AD8622ARZ-REEL7 [ROCHESTER]

DUAL OP-AMP, 230 uV OFFSET-MAX, 0.58 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8;
AD8622ARZ-REEL7
型号: AD8622ARZ-REEL7
厂家: Rochester Electronics    Rochester Electronics
描述:

DUAL OP-AMP, 230 uV OFFSET-MAX, 0.58 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8

光电二极管
文件: 总21页 (文件大小:1454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Precision  
Rail-to-Rail Output Op Amp  
AD8622/AD8624  
PIN CONFIGURATIONS  
FEATURES  
Very low offset voltage  
125 μV maximum  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8622  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Supply current: 215 μA/amp typical  
Input bias current: 200 pA maximum  
Low input offset voltage drift: 1.2 μV/°C maximum  
Very low voltage noise: 11 nV/√Hz  
Operating temperature: −40°C to +125°C  
Rail-to-rail output swing  
Figure 1. 8-Lead Narrow-Body SOIC  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8622  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Unity gain stable  
2.5 V to 15 V operation  
Figure 2. 8-Lead MSOP  
APPLICATIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
Portable precision instrumentation  
Laser diode control loops  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
AD8624  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
GENERAL DESCRIPTION  
Figure 3. 14-Lead TSSOP  
The AD8622/AD8624 are dual and quad precision rail-to-rail  
output operational amplifiers with low supply currents of only  
350 μA/amplifier maximum over temperature and supply  
voltages. The AD8622/AD8624 also has an input bias current  
cancellation circuitry that provides a very low input bias current  
over the full operating temperature.  
–IN A  
+IN A  
V+  
1
12 –IN D  
AD8624  
2
3
4
11 +IN D  
10 V–  
TOP VIEW  
(Not to Scale)  
9
+IN C  
+IN B  
With a typical offset voltage of only 10 μV, offset drift of 0.5 μV/°C,  
and noise of only 0.2 ꢀV p-p (0.1 Hz to 10 Hz), they are  
perfectly suited for applications where large error sources  
cannot be tolerated. Many systems can take advantage of the  
low noise, dc precision, and rail-to-rail output swing provided  
by the AD8622/AD8624 to maximize the signal-to-noise ratio  
and dynamic range for low power operation. The AD8622/  
AD8624 are specified for the extended industrial temperature  
range of −40°C to +125°C. The AD8622 is available in lead-free  
8-lead SOIC and MSOP packages, while the AD8624 is available  
in lead-free 14-lead TSSOP and 16-lead LFCSP packages.  
NOTES  
1. NC = NO CONNECT.  
2. IT IS RECOMMENDED THAT THE EXPOSED  
PAD BE CONNECTED TO V–.  
Figure 4. 16-Lead LFCSP  
Table 1. Low Power Op Amps  
Supply  
40 V  
36 V  
12 V to 18 V  
6 V  
Single  
OP97  
OP777  
OP1177  
OP727  
OP2177  
OP747  
OP4177  
AD8663  
Dual  
OP297  
OP497  
AD8667  
AD8669  
ADA4692-2  
ADA4692-4  
Quad  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
AD8622/AD8624  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Applications Information.............................................................. 15  
Input Protection ......................................................................... 15  
Phase Reversal ............................................................................ 15  
Micropower Instrumentation Amplifier................................. 15  
Hall Sensor Signal Conditioning.............................................. 16  
Simplified Schematic...................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics— 2.5 V Operation.......................... 3  
Electrical Characteristics— 15 V Operation........................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
2/10—Rev. A to Rev. B  
Changed 16-Lead to 14-Lead in Figure 62 Caption................... 19  
1/10—Rev. 0 to Rev. A  
Added 14-Lead TSSOP ......................................................Universal  
Added 16-Lead LFCSP.......................................................Universal  
Added Figure 3 and Figure 4; Renumbered Sequentially ........... 1  
Changes to Table 5............................................................................ 5  
Changes to Figure 10 to Figure 16.................................................. 6  
Changes to Figure 26........................................................................ 9  
Changes to Figure 29...................................................................... 10  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
7/09—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD8622/AD8624  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS— 2.5 V OPERATION  
VSY  
= 2.5 V, VCM = 0 V, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
10  
125  
230  
1.2  
200  
400  
200  
300  
+1.3  
μV  
μV  
ꢀV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
GΩ  
TΩ  
pF  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.5  
30  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
25  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = −1.3 V to +1.3 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −2.0 V to +2.0 V  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−1.3  
110  
107  
118  
109  
CMRR  
AVO  
120  
135  
Open-Loop Gain  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
RINDM  
RINCM  
CINDM  
CINCM  
1
1
5.5  
3
pF  
Output Voltage High  
VOH  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
2.45  
2.41  
2.40  
2.36  
2.49  
2.45  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−2.49 −2.45  
−2.41  
−2.45 −2.40  
−2.36  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
30  
2
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.0 V to 18.0 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
125  
120  
145  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
175  
225  
310  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
ΦM  
RL = 10 kΩ, CL = 100 pF AV = 1  
RL = 10 kΩ, CL = 20 pF, AV = 1  
RL = 10 kΩ, CL = 20 pF, AV = 1  
0.28  
540  
74  
V/μs  
kHz  
Degrees  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Uncorrelated Current Noise Density  
Correlated Current Noise Density  
en p-p  
en  
in_uncorr  
in_corr  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.2  
12  
0.15  
0.07  
μV p-p  
nV/√Hz  
pA/√Hz  
pA/√Hz  
f = 1 kHz  
Rev. B | Page 3 of 20  
 
