ADR439ARMZ [ROCHESTER]

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.5 V, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8;
ADR439ARMZ
型号: ADR439ARMZ
厂家: Rochester Electronics    Rochester Electronics
描述:

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.5 V, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8

光电二极管 输出元件
文件: 总25页 (文件大小:2809K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise XFET Voltage References  
with Current Sink and Source Capability  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
PIN CONFIGURATIONS  
FEATURES  
Low noise (0.1 Hz to 10.0 Hz): 3.5 μV p-p @ 2.5 V output  
No external capacitor required  
Low temperature coefficient  
A Grade: 10 ppm/°C maximum  
B Grade: 3 ppm/°C maximum  
Load regulation: 15 ppm/mA  
Line regulation: 20 ppm/V  
TP  
1
2
3
4
8
7
6
5
TP  
ADR43x  
TOP VIEW  
(Not to Scale)  
V
NC  
IN  
NC  
V
OUT  
GND  
TRIM  
NOTES  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
Figure 1. 8-Lead MSOP (RM-8)  
Wide operating range  
ADR430: 4.1 V to 18 V  
TP  
1
2
3
4
8
7
6
5
TP  
ADR431: 4.5 V to 18 V  
ADR433: 5.0 V to 18 V  
ADR434: 6.1 V to 18 V  
ADR435: 7.0 V to 18 V  
ADR43x  
TOP VIEW  
(Not to Scale)  
V
NC  
IN  
NC  
V
OUT  
GND  
TRIM  
NOTES  
ADR439: 6.5 V to 18 V  
High output source and sink current: +30 mA and −20 mA  
Wide temperature range: −40°C to +125°C  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
Figure 2. 8-Lead SOIC_N (R-8)  
APPLICATIONS  
Precision data acquisition systems  
High resolution data converters  
Medical instruments  
Industrial process control systems  
Optical control circuits  
Precision instruments  
GENERAL DESCRIPTION  
The ADR43x series is a family of XFET® voltage references  
featuring low noise, high accuracy, and low temperature drift  
performance. Using Analog Devices, Inc., patented temperature  
drift curvature correction and XFET (eXtra implanted junction  
FET) technology, voltage change vs. temperature nonlinearity in  
the ADR43x is minimized.  
Table 1. Selection Guide  
Temperature  
Coefficient  
(ppm/°C)  
Output  
Voltage (V)  
Model  
Accuracy (mV)  
ADR430A  
ADR430B  
ADR431A  
ADR431B  
ADR433A  
ADR433B  
ADR434A  
ADR434B  
ADR435A  
ADR435B  
ADR439A  
ADR439B  
2.048  
2.048  
2.500  
2.500  
3.000  
3.000  
4.096  
4.096  
5.000  
5.000  
4.500  
4.500  
3
1
3
1
4
1.5  
5
1.5  
6
2
10  
3
10  
3
10  
3
10  
3
10  
3
10  
3
The XFET references operate at lower current (800 μA) and  
lower supply voltage headroom (2 V) than buried Zener  
references. Buried Zener references require more than 5 V  
headroom for operation. The ADR43x XFET references are  
the only low noise solutions for 5 V systems.  
The ADR43x family has the capability to source up to 30 mA of  
output current and sink up to 20 mA. It also comes with a trim  
terminal to adjust the output voltage over a 0.5% range without  
compromising performance.  
5.5  
2
The ADR43x is available in 8-lead MSOP and 8-lead narrow  
SOIC packages. All versions are specified over the extended  
industrial temperature range of −40°C to +125°C.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2003–2009 Analog Devices, Inc. All rights reserved.  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
TABLE OF CONTENTS  
Noise Performance..................................................................... 15  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR430 Electrical Characteristics............................................. 3  
ADR431 Electrical Characteristics............................................. 4  
ADR433 Electrical Characteristics............................................. 5  
ADR434 Electrical Characteristics............................................. 6  
ADR435 Electrical Characteristics............................................. 7  
ADR439 Electrical Characteristics............................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 15  
Basic Voltage Reference Connections...................................... 15  
High Frequency Noise ............................................................... 15  
Turn-On Time ............................................................................ 16  
Applications Inforamtion .............................................................. 17  
Output Adjustment .................................................................... 17  
Reference for Converters in Optical Network Control  
Circuits......................................................................................... 17  
Negative Precision Reference Without Precision Resistors.. 17  
High Voltage Floating Current Source.................................... 18  
Kelvin Connection ..................................................................... 18  
Dual Polarity References ........................................................... 18  
Programmable Current Source ................................................ 19  
Programmable DAC Reference Voltage .................................. 19  
Precision Voltage Reference for Data Converters.................. 20  
Precision Boosted Output Regulator....................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
