ADM207EARSZ-REEL [ROCHESTER]

TRIPLE LINE TRANSCEIVER, PDSO24, LEAD FREE, MO-150AG, SSOP-24;
ADM207EARSZ-REEL
型号: ADM207EARSZ-REEL
厂家: Rochester Electronics    Rochester Electronics
描述:

TRIPLE LINE TRANSCEIVER, PDSO24, LEAD FREE, MO-150AG, SSOP-24

驱动 光电二极管 接口集成电路 驱动器
文件: 总21页 (文件大小:951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
aEMI-EMC-Compliant, 15 kV ESD Protected,  
RS-232 Line Drivers/Receivers  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Complies with 89/336/EEC EMC Directive  
ESD Protection to IEC1000-4-2 (801.2)  
8 kV: Contact Discharge  
5V INPUT  
+5V TO +10V  
VOLTAGE  
DOUBLER  
12  
14  
11  
13  
C1+  
C1–  
V
CC  
0.1F  
0.1F  
6.3V  
0.1F  
10V  
V+  
15 kV: Air-Gap Discharge  
15  
16  
+10V TO –10V  
VOLTAGE  
INVERTER  
17  
C2+  
C2–  
15 kV: Human Body Model  
Fast Transient Burst (EFT) Immunity (IEC1000-4-4)  
Low EMI Emissions (EN55022)  
Eliminates Costly TranZorbs®  
230 kbits/s Data Rate Guaranteed  
Single 5 V Power Supply  
Shutdown Mode 1 W  
Plug-In Upgrade for MAX2xxE  
Space Saving TSSOP Package Available  
V–  
0.1F  
10V  
0.1F  
10V  
2
3
7
6
T1  
T1  
T1  
OUT  
IN  
T2  
T2  
T3  
T2  
T3  
OUT  
IN  
CMOS  
EIA/TIA-232  
OUTPUTS  
INPUTS*  
20  
1
T3  
R3  
OUT  
IN  
28  
9
21  
8
T4  
T4  
T4  
OUT  
IN  
R1  
R1  
R1  
IN  
OUT  
OUT  
OUT  
4
5
R2  
R3  
R2  
R3  
R2  
IN  
CMOS  
OUTPUTS  
EIA/TIA-232  
INPUTS**  
APPLICATIONS  
Laptop Computers  
Notebook Computers  
Printers  
Peripherals  
Modems  
26  
22  
19  
27  
23  
18  
IN  
R4  
R4  
R5  
R4  
R5  
IN  
OUT  
R5  
OUT  
IN  
SHDN (ADM211E)  
SHDN (ADM213E)  
EN (ADM211E)  
EN (ADM213E)  
24  
25  
ADM211E  
ADM213E  
GND  
10  
NOTES:  
GENERAL DESCRIPTION  
* INTERNAL 400kPULL-UP RESISTOR ON EACH CMOS INPUT  
** INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT  
The ADM2xxE is a family of robust RS-232 and V.28 interface  
devices that operates from a single 5 V power supply. These prod-  
ucts are suitable for operation in harsh electrical environments  
and are compliant with the EU directive on EMC (89/336/EEC).  
The level of emissions and immunity are both in compliance.  
EM immunity includes ESD protection in excess of 15 kV on all  
I-O lines (1000-4-2), fast transient burst protection (1000-4-4) and  
radiated immunity (1000-4-3). EM emissions include radiated  
and conducted emissions as required by Information Technology  
Equipment EN55022, CISPR22.  
charge pump, all transmitters, and three of the five receivers are  
disabled. The remaining two receivers remain active, thereby  
allowing monitoring of peripheral devices. This feature allows  
the device to be shut down until a peripheral device begins  
communication. The active receivers can alert the processor  
which can then take the ADM213E out of the shutdown mode.  
Operating from a single 5 V supply, four external 0.1 µF capaci-  
tors are required.  
All devices fully conform to the EIA-232E and CCITT V.28  
specifications and operate at data rates up to 230 kbps.  
The ADM207E and ADM208E are available in 24-lead DIP, SO,  
SSOP, and TSSOP packages. The ADM211E and ADM213E  
are available in 28-lead SO, SSOP, and TSSOP packages.  
Shutdown and enable control pins are provided on some of the  
products. See Table I.  
All products are backward-compatible with earlier ADM2xx  
products, facilitating easy upgrading of older designs.  
The shutdown function on the ADM211E disables the charge  
pump and all transmitters and receivers. On the ADM213E the  
Table I. Selection Table  
Receivers ESD Protection Shutdown  
Model  
Supply Voltage  
Drivers  
Enable  
Packages  
ADM206E  
ADM207E  
ADM208E  
ADM211E  
ADM213E  
5 V  
5 V  
5 V  
5 V  
5 V  
4
5
4
4
4
3
3
4
5
5
15 kV  
15 kV  
15 kV  
15 kV  
15 kV  
Yes  
No  
No  
Yes  
Yes  
No  
No  
Yes  
R-24  
N, R, RS, RU-24  
N, R, RS, RU-24  
R, RS, RU-28  
R, RS, RU-28  
Yes (SD)*  
Yes (EN)  
*Two receivers active.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/461-3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E–SPECIFICATIONS  
(VCC = 5.0 V 10%, C1–C4 = 0.1 F. All specifications TMIN to TMAX unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Operating Voltage Range  
VCC Power Supply Current  
4.5  
5.0  
3.5  
5.5  
13  
V
mA  
No Load  
Shutdown Supply Current  
0.2  
10  
10  
µA  
Input Pull-Up Current  
25  
0.8  
µA  
V
V
V
V
V
µA  
TIN = GND  
TIN, EN, EN, SHDN, SHDN,  
TIN  
EN, EN, SHDN, SHDN  
IOUT = 1.6 mA  
IOUT = 40 µA  
EN = VCC, EN = GND, 0 V ROUT VCC  
Input Logic Threshold Low, VINL  
Input Logic Threshold High, VINH  
Input Logic Threshold High, VINH  
CMOS Output Voltage Low, VOL  
CMOS Output Voltage High, VOH  
CMOS Output Leakage Current  
2.0  
2.0  
0.4  
3.5  
0.05  
10  
EIA-232 Input Voltage Range*  
EIA-232 Input Threshold Low  
EIA-232 Input Threshold High  
EIA-232 Input Hysteresis  
EIA-232 Input Resistance  
Output Voltage Swing  
–30  
0.8  
+30  
V
V
V
V
kΩ  
V
1.3  
2.0  
0.65  
5
2.4  
7
3
TA = 0°C to 85°C  
5.0  
9.0  
All Transmitter Outputs  
Loaded with 3 kto Ground  
Transmitter Output Resistance  
RS-232 Output Short Circuit Current  
300  
6
mA  
VCC = 0 V, VOUT = 2 V  
20  
60  
2
Maximum Data Rate  
Receiver Propagation Delay  
TPHL, TPLH  
Receiver Output Enable Time, tER  
Receiver Output Disable Time, tDR  
Transmitter Propagation Delay  
TPHL, TPLH  
230  
kbps  
RL = 3 kto 7 k, CL = 50 pF to 2500 pF  
0.4  
120  
120  
µs  
ns  
ns  
CL = 150 pF  
1
8
µs  
V/µs  
RL = 3 k, CL = 2500 pF  
RL = 3 k, CL = 50 pF to 2500 pF  
Measured from +3 V to –3 V or  
–3 V to +3 V  
Transition Region Slew Rate  
ESD Protection (I-O Pins)  
EMI Immunity  
15  
15  
8
kV  
kV  
kV  
V/m  
Human Body Model  
IEC1000-4-2 Air Discharge  
IEC1000-4-2 Contact Discharge  
IEC1000-4-3  
10  
*Guaranteed by design.  
Specifications subject to change without notice.  
Table II. ADM211E Truth Table  
Table III. ADM213E Truth Table  
SHDN  
EN  
Status  
TOUT1-4  
ROUT1-5  
SHDN EN  
Status  
TOUT1-4  
ROUT1-3 ROUT4-5  
0
0
Normal  
Operation  
Normal  
Operation  
Shutdown  
Enabled  
Enabled  
0
0
1
0
1
0
Shutdown Disabled  
Shutdown Disabled  
Disabled Disabled  
Disabled Enabled  
Disabled Disabled  