 
AD8622/AD8624  
ELECTRICAL CHARACTERISTICS— 15 V OPERATION  
VSY  
= 15 V, VCM = 0 V, TA = 25°C, unless otherwise specified.  
Table 3.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
10  
125  
230  
1.2  
200  
500  
200  
500  
+13.8  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
GΩ  
TΩ  
pF  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT −40°C ≤ TA ≤ +125°C  
IB  
0.5  
45  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
35  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−13.8  
125  
112  
125  
120  
CMRR  
AVO  
VCM = −13.8 V to +13.8 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −13.5 V to +13.5 V  
−40°C ≤ TA ≤ +125°C  
135  
137  
Open-Loop Gain  
Input Resistance, Differential Mode  
Input Resistance, Common Mode  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
RINDM  
RINCM  
CINDM  
CINCM  
1
1
5.5  
3
pF  
Output Voltage High  
VOH  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
14.94 14.97  
14.84  
14.86 14.89  
14.75  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−14.97 −14.94  
−14.92  
−14.89 −14.90  
−14.80  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
40  
1.5  
mA  
Ω
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.0 V to 18.0 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
125  
120  
145  
dB  
dB  
μA  
μA  
Supply Current/Amplifier  
215  
250  
350  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
ΦM  
RL = 10 kΩ, CL = 100 pF, AV = 1  
RL = 10 kΩ, CL = 20 pF, AV = 1  
RL = 10 kΩ, CL = 20 pF, AV = 1  
0.48  
560  
75  
V/μs  
kHz  
Degrees  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Uncorrelated Current Noise Density  
Correlated Current Noise Density  
en p-p  
en  
in_uncorr  
in_corr  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.2  
11  
0.15  
0.06  
μV p-p  
nV/√Hz  
pA/√Hz  
pA/√Hz  
f = 1 kHz  
Rev. B | Page 4 of 20  
 
AD8622/AD8624  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard 4-layer board.  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage2  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
18 V  
VSY  
10 mA  
10 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
45  
45  
35  
14  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
14-Lead TSSOP (RU-14)  
16-Lead LFCSP (CP-16-17)  
120  
142  
112  
55  
1 The input pins have clamp diodes to the power supply pins. The input  
current should be limited to 10 mA or less whenever input signals exceed  
the power supply rail by 0.5 V.  
ESD CAUTION  
2 Differential input voltage is limited to 10 V or the supply voltage, whichever is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 5 of 20  
 
 
 
AD8622/AD8624  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
60  
60  
50  
40  
30  
V
V
= ±2.5V  
= 0V  
V
V
= ±15V  
= 0V  
SY  
SY  
CM  
CM  
50  
40  
30  
20  
10  
0
20  
10  
0
–100 –80 –60 –40 –20  
0
20  
(µV)  
40  
60  
80 100  
–100 –80 –60 –40 –20  
0
20  
(µV)  
40  
60  
80  
100  
V
V
OS  
OS  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage Distribution  
60  
50  
40  
30  
60  
50  
40  
30  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
–40°C T +125°C  
–40°C T +125°C  
A
A
20  
10  
0
20  
10  
0
0
0.2  
0.4  
0.6  
(µV/°C)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
TCV (µV/°C)  
OS  
0.8  
1.0  
1.2  
TCV  
OS  
Figure 6. Input Offset Voltage Drift Distribution  
Figure 9. Input Offset Voltage Drift Distribution  
50  
40  
50  
40  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
–40°C  
+25°C  
30  
30  
20  
20  
–40°C  
10  
10  
0
0
+25°C  
+85°C  
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
+85°C  
+125°C  
+125°C  
–15  
–10  
–5  
0
5
10  
+15  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
V
(V)  
V
(V)  
CM  
CM  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
Figure 7. Input Offset Voltage vs. Common-Mode Voltage  
Rev. B | Page 6 of 20  
 