REVISION HISTORY  
9/04—Rev. A to Rev. B  
1/09—Rev. D to Rev. E  
Added New Grade..............................................................Universal  
Changes to Specifications.................................................................3  
Replaced Figure 3, Figure 4, Figure 5........................................... 10  
Updated Ordering Guide .............................................................. 21  
Added High Frequency Noise Section and Equation 3;  
Renumbered Sequentially.............................................................. 15  
Inserted Figure 31, Figure 32, and Figure 33; Renumbered  
Sequentially ..................................................................................... 16  
Changes to the Ordering Guide.................................................... 22  
6/04—Rev. 0 to Rev. A  
Changes to Format .............................................................Universal  
Changes to the Ordering Guide ................................................... 20  
12/07—Rev. C to Rev. D  
Changes to Initial Accuracy and Ripple Rejection Ratio  
Parameters in Table 2 through Table 7 .......................................... 3  
Changes to Table 9............................................................................ 9  
Changes to Theory of Operation Section.................................... 15  
Updated Outline Dimensions....................................................... 20  
12/03—Revision 0: Initial Version  
8/06—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 1  
Changes to Table 3............................................................................ 4  
Changes to Table 4............................................................................ 5  
Changes to Table 7............................................................................ 8  
Changes to Figure 26...................................................................... 14  
Changes to Figure 31...................................................................... 16  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 21  
Rev. E | Page 2 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
SPECIFICATIONS  
ADR430 ELECTRICAL CHARACTERISTICS  
VIN = 4.1 V to 18 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
2.045 2.048 2.051  
2.047 2.048 2.049  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
3
0.15  
1
mV  
%
mV  
%
B Grade  
0.05  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
5
10  
3
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
∆VO/∆VIN VIN = 4.1 V to 18 V, −40°C < TA < +125°C  
20  
15  
15  
800  
∆VO/∆IL  
∆VO/∆IL  
IIN  
IL = 0 mA to 10 mA, VIN = 5.0 V, −40°C < TA < +125°C  
IL = −10 mA to 0 mA, VIN = 5.0 V, −40°C < TA < +125°C  
QUIESCENT CURRENT  
No load, −40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
560  
3.5  
60  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
tR  
CL = 0 μF  
10  
∆VO  
1000 hours  
40  
ppm  
VO_HYS  
RRR  
ISC  
20  
ppm  
fIN = 1 kHz  
–70  
40  
dB  
mA  
SUPPLY VOLTAGE  
OPERATING RANGE  
VIN  
4.1  
2
18  
V
V
SUPPLY VOLTAGE HEADROOM  
VIN − VO  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. E | Page 3 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR431 ELECTRICAL CHARACTERISTICS  
VIN = 4.5 V to 18 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
2.497 2.500 2.503  
2.499 2.500 2.501  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
3
0.12  
1
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
5
10  
3
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
∆VO/∆VIN VIN = 4.5 V to 18 V, −40°C < TA < +125°C  
20  
15  
15  
800  
∆VO/∆IL  
∆VO/∆IL  
IIN  
IL = 0 mA to 10 mA, VIN = 5.0 V, −40°C < TA < +125°C  
IL = −10 mA to 0 mA, VIN = 5.0 V, −40°C < TA < +125°C  
QUIESCENT CURRENT  
No load, −40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
580  
3.5  
80  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
tR  
CL = 0 μF  
10  
∆VO  
1000 hours  
40  
ppm  
VO_HYS  
RRR  
ISC  
20  
ppm  
fIN = 1 kHz  
−70  
40  
dB  
mA  
SUPPLY VOLTAGE  
OPERATING RANGE  
VIN  
4.5  
2
18  
V
V
SUPPLY VOLTAGE HEADROOM  
VIN − VO  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. E | Page 4 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR433 ELECTRICAL CHARACTERISTICS  
VIN = 5.0 V to 18 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
2.996  
3.000 3.004  
V
V
B Grade  
2.9985 3.000 3.0015  
INITIAL ACCURACY  
A Grade  
VOERR  
4
mV  
%
mV  
%
0.13  
1.5  
0.05  
B Grade  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
5
10  
3
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
∆VO/∆VIN VIN = 5 V to 18 V, −40°C < TA < +125°C  
20  
15  
15  
800  
∆VO/∆IL  
∆VO/∆IL  
IIN  
IL = 0 mA to 10 mA, VIN = 6 V, −40°C < TA < +125°C  
IL = −10 mA to 0 mA, VIN = 6 V, −40°C < TA < +125°C  
QUIESCENT CURRENT  
No load, −40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
590  
3.75  
90  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
tR  
CL = 0 μF  
10  
∆VO  
1000 hours  
40  
ppm  
VO_HYS  
RRR  
ISC  
20  
ppm  
fIN = 1 kHz  
−70  
40  
dB  
mA  
SUPPLY VOLTAGE  
OPERATING RANGE  
VIN  
