ADG438FBNZ [ROCHESTER]

8-CHANNEL, SGL ENDED MULTIPLEXER, PDIP16, PLASTIC, DIP-16;
ADG438FBNZ
型号: ADG438FBNZ
厂家: Rochester Electronics    Rochester Electronics
描述:

8-CHANNEL, SGL ENDED MULTIPLEXER, PDIP16, PLASTIC, DIP-16

光电二极管
文件: 总9页 (文件大小:828K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance 4/8 Channel  
a
Fault-Protected Analog Multiplexers  
ADG438F/ADG439F  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Fast Switching Times  
tON 250 ns max  
tOFF 150 ns max  
ADG439F  
ADG438F  
S1  
S1A  
S4A  
Fault and Overvoltage Protection (–40 V, +55 V)  
All Switches OFF with Power Supply OFF  
Analog Output of ON Channel Clamped Within Power  
Supplies If an Overvoltage Occurs  
Latch-Up Proof Construction  
Break Before Make Construction  
TTL and CMOS Compatible Inputs  
DA  
DB  
D
S1B  
S4B  
S8  
APPLICATIONS  
Data Acquisition Systems  
1 OF 8  
DECODER  
1 OF 4  
DECODER  
Industrial and Process Control Systems  
Avionics Test Equipment  
A0 A1 A2 EN  
A0 A1 EN  
Signal Routing Between Systems  
High Reliability Control Systems  
PRODUCT HIGHLIGHTS  
1. Fault Protection.  
GENERAL DESCRIPTION  
The ADG438F/ADG439F are CMOS analog multiplexers, the  
ADG438F comprising 8 single channels and the ADG439F  
comprising four differential channels. These multiplexers pro-  
vide fault protection. Using a series n-channel, p-channel, n-  
channel MOSFET structure, both device and signal source  
protection is provided in the event of an overvoltage or power  
loss. The multiplexer can withstand continuous overvoltage  
inputs from –40 V to +55 V. During fault conditions, the multi-  
plexer input (or output) appears as an open circuit and only a  
few nanoamperes of leakage current will flow. This protects not  
only the multiplexer and the circuitry driven by the multiplexer,  
but also protects the sensors or signal sources which drive the  
multiplexer.  
The ADG438F/ADG439F can withstand continuous volt-  
age inputs up to –40 V or +55 V. When a fault occurs due  
to the power supplies being turned off, all the channels  
are turned off and only a leakage current of a few nano-  
amperes flows.  
2. ON channel turns OFF while fault exists.  
3. Low RON.  
4. Fast Switching Times.  
5. Break-Before-Make Switching.  
Switches are guaranteed break-before-make so that input  
signals are protected against momentary shorting.  
The ADG438F switches one of eight inputs to a common out-  
put as determined by the 3-bit binary address lines A0, A1 and  
A2. The ADG439F switches one of four differential inputs to a  
common differential output as determined by the 2-bit binary  
address lines A0 and A1. An EN input on each device is used to  
enable or disable the device. When disabled, all channels are  
switched OFF.  
6. Trench Isolation Eliminates Latch-up.  
A dielectric trench separates the p- and n-channel MOSFETs  
thereby preventing latch-up.  
7. Improved OFF Isolation.  
Trench isolation enhances the channel-to-channel isolation  
of the ADG438F/ADG439F.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
ADG438F/ADG439F–SPECIFICATIONS1  
Dual Supply  
(VDD = +15 V, VSS = –15 V, GND = 0 V, unless otherwise noted)  
B Version  
–40؇C to  
+85؇C  
–40؇C to  
+105؇C  
Parameter  