0
1
Enabled  
Disabled  
Disabled  
Disabled  
Normal  
Enabled  
Operation  
Normal  
1
X
1
1
Enabled  
Enabled  
Enabled  
Operation  
X = Don’t Care.  
–2–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted.)  
RS-24 SSOP (Derate 12 mW/°C above 70°C) . . . . . 850 mW  
RU-24 TSSOP (Derate 12 mW/°C above 70°C) . . . 900 mW  
R-28 SOIC (Derate 12 mW/°C above 70°C) . . . . . . 900 mW  
RS-28 SSOP (Derate 10 mW/°C above 70°C) . . . . . 900 mW  
RU-28 TSSOP (Derate 12 mW/°C above 70°C) . . . 900 mW  
Operating Temperature Range  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V  
V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . (VCC –0.3 V) to +14 V  
V– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –14 V  
Input Voltages  
Industrial (A Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
TIN . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to (V+, +0.3 V)  
RIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Output Voltages  
30 V  
ESD Rating (MIL-STD-883B) (I-O Pins) . . . . . . . . .  
ESD Rating (IEC1000-4-2 Air) (I-O Pins) . . . . . . . .  
ESD Rating (IEC1000-4-2 Contact) (I-O Pins) . . . . .  
15 kV  
15 kV  
8 kV  
TOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ROUT . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to (VCC +0.3 V)  
Short-Circuit Duration  
15 V  
TOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Power Dissipation  
N-24 PDIP (Derate 13.5 mW/°C above 70°C) . . 1000 mW  
R-24 SOIC (Derate 12 mW/°C above 70°C) . . . . . 900 mW  
*This is a stress rating only and functional operation of the device at these or any  
other conditions above those indicated in the operation sections of this specifica-  
tion is not implied. Exposure to absolute maximum rating conditions for extended  
periods of time may affect reliability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADM206E/ADM207E/ADM208E/ADM211E/ADM213E features proprietary ESD protection  
circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges.  
Therefore, proper ESD precautions are recommended to avoid performance degradation or loss  
of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–3–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
ADM206EAR  
ADM206EAR-REEL  
ADM206EARZ*  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
SOIC  
SOIC  
SOIC  
SOIC  
R-24  
R-24  
R-24  
R-24  
ADM206EARZ-REEL*  
ADM207EAN  
ADM207EANZ*  
ADM207EAR  
ADM207EAR-REEL  
ADM207EARZ*  
ADM207EARZ-REEL*  
ADM207EARS  
ADM207EARS-REEL  
ADM207EARSZ*  
ADM207EARSZ-REEL*  
ADM207EARU  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
PDIP  
PDIP  
N-24  
N-24  
R-24  
R-24  
R-24  
R-24  
RS-24  
RS-24  
RS-24  
RS-24  
RU-24  
RU-24  
RU-24  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SSOP  
SSOP  
SSOP  
TSSOP  
TSSOP  
TSSOP  
ADM207EARU-REEL  
ADM207EARU-REEL7  
ADM208EAN  
ADM208EANZ*  
ADM208EAR  
ADM208EAR-REEL  
ADM208EARZ*  
ADM208EARZ-REEL*  
ADM208EARS  
ADM208EARS-REEL  
ADM208EARSZ*  
ADM208EARSZ-REEL*  
ADM208EARU  
ADM208EARU-REEL  
ADM208EARU-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
PDIP  
PDIP  
N-24  
N-24  
R-24  
R-24  
R-24  
R-24  
RS-24  
RS-24  
RS-24  
RS-24  
RU-24  
RU-24  
RU-24  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SSOP  
SSOP  
SSOP  
TSSOP  
TSSOP  
TSSOP  
ADM211EAR  
ADM211EAR-REEL  
ADM211EARZ*  
ADM211EARZ-REEL*  
ADM211EARS  
ADM211EARS-REEL  
ADM211EARSZ*  
ADM211EARSZ-REEL*  
ADM211EARU  
ADM211EARU-REEL  
ADM211EARU-REEL7  
ADM211EARUZ*  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SSOP  
SSOP  
SSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
R-28  
R-28  
R-28  
R-28  
RS-28  
RS-28  
RS-28  
RS-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
ADM211EARUZ-REEL*  
ADM211EARUZ-REEL7*  
ADM213EAR  
ADM213EAR-REEL  
ADM213EARZ*  
ADM213EARZ-REEL*  
ADM213EARS  
ADM213EARS-REEL  
ADM213EARSZ*  
ADM213EARSZ-REEL*  
ADM213EARU  
ADM213EARU-REEL  
ADM213EARU-REEL7  
ADM213EARUZ*  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SSOP  
SSOP  
SSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
R-28  
R-28  
R-28  
R-28  
RS-28  
RS-28  
RS-28  
RS-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
ADM213EARUZ-REEL*  
ADM213EARUZ-REEL7*  
*Z = Pb-free part.  
–4–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
T3  
T1  
T2  
1
2
3
4
5
6
7
8
9
24  
T4  
1
2
3
4
5
6
7
8
9
OUT  
OUT  
OUT  
T3  
T1  
T2  
24  
23  
22  
T4  
OUT  
OUT  
OUT  
OUT  
OUT  
23  
R2  
R2  
R2  
R2  
IN  
IN  
22  
OUT  
OUT  
R1  
21  
T5  
IN  
R1  
21 SD  
IN  
IN  
R1  
20 T5  
OUT  
R1  
OUT  
20  
19  
18  
OUT  
EN  
ADM207E  
ADM206E  
T2  
T1  
19  
18  
T4  
T3  
IN  
T2  
T1  
T4  
TOP VIEW  
IN  
IN  
IN  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
IN  
IN  
T3  
IN  
IN  
GND  
17 R3  
GND  
17 R3  
OUT  
OUT  
V
R3  
16  
CC  
V
IN  
R3  
V–  
16  
15  
14  
13  
CC  
IN  
C1+ 10  
V+ 11  
15 V–  
C1+ 10  
V+ 11  
C2–  
14  
13  
C2–  
C2+  
12  
C1–  
C2+  
C1– 12  
Figure 1. ADM206E DIP/SOIC/SSOP Pin Configuration  
Figure 3. ADM207E Pin Configuration  
5V INPUT  
5V INPUT  
V
9
10  
12  
C1+  
C1–  
+5V TO +10V  
VOLTAGE  
DOUBLER  
CC  
0.1F  
10V  
0.1F  
6.3V  
0.1F  
C1+  
C1–  
V
9
10  
12  
+5V TO +10V  
VOLTAGE  
DOUBLER  
CC  
0.1F  
11  
V+  
0.1F  
0.1F  
6.3V  
6.3V  
V+  
11  
13 C2+  
14 C2–  
+10V TO –10V  
VOLTAGE  
INVERTER  
0.1F  
10V  
V– 15  
0.1F  
10V  
C2+  
C2–  
13  
14  
+10V TO –10V  
VOLTAGE  
INVERTER  
0.1F  
16V  
V–  
15  
0.1F  
16V  
T1  
T1  
T1  
T2  
T3  
T4  
2
3
7
6
IN  
OUT  
OUT  
T1  
T1  
T1  
T2  
2
3
1
7
6
IN  
OUT  
T2  
T3  
T4  
T5  
T2  
IN  
IN  
IN  
T2  
T3  
T4  
T2  
IN  
IN  
IN  
OUT  
TTL/CMOS  
INPUTS*  
CMOS  
INPUTS*  
RS-232  
OUTPUTS  
EIA/TIA-232  
OUTPUTS  
1
18  
19  
T3  
T4  
OUT  
18  
19  
5
T3  
T4  
T3  
T4  
R1  
R2  
OUT  
24  
OUT  
24  
4
OUT  
T5  
21  
5
T5  
R1  
20  
4
OUT  
IN  
R1  
R1  
OUT  
OUT  
IN  
IN  
R1  
R1  
OUT  
OUT  
IN  
IN  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS**  
R2  
R2  
23  
22  
CMOS  
OUTPUTS  
EIA/TIA-232  
INPUTS**  
R2  
R2  
23  
22  
R2  
R3  
R3  
R3  
17  
20  
16  
21  
IN  
OUT  
R3  
R3  
R3  
17  
16  
IN  
OUT  
SD  
EN  
GND  
ADM206E  
