ADSP-BF531SBBC400 [ROCHESTER]

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160;
ADSP-BF531SBBC400
型号: ADSP-BF531SBBC400
厂家: Rochester Electronics    Rochester Electronics
描述:

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160

时钟 外围集成电路
文件: 总65页 (文件大小:5323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin  
Embedded Processor  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
FEATURES  
PERIPHERALS  
Up to 600 MHz high performance Blackfin processor  
Two 16-bit MACs, two 40-bit ALUs, four 8-bit video ALUs,  
40-bit shifter  
RISC-like register and instruction model for ease of pro-  
gramming and compiler-friendly support  
Advanced debug, trace, and performance monitoring  
Wide range of operating voltages (see Operating Conditions  
on Page 21)  
Parallel peripheral interface PPI, supporting  
ITU-R 656 video data formats  
2 dual-channel, full duplex synchronous serial ports, sup-  
porting eight stereo I2S channels  
2 memory-to-memory DMAs  
8 peripheral DMAs  
SPI-compatible port  
Three 32-bit timer/counters with PWM support  
Real-time clock and watchdog timer  
32-bit core timer  
Qualified for Automotive Applications (see Automotive Prod-  
ucts on Page 63)  
Programmable on-chip voltage regulator  
160-ball CSP_BGA, 169-ball PBGA, and 176-lead LQFP  
packages  
Up to 16 general-purpose I/O pins (GPIO)  
UART with support for IrDA  
Event handler  
Debug/JTAG interface  
MEMORY  
On-chip PLL capable of frequency multiplication  
Up to 148K bytes of on-chip memory (see Table 1 on Page 3)  
Memory management unit providing memory protection  
External memory controller with glueless support for  
SDRAM, SRAM, flash, and ROM  
Flexible memory booting options from SPI and  
external memory  
JTAG TEST AND EMULATION  
VOLTAGE REGULATOR  
INTERRUPT  
CONTROLLER  
WATCHDOG  
TIMER  
B
RTC  
L1  
L1  
DATA  
MEMORY  
DMA  
CONTROLLER  
PPI  
INSTRUCTION  
MEMORY  
GPIO  
PORT  
F
TIMER0  
-2  
DMA  
EXTERNAL  
BUS  
SPI  
DMA CORE BUS  
EXTERNAL ACCESS BUS  
UART  
EXTERNAL PORT  
FLASH, SDRAM CONTROL  
SPORT0-1  
16  
BOOT ROM  
Figure 1. Functional Block Diagram  
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
TABLE OF CONTENTS  
General Description ................................................. 3  
Portable Low Power Architecture ............................. 3  
System Integration ................................................ 3  
Processor Peripherals ............................................. 3  
Blackfin Processor Core .......................................... 4  
Memory Architecture ............................................ 4  
DMA Controllers .................................................. 8  
Real-Time Clock ................................................... 8  
Watchdog Timer .................................................. 9  
Timers ............................................................... 9  
Serial Ports (SPORTs) ............................................ 9  
Serial Peripheral Interface (SPI) Port ....................... 10  
UART Port ........................................................ 10  
General-Purpose I/O Port F ................................... 10  
Parallel Peripheral Interface ................................... 11  
Dynamic Power Management ................................ 11  
Voltage Regulation .............................................. 13  
Clock Signals ..................................................... 13  
Booting Modes ................................................... 14  
Instruction Set Description ................................... 15  
Development Tools ............................................. 15  
Designing an Emulator-Compatible Processor Board .. 16  
Related Documents .............................................. 17  
Related Signal Chains ........................................... 17  
Pin Descriptions .................................................... 18  
Specifications ........................................................ 21  
Operating Conditions ........................................... 21  
Electrical Characteristics ....................................... 23  
Absolute Maximum Ratings ................................... 26  
ESD Sensitivity ................................................... 26  
Package Information ............................................ 27  
Timing Specifications ........................................... 28  
Output Drive Currents ......................................... 44  
Test Conditions .................................................. 46  
Thermal Characteristics ........................................ 50  
160-Ball CSP_BGA Ball Assignment ........................... 51  
169-Ball PBGA Ball Assignment ................................. 54  
176-Lead LQFP Pinout ............................................ 57  
Outline Dimensions ................................................ 59  
Surface-Mount Design .......................................... 62  
Automotive Products .............................................. 63  
Ordering Guide ..................................................... 64  
REVISION HISTORY  
1/11— Rev. G to Rev. H  
Corrected all document errata.  