5.0  
2
18  
V
V
SUPPLY VOLTAGE HEADROOM  
VIN − VO  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. E | Page 5 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR434 ELECTRICAL CHARACTERISTICS  
VIN = 6.1 V to 18 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
4.091  
4.096 4.101  
V
V
B Grade  
4.0945 4.096 4.0975  
INITIAL ACCURACY  
A Grade  
VOERR  
5
mV  
%
mV  
%
0.12  
1.5  
0.04  
B Grade  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
5
10  
3
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
∆VO/∆VIN VIN = 6.1 V to 18 V, −40°C < TA < +125°C  
20  
15  
15  
800  
∆VO/∆IL  
∆VO/∆IL  
IIN  
IL = 0 mA to 10 mA, VIN = 7 V, −40°C < TA < +125°C  
IL = −10 mA to 0 mA, VIN = 7 V, −40°C < TA < +125°C  
QUIESCENT CURRENT  
No load, −40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
595  
6.25  
100  
10  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
tR  
CL = 0 μF  
∆VO  
1000 hours  
40  
ppm  
VO_HYS  
RRR  
ISC  
20  
ppm  
fIN = 1 kHz  
−70  
40  
dB  
mA  
SUPPLY VOLTAGE  
OPERATING RANGE  
VIN  
6.1  
2
18  
V
V
SUPPLY VOLTAGE HEADROOM  
VIN − VO  
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. E | Page 6 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR435 ELECTRICAL CHARACTERISTICS  
VIN = 7.0 V to 18 V, IL = 0 mA, TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
4.994 5.000 5.006  
4.998 5.000 5.002  
V
V
B Grade  
INITIAL ACCURACY  
A Grade  
VOERR  
6
0.12  
2
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
5
10  
3
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
∆VO/∆VIN VIN = 7 V to 18 V, −40°C < TA < +125°C  
20  
15  
15  
800  
∆VO/∆IL  
∆VO/∆IL  
IIN  
IL = 0 mA to 10 mA, VIN = 8 V, −40°C < TA < +125°C  
IL = −10 mA to 0 mA, VIN = 8 V, −40°C < TA < +125°C  
QUIESCENT CURRENT  
No load, −40°C < TA < +125°C  
0.1 Hz to 10 Hz  
1 kHz  
620  
8
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
115  
10  
tR  
CL = 0 μF  
∆VO  
1000 hours  
40  
ppm  
ppm  
dB  
VO_HYS  
RRR  
ISC  
20  
fIN = 1 kHz  
−70  
40  
mA  
SUPPLY VOLTAGE OPERATING RANGE VIN  
SUPPLY VOLTAGE HEADROOM VIN − VO  
7.0  
2
18  
V
V
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. E | Page 7 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ADR439 ELECTRICAL CHARACTERISTICS  
VIN = 6.5 V to 18 V, IL = 0 mV, TA = 25°C, unless otherwise noted.  
Table 7.  
Parameter  
OUTPUT VOLTAGE  
A Grade  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
VO  
4.4946 4.500 4.5054  
4.498  
V
V
B Grade  
4.500 4.502  
INITIAL ACCURACY  
A Grade  
VOERR  
5.5  
0.12  
2
mV  
%
mV  
%
B Grade  
0.04  
TEMPERATURE COEFFICIENT  
A Grade  
B Grade  
TCVO  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2
1
5
10  
3
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
∆VO/∆VIN VIN = 6.5 V to 18 V, −40°C < TA < +125°C  
20  
15  
15  
800  
∆VO/∆IL  
∆VO/∆IL  
IIN  
IL = 0 mA to 10 mA, VIN = 6.5 V, −40°C < TA < +125°C  
IL = −10 mA to 0 mA, VIN = 6.5 V, −40°C < TA < +125°C  
QUIESCENT CURRENT  
No load, −40°C < TA < +125°C  
0.1 Hz to 10.0 Hz  
1 kHz  
600  
7.5  
110  
10  
VOLTAGE NOISE  
eN p-p  
eN  
μV p-p  
nV/√Hz  
μs  
VOLTAGE NOISE DENSITY  
TURN-ON SETTLING TIME  
LONG-TERM STABILITY1  
OUTPUT VOLTAGE HYSTERESIS  
RIPPLE REJECTION RATIO  
SHORT CIRCUIT TO GND  
tR  
CL = 0 μF  
∆VO  
1000 hours  
40  
ppm  
ppm  
dB  
VO_HYS  
RRR  
ISC  
20  
fIN = 1 kHz  
−70  
40  
mA  
SUPPLY VOLTAGE OPERATING RANGE VIN  
SUPPLY VOLTAGE HEADROOM VIN − VO  
6.5  
2
18  
V
V
1 The long-term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
Rev. E | Page 8 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 8.  
Parameter  
Rating  
Supply Voltage  
20 V  
Indefinite  
−65°C to +125°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 9. Thermal Resistance  
Package Type  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature, Soldering (60 sec)  
θJA  
θJC  
43  
44  
Unit  
°C/W  
°C/W  
8-Lead SOIC_N (R)  
8-Lead MSOP (RM)  
130  
142  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 9 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
TYPICAL PERFORMANCE CHARACTERISTICS  
Default conditions: 5 V, CL = 5 pF, G = 2, RG = RF = 1 kΩ, RL = 2 kΩ, VO = 2 V p-p, f = 1 MHz, TA = 25°C, unless otherwise noted.  
0.8  
2.5009  
0.7  
0.6  
2.5007  
2.5005  
2.5003  
2.5001  
2.4999  
2.4997  
2.4995  
+125°C  
+25°C  
–40°C  
0.5  
0.4  
0.3  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
4
6
8
10  
12  
14  
16  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 3. ADR431 Output Voltage vs. Temperature  
Figure 6. ADR435 Supply Current vs. Input Voltage  
700  
650  
600  
550  
500  
450  
400  
4.0980  
4.0975  
4.0970  
4.0965  
4.0960  
4.0955  
4.0950  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. ADR434 Output Voltage vs. Temperature  
Figure 7. ADR435 Supply Current vs. Temperature  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
0.40  
5.0025  
5.0020  
5.0015  
5.0010  
5.0005  
5.0000  
4.9995  
4.9990  
+125°C  
+25°C  
–40°C  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
6
8
10  
12  
14  
16  
18  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 5. ADR435 Output Voltage vs. Temperature  