GND  
ADM207E  
8
8
*INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT  
**INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT  
*INTERNAL 400kPULL-UP RESISTOR ON EACH CMOS INPUT  
**INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT  
Figure 2. ADM206E Typical Operating Circuit  
Figure 4. ADM207E Typical Operating Circuit  
REV. D  
–5–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
1
2
3
4
5
6
T3  
28  
27  
26  
25  
24  
23  
22  
21  
T4  
OUT  
OUT  
T1  
T2  
R3  
R3  
OUT  
IN  
T2  
T1  
1
2
24  
23  
22  
21  
20  
19  
T3  
OUT  
OUT  
OUT  
OUT  
R3  
R3  
OUT  
IN  
SHDN  
R2  
R2  
IN  
3
IN  
OUT  
ADM211E  
R2  
EN  
4
OUT  
R2  
T4  
OUT  
IN  
TOP VIEW  
(Not to Scale)  
T1  
5
T2  
T1  
R4  
IN  
T4  
T3  
IN  
IN  
IN  
OUT  
ADM208E  
TOP VIEW  
(Not to Scale)  
6
R1  
OUT  
7
8
R4  
IN  
IN  
OUT  
R1  
7
18 T2  
IN  
T4  
IN  
R1  
OUT  
GND  
8
R4  
R4  
17  
16  
OUT  
T3  
IN  
R1  
9
20  
19  
18  
IN  
9
V
IN  
CC  
R5  
10  
11  
GND  
OUT  
C1+  
10  
11  
12  
15 V–  
R5  
IN  
V
CC  
14  
13  
V+  
C2–  
C2+  
C1+ 12  
V+ 13  
17 V–  
C1–  
16  
15  
C2–  
C2+  
14  
C1–  
Figure 5. ADM208E Pin Configuration  
Figure 7. ADM211E Pin Configuration  
5V INPUT  
C1+  
C1–  
V
11  
13  
12  
14  
+5V TO +10V  
VOLTAGE  
DOUBLER  
CC  
0.1F  
10V  
0.1F  
6.3V  
0.1F  
5V INPUT  
V+  
C1+  
C1–  
V
9
10  
12  
+5V TO +10V  
VOLTAGE  
DOUBLER  
CC  
C2+  
C2–  
0.1F  
10V  
15  
16  
+10V TO –10V  
VOLTAGE  
INVERTER  
0.1F  
6.3V  
0.1F  
0.1F  
10V  
V–  
17  
0.1F  
10V  
V+  
11  
C2+  
C2–  
13  
14  
+10V TO –10V  
VOLTAGE  
V–  
0.1F  
15  
T1  
T1  
T1  
T2  
2
3
1
7
6
IN  
OUT  
0.1F  
10V  
INVERTER  
10V  
T2  
T3  
T4  
T2  
IN  
IN  
IN  
OUT  
CMOS  
EIA/TIA-232  
OUTPUTS  
T1  
T1  
T1  
T2  
2
1
5
IN  
OUT  
INPUTS*  
20  
T3  
T4  
T3  
T4  
R1  
R2  
OUT  
T2  
T3  
T4  
T2  
18  
19  
IN  
IN  
IN  
OUT  
CMOS  
INPUTS*  
EIA/TIA-232  
OUTPUTS  
21  
8
28  
9
OUT  
T3  
T4  
T3  
T4  
R1  
R2  
24  
OUT  
R1  
R1  
OUT  
OUT  
IN  
IN  
21  
6
20  
7
OUT  
R2  
R2  
4
5
R1  
R1  
OUT  
OUT  
IN  
IN  
TTL/CMOS  
OUTPUTS  
EIA/TIA-232  
INPUTS**  
R3  
R4  
26  
22  
R3  
R4  
R5  
R3  
R4  
27  
23  
IN  
OUT  
R2  
R2  
3
4
CMOS  
OUTPUTS  
EIA/TIA-232  
INPUTS**  
IN  
OUT  
R3  
R4  
22  
17  
R3  
R3  
R4  
23  
16  
IN  
OUT  
R5  
R5  
19  
24  
18  
25  
IN  
OUT  
R4  
IN  
OUT  
EN  
SHDN  
GND  
ADM211E  
GND  
ADM208E  
10  
8
*INTERNAL 400kPULL-UP RESISTOR ON EACH CMOS INPUT  
**INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT  
*INTERNAL 400kPULL-UP RESISTOR ON EACH CMOS INPUT  
**INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT  
Figure 6. ADM208E Typical Operating Circuit  
Figure 8. ADM211E Typical Operating Circuit  
–6–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
5V INPUT  
1
2
T3  
28  
27  
26  
25  
24  
23  
22  
T4  
OUT  
OUT  
T1  
T2  
R3  
R3  
C1+  
C1–  
V
11  
13  
12  
14  
+5V TO +10V  
VOLTAGE  
DOUBLER  
OUT  
IN  
CC  
0.1F  
6.3V  
0.1F  
0.1F  
3
OUT  
16V  
OUT  
V+  
4
SHDN  
R2  
IN  
ADM213E  
15 C2+  
16 C2–  
+10V TO –10V  
VOLTAGE  
INVERTER  
R2  
5
EN  
OUT  
V–  
0.1F  
16V  
17  
TOP VIEW  
0.1F  
16V  
6
(Not to Scale)  
R4  
R4  
*
T2  
T1  
IN  
IN  
7
*
*
OUT  
IN  
T1  
T1  
T1  
T2  
2
3
1
7
6
IN  
IN  
IN  
IN  
OUT  
8
21 T4  
R1  
IN  
OUT  
9
20  
19  
18  
17  
16  
15  
T3  
R1  
IN  
IN  
T2  
T3  
T4  
T2  
OUT  
10  
11  
12  
13  
14  
GND  
R5  
R5  
V–  
RS-232  
OUTPUTS  
TTL/CMOS  
OUT  
1
INPUTS  
V
*
CC  
IN  
20  
21  
8
T3  
T4  
R1  
R2  
T3  
T4  
OUT  
C1+  
V+  
28  
9
OUT  
C2–  
C2+  
C1–  
R1  
R1  
R2  
OUT  
OUT  
IN  
*ACTIVE IN SHUTDOWN  
R2  
4
5
IN  
Figure 9. ADM213E Pin Configuration  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
26  
R3  
R4  
R3  
R3  
R4  
R5  
27  
23  
IN  
IN  
OUT  
2
3
3
3
22  
R4  
OUT  
3
R5  
R5  
19  
24  
18  
25  
OUT  
IN  
EN  
ADM213E  
SHDN  
GND  
10  
NOTES  
1
INTERNAL 400kPULL-UP RESISTOR ON EACH CMOS INPUT  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT  
ACTIVE IN SHUTDOWN  
2
3
Figure 10. ADM213E Typical Operating Circuit  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
Function  
VCC  
Power Supply Input: 5 V 10%.  
V+  
Internally Generated Positive Supply (+9 V nominal).  
Internally Generated Negative Supply (–9 V nominal).  
Ground Pin. Must Be Connected to 0 V.  
V–  
GND  
C1+, C1–  
External Capacitor 1 is connected between these pins. 0.1 µF capacitor is recommended but larger capacitors up  
to 47 µF may be used.  
C2+, C2–  
TIN  
External Capacitor 2 is connected between these pins. 0.1 µF capacitor is recommended but larger capacitors up  
to 47 µF may be used.  
Transmitter (Driver) Inputs. These inputs accept TTL/CMOS levels. An internal 400 kpull-up resistor to VCC  
is connected on each input.  
TOUT  
RIN  
Transmitter (Driver) Outputs. These are RS-232 signal levels (Typically 9 V).  
Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 kpull-down resistor to GND is  
connected on each input.  
ROUT  
Receiver Outputs. These are CMOS output logic levels.  
EN/EN  
Receiver Enable (Active High on ADM213E, Active Low on ADM211E); This input is used to enable/disable the  
receiver outputs. With EN = Low ADM211E (EN = High ADM213E), the receiver outputs are enabled. With EN  
= High (EN = Low ADM213E), the receiver outputs are placed in a high impedance state.  
SHDN/SHDN  
Shutdown Control (Active Low on ADM213E, Active High on ADM211E); Refer to Table II. In shutdown the  
charge pump is disabled, the transmitter outputs are turned off and all receiver outputs (ADM211E), receivers R1,  
R2, R3 (ADM213E) are placed in a high impedance state. Receivers R4 and R5 on the ADM213E continue to  
operate normally during shutdown. Power consumption in shutdown for all parts reduces to 5 µW.  
REV. D  
–7–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
Typical Performance Characteristics  
80  
80  
70  
60  
50  
70  
60  
50  
LIMIT  
LIMIT  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0.3  
0.6  
1
3
6
18  
30  
START 30.0 MHz  
STOP 200.0 MHz  
LOG FREQUENCY – MHz  
TPC 1. EMC Conducted Emissions  
TPC 4. EMC Radiated Emissions  
9