Replaced Figure 7, Voltage Regulator Circuit ................ 13  
Removed footnote 4 from VIL specifications in Operating Con-  
ditions ................................................................. 21  
Changed Internal (Core) Supply Voltage (VDDINT) range in  
Absolute Maximum Ratings ..................................... 26,  
Replaced Figure 13, Asynchronous Memory Read Cycle Tim-  
ing ..................................................................... 29  
Replaced Figure 14, Asynchronous Memory Write Cycle Tim-  
ing ..................................................................... 30  
Replaced Figure 16, External Port Bus Request and Grant Cycle  
Timing ................................................................ 32  
To view product/process change notifications (PCNs) related to  
this data sheet revision, please visit the processor’s product page  
on the www.analog.com website and use the View PCN link.  
Rev. H  
|
Page 2 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
GENERAL DESCRIPTION  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors are  
members of the Blackfin® family of products, incorporating the  
Analog Devices, Inc./Intel Micro Signal Architecture (MSA).  
Blackfin processors combine a dual-MAC state-of-the-art signal  
processing engine, the advantages of a clean, orthogonal RISC-  
like microprocessor instruction set, and single instruction, mul-  
tiple data (SIMD) multimedia capabilities into a single  
instruction set architecture.  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors are  
completely code and pin-compatible, differing only with respect  
to their performance and on-chip memory. Specific perfor-  
mance and memory configurations are shown in Table 1.  
PORTABLE LOW POWER ARCHITECTURE  
Blackfin processors provide world-class power management  
and performance. Blackfin processors are designed in a low  
power and low voltage design methodology and feature  
dynamic power management—the ability to vary both the volt-  
age and frequency of operation to significantly lower overall  
power consumption. Varying the voltage and frequency can  
result in a substantial reduction in power consumption, com-  
pared with just varying the frequency of operation. This  
translates into longer battery life for portable appliances.  
SYSTEM INTEGRATION  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors are  
highly integrated system-on-a-chip solutions for the next gener-  
ation of digital communication and consumer multimedia  
applications. By combining industry-standard interfaces with a  
high performance signal processing core, users can develop  
cost-effective solutions quickly without the need for costly  
external components. The system peripherals include a UART  
port, an SPI port, two serial ports (SPORTs), four general-pur-  
pose timers (three with PWM capability), a real-time clock, a  
watchdog timer, and a parallel peripheral interface.  
Table 1. Processor Comparison  
Features  
SPORTs  
2
2
2
UART  
1
1
1
SPI  
1
1
1
PROCESSOR PERIPHERALS  
GP Timers  
3
3
3
Watchdog Timers  
1
1
1
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors con-  
tain a rich set of peripherals connected to the core via several  
high bandwidth buses, providing flexibility in system configura-  
tion as well as excellent overall system performance (see the  
functional block diagram in Figure 1 on Page 1). The general-  
purpose peripherals include functions such as UART, timers  
with PWM (pulse-width modulation) and pulse measurement  
capability, general-purpose I/O pins, a real-time clock, and a  
watchdog timer. This set of functions satisfies a wide variety of  
typical system support needs and is augmented by the system  
expansion capabilities of the part. In addition to these general-  
purpose peripherals, the processors contain high speed serial  
and parallel ports for interfacing to a variety of audio, video, and  
modem codec functions; an interrupt controller for flexible  
management of interrupts from the on-chip peripherals or  
external sources; and power management control functions to  
tailor the performance and power characteristics of the proces-  
sor and system to many application scenarios.  
RTC  
1
1
1
Parallel Peripheral Interface  
GPIOs  
1
1
1
16  
16  
16  
L1 Instruction SRAM/Cache 16K bytes 16K bytes 16K bytes  
L1 Instruction SRAM  
L1 Data SRAM/Cache  
L1 Data SRAM  
16K bytes 32K bytes 64K bytes  
16K bytes 32K bytes 32K bytes  
32K bytes  
L1 Scratchpad  
4K bytes 4K bytes 4K bytes  
1K bytes 1K bytes 1K bytes  
L3 Boot ROM  
Maximum Speed Grade  
400 MHz 400 MHz 600 MHz  
Package Options:  
CSP_BGA  
Plastic BGA  
LQFP  
160-Ball 160-Ball 160-Ball  
169-Ball 169-Ball 169-Ball  
176-Lead 176-Lead 176-Lead  
All of the peripherals, except for general-purpose I/O, real-time  
clock, and timers, are supported by a flexible DMA structure.  