+25؇C  
Units  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
VSS + 1.2  
VDD – 0.8  
400  
VSS + 1.2  
VDD – 0.8  
400  
V min  
V max  
max  
% max  
%/°C typ  
% max  
RON  
RON  
RON Drift  
RON Match  
–10 V < VS < +10 V, IS = 1 mA;  
–5 V < VS < +5 V, IS = 1 mA;  
VS = 0 V, IS = 1 mA  
5
5
0.6  
3
3
3
VS = ± 10 V, IS = 1 mA  
LEAKAGE CURRENTS  
Source OFF Leakage IS (OFF)  
±0.01  
±0.5  
±0.01  
±0.5  
±0.5  
±0.01  
±0.5  
nA typ  
nA max  
nA typ  
nA max  
nA max  
nA typ  
nA max  
nA max  
VD = ±10 V, VS = ϯ10 V;  
Test Circuit 2  
VD = ±10 V, VS = ϯ10 V;  
Test Circuit 3  
±2  
±5  
Drain OFF Leakage ID (OFF)  
ADG438F  
ADG439F  
Channel ON Leakage ID, IS (ON)  
ADG438F  
ADG439F  
±5  
±5  
±30  
±15  
VS = VD = ±10 V;  
Test Circuit 4  
±5  
±5  
±30  
±15  
±0.5  
FAULT  
Output Leakage Current  
(With Overvoltage)  
Input Leakage Current  
(With Overvoltage)  
Input Leakage Current  
(With Power Supplies OFF)  
±0.02  
±0.1  
±0.005  
±0.1  
±0.001  
±0.1  
nA typ  
µA max  
µA typ  
µA max  
µA typ  
µA max  
VS = –33 V, +33 V or +50 V, VD = 0 V, Test Circuit 3  
±2  
±1  
±1  
±10  
±2  
VS = ±25 V, VD = ϯ10 V, Test Circuit 5  
VS = ±25 V, VD = VEN = A0, A1, A2 = 0 V  
Test Circuit 6  
±4  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
IINL or IINH  
±1  
±1  
µA max  
VIN = 0 or VDD  
CIN, Digital Input Capacitance  
5
pF typ  
DYNAMIC CHARACTERISTICS2  
tTRANSITION  
170  
220  
10  
ns typ  
ns max  
ns min  
RL = 1 M, CL = 35 pF;  
VS1 = ±10 V, VS8 = ϯ10 V; Test Circuit 7  
RL = 1 k, CL = 35 pF;  
300  
10  
320  
10  
tOPEN  
VS = +5 V; Test Circuit 8  
RL = 1 k, CL = 35 pF;  
VS = +5 V; Test Circuit 9  
RL = 1 k, CL = 35 pF;  
tON (EN)  
tOFF (EN)  
200  
250  
110  
150  
ns typ  
ns max  
ns typ  
ns max  
300  
180  
300  
180  
VS = +5 V; Test Circuit 9  
tSETT, Settling Time  
0.1%  
0.01%  
Charge Injection  
OFF Isolation  
0.5  
1.7  
0.5  
1.7  
µs typ  
µs typ  
pC typ  
dB typ  
RL = 1 k, CL = 35 pF;  
VS = +5 V  
VS = 0 V, RS = 0 , CL= 1 nF; Test Circuit 10  
RL = 1 k, CL = 15 pF, f = 100 kHz;  
VS = 7 V rms; Test Circuit 11  
RL = 1 k, CL = 15 pF, f = 100 kHz;  
VS = 7 V rms; Test Circuit 12  
4
80  
Channel-to-Channel Crosstalk  
85  
5
dB typ  
pF typ  
CS (OFF)  
CD (OFF)  
ADG438F  
ADG439F  
50  
25  
pF typ  
pF typ  
POWER REQUIREMENTS  
IDD  
0.05  
0.15  
0.01  
0.02  
mA typ  
mA max  
mA typ  
mA max  
VIN = 0 V or 5 V  
0.25  
0.04  
0.25  
0.04  
ISS  
NOTES  
1Temperature range is as follows: B Version: –40°C to +105°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. D  
ADG438F/ADG439F  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C unless otherwise noted)  
Table I. ADG438F Truth Table  
A2  
A1  
A0  
EN  
ON SWITCH  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V  
VEN, VA Digital Input . . . . . . . – 0.3 V to VDD + 2 V or 20 mA,  
Whichever Occurs First  
VS, Analog Input Overvoltage with Power ON . . . . . VSS – 25 V  
to VDD + 40 V  
VS, Analog Input Overvoltage with Power OFF  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 V to +55 V  
Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA  
Peak Current, S or D  
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
NONE  
1
2
3
4
5
6
7
8
X = Don’t Care  