7
9
7
5
3
1
Tx O/P HI LOADED  
Tx O/P HI  
5
3
1
–1  
–3  
–5  
–7  
–9  
–1  
–3  
–5  
–7  
Tx O/P LO  
Tx O/P LO LOADED  
4.0  
4.5  
5.0  
– V  
5.5  
6.0  
500  
1000  
1500  
2000  
2500  
3000  
0
V
LOAD CAPACITANCE – pF  
CC  
TPC 2. Transmitter Output Voltage High/Low vs.  
Load Capacitance @ 230 kbps  
TPC 5. Transmitter Output Voltage vs. VCC  
15  
10  
T
T
SD  
V+  
1
Tx O/P HI  
5
0
2
T
3
–5  
Tx O/P LO  
–10  
–15  
V–  
0
2
4
10  
6
8
CH 2  
5.00V  
M 50.0µs  
CH 1  
CH 3  
5.00V  
5.00V  
CH 1  
3.1V  
LOAD CURRENT – mA  
V+, V– EXITING SD  
TPC 3. Transmitter Output Voltage vs. Load Current  
TPC 6. Charge Pump V+, V– Exiting Shutdown  
–8–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
350  
300  
250  
200  
150  
100  
50  
15  
V+  
10  
V–  
5
0
V+  
–5  
V–  
–10  
–15  
0
4.5  
5.1  
5.3  
5.5  
4.7  
4.9  
0
5
10  
15  
20  
V
– V  
LOAD CURRENT– mA  
CC  
TPC 8. Charge Pump V+, V– vs. Current  
TPC 7. Charge Pump Impedance vs. VCC  
REV. D  
–9–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
GENERAL DESCRIPTION  
The ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
are ruggedized RS-232 line drivers/receivers which operate from  
a single 5 V supply. Step-up voltage converters coupled with level  
S3  
S4  
S1  
S2  
V+  
GND  
FROM  
VOLTAGE  
C4  
C2  
DOUBLER  
GND  
V– = –(V+)  
shifting transmitters and receivers allow RS-232 levels to be devel-  
oped while operating from a single 5 V supply.  
INTERNAL  
OSCILLATOR  
Features include low power consumption, high transmission rates,  
and compatibility with the EU directive on electromagnetic  
compatibility. EM compatibility includes protection against  
radiated and conducted interference, including high levels of  
electrostatic discharge.  
Figure 12. Charge Pump Voltage Inverter  
Transmitter (Driver) Section  
The drivers convert 5 V logic input levels into EIA-232 output  
levels. With VCC = 5 V and driving an EIA-232 load, the output  
voltage swing is typically 9 V.  
All RS-232 inputs and outputs contain protection against electro-  
static discharges up to 15 kV and electrical fast transients up to  
2 kV. This ensures compliance to IE1000-4-2 and IEC1000-4-4  
requirements.  
Unused inputs may be left unconnected, as an internal 400 kΩ  
pull-up resistor pulls them high forcing the outputs into a low  
state. The input pull-up resistors typically source 8 µA when  
grounded, so unused inputs should either be connected to VCC  
or left unconnected in order to minimize power consumption.  
The devices are ideally suited for operation in electrically  
harsh environments or where RS-232 cables are frequently being  
unplugged. They are also immune to high RF field strengths  
without special shielding precautions.  
Receiver Section  
The receivers are inverting level shifters which accept EIA-232  
input levels and translate them into 5 V logic output levels.  
The inputs have internal 5 kpull-down resistors to ground  
and are also protected against overvoltages of up to 25 V.  
The guaranteed switching thresholds are 0.4 V minimum and  
2.4 V maximum. Unconnected inputs are pulled to 0 V by the  
internal 5 kpull-down resistor. This, therefore, results in  
a Logic 1 output level for unconnected inputs or for inputs  
connected to GND.  
Emissions are also controlled to within very strict limits. CMOS  
technology is used to keep the power dissipation to an absolute  
minimum allowing maximum battery life in portable applications.  
The ADMxxE is a modification, enhancement, and improve-  
ment to the AD230–AD241 family and its derivatives. It is  
essentially plug-in compatible and does not have materially  
different applications.  
CIRCUIT DESCRIPTION  
The internal circuitry consists of four main sections.  
The receivers have Schmitt trigger input with a hysteresis level  
of 0.65 V. This ensures error-free reception for both noisy  
inputs and for inputs with slow transition times.  
1. A charge pump voltage converter  
2. 5 V logic to EIA-232 transmitters  
3. EIA-232 to 5 V logic receivers  
ENABLE AND SHUTDOWN  
Table II and Table III show the truth tables for the enable and  
shutdown control signals. The enable function is intended to  
facilitate data bus connections where it is desirable to three-state  
the receiver outputs. In the disabled mode, all receiver outputs  
are placed in a high impedance state. The shutdown function is  
intended to shut the device down, thereby minimizing the quies-  
cent current. In shutdown, all transmitters are disabled and all  
receivers on the ADM211E are three-stated. On the ADM213E,  
receivers R4 and R5 remain enabled in shutdown. Note that the  
transmitters are disabled but are not three-stated in shutdown,  
so it is not permitted to connect multiple (RS-232) driver out-  
puts together.  
4. Transient protection circuit on all I-O lines  
Charge Pump DC-DC Voltage Converter  
The charge pump voltage converter consists of an 200 kHz  
oscillator and a switching matrix. The converter generates a  
10 V supply from the input 5 V level. This is done in two  
stages using a switched capacitor technique as illustrated below.  
First, the 5 V input supply is doubled to 10 V using capacitor  
C1 as the charge storage element. The 10 V level is then inverted  
to generate –10 V using C2 as the storage element.  
Capacitors C3 and C4 are used to reduce the output ripple. If  
desired, larger capacitors (up to 47 µF) can be used for capaci-  
tors C1–C4. This facilitates direct substitution with older  
generation charge pump RS-232 transceivers.  
The shutdown feature is very useful in battery-operated systems  
since it reduces the power consumption to 1 µW. During shut-  
down the charge pump is also disabled. The shutdown control  
input is active high on the ADM211E, and it is active low on  
the ADM213E. When exiting shutdown, the charge pump is  
restarted and it takes approximately 100 µs for it to reach its  
steady state operating condition.  
The V+ and V– supplies may also be used to power external  
circuitry if the current requirements are small. Please refer to  
TPC 9 in the Typical Performance Characteristics section.  
S1  
S3  