Figure 8. ADR431 Supply Current vs. Input Voltage  
Rev. E | Page 10 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
2.5  
610  
580  
550  
520  
490  
460  
430  
400  
2.0  
–40°C  
1.5  
+25°C  
1.0  
+125°C  
0.5  
0
–10  
–5  
0
5
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 9. ADR431 Supply Current vs. Temperature  
Figure 12. ADR431 Minimum Input/Output  
Differential Voltage vs. Load Current  
15  
12  
9
1.9  
I
= 0mA to 10mA  
L
NO LOAD  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
6
3
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. ADR431 Load Regulation vs. Temperature  
Figure 13. ADR431 Minimum Headroom vs. Temperature  
15  
12  
9
2.5  
I
= 0mA to 10mA  
L
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+25°C  
6
+125°C  
3
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–10  
–5  
0
5
10  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 11. ADR435 Load Regulation vs. Temperature  
Figure 14. ADR435 Minimum Input/Output  
Differential Voltage vs. Load Current  
Rev. E | Page 11 of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
1.9  
NO LOAD  
1.7  
1.5  
1.3  
1.1  
0.9  
C
= 0.01µF  
L
NO INPUT CAPACITOR  
V
= 1V/DIV  
O
V
= 2V/DIV  
IN  
TIME = 4µs/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 15. ADR435 Minimum Headroom vs. Temperature  
Figure 18. ADR431 Turn-On Response, 0.01 μF Load Capacitor  
20  
16  
12  
8
V
= 7V TO 18V  
IN  
C
= 0.01µF  
IN  
NO LOAD  
V
= 1V/DIV  
O
4
0
V
= 2V/DIV  
IN  
TIME = 4µs/DIV  
–4  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 19. ADR431 Turn-Off Response  
Figure 16. ADR435 Line Regulation vs. Temperature  
LINE  
C
= 0.01µF  
BYPASS CAPACITOR = 0µF  
IN  
INTERRUPTION  
NO LOAD  
V
= 1V/DIV  
O
V
= 500mV/DIV  
IN  
V
= 50mV/DIV  
O
V
= 2V/DIV  
IN  
TIME = 100µs/DIV  
TIME = 4µs/DIV  
Figure 20. ADR431 Line Transient Response  
Figure 17. ADR431 Turn-On Response  
Rev. E | Page 12 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
LINE  
INTERRUPTION  
BYPASS CAPACITOR = 0.1µF  
V
= 500mV/DIV  
IN  
V
= 50mV/DIV  
O
2µV/DIV  
TIME = 100µs/DIV  
TIME = 1s/DIV  
Figure 21. ADR431 Line Transient Response, 0.1 μF Bypass Capacitor  
Figure 24. ADR435 0.1 Hz to 10.0 Hz Voltage Noise  
1µV/DIV  
50µV/DIV  
TIME = 1s/DIV  
TIME = 1s/DIV  
Figure 22. ADR431 0.1 Hz to 10.0 Hz Voltage Noise  
Figure 25. ADR435 10 Hz to 10 kHz Voltage Noise  
14  
12  
10  
8
6
4
50µV/DIV  
2
0
TIME = 1s/DIV  
–110 –90 –70 –50 –30 –10 10  
30  
50  
70  
90 110  
DEVIATION (PPM)  
Figure 23. ADR431 10 Hz to 10 kHz Voltage Noise  
Figure 26. ADR431 Typical Hysteresis  
Rev. E | Page 13 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
50  
45  
10  
–10  
–30  
40  
35  
30  
25  
20  
15  
10  
5
–50  
ADR435  
–70  
–90  
ADR433  
–110  
–130  
–150  
ADR430  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 27. Output Impedance vs. Frequency  
Figure 28. Ripple Rejection  
Rev. E | Page 14 of 24  
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
THEORY OF OPERATION  
The ADR43x family of references is guaranteed to deliver load  
currents to 10 mA with an input voltage that ranges from 4.1 V  
to 18 V. When these devices are used in applications at higher  
currents, use the following equation to account for the  
temperature effects due to the power dissipation increases:  
The ADR43x series of references uses a reference generation  
technique known as XFET (eXtra implanted junction FET).  
This technique yields a reference with low supply current, good  
thermal hysteresis, and exceptionally low noise. The core of the  
XFET reference consists of two junction field-effect transistors  
(JFETs), one of which has an extra channel implant to raise its  
pinch-off voltage. By running the two JFETs at the same drain  
current, the difference in pinch-off voltage can be amplified and  
used to form a highly stable voltage reference.  
TJ = PD × θJA + TA  
(2)  
where:  
TJ and TA are the junction and ambient temperatures, respectively.  
PD is the device power dissipation.  
The intrinsic reference voltage is around 0.5 V with a negative  
temperature coefficient of about −120 ppm/°C. This slope is  
essentially constant to the dielectric constant of silicon and can  
be compensated closely by adding a correction term generated  
in the same fashion as the proportional-to-temperature (PTAT)  
term used to compensate band gap references. The primary  
advantage of an XFET reference is its correction term, which is  
~30 times lower and requires less correction than that of a band  
gap reference. Because most of the noise of a band gap reference  
comes from the temperature compensation circuitry, the XFET  
results in much lower noise.  
θJA is the device package thermal resistance.  
BASIC VOLTAGE REFERENCE CONNECTIONS  
Voltage references, in general, require a bypass capacitor  
connected from VOUT to GND. The circuit in Figure 30  
illustrates the basic configuration for the ADR43x family  
of references. Other than a 0.1 μF capacitor at the output to  
help improve noise suppression, a large output capacitor at  
the output is not required for circuit stability.  
TP  
TP  