(Pulsed at 1 ms, 10% Duty Cycle max) . . . . . . . . . . . 40 mA  
Operating Temperature Range  
Table II. ADG439F Truth Table  
Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +105°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Plastic Package  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 117°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C  
SOIC Package  
A1  
A0  
EN  
ON SWITCH PAIR  
X
0
0
1
1
X
0
1
0
1
0
1
1
1
1
NONE  
1
2
3
4
X = Don’t Care  
θJA, Thermal Impedance  
Narrow Body . . . . . . . . . . . . . . . . . . . . . . . . . . . 125°C/W  
Wide Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
ADG438F/ADG439F PIN CONFIGURATIONS  
DIP/SOIC  
DIP/SOIC  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
A0  
EN  
1
2
3
16 A1  
15 A2  
14 GND  
A0  
EN  
1
2
3
16 A1  
15 GND  
14  
V
V
V
SS  
SS  
DD  
ADG438F  
ADG439F  
4
5
13  
V
4
5
13 S1B  
12 S2B  
S1  
S1A  
DD  
TOP VIEW  
TOP VIEW  
12 S5  
S2  
S3  
S4  
D
S2A  
S3A  
S4A  
DA  
(Not to Scale)  
(Not to Scale)  
6
7
11 S6  
10 S7  
6
7
11 S3B  
10 S4B  
ORDERING GUIDE  
8
9
S8  
8
9
DB  
Model  
Temperature Range  
Package Option*  
ADG438FBN  
ADG438FBR  
–40°C to +105°C  
–40°C to +105°C  
N-16  
R-16N  
ADG439FBN  
ADG439FBR  
ADG439FBRW  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
N-16  
R-16N  
R-16W  
*N = Plastic DIP; R-16N = 0.15" Small Outline IC (SOIC); R-16W = 0.3"  
Small Outline IC (SOIC).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADG438F/ADG439F features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–3–  
ADG438F/ADG439F  
TERMINOLOGY  
Typical Performance Graphs  
VDD  
VSS  
Most positive power supply potential.  
Most negative power supply potential.  
Ground (0 V) reference.  
2000  
GND  
RON  
T
= +25؇C  
A
1750  
1500  
1250  
1000  
750  
500  
250  
0
Ohmic resistance between D and S.  
RON  
RON variation due to a change in the analog  
input voltage with a constant load current.  
V
V
= +5V  
= –5V  
DD  
SS  
R
R
ON Drift  
ON Match  
Change in RON when temperature changes  
by one degree Celsius.  
Difference between the RON of any two  
channels.  
V
V
= +10V  
= –10V  
DD  
SS  
IS (OFF)  
Source leakage current when the switch is  
off.  
V
V
= +15V  
= –15V  
DD  
SS  
ID (OFF)  
Drain leakage current when the switch is off.  
–15  
–10  
–5  
0
5
10  
15  
V
D
(V ) – Volts  
S
ID, IS (ON)  
Channel leakage current when the switch is  
on.  
Figure 1. On Resistance as a Function of VD (VS)  
V
D (VS)  
Analog voltage on terminals D, S.  
CS (OFF)  
Channel input capacitance for “OFF”  
condition.  
1m  
V
V
V
= 0V  
= 0V  
= 0V  
DD  
100␮  
10␮  
1␮  
SS  
CD (OFF)  
Channel output capacitance for “OFF”  
condition.  
D
CD, CS (ON)  
CIN  
“ON” switch capacitance.  
Digital input capacitance.  
100n  
10n  
1n  
OPERATING RANGE  
t
ON (EN)  
Delay time between the 50% and 90% points  
of the digital input and switch “ON”  
condition.  
100p  
10p  
1p  
t
OFF (EN)  
Delay time between the 50% and 90% points  
of the digital input and switch “OFF”  
condition.  
–50 –40 –30 –20 –10  
0
10  
20  
30 40  
50  
60  
V
– INPUT VOLTAGE – Volts  
IN  
tTRANSITION  
Delay time between the 50% and 90% points  
of the digital inputs and the switch “ON”  