V
V+ = 2V  
CC  
CC  
C3  
C1  
S2  
S4  
V
GND  
CC  
INTERNAL  
OSCILLATOR  
Figure 11. Charge Pump Voltage Doubler  
–10–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
High Baud Rate  
R1  
The ADM2xxE feature high slew rates permitting data transmis-  
sion at rates well in excess of the EIA-232-E specifications.  
RS-232 levels are maintained at data rates up to 230 kb/s even  
under worst case loading conditions. This allows for high speed  
data links between two terminals, making it suitable for the new  
generation modem standards which require data rates of 200 kb/s.  
The slew rate is internally controlled to less than 30 V/µs to  
minimize EMI interference.  
RECEIVER  
INPUT  
RX  
D1  
D2  
R
IN  
Figure 15a. Receiver Input Protection Scheme  
3V  
EN INPUT  
T
OUT  
TRANSMITTER  
OUTPUT  
RX  
0V  
D1  
D2  
tDR  
VOH  
VOH –0.1V  
RECEIVER  
OUTPUT  
Figure 15b. Transmitter Output Protection Scheme  
VOL +0.1V  
ESD TESTING (IEC1000-4-2)  
VOL  
IEC1000-4-2 (previously 801-2) specifies compliance testing  
using two coupling methods, contact-discharge and air-gap  
discharge. Contact discharge calls for a direct connection to the  
unit being tested. Air-gap discharge uses a higher test voltage  
but does not make direct contact with the unit under test. With  
air discharge, the discharge gun is moved toward the unit under  
test, developing an arc across the air gap; hence the term air  
discharge. This method is influenced by humidity, temperature,  
barometric pressure, distance, and rate of closure of the discharge  
gun. The contact-discharge method, while less realistic, is more  
repeatable, and is gaining acceptance in preference to the air-  
gap method.  
NOTE:  
EN IS THE COMPLEMENT OF EN FOR THE ADM213E  
Figure 13. Receiver Disable Timing  
3V  
EN INPUT  
0V  
tER  
+3.5V  
RECEIVER  
OUTPUT  
Although very little energy is contained within an ESD pulse,  
the extremely fast rise time, coupled with high voltages, can  
cause failures in unprotected semiconductors. Catastrophic  
destruction can occur immediately as a result of arcing or heat-  
ing. Even if catastrophic failure does not occur immediately, the  
device may suffer from parametric degradation that may result in  
degraded performance. The cumulative effects of continuous  
exposure can eventually lead to complete failure.  
+0.8V  
NOTE:  
EN IS THE COMPLEMENT OF EN FOR THE ADM213E  
Figure 14. Receiver Enable Timing  
ESD/EFT Transient Protection Scheme  
The ADM2xxE use protective clamping structures on all  
inputs and outputs that clamp the voltage to a safe level and  
dissipates the energy present in ESD (electrostatic) and EFT  
(electrical fast transients) discharges. A simplified schematic of  
the protection structure is shown in Figures 15a and 15b.  
Each input and output contains two back-to-back high speed  
clamping diodes. During normal operation, with maximum  
RS-232 signal levels, the diodes have no effect as one or the  
other is reverse-biased, depending on the polarity of the signal.  
If, however, the voltage exceeds about 50 V, reverse breakdown  
occurs and the voltage is clamped at this level. The diodes are  
large p-n junctions designed to handle the instantaneous cur-  
rent surge which can exceed several amperes.  
I-O lines are particularly vulnerable to ESD damage. Simply  
touching or plugging in an I-O cable can result in a static  
discharge that can damage or destroy the interface product  
connected to the I-O port. Traditional ESD test methods such  
as the MIL-STD-883B method 3015.7 do not fully test a  
product’s susceptibility to this type of discharge. This test was  
intended to test a product’s susceptibility to ESD damage dur-  
ing handling. Each pin is tested with respect to all other pins.  
There are some important differences between the traditional  
test and the IEC test:  
(a) The IEC test is much more stringent in terms of discharge  
(
energy. The peak current injected is over four times greater.  
(b) The current rise time is significantly faster in the IEC test.  
(c) The IEC test is carried out while power is applied to the device.  
The transmitter outputs and receiver inputs have a similar pro-  
tection structure. The receiver inputs can also dissipate some of  
the energy through the internal 5 kresistor to GND as well as  
through the protection diodes.  
It is possible that the ESD discharge could induce latch-up in  
the device under test. This test, therefore, is more representative  
of a real-world I-O discharge where the equipment is operating  
normally with power applied. For maximum peace of mind, how-  
ever, both tests should be performed, thus ensuring maximum  
protection both during handling and later during field service.  
The protection structure achieves ESD protection up to 15 kV  
and EFT protection up to 2 kV on all RS-232 I-O lines. The  
methods used to test the protection scheme are discussed later.  
REV. D  
–11–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
R1  
R2  
Table IV. IEC1000-4-2 Compliance Levels  
HIGH  
VOLTAGE  
GENERATOR  
Contact Discharge Air Discharge  
DEVICE  
UNDER TEST  
C1  
Level  
(kV)  
(kV)  
1
2
3
4
2
4
6
8
2
4
8
15  
ESD TEST METHOD  
H. BODY MIL-STD883B  
IEC1000-4-2  
R2  
C1  
1.5kꢂ  
330ꢂ  
100pF  
150pF  
Figure 16. ESD Test Standards  
Table V. ADM2xxE ESD Test Results  
ESD Test Method  
I-O Pin (kV)  
100  
90  
MIL-STD-883B  
IEC1000-4-2  
Contact  
15  
8
Air  
15  
FAST TRANSIENT BURST TESTING (IEC1000-4-4)  
IEC1000-4-4 (previously 801-4) covers electrical fast transient  
burst (EFT) immunity. Electrical fast transients occur as a  
result of arcing contacts in switches and relays. The tests simu-  
late the interference generated when, for example, a power relay  
disconnects an inductive load. A spark is generated due to the  
well known back EMF effect. In fact, the spark consists of a burst  
of sparks as the relay contacts separate. The voltage appear-  
ing on the line, therefore, consists of a burst of extremely fast  
transient impulses. A similar effect occurs when switching on  
fluorescent lights.  
36.8  
10  
tDL  
tRL  
TIME t  