1
2
3
4
8
7
6
5
V
NC  
ADR43x  
TOP VIEW  
(Not to Scale)  
IN  
+
V
OUT  
Figure 29 shows the basic topology of the ADR43x series. The  
temperature correction term is provided by a current source  
with a value designed to be proportional to absolute temperature.  
The general equation is  
10µF  
NC  
0.1µF  
GND  
0.1µF  
TRIM  
NOTES:  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
V
OUT = G (ΔVP R1 × IPTAT  
)
(1)  
Figure 30. Basic Voltage Reference Configuration  
where:  
NOISE PERFORMANCE  
G is the gain of the reciprocal of the divider ratio.  
ΔVP is the difference in pinch-off voltage between the two JFETs.  
PTAT is the positive temperature coefficient correction current.  
The noise generated by the ADR43x family of references is  
typically less than 3.75 μV p-p over the 0.1 Hz to 10.0 Hz band  
for ADR430, ADR431, and ADR433. Figure 22 shows the 0.1 Hz  
to 10.0 Hz noise of the ADR431, which is only 3.5 μV p-p. The  
noise measurement is made with a band-pass filter made of a  
2-pole high-pass filter with a corner frequency at 0.1 Hz and a  
2-pole low-pass filter with a corner frequency at 10.0 Hz.  
I
ADR43x devices are created by on-chip adjustment of R2 and R3 to  
achieve 2.048 V or 2.500 V, respectively, at the reference output.  
V
IN  
I
1
I
1
ADR43x  
I
PTAT  
HIGH FREQUENCY NOISE  
V
OUT  
R2  
The total noise generated by the ADR43x family of references is  
composed of the reference noise and the op amp noise. Figure 31  
shows the wideband noise from 10 Hz to 25 kHz. An internal node  
of the op amp is brought out on Pin 7, and by overcompensating  
the op amp, the overall noise can be reduced.  
*
ΔV  
P
R3  
R1  
*EXTRA CHANNEL IMPLANT  
= G(ΔV – R1 × I  
V
)
This is understood by considering that in a closed-loop  
OUT  
P
PTAT  
GND  
configuration, the effective output impedance of an op amp is  
Figure 29. Simplified Schematic Device  
Power Dissipation Considerations  
rO  
RO  
=
(3)  
1+ AVOβ  
where:  
RO is the apparent output impedance.  
rO is the output resistance of the op amp.  
AVO is the open-loop gain at the frequency of interest.  
β is the feedback factor.  
Rev. E | Page 15 of 24  
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
Equation 3 shows that the apparent output impedance is reduced  
by approximately the excess loop gain; therefore, as the frequency  
increases, the excess loop gain decreases, and the apparent output  
impedance increases. A passive element whose impedance  
increases as its frequency increases is an inductor. When a  
capacitor is added to the output of an op amp or a reference, it  
forms a tuned circuit that resonates at a certain frequency and  
results in gain peaking. This can be observed by using a model  
of a semiperfect op amp with a single-pole response and some  
pure resistance in series with the output. Changing capacitive  
loads results in peaking at different frequencies. For most normal  
op amp applications with low capacitive loading (<100 pF), this  
effect is usually not observed.  
The op amp within the ADR43x family uses the classic RC  
compensation technique. Monolithic capacitors in an IC are  
limited to tens of picofarads. With very large external capacitive  
loads, such as 50 μF, it is necessary to overcompensate the op amp.  
The internal compensation node is brought out on Pin 7, and  
an external series RC network can be added between Pin 7 and  
the output, Pin 6, as shown in Figure 32.  
TP  
TP  
1
2
3
4
8
7
6
5
82k  
COMP  
V
IN  
10µF  
ADR43x  
TOP VIEW  
(Not to Scale)  
10nF  
0.1µF  
+
V
OUT  
NC  
0.1µF  
GND  
TRIM  
NOTES  
1. NC = NO CONNECT  
2. TP = TEST PIN (DO NOT CONNECT)  
However, references are used increasingly to drive the reference  
input of an ADC that may present a dynamic, switching capacitive  
load. Large capacitors, in the microfarad range, are used to reduce  
the change in reference voltage to less than one-half LSB. Figure 31  
shows the ADR431 noise spectrum with various capacitive values  
to 50 μF. With no capacitive load, the noise spectrum is relatively  
flat at approximately 60 nV/√Hz to 70 nV/√Hz. With various  
values of capacitive loading, the predicted noise peaking  
becomes evident.  
Figure 32. Compensated Reference  
The 82 kΩ resistor and 10 nF capacitor can eliminate the noise  
peaking (see Figure 33).  
100  
C
= 10µF  
L
RC 82kAND 10nF  
C
= 1µF  
L
1000  
RC 82kAND 10nF  
ADR431  
NO COMPENSATION  
C
= 50µF  
L
RC 82kAND 10nF  
C
= 1µF  
L
C
= 10µF  
L
C
= 50µF  
L
100  
10  
10  
100  
1k  
10k  
C
= 0µF  
L
FREQUENCY (Hz)  
Figure 33. Noise with Compensation Network  
TURN-ON TIME  
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Upon application of power (cold start), the time required for the  
output voltage to reach its final value within a specified error band  
is defined as the turn-on settling time. Two components normally  
associated with this are the time for the active circuits to settle  
and the time for the thermal gradients on the chip to stabilize.  
Figure 17 and Figure 18 show the turn-on settling time for the  
ADR431.  
Figure 31. Noise vs. Capacitive Loading  
Rev. E | Page 16 of 24  
 