condition when switching from one address  
state to another.  
Figure 2. Input Leakage Current as a Function of VS  
(Power Supplies OFF) During Overvoltage Conditions  
tOPEN  
“OFF” time measured between 80% points of  
both switches when switching from one  
address state to another.  
1m  
V
V
V
= +15V  
= –15V  
= 0V  
DD  
100␮  
10␮  
SS  
VINL  
VINH  
Maximum input voltage for Logic “0”.  
Minimum input voltage for Logic “1”.  
Input current of the digital input.  
D
1␮  
I
INL (IINH  
)
100n  
OPERATING RANGE  
Off Isolation  
A measure of unwanted signal coupling  
through an “OFF” channel.  
10n  
1n  
Charge Injection A measure of the glitch impulse transferred  
from the digital input to the analog output  
during switching.  
100p  
10p  
1p  
IDD  
ISS  
Positive supply current.  
Negative supply current.  
–50 –40 –30 –20 –10  
0
10 20  
30 40 50  
60  
V
IN  
– INPUT VOLTAGE – Volts  
Figure 3. Output Leakage Current as a Function of VS  
(Power Supplies ON) During Overvoltage Conditions  
–4–  
REV. D  
ADG438F/ADG439F  
2000  
1750  
1500  
1250  
1000  
750  
100  
10  
V
V
= +15V  
= –15V  
DD  
V
DD  
V
SS  
= +15V  
= –15V  
SS  
V
V
= +10V  
= –10V  
D
S
I
D
(OFF)  
1
I
S
(OFF)  
+105؇C  
500  
0.1  
0.01  
+85؇C  
I
D
(ON)  
95  
250  
+25؇C  
0
–15  
–10  
–5  
0
5
10  
15  
25  
35  
45  
55  
65  
75  
85  
105  
V
D
(V ) – Volts  
S
TEMPERATURE – ؇C  
Figure 4. On Resistance as a Function of VD (VS) for  
Different Temperatures  
Figure 7. Leakage Currents as a Function of Temperature  
1m  
260  
V
= +2V  
IN  
V
V
V
= +15V  
= –15V  
= 0V  
DD  
100␮  
10␮  
1␮  
240  
220  
200  
180  
160  
140  
120  
100  
SS  
D
tON (EN)  
100n  
10n  
1n  
OPERATING RANGE  
tTRANSITION  
100p  
10p  
1p  
tOFF (EN)  
–50 –40 –30 –20 –10  
0
10 20  
30  
40  
50  
60  
10  
11  
12  
V
13  
– Volts  
14  
15  
V
S
– INPUT VOLTAGE – Volts  
SUPPLY  
Figure 5. Input Leakage Current as a Function of VS  
(Power Supplies ON) During Overvoltage Conditions  
Figure 8. Switching Time vs. Power Supply  
280  
0.3  
V
V
V
= +15V  
= –15V  
= +5V  
DD  
260  
240  
220  
200  
180  
160  
140  
120  
100  
V
V
= +15V  
= –15V  
DD  
SS  
SS  
IN  
0.2  
0.1  
T
A
= +25؇C  
tON (EN)  
I
S
(OFF)  
I
(OFF)  
D
tTRANSITION  
0.0  
I
(ON)  
D
–0.1  
–0.2  
tOFF (EN)  
85  
25  
45  
65  
105  
–14  
–10  
–6  
–2  
2
6
10  
14  
TEMPERATURE – ؇C  
V , V – Volts  
S
D
Figure 9. Switching Time vs. Temperature  
Figure 6. Leakage Currents as a Function of VD (VS)  
REV. D  
–5–  
ADG438F/ADG439F  
THEORY OF OPERATION  
n-channel threshold voltage (VTN). When a voltage more nega-  
tive than VSS is applied to the multiplexer, the p-channel  
MOSFET will turn off since the analog input is more negative  
than the difference between VSS and the p-channel threshold  
voltage (VTP).  
The ADG438F/ADG439F multiplexers are capable of with-  
standing overvoltages from –40 V to +55 V, irrespective of  
whether the power supplies are present or not. Each channel of  
the multiplexer consists of an n-channel MOSFET, a p-channel  
MOSFET and an n-channel MOSFET, connected in series.  
When the analog input exceeds the power supplies, one of the  
MOSFETs will switch off, limiting the current to sub-microamp  