Figure 17. Human Body Model ESD Current Waveform  
100  
90  
The fast transient burst test defined in IEC1000-4-4 simulates  
this arcing, and its waveform is illustrated in Figure 19. It consists  
of a burst of 2.5 kHz to 5 kHz transients repeating at 300 ms  
intervals. It is specified for both power and data lines.  
V
10  
0.1 TO 1ns  
TIME t  
t
30ns  
60ns  
300ms  
15ms  
Figure 18. IEC1000-4-2 ESD Current Waveform  
5ns  
V
ADM2xxE products are tested using both of the above mentioned  
test methods. All pins are tested with respect to all other pins as  
per the MIL-STD-883B specification. In addition, all I-O pins  
are tested per the IEC test specification. The products are tested  
under the following conditions:  
50ns  
t
(a) Power-On—Normal Operation  
(b) Power-On—Shutdown Mode  
(c) Power-Off  
0.2/0.4ms  
Figure 19. IEC1000-4-4 Fast Transient Waveform  
There are four levels of compliance defined by IEC1000-4-2.  
ADM2xxE products meet the most stringent compliance level  
for both contact and for air-gap discharge. This means that the  
products are able to withstand contact discharges in excess of  
8 kV and air-gap discharges in excess of 15 kV.  
–12–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
Table VI.  
Testing for immunity involves irradiating the device with an EM  
field. There are various methods of achieving this, including use  
V Peak (kV)  
PSU  
V Peak (kV)  
I-O  
of anechoic chamber, stripline cell, TEM cell, GTEM cell. A  
stripline cell consists of two parallel plates with an electric field  
developed between them. The device under test is placed within  
the cell and exposed to the electric field. There are three severity  
levels having field strengths ranging from 1 V to 10 V/m. Results  
are classified in a similar fashion to those for IEC1000-4-4.  
Level  
1
2
3
4
0.5  
1
2
0.25  
0.5  
1
4
2
1. Normal operation  
A simplified circuit diagram of the actual EFT generator is  
illustrated in Figure 20.  
2. Temporary degradation or loss of function that is self-  
recoverable when the interfering signal is removed  
The transients are coupled onto the signal lines using an EFT  
coupling clamp. The clamp is 1 m long and it completely sur-  
rounds the cable providing maximum coupling capacitance  
(50 pF to 200 pF typ) between the clamp and the cable. High  
energy transients are capacitively coupled onto the signal lines.  
Fast rise times (5 ns) as specified by the standard result in very  
effective coupling. This test is very severe since high voltages are  
coupled onto the signal lines. The repetitive transients can often  
cause problems where single pulses do not. Destructive latch-up  
may be induced due to the high energy content of the transients.  
Note that this stress is applied while the interface products are  
powered up and are transmitting data. The EFT test applies  
hundreds of pulses with higher energy than ESD. Worst-case  
transient current on an I-O line can be as high as 40 A.  
3. Temporary degradation or loss of function that requires  
operator intervention or system reset when the interfering  
signal is removed  
4. Degradation or loss of function that is not recoverable due to  
damage  
The ADM2xxE family of products easily meets Classification 1  
at the most stringent (Level 3) requirement. In fact, field strengths  
up to 30 V/m showed no performance degradation, and error-  
free data transmission continued even during irradiation.  
Table VII. Test Severity Levels (IEC1000-4-3)  
Field Strength  
Level  
V/m  
Test results are classified according to the following:  
1. Normal performance within specification limits  
1
2
3
1
3
10  
2. Temporary degradation or loss of performance that is self-  
recoverable  
3. Temporary degradation or loss of function or performance  
that requires operator intervention or system reset  
EMISSIONS/INTERFERENCE  
EN55 022, CISPR22 defines the permitted limits of radiated  
and conducted interference from information technology (IT)  
equipment. The objective of the standard is to minimize the  
level of emissions both conducted and radiated.  
4. Degradation or loss of function that is not recoverable due to  
damage  
ADM2xxE products have been tested under worst-case condi-  
tions using unshielded cables, and meet Classification 2. Data  
transmission during the transient condition is corrupted, but it  
may be resumed immediately following the EFT event without  
user intervention.  
For ease of measurement and analysis, conducted emissions are  
assumed to predominate below 30 MHz and radiated emissions  
are assumed to predominate above 30 MHz.  
CONDUCTED EMISSIONS  
This is a measure of noise that is conducted onto the line  
power supply. Switching transients from the charge pump that  
are 20 V in magnitude and containing significant energy can  
lead to conducted emissions. Other sources of conducted emis-  
sions can be due to overlap in switch on times in the charge  
pump voltage converter. In the voltage doubler shown below, if  
S2 has not fully turned off before S4 turns on, this results in a  
transient current glitch between VCC and GND which results in  
conducted emissions. It is therefore important that the switches  
in the charge pump guarantee break-before-make switching  
under all conditions so that instantaneous short-circuit condi-  
tions do not occur.  
C
R
D
L
R
M
HIGH  
VOLTAGE  
SOURCE  
C
50ꢂ  
OUTPUT  
Z
C
S
C
Figure 20. IEC1000-4-4 Fast Transient Generator  
IEC1000-4-3 RADIATED IMMUNITY  
IEC1000-4-3 (previously IEC801-3) describes the measure-  
ment method and defines the levels of immunity to radiated  
electromagnetic fields. It was originally intended to simulate the  
electromagnetic fields generated by portable radio transceivers  
or any other device that generates continuous wave radiated  
electromagnetic energy. Its scope has since been broadened to  
include spurious EM energy which can be radiated from fluores-  
cent lights, thyristor drives, inductive loads, etc.  
The ADM2xxE have been designed to minimize the switching  
transients and ensure break-before-make switching thereby  
minimizing conducted emissions. This has resulted in the  