AD8622/AD8624  
0
–10  
–20  
–30  
–40  
–50  
–60  
10  
0
V
= ±15V  
V
= ±2.5V  
SY  
SY  
I
+
B
I
I
+
I
B
B
B
–10  
–20  
–30  
–40  
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Input Bias Current vs. Temperature  
Figure 11. Input Bias Current vs. Temperature  
60  
40  
50  
25  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
0
20  
–25  
–50  
–75  
–100  
–125  
–150  
0
–20  
–40  
–60  
–15  
–10  
–5  
0
5
10  
15  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
V
(V)  
V
(V)  
CM  
CM  
Figure 15. Input Bias Current vs. Common-Mode Voltage  
Figure 12. Input Bias Current vs. Common-Mode Voltage  
100  
10  
1
100  
10  
1
V
= ±15V  
SY  
V
= ±2.5V  
SY  
V
– V  
OH  
CC  
V
V
– V  
OH  
CC  
V
– V  
EE  
OL  
0.1  
0.1  
– V  
EE  
OL  
0.01  
0.01  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 13. Output Voltage to Supply Rail vs. Load Current  
Figure 16. Output Voltage to Supply Rail vs. Load Current  
Rev. B | Page 7 of 20  
AD8622/AD8624  
0.06  
0.16  
V
R
= ±15V  
= 10k  
V
R
= ±2.5V  
= 10k  
SY  
SY  
L
L
0.14  
0.12  
0.10  
0.08  
0.05  
V
– V  
OH  
V
– V  
OH  
CC  
CC  
0.04  
0.03  
0.02  
0.06  
0.04  
0.02  
0
V
– V  
EE  
OL  
V
– V  
EE  
OL  
0.01  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Voltage to Supply Rail vs. Temperature  
Figure 20. Output Voltage to Supply Rail vs. Temperature  
0.35  
0.35  
0.30  
0.30  
0.25  
0.20  
0.15  
+125°C  
0.25  
0.20  
0.15  
0.10  
0.05  
0
+85°C  
+25°C  
V
= ±15V  
SY  
–40°C  
V
= ±2.5V  
SY  
0.10  
0.05  
–0.05  
0
2
4
6
8
10  
(±V)  
12  
14  
16  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
V
TEMPERATURE (°C)  
SY  
Figure 18. Supply Current vs. Supply Voltage  
Figure 21. Supply Current vs. Temperature  
100  
100  
80  
100  
100  
80  
V
R
= ±2.5V  
= 10k  
V
R
= ±15V  
SY  
SY  
= 10k  
L
L
PHASE  
80  
60  
40  
80  
60  
40  
PHASE  
60  
60  
40  
40  
GAIN  
GAIN  
20  
0
20  
20  
0
20  
0
0
–20  
–20  
–20  
–20  
–40  
1k  
–40  
10M  
–40  
1k  
–40  
10M  
10k  
100k  
FREQUENCY (Hz)  
1M  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
Figure 22. Open-Loop Gain and Phase vs. Frequency  
Rev. B | Page 8 of 20  
AD8622/AD8624  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
R
= ±2.5V  
= 10kΩ  
V
R
= ±15V  
SY  
SY  
= 10k  
L
L
A
= 100  
= 10  
A
= 100  
= 10  
V
V
A
A
V
V
A
= 1  
A = 1  
V
V
–10  
–20  
–30  
–10  
–20  
–30  
–40  
100  
–40  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Closed-Loop Gain vs. Frequency  
Figure 26. Closed-Loop Gain vs. Frequency  
10k  
1k  
10k  
1k  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
A
= 100  
V
A
= 100  
V
A
= 10  
V
A
= 10  
V
100  
10  
100  
10  
A
= 1  
V
A
= 1  
V
1
1
0.1  
100  
0.1  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 24. Output Impedance vs. Frequency  
Figure 27. Output Impedance vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
60  
60  
40  
40  
20  
20  
0
10  
0
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. CMRR vs. Frequency  
Figure 28. CMRR vs. Frequency  
Rev. B | Page 9 of 20  
AD8622/AD8624  
120  
100  
80  
120  
100  
80  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
PSRR+  
PSRR–  
PSRR+  
PSRR–  
60  
60  
40  
40  
20  
0
20  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. PSRR vs. Frequency  
Figure 32. PSRR vs. Frequency  