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
APPLICATIONS INFORMATION  
OUTPUT ADJUSTMENT  
The ADR43x trim terminal can be used to adjust the output  
SOURCE FIBER  
GIMBAL + SENSOR  
DESTINATION  
FIBER  
LASER BEAM  
voltage over a 0.5% range. This feature allows the system designer  
to trim system errors out by setting the reference to a voltage  
other than the nominal. This is also helpful if the part is used in  
a system at temperature to trim out any error. Adjustment of the  
output has negligible effect on the temperature performance of the  
device. To avoid degrading temperature coefficients, both the  
trimming potentiometer and the two resistors need to be low  
temperature coefficient types, preferably <100 ppm/°C.  
INPUT  
ACTIVATOR  
LEFT  
ACTIVATOR  
RIGHT  
MEMS MIRROR  
PREAMP  
AMPL  
DAC  
AMPL  
DAC  
ADR431  
ADR431  
ADR431  
CONTROL  
ELECTRONICS  
ADC  
V
IN  
V
OUTPUT  
= ±0.5%  
DSP  
GND  
V
OUT  
O
Figure 35. All Optical Router Network  
ADR43x  
R1  
470k  
R
10kΩ  
P
NEGATIVE PRECISION REFERENCE WITHOUT  
PRECISION RESISTORS  
TRIM  
GND  
10k(ADR430)  
15k(ADR431)  
R2  
In many current output CMOS DAC applications, where the  
output signal voltage must be of the same polarity as the reference  
voltage, it is required to reconfigure a current-switching DAC  
into a voltage-switching DAC by using a 1.25 V reference, an  
operational amplifier, and a pair of resistors. Using a current-  
switching DAC directly requires an additional operational amplifier  
at the output to reinvert the signal. A negative voltage reference  
is desirable because an additional operational amplifier is not  
required for either reinversion (current-switching mode) or  
amplification (voltage-switching mode) of the DAC output voltage.  
In general, any positive voltage reference can be converted to a  
negative voltage reference by using an operational amplifier and  
a pair of matched resistors in an inverting configuration. The  
disadvantage of this approach is that the largest single source of  
error in the circuit is the relative matching of the resistors used.  
Figure 34. Output Trim Adjustment  
REFERENCE FOR CONVERTERS IN OPTICAL  
NETWORK CONTROL CIRCUITS  
In Figure 35, the high capacity, all optical router network  
employs arrays of micromirrors to direct and route optical  
signals from fiber to fiber without first converting them to  
electrical form, which reduces the communication speed. The  
tiny micromechanical mirrors are positioned so that each is  
illuminated by a single wavelength that carries unique information  
and can be passed to any desired input and output fiber. The  
mirrors are tilted by the dual-axis actuators, which are controlled  
by precision ADCs and DACs within the system. Due to the  
microscopic movement of the mirrors, not only is the precision  
of the converters important but the noise associated with these  
controlling converters is also extremely critical. Total noise  
within the system can be multiplied by the number of converters  
employed. Therefore, to maintain the stability of the control  
loop for this application, the ADR43x, with its exceptionally low  
noise, is necessary.  
Rev. E | Page 17 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
A negative reference can easily be generated by adding a  
precision operational amplifier, such as the OP777 or the  
OP193, and configuring it as shown in Figure 36. VOUT is at  
virtual ground; therefore, the negative reference can be taken  
directly from the output of the amplifier. The operational  
amplifier must be dual supply and have low offset and rail-  
to-rail capability if the negative supply voltage is close to the  
reference output.  
Because the amplifier senses the load voltage, the operational  
amplifier loop control forces the output to compensate for the  
wiring error and to produce the correct voltage at the load.  
V
IN  
R
LW  
V
OUT  
SENSE  
2
V
IN  
ADR43x  
R
LW  
A1  
OP191  
+
V
OUT  
FORCE  
V
6
OUT  
R
L
+V  
DD  
GND  
4
2
V
IN  
Figure 38. Advantage of Kelvin Connection  
V
6
OUT  
DUAL POLARITY REFERENCES  
ADR43x  
Dual polarity references can easily be made with an operational  
amplifier and a pair of resistors. To avoid defeating the accuracy  
obtained by the ADR43x, it is imperative to match the resistance  
tolerance as well as the temperature coefficient of all the components.  
GND  
4
A1  
–V  
REF  
V
IN  
2
–V  
1µF  
0.1µF  
DD  
V
V
OUT  
6
+5V  
IN  
Figure 36. Negative Reference  
R1  
R2  
10k  
ADR435  
10kW  
HIGH VOLTAGE FLOATING CURRENT SOURCE  
U1  
+10V  
V+  
5
GND  
TRIM  
The circuit in Figure 37 can be used to generate a floating  
current source with minimal self heating. This particular  
configuration can operate on high supply voltages determined  
by the breakdown voltage of the N-channel JFET.  
4
OP1177  
U2  
–5V  
V–  
R3  
5kΩ  
+V  
10V  
S
SST111  
VISHAY  
Figure 39. +5 V and −5 V References Using ADR435  
+2.5V  
2
+10V  
V
IN  
2
V
OUT  
6
V
V
IN  
6
5
OUT  
2N3904  
OP90  
ADR43x  
GND  
R1  
5.6kΩ  
ADR435  
U1  
4
R
L
TRIM  
GND  
4
2.1kΩ  
R2  
5.6kΩ  
V+  
–V  
S
OP1177  
U2  
Figure 37. High Voltage Floating Current Source  
V–  
–2.5V  
KELVIN CONNECTION  
–10V  
In many portable instrumentation applications, where printed  
circuit board (PCB) cost and area go hand in hand, circuit  
interconnects are very often of dimensionally minimum width.  
These narrow lines can cause large voltage drops if the voltage  
reference is required to provide load currents to various functions.  
In fact, circuit interconnects can exhibit a typical line resistance  
of 0.45 mΩ/square (for example, 1 oz. Cu). Force and sense  
connections, also referred to as Kelvin connections, offer a  
convenient method of eliminating the effects of voltage drops  
in circuit wires. Load currents flowing through wiring resistance  
produce an error (VERROR = R × IL) at the load. However, the  
Kelvin connection of Figure 38 overcomes the problem by  
including the wiring resistance within the forcing loop of the  
operational amplifier.  
Figure 40. +2.5 V and −2.5 V References Using ADR435  
Rev. E | Page 18 of 24  
 