level of emissions being well below the limits required by the  
specification. No additional filtering/decoupling other than the  
recommended 0.1 µF capacitor is required.  
REV. D  
–13–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
RADIATED EMISSIONS  
Conducted emissions are measured by monitoring the line power  
supply. The equipment used consists of a LISN (line impedance  
stabilizing network) which essentially presents a fixed impedance at  
RF, and a spectrum analyzer. The spectrum analyzer scans for  
emissions up to 30 MHz. A plot for the ADM211E is shown in  
Figure 23.  
Radiated emissions are measured at frequencies in excess of  
30 MHz. RS-232 outputs designed for operation at high baud  
rates while driving cables can radiate high frequency EM energy.  
The reasons already discussed which cause conducted emissions  
can also be responsible for radiated emissions. Fast RS-232  
output transitions can radiate interference, especially when  
lightly loaded and driving unshielded cables. Charge pump  
devices are also prone to radiating noise due to the high frequency  
oscillator and high voltages being switched by the charge pump.  
The move towards smaller capacitors in order to conserve  
board space has resulted in higher frequency oscillators being  
employed in the charge pump design. This has resulted in higher  
levels of emission, both conducted and radiated.  
S1  
S3  
V
V+ = 2V  
CC  
CC  
C3  
C1  
S2  
S4  
V
GND  
CC  
INTERNAL  
OSCILLATOR  
The RS-232 outputs on the ADM2xxE products feature a  
controlled slew rate in order to minimize the level of radiated  
emissions, yet are fast enough to support data rates up to  
230 kBaud.  
Figure 21. Charge Pump Voltage Doubler  
ø
ø
1
RADIATED NOISE  
DUT  
2
TO  
RECEIVER  
SWITCHING GLITCHES  
ADJUSTABLE  
ANTENNA  
TURNTABLE  
Figure 22. Switching Glitches  
Figure 24. Radiated Emissions Test Setup  
80  
Figure 25 shows a plot of radiated emissions versus frequency.  
This shows that the levels of emissions are well within specifica-  
tions without the need for any additional shielding or filtering  
components. The ADM2xxE were operated at maximum  
baud rates and configured in a typical RS-232 interface.  
70  
60  
50  
LIMIT  
Testing for radiated emissions was carried out in a shielded  
anechoic chamber.  
40  
30  
20  
10  
0
80  
70  
60  
50  
0.3  
0.6  
1
3
6
18  
30  
LOG FREQUENCY – MHz  
Figure 23. Conducted Emissions Plot  
LIMIT  
40  
30  
20  
10  
0
START 30.0 MHz  
STOP 200.0 MHz  
Figure 25. Radiated Emissions Plot  
–14–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
OUTLINE DIMENSIONS  
24-Lead Plastic Dual In-Line Package [PDIP]  
(N-24)  
Dimensions shown in inches and (millimeters)  
1.185 (30.01)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.99)  
1.165 (29.59)  
1.145 (29.08)  
24  
1
13  
12  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.180  
(4.57)  
MAX  
0.015 (0.38) MIN  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.100  
(2.54)  
BSC  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.060 (1.52) SEATING  
0.050 (1.27)  
0.045 (1.14)  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-095AG  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
24-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(R-24)  
Dimensions shown in millimeters and (inches)  
15.60 (0.6142)  
15.20 (0.5984)  
24  
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
45ꢃ  
0.30 (0.0118)  
0.10 (0.0039)  
8ꢃ  
0ꢃ  
0.51 (0.0201) SEATING  
0.31 (0.0122)  
1.27 (0.0500)  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COPLANARITY  
0.10  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-013AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. D  
–15–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
OUTLINE DIMENSIONS  
28-Lead Standard Small Outline Package [SOIC]  
Wide Body  
(R-28)  
Dimensions shown in millimeters and (inches)  
18.10 (0.7126)  
17.70 (0.6969)  
28  
1
15  
14  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
2.65 (0.1043)  
2.35 (0.0925)  
0.75 (0.0295)  
0.25 (0.0098)  
45ꢃ  
0.30 (0.0118)  
0.10 (0.0039)  
8ꢃ  
0ꢃ  
1.27 (0.0500) 0.51 (0.0201) SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COPLANARITY  
0.10  
PLANE  
BSC  
0.31 (0.0122)  
COMPLIANT TO JEDEC STANDARDS MS-013AE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
24-Lead Shrink Small Outline Package [SSOP]  
(RS-24)  
Dimensions shown in millimeters  
8.50  
8.20  
7.90  
24  
1
13  
12  
8.20  
7.80  
7.40  
5.60  
5.30  
5.00  
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.95  
0.75  
0.55  
8ꢃ  
4ꢃ  
0ꢃ  
0.25  
0.09  
0.65  
BSC  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AG  
–16–  
REV. D  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
OUTLINE DIMENSIONS  
28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
10.50  
10.20  
9.90  
28  
15  
5.60 8.20  
5.30 7.80  
5.00 7.40  
14  
1
1.85  
0.10  
COPLANARITY  
1.75  
1.65  
2.00 MAX  
0.25  
0.09  
8ꢃ  
4ꢃ  
0ꢃ  
0.95  
0.75  
0.55  
0.38  
0.22  
0.65  
BSC  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8ꢃ  
0ꢃ  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153AD  
REV. D  
–17–  
ADM206E/ADM207E/ADM208E/ADM211E/ADM213E  
OUTLINE DIMENSIONS  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8ꢃ  
0ꢃ  
0.30  
0.19  
0.20  
0.09  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153AE  
Revision History  
Location  
Page  
4/05—Data Sheet changed from REV. C to REV. D.  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3/01—Data Sheet changed from REV. B to REV. C.  
Features  
Change 460 kbits/s to 230 kbits/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Specifications Table  
Changed in Min, Typ, Max, Test Conditions/Comments columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings  
Deleted some items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Figures  
Change made in Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Performance Characteristics  
Changes made in plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8  
Table V.  
Column removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
–18–  
REV. D  
–19–  
–20–  