levels, thereby preventing the overvoltage from damaging any  
circuitry following the multiplexer. Figure 12 illustrates the  
channel architecture that enables these multiplexers to with-  
stand continuous overvoltages.  
When the power supplies are present but the channel is off,  
again either the p-channel MOSFET or one of the n-channel  
MOSFETs will remain off when an overvoltage occurs.  
Finally, when the power supplies are off, the gate of each  
MOSFET will be at ground. A negative overvoltage switches on  
the first n-channel MOSFET but the bias produced by the  
overvoltage causes the p-channel MOSFET to remain turned  
off. With a positive overvoltage, the first MOSFET in the series  
will remain off since the gate to source voltage applied to this  
MOSFET is negative.  
When an analog input of VSS + 1.2 V to VDD – 0.8 V is applied  
to the ADG438F/ADG439F, the multiplexer behaves as a  
standard multiplexer, with specifications similar to a standard  
multiplexer, for example, the on-resistance is 180 typically.  
However, when an overvoltage is applied to the device, one of  
the three MOSFETs will turn off.  
During fault conditions, the leakage current into and out of the  
ADG438F/ADG439F is limited to a few microamps. This pro-  
tects the multiplexer and succeeding circuitry from over stresses  
as well as protecting the signal sources which drive the multi-  
plexer. Also, the other channels of the multiplexer will be  
undisturbed by the overvoltage and will continue to operate  
normally.  
Figures 10 to 13 show the conditions of the three MOSFETs for  
the various overvoltage situations. When the analog input ap-  
plied to an ON channel approaches the positive power supply  
line, the n-channel MOSFET turns OFF since the voltage on  
the analog input exceeds the difference between VDD and the  
Q1  
Q2  
Q3  
Q1  
Q2  
Q3  
+55V  
OVERVOLTAGE  
+55V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET IS  
OFF  
n-CHANNEL  
MOSFET IS  
OFF  
V
DD  
V
SS  
Figure 10. +55 V Overvoltage Input to the ON Channel  
Figure 12. +55 V Overvoltage with Power OFF  
Q1  
Q2  
Q3  
Q1  
Q2  
Q3  
–40V  
OVERVOLTAGE  
–40V  
OVERVOLTAGE  
n-CHANNEL  
MOSFET IS  
ON  
n-CHANNEL  
MOSFET IS  
ON  
p-CHANNEL  
MOSFET IS  
OFF  
p-CHANNEL  
MOSFET IS  
OFF  
V
V
DD  
SS  
Figure 13. –40 V Overvoltage with Power OFF  
Figure 11. –40 V Overvoltage on an OFF Channel with  
Multiplexer Power ON  
Test Circuits  
I
V
DD  
V
V
DS  
SS  
V
V
V
DD  
SS  
V
DD  
SS  
V
SS  
DD  
I
(OFF)  
A
S
V1  
S1  
S2  
S8  
S1  
S2  
S8  
I
(OFF)  
A
D
D
D
V
S
V
D
D
S
+0.8V  
EN  
+0.8V  
EN  
V
S
V
D
V
S
R
= V /I  
1 DS  
ON  
Test Circuit 1. On Resistance  
Test Circuit 2. IS (OFF)  
Test Circuit 3. ID (OFF)  
–6–  
REV. D  
ADG438F/ADG439F  
0V  
0V  
V
V
V
SS  
DD  
V
V
V
DD  
SS  
V
SS  
V
DD  
V
SS  
DD  
V
SS  
DD  
I
(ON)  
A
V
S
0V  
A
D
A2  
S1  
S1  
S2  
D
S1  
S2  
S8  
A
A1  
A0  
EN  
ADG438F*  
GND  
D
V
D
S8  
D
S8  
V
D
+0.8V  
EN  
+2.4V  
EN  
V
S
V
S
* SIMILAR CONNECTION FOR ADG439F  
Test Circuit 5. Input Leakage Current  
(with Overvoltage)  
Test Circuit 4. ID (ON)  
Test Circuit 6. Input Leakage Current  
(with Power Supplies OFF)  
V
SS  
V
DD  
3V  
ADDRESS  
V
V
50%  
50%  
SS  