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
PROGRAMMABLE CURRENT SOURCE  
PROGRAMMABLE DAC REFERENCE VOLTAGE  
Together with a digital potentiometer and a Howland current  
pump, the ADR435 forms the reference source for a programmable  
current as  
By employing a multichannel DAC, such as the AD7398,  
quad, 12-bit voltage output DAC, one of its internal DACs  
and an ADR43x voltage reference can be used as a common  
programmable VREFX for the rest of the DACs. The circuit  
configuration is shown in Figure 42.  
R2 + R2B  
A
R1  
R2B  
IL =  
×VW  
(4)  
(5)  
R2  
± 0.1%  
V
REFA  
R1 ± 0.1%  
V
OUTA  
V
and  
DAC A  
REF  
V
IN  
ADR43x  
D
VW  
=
×VREF  
2N  
V
REFB  
V
OUTB  
OUTC  
V
= V  
(D )  
REFX B  
OB  
where:  
DAC B  
D is the decimal equivalent of the input code.  
N is the number of bits.  
V
REFC  
V
In addition, R1' and R2' must be equal to R1 and (R2A + R2B),  
respectively. In theory, R2B can be made as small as needed to  
achieve the necessary current within the A2 output current  
driving capability. In this example, the OP2177 can deliver a  
maximum output current of 10 mA. Because the current pump  
employs both positive and negative feedback, C1 and C2  
capacitors are needed to ensure that the negative feedback  
prevails and, therefore, avoids oscillation. This circuit also  
allows bidirectional current flow if the VA and VB inputs of  
the digital potentiometer are supplied with the dual polarity  
references, as shown in Figure 41.  
V
V
= V  
(D  
(D  
)
OC  
REFX  
REFX  
C
DAC C  
V
REFD  
V
OUTD  
= V  
)
D
OD  
DAC D  
AD7398  
Figure 42. Programmable DAC Reference  
The relationship of VREFX to VREF depends on the digital code  
and the ratio of R1 and R2, given by  
R2  
R1  
C1  
10pF  
VREF × 1+  
VREFX  
=
(6)  
D
R2  
R1  
R1'  
R2'  
1k  
V
DD  
1+  
×
2N  
50kΩ  
2
V
DD  
where:  
V
IN  
TRIM  
5
6
D is the decimal equivalent of the input code.  
N is the number of bits.  
V+  
ADR435  
U1  
U2  
C2  
10pF  
OP2177  
A2  
V–  
AD5232  
V
DD  
V
OUT  
V
V
REF is the applied external reference.  
REFX is the reference voltage for DAC A to DAC D.  
GND  
4
A
R2  
10Ω  
B
V+  
R1  
50kΩ  
V
SS  
W
B
OP2177  
A1  
V–  
Table 10. VREFX vs. R1 and R2  
R1, R2  
R2  
1kΩ  
A
Digital Code  
VREF  
+
VL  
I
L
V
R1 = R2  
R1 = R2  
R1 = R2  
R1 = 3R2  
R1 = 3R2  
R1 = 3R2  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
2 VREF  
1.3 VREF  
VREF  
4 VREF  
1.6 VREF  
VREF  
SS  
I
L
Figure 41. Programmable Current Source  
Rev. E | Page 19 of 24  
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
PRECISION VOLTAGE REFERENCE FOR DATA  
CONVERTERS  
PRECISION BOOSTED OUTPUT REGULATOR  
A precision voltage output with boosted current capability can  
be realized with the circuit shown in Figure 44. In this circuit,  
U2 forces VO to be equal to VREF by regulating the turn-on of  
N1. Therefore, the load current is furnished by VIN. In this  
configuration, a 50 mA load is achievable at a VIN of 5 V. Moderate  
heat is generated on the MOSFET, and higher current can be  
achieved with a replacement of the larger device. In addition,  
for a heavy capacitive load with step input, a buffer can be  
added at the output to enhance the transient response.  
N1  
The ADR43x family has a number of features that make it ideal  
for use with ADCs and DACs. The exceptional low noise, tight  
temperature coefficient, and high accuracy characteristics make  
the ADR43x ideal for low noise applications, such as cellular  
base station applications.  
Another example of an ADC for which the ADR431 is well  
suited is the AD7701. Figure 43 shows the ADR431 used as  
the precision reference for this converter. The AD7701 is a 16-bit  
ADC with on-chip digital filtering intended for the measurement  
of wide dynamic range and low frequency signals, such as those  
representing chemical, physical, or biological processes. It contains  
a charge-balancing Σ-ꢀ ADC, a calibration microcontroller  
with on-chip static RAM, a clock oscillator, and a serial  
communications port.  
V
IN  
V
O
R
25  
L
2
5V  
V
IN  
U1  
2N7002  
ADR431  
V
OUT  
6
5
+
V+  
U2  
TRIM  
AD8601  
+5V  
ANALOG  
V–  
GND  
4
SUPPLY  
0.1µF  
10µF  
AD7701  
AV  
V
DV  
DD  
DD  
2
0.1µF  
SLEEP  
MODE  
Figure 44. Precision Boosted Output Regulator  
V
IN  
V
OUT  
6
REF  
DATA READY  
DRDY  
CS  
0.1µF  
ADR431  
GND  
4
READ (TRANSMIT)  
SERIAL CLOCK  
SERIAL CLOCK  
SCLK  
SDATA  
CLKIN  
RANGES  
SELECT  
BP/UP  
CAL  
CLKOUT  
SC1  
CALIBRATE  
ANALOG  
INPUT  
A
IN  
SC2  
ANALOG  
GROUND  
AGND  
DGND  
0.1µF  
0.1µF  
DV  
SS  
AV  
SS  
–5V  
ANALOG  
SUPPLY  
10µF  
0.1µF  
Figure 43. Voltage Reference for the AD7701 16-Bit ADC  
Rev. E | Page 20 of 24  
 