50  
45  
50  
45  
V
A
R
= ±2.5V  
= 1  
= 10kΩ  
V
A
R
= ±15V  
SY  
SY  
= 1  
V
L
V
L
= 10kΩ  
40  
35  
30  
25  
40  
35  
30  
25  
OS–  
OS–  
OS+  
OS+  
20  
15  
10  
20  
15  
10  
5
0
5
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
CAPACITANCE (nF)  
CAPACITANCE (nF)  
Figure 30. Small-Signal Overshoot vs. Load Capacitance  
Figure 33. Small-Signal Overshoot vs. Load Capacitance  
V
= ±2.5V  
= 1  
= 10k  
= 100pF  
SY  
V
= ±15V  
= 1  
= 10kΩ  
= 100pF  
SY  
A
R
C
V
L
L
A
R
C
V
L
L
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 31. Large-Signal Transient Response  
Figure 34. Large-Signal Transient Response  
Rev. B | Page 10 of 20  
AD8622/AD8624  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
A
R
C
= 1  
= 10kΩ  
= 100pF  
A
R
C
= 1  
= 10kΩ  
= 100pF  
V
L
L
V
L
L
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 35. Small-Signal Transient Response  
Figure 38. Small-Signal Transient Response  
0.4  
0.2  
0
0.4  
0.2  
0
V
A
R
= ±2.5V  
= –100  
= 10kΩ  
V
A
R
= ±15V  
= –100  
= 10k  
SY  
SY  
V
L
V
L
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
–1  
–10  
–20  
–2  
–3  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 39. Negative Overload Recovery  
Figure 36. Negative Overload Recovery  
0.2  
0
0.2  
0
INPUT  
INPUT  
–0.2  
–0.2  
20  
10  
0
3
2
1
OUTPUT  
OUTPUT  
V
= ±15V  
SY  
–10  
–20  
V
A
R
= ±2.5V  
= –100  
= 10k  
A
R
= –100  
= 10k  
SY  
V
L
0
V
L
–1  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 40. Positive Overload Recovery  
Figure 37. Positive Overload Recovery  
Rev. B | Page 11 of 20  
AD8622/AD8624  
12  
12  
10  
8
V
A
= ±15V  
V
= ±15V  
A = +1  
V
SY  
= –1  
SY  
V
10  
8
0.1%  
0.1%  
0.01%  
0.01%  
6
6
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
SETTLING TIME (µs)  
SETTLING TIME (µs)  
Figure 41. Output Step vs. Settling Time  
Figure 44. Output Step vs. Settling Time  
100  
100  
V
= ±15V  
V
= ±2.5V  
SY  
SY  
10  
10  
1
1
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. Voltage Noise Density vs. Frequency  
Figure 42. Voltage Noise Density vs. Frequency  
1
1
R
R
R
R
S1  
V
= ±15V  
S1  
V
= ±2.5V  
SY  
SY  
S2  
S2  
UNCORRELATED  
S1  
UNCORRELATED  
S1  
R
= 0  
R
= 0Ω  
CORRELATED  
0.1  
0.1  
CORRELATED  
R
= R  
S1  
S2  
R
= R  
S1  
S2  
0.01  
0.01  
1
10  
100  
1k  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46. Current Noise Density vs. Frequency  
Figure 43. Current Noise Density vs. Frequency  
Rev. B | Page 12 of 20  
AD8622/AD8624  
V
= ±2.5V  
V
= ±15V  
SY  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 47. 0.1 Hz to 10 Hz Noise  
Figure 49. 0.1 Hz to 10 Hz Noise  
1
0.1  
1
0.1  
V
= ±2.5V  
V
= ±15V  
SY  
f = 1kHz  
= 10kΩ  
SY  
f = 1kHz  
R = 10kΩ  
L
R
L
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 48. THD + Noise vs. Amplitude  
Figure 50. THD + Noise vs. Amplitude  
Rev. B | Page 13 of 20  
AD8622/AD8624  
0.1  
0.1  
V
R
V
= ±15V  
= 10kΩ  
= 300mV rms  
SY  
V
R
= ±2.5V  
= 10kΩ  
= 300mV rms  
SY  
L
L
IN  
V
IN  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51. THD + Noise vs. Frequency  
Figure 53. THD + Noise vs. Frequency  
0
–20  
–40  
–60  
100kΩ  
1kΩ  
R
L
–80  
–100  
–120  
V
= ±2.5V TO ±15V  
SY  
R
A
= 10kΩ  
= –100  
L
V
–140  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 52. Channel Separation vs. Frequency  