DD  
DRIVE (V  
)
IN  
A2  
A1  
A0  
V
S1  
S1  
V
IN  
50⍀  
S2 THRU S7  
S8  
V
S8  
ADG438F*  
90%  
+2.4V  
EN  
D
V
OUT  
V
OUT  
GND  
C
35pF  
R
1M⍀  
L
L
90%  
tTRANSITION  
tTRANSITION  
* SIMILAR CONNECTION FOR ADG439F  
Test Circuit 7. Switching Time of Multiplexer, tTRANSITION  
V
V
V
V
DD  
SS  
3V  
SS  
DD  
A2  
V
C
S1  
S2 THRU S7  
S
ADDRESS  
A1  
A0  
V
IN  
DRIVE (V )  
IN  
50⍀  
ADG438F*S8  
+2.4V  
EN  
D
V
OUT  
80%  
80%  
GND  
R
1k⍀  
L
L
V
OUT  
35pF  
tOPEN  
* SIMILAR CONNECTION FOR ADG439F  
Test Circuit 8. Break-Before-Make Delay, tOPEN  
V
V
V
DD  
SS  
3V  
V
SS  
ENABLE  
DD  
50%  
50%  
A2  
DRIVE (V  
)
IN  
S1  
S2 THRU S8  
V
S
A1  
A0  
0V  
tOFF (EN)  
0.9V  
ADG438F*  
V
O
EN  
0.9V  
O
D
V
OUT  
O
R
1k⍀  
C
L
35pF  
L
50⍀  
OUTPUT  
V
IN  
GND  
0V  
tON (EN)  
* SIMILAR CONNECTION FOR ADG439F  
Test Circuit 9. Enable Delay, tON (EN), tOFF (EN)  
REV. D  
–7–  
ADG438F/ADG439F  
V
V
V
V
DD  
SS  
3V  
DD  
SS  
A2  
A1  
A0  
LOGIC  
INPUT (V  
)
IN  
ADG438F*  
R
S
0V  
D
S
V
OUT  
C
1nF  
EN  
L
V
S
V
V  
OUT  
OUT  
V
IN  
GND  
Q
= C 
؋
 V  
L
INJ  
OUT  
* SIMILAR CONNECTION FOR ADG439F  
Test Circuit 10. Charge Injection  
V
SS  
V
DD  
V
DD  
V
V
SS  
2.4V  
DD  
A0  
A1  
A2  
S1  
EN  
V
DD  
S1  
S8  
A2  
ADG438F*  
A1  
A0  
EN  
D
V
S
ADG438F*  
V
OUT  
V
OUT  
D
S2  
S8  
1k⍀  
1k⍀  
R
1k⍀  
L
GND  
V
S
GND  
CROSSTALK = 20 LOG V  
* SIMILAR CONNECTION FOR ADG439F  
/V  
OUT IN  
V
SS  
* SIMILAR CONNECTION FOR ADG439F  
Test Circuit 11. OFF Isolation  
Test Circuit 12. Channel-to-Channel Crosstalk  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Lead Plastic (N-16)  
0.840 (21.34)  
0.745 (18.92)  
16  
9
0.280 (7.11)  
0.240 (6.10)  
8
1
0.325 (8.26)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.070 (1.77) SEATING  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
16-Lead SOIC (R-16W)  
16-Lead SOIC (R-16N)  
(Narrow Body)  
(Wide Body)  
0.4133 (10.50)  
0.3977 (10.00)  
0.3937 (10.00)  
0.3859 (9.80)  
16  
9
9
8
16  
1
0.1574 (4.00)  
0.2440 (6.20)  
0.2284 (5.80)  
0.1497 (3.80)  
0.0688 (1.75)  
0.0532 (1.35)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
1
8
؋
 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
PIN 1  
x 45°  
8؇  
0؇  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
–8–  
REV. D  

相关型号:

ADG438FBR

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG438FBRN

8-Channel Analog Multiplexer
ETC

ADG438FBRZ

High Performance, 8-Channel, Fault-Protected Analog Multiplexer
ADI

ADG438FBRZ-REEL

High Performance, 8-Channel, Fault-Protected Analog Multiplexer
ADI

ADG438F_15

High Performance, 4-/8-Channel, Fault-Protected Analog Multiplexers
ADI

ADG439F

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG439F*

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG439FBN

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG439FBN

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDIP16, PLASTIC, DIP-16
ROCHESTER

ADG439FBNZ

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDIP16, PLASTIC, DIP-16
ROCHESTER

ADG439FBR

High Performance 4/8 Channel Fault-Protected Analog Multiplexers
ADI

ADG439FBR

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, 0.150 INCH, SOIC-16
ROCHESTER