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 45. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 21 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
ORDERING GUIDE  
Temperature  
Initial  
Coefficient  
Accuracy,  
Output  
Package  
(ppm/°C)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Ordering  
Quantity  
Model  
Voltage (V) (mV) (%)  
Branding  
ADR430AR  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
3.000  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
3
0.15 10  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
98  
ADR430AR-REEL7  
ADR430ARZ1  
ADR430ARZ-REEL71  
3
0.15 10  
0.15 10  
0.15 10  
0.15 10  
0.15 10  
0.15 10  
0.15 10  
R-8  
1,000  
98  
3
R-8  
3
R-8  
1,000  
50  
ADR430ARM  
3
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
RHA  
RHA  
R10  
R10  
ADR430ARM-REEL7  
ADR430ARMZ1  
ADR430ARMZ-REEL71  
ADR430BR  
3
1,000  
50  
3
3
1,000  
98  
1
0.05  
0.05  
0.05  
0.05  
3
3
3
3
ADR430BR-REEL7  
ADR430BRZ1  
ADR430BRZ-REEL71  
1
R-8  
1,000  
98  
1
R-8  
1
R-8  
1,000  
98  
ADR431AR  
3
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
R-8  
ADR431AR-REEL7  
ADR431ARZ1  
ADR431ARZ-REEL71  
3
R-8  
1,000  
98  
3
R-8  
3
R-8  
1,000  
50  
ADR431ARM  
3
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
RJA  
RJA  
R12  
R12  
ADR431ARM-REEL7  
ADR431ARMZ1  
ADR431ARMZ-REEL71  
ADR431BR  
3
1,000  
50  
3
3
1,000  
98  
1
0.04  
0.04  
0.04  
0.04  
3
3
3
3
ADR431BR-REEL7  
ADR431BRZ1  
ADR431BRZ-REEL71  
1
R-8  
1,000  
98  
1
R-8  
1
R-8  
1,000  
98  
ADR433AR  
4
0.13 10  
0.13 10  
0.13 10  
0.13 10  
0.13 10  
0.13 10  
0.13 10  
0.13 10  
R-8  
ADR433AR-REEL7  
ADR433ARZ1  
ADR433ARZ-REEL71  
4
R-8  
1,000  
98  
4
R-8  
4
R-8  
1,000  
50  
ADR433ARM  
4
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
RKA  
RKA  
R14  
R14  
ADR433ARM-REEL7  
ADR433ARMZ1  
ADR433ARMZ-REEL71  
ADR433BR  
4
1,000  
50  
4
4
1,000  
98  
1.5  
1.5  
1.5  
1.5  
5
0.05  
0.05  
0.05  
0.05  
3
3
3
3
ADR433BR-REEL7  
ADR433BRZ1  
ADR433BRZ-REEL71  
R-8  
1,000  
98  
R-8  
R-8  
1,000  
98  
ADR434AR  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
R-8  
ADR434AR-REEL7  
ADR434ARZ1  
ADR434ARZ-REEL71  
5
R-8  
1,000  
98  
5
R-8  
5
R-8  
1,000  
50  
ADR434ARM  
5
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
RLA  
RLA  
R16  
R16  
ADR434ARM-REEL7  
ADR434ARMZ1  
ADR434ARMZ-REEL71  
ADR434BR  
5
1,000  
50  
5
5
1,000  
98  
1.5  
1.5  
1.5  
1.5  
0.04  
0.04  
0.04  
0.04  
3
3
3
3
ADR434BR-REEL7  
ADR434BRZ1  
ADR434BRZ-REEL71  
R-8  
1,000  
98  
R-8  
R-8  
1,000  
Rev. E | Page 22 of 24  
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
Temperature  
Coefficient  
Package  
Initial  
Accuracy,  
Output  
Voltage (V) (mV) (%)  
Temperature  
Range  
Package  
Description  
Package  
Option  
Ordering  
Quantity  
Model  
(ppm/°C)  
Branding  
ADR435AR  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
5.000  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
4.500  
6
0.12 10  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
98  
ADR435AR-REEL7  
ADR435ARZ1  
ADR435ARZ-REEL71  
6
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
R-8  
1,000  
98  
6
R-8  
6
R-8  
1,000  
50  
ADR435ARM  
6
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
RMA  
RMA  
R18  
ADR435ARM-REEL7  
ADR435ARMZ1  
ADR435ARMZ-REEL71  
ADR435BR  
6
1,000  
50  
6
6
1,000  
98  
R18  
2
0.04  
0.04  
0.04  
0.04  
3
3
3
3
ADR435BR-REEL7  
ADR435BRZ1  
ADR435BRZ-REEL71  
2
R-8  
1,000  
98  
2
R-8  
2
R-8  
1,000  
98  
ADR439AR  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
2
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
0.12 10  
R-8  
ADR439AR-REEL7  
ADR439ARZ1  
ADR439ARZ-REEL71  
R-8  
1,000  
98  
R-8  
R-8  
1,000  
50  
ADR439ARM  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
RNA  
RNA  
R1C  
R1C  
ADR439ARM-REEL7  
ADR439ARMZ1  
ADR439ARMZ-REEL71  
ADR439BR  
1,000  
50  
1,000  
98  
0.04  
0.04  
0.04  
0.04  
3
3
3
3
ADR439BR-REEL7  
ADR439BRZ1  
ADR439BRZ-REEL71  
2
R-8  
1,000  
98  
2
R-8  
2
R-8  
1,000  
1 Z = RoHS Compliant Part.  
Rev. E | Page 23 of 24  
 
 
ADR430/ADR431/ADR433/ADR434/ADR435/ADR439  
NOTES  
©2003–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04500-0-1/09(E)  
Rev. E | Page 24 of 24  

相关型号:

ADR439ARMZ-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARZ

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439ARZ-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439B

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439BR

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439BR

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.5 V, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADR439BR-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439BRZ

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR439BRZ

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 4.5V, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

ADR439BRZ-REEL7

Ultralow Noise XFET Voltage References with Current Sink and Source Capability
ADI

ADR440

2.048 V High Precision, LDO XFET® References for High Performance Sigma-Delta and PulSAR® Converters
ADI

ADR440A

Ultralow Noise, LDO XFET Voltage References with Current Sink and Source
ADI