082123.6°  
0.084120.3°  
0.084117.3°  
0.086115.1°  
0.087112.8°  
0.088110.9°  
9.964.27°  
9.988.9°  
0.02316.6°  
0.0222.7°  
0.02323.5°  
0.02922.7°  
0.03718.0°  
0.0453.2°  
0.05515.7°  
0.06515.6°  
0.08017.7°  
0.08522.4°  
0.09623.5°  
0.11625.9°  
0.13929.6°  
0.16132.2°  
0.17338.6°  
0.20737.6°  
0.24148.1°  
0.26549.7°  
0.31753.5°  
0.35959.2°  
9.9813.3°  
10.0017.7°  
10.1222.1°  
10.2026.4°  
10.3430.9°  
10.5035.6°  
10.6540.1°  
10.8044.7°  
11.1449.3°  
11.4554.7°  
11.7060.3°  
11.9365.0°  
12.3970.3°  
12.9976.8°  
13.3484.0°  
13.7690.1°  
14.3497.5°  
14.89105.0°  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
350  
375  
400  
425  
450  
475  
500  
REV. A  
–13–  
AD8350  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢂ  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
8ꢂ  
0ꢂ  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
8-Lead microSOIC Package  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33ꢂ  
0.018 (0.46)  
0.008 (0.20)  
27ꢂ  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
–14–  
REV. A  
–15–  
–16–  

相关型号:

AD8350ARM20-REEL

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARM20-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARMZ15

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARMZ15-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARMZ20

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARMZ20-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARZ15-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350ARZ20

<span class="noTransform">1.0 GHz </span>Differential Amplifier Package: 8 ld SOIC; No of Pins: 8; Temperature Range: Industrial; Container: 0/Tube
ADI

AD8350ARZ20-REEL7

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8350_01

Low Distortion 1.0 GHz Differential Amplifier
ADI

AD8351

Low Distortion Differential RF/IF Amplifier
ADI

AD8351-EVAL

Low Distortion Differential RF/IF Amplifier
ADI