Rev. B | Page 14 of 20  
AD8622/AD8624  
APPLICATIONS INFORMATION  
V
INPUT PROTECTION  
IN  
V
= ±15V  
SY  
The maximum differential input voltage that can be applied to  
the AD8622/AD8624 is determined by the internal diodes  
connected across its inputs and series resistors at each input. These  
internal diodes and series resistors limit the maximum  
V
OUT  
differential input voltage to 10 V and are needed to prevent base-  
emitter junction breakdown from occurring in the input stage of  
the AD8622/AD8624 when very large differential voltages are  
applied. In addition, the internal resistors limit the currents that  
flow through the diodes. However, in applications where large  
differential voltages can be inadvertently applied to the device,  
large currents may still flow through these diodes. In such a  
case, external resistors must be placed at both inputs of the op  
amp to limit the input currents to 10 mA (see Figure 54).  
TIME (200µs/DIV)  
Figure 55. No Phase Reversal  
MICROPOWER INSTRUMENTATION AMPLIFIER  
The AD8622 is a dual, high precision, rail-to-rail output op amp  
operating at just 215 ꢀA quiescent current per amplifier. Its  
ultralow offset, offset drift, and voltage noise, combined with its  
very low bias current and high common-mode rejection ratio  
(CMRR), are ideally suited for high accuracy and micropower  
instrumentation amplifier.  
R1  
R2  
500Ω  
500Ω  
2
3
1
AD862x  
Figure 56 shows the classic 2-op-amp instrumentation amplifier  
with four resistors using the AD8622. The key to high CMRR  
for this instrumentation amplifier are resistors that are well  
matched from both the resistive ratio and the relative drift. For  
true difference amplification, matching of the resistor ratio is  
very important, where R3/R4 = R1/R2. Assuming perfectly  
matched resistors, the gain of the circuit is 1 + R2/R1, which is  
approximately 100. Tighter matching of two op amps in one  
package, like the AD8622, offers a significant boost in  
Figure 54. Input Protection  
PHASE REVERSAL  
An undesired phenomenon, phase reversal (also known as  
phase inversion) occurs in many op amps when one or both of  
the inputs are driven beyond the specified input voltage range  
(IVR), in effect reversing the polarity of the output. In some  
cases, phase reversal can induce lockups and even cause  
equipment damage as well as self destruction.  
performance over the classical 3-op-amp configuration. Overall,  
The AD8622/AD8624 amplifiers have been carefully designed to  
prevent output phase reversal when both inputs are maintained  
within the specified input voltage range. In addition, even if one  
or both inputs exceed the input voltage range but remain within  
the supply rails, the output still does not phase reverse. Figure 55  
shows the input/output waveforms of the AD8622/AD8624  
configured as a unity-gain buffer with a supply voltage of 15 V.  
the circuit only requires about 430 μA of supply current.  
R3  
10.1k  
R2  
1MΩ  
+15V  
R4  
+15V  
1MΩ  
R1  
10.1kΩ  
1/2  
AD8622  
1/2  
V
V1  
AD8622  
+
+
O
V2  
–15V  
NOTES  
1. V = 100(V2 – V1)  
–15V  
O
2. TYPICAL: 0.01mV < |V2 – V1| < 149.7mV  
3. TYPICAL: –14.97V < V < +14.97V  
O
4. USE MATCHED RESISTORS.  
Figure 56. Micropower Instrumentation Amplifier  
Rev. B | Page 15 of 20  
 