相关型号:

ADM207EARU

EMI/EMC Compliant, +-15 kV ESD Protected, RS-232 Line Drivers/Receivers
ADI

ADM207EARU

TRIPLE LINE TRANSCEIVER, PDSO24, MO-153AD, TSSOP-24
ROCHESTER

ADM207EARU-REEL

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers
ADI

ADM207EARU-REEL

TRIPLE LINE TRANSCEIVER, PDSO24, MO-153AD, TSSOP-24
ROCHESTER

ADM207EARU-REEL7

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers
ADI

ADM207EARUZ

EMI/EMC Compliant, ±15kV Protected, 230kBPS, RS-232 Transceiver with 5 Drivers & 3 Receivers
ADI

ADM207EARUZ-REEL71

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers
ADI

ADM207EARUZ1

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers
ADI

ADM207EARZ

EMI/EMC Compliant, ±15kV Protected, 230kBPS, RS-232 Transceiver with 5 Drivers & 3 Receivers
ADI

ADM207EARZ

TRIPLE LINE TRANSCEIVER, PDSO24, LEAD FREE, MS-013AD, SOIC-24
ROCHESTER

ADM207EARZ-REEL

EMI/EMC Compliant, ±15kV Protected, 230kBPS, RS-232 Transceiver with 5 Drivers & 3 Receivers
ADI

ADM207EARZ-REEL1

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers
ADI