 
 
 
 
 
 
AD8622/AD8624  
netic field. Using the 4.12k:98.8k resistive divider, the bias  
voltage of the Hall element is reduced to 100 mV, leading to only  
250 μA of power consumption. The 3-op-amp in-amp  
HALL SENSOR SIGNAL CONDITIONING  
The AD8622/AD8624 is also highly suitable for high accuracy,  
low power signal conditioning circuits. One such use is in Hall  
sensor signal conditioning (see Figure 57). The magnetic  
sensitivity of a Hall element is proportional to the bias voltage  
applied across it. With 1 V bias voltage, the Hall element  
consumes about 2.5 mA of supply current and has a sensitivity  
of 5.5 mV/mT typical. To reduce power consumption, bias  
voltage must be reduced, but at the risk of lower sensitivity. The  
only way to achieve higher sensitivity is by introducing a gain  
using a precision micropower amplifier. The AD8622/AD8624,  
with all its features, is well suited to amplify the sensitivity of the  
Hall element.  
configuration of the AD8622/AD8624 then increases the  
sensitivity to 55 mV/mT. The key to high CMRR for this in-amp  
configuration are resistors that are well matched (where R1/R2  
= R3/R4) from both the resistive ratio and relative drift. The  
resistors are important in determining the performance over  
manufacturing tolerances, time and temperature. At least 1% or  
better resistors are recommended. Using the AD8622/AD8624 to  
amplify the sensor signal can reduce power while also achieving  
higher sensitivity. The total current consumed is just 1.2 mA,  
resulting in 21× improvement in sensitivity/power.  
The ADR121 is a precision micropower 2.5 V voltage reference.  
A precision voltage reference is required to hold a constant current  
so that the Hall voltage only depends on the intensity of the mag-  
V
V
SY  
SY  
+
C1  
R2  
9.9k  
1µF TO 10µF  
AD862x  
HALL  
ELEMENT  
V
SY  
R5  
R1  
ADR121 – 2.5V  
9.9kΩ  
9.9kΩ  
V
R8  
SY  
4.12kΩ  
400Ω  
×4  
C3  
0.1µF  
TO 10µF  
R7  
200Ω  
AD862x  
+
R6  
9.9kΩ  
R3  
9.9kΩ  
+
C2  
0.1µF  
+
55mV  
mT  
V
= 2.5V +  
× MAGNETIC FIELD (mT)  
OUT  
R9  
98.8kΩ  
AD862x  
V
SY  
AD862x  
+
R4  
9.9kΩ  
NOTES  
1. USE MATCHED RESISTORS FOR IN-AMP.  
2. FOR INFORMATION ON C1, C2, AND C3, REFER TO ADR121 DATA SHEET.  
Figure 57. Hall Sensor Signal Conditioning  
Rev. B | Page 16 of 20  
 
 
AD8622/AD8624  
SIMPLIFIED SCHEMATIC  
V+  
R3  
R2  
R1  
Q10  
Q11  
C1  
V
Q6  
B2  
Q3  
V
B1  
Q5  
INPUT BIAS  
CANCELLATION  
CIRCUITRY  
Q4  
Q8  
OUT x  
500Ω  
Q1  
Q2  
+IN x  
D1  
D2  
500Ω  
–IN x  
Q7  
Q12  
Q9  
D4  
D3  
V–  
Figure 58. Simplified Schematic  
Rev. B | Page 17 of 20  
 
AD8622/AD8624  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 59. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 18 of 20  
 
AD8622/AD8624  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
1
0.65  
BSC  
12  
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
5
9
8
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 61. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 62. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD8622ARMZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
RM-8  
RM-8  
RM-8  
R-8  
Branding  
A1P  
A1P  
AD8622ARMZ-REEL  
AD8622ARMZ-R7  
AD8622ARZ  
AD8622ARZ-REEL  
AD8622ARZ-REEL7  
AD8624ACPZ-R2  
AD8624ACPZ-R7  
AD8624ACPZ-RL  
AD8624ARUZ  
8-Lead MSOP  
A1P  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
14-Lead TSSOP  
14-Lead TSSOP  
R-8  
R-8  
CP-16-17  
CP-16-17  
CP-16-17  
RU-14  
AD8624ARUZ-RL  
RU-14  
1 Z = RoHS Compliant Part.  
Rev. B | Page 19 of 20  
 
 
AD8622/AD8624  
NOTES  
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07527-0-2/10(B)  
Rev. B | Page 20 of 20  

相关型号:

AD8622_09

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624

30 V, Micropower, Overvoltage Protection, Rail-to-Rail Input/Output Amplifier
ADI

AD8624ACPZ-R2

Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624ACPZ-R7

Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624ACPZ-RL

Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624ARUZ

Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8624ARUZ-RL

Low Power, Precision Rail-to-Rail Output Op Amp
ADI

AD8625

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8625AR

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8625AR-REEL

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8625AR-REEL7

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8625ARU

Precision Low Power Single-Supply JFET Amplifier
ADI