There is also a separate memory DMA channel dedicated to  
data transfers between the processor’s various memory spaces,  
including external SDRAM and asynchronous memory. Multi-  
ple on-chip buses running at up to 133 MHz provide enough  
bandwidth to keep the processor core running along with activ-  
ity on all of the on-chip and external peripherals.  
By integrating a rich set of industry-leading system peripherals  
and memory, Blackfin processors are the platform of choice for  
next generation applications that require RISC-like program-  
mability, multimedia support, and leading-edge signal  
processing in one integrated package.  
The processors include an on-chip voltage regulator in support  
of the processor’s dynamic power management capability. The  
voltage regulator provides a range of core voltage levels from  
V
DDEXT. The voltage regulator can be bypassed at the user’s  
discretion.  
Rev. H  
|
Page 3 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
In addition, multiple L1 memory blocks are provided, offering a  
configurable mix of SRAM and cache. The memory manage-  
ment unit (MMU) provides memory protection for individual  
tasks that may be operating on the core and can protect system  
registers from unintended access.  
The architecture provides three modes of operation: user mode,  
supervisor mode, and emulation mode. User mode has  
restricted access to certain system resources, thus providing a  
protected software environment, while supervisor mode has  
unrestricted access to the system and core resources.  
The Blackfin processor instruction set has been optimized so  
that 16-bit opcodes represent the most frequently used instruc-  
tions, resulting in excellent compiled code density. Complex  
DSP instructions are encoded into 32-bit opcodes, representing  
fully featured multifunction instructions. Blackfin processors  
support a limited multi-issue capability, where a 32-bit instruc-  
tion can be issued in parallel with two 16-bit instructions,  
allowing the programmer to use many of the core resources in a  
single instruction cycle.  
The Blackfin processor assembly language uses an algebraic syn-  
tax for ease of coding and readability. The architecture has been  
optimized for use in conjunction with the C/C++ compiler,  
resulting in fast and efficient software implementations.  
BLACKFIN PROCESSOR CORE  
As shown in Figure 2 on Page 5, the Blackfin processor core  
contains two 16-bit multipliers, two 40-bit accumulators, two  
40-bit ALUs, four video ALUs, and a 40-bit shifter. The compu-  
tation units process 8-bit, 16-bit, or 32-bit data from the  
register file.  
The compute register file contains eight 32-bit registers. When  
performing compute operations on 16-bit operand data, the  
register file operates as 16 independent 16-bit registers. All  
operands for compute operations come from the multiported  
register file and instruction constant fields.  
Each MAC can perform a 16-bit by 16-bit multiply in each  
cycle, accumulating the results into the 40-bit accumulators.  
Signed and unsigned formats, rounding, and saturation are  
supported.  
The ALUs perform a traditional set of arithmetic and logical  
operations on 16-bit or 32-bit data. In addition, many special  
instructions are included to accelerate various signal processing  
tasks. These include bit operations such as field extract and  
population count, modulo 232 multiply, divide primitives, satu-  
ration and rounding, and sign/exponent detection. The set of  
video instructions includes byte alignment and packing opera-  
tions, 16-bit and 8-bit adds with clipping, 8-bit average  
operations, and 8-bit subtract/absolute value/accumulate (SAA)  
operations. Also provided are the compare/select and vector  
search instructions.  
For certain instructions, two 16-bit ALU operations can be per-  
formed simultaneously on register pairs (a 16-bit high half and  
16-bit low half of a compute register). Quad 16-bit operations  
are possible using the second ALU.  
The 40-bit shifter can perform shifts and rotates and is used to  
support normalization, field extract, and field deposit  
instructions.  
The program sequencer controls the flow of instruction execu-  
tion, including instruction alignment and decoding. For  
program flow control, the sequencer supports PC relative and  
indirect conditional jumps (with static branch prediction), and  
subroutine calls. Hardware is provided to support zero-over-  
head looping. The architecture is fully interlocked, meaning that  
the programmer need not manage the pipeline when executing  
instructions with data dependencies.  
The address arithmetic unit provides two addresses for simulta-  
neous dual fetches from memory. It contains a multiported  
register file consisting of four sets of 32-bit index, modify,  
length, and base registers (for circular buffering), and eight  
additional 32-bit pointer registers (for C-style indexed stack  
manipulation).  
Blackfin processors support a modified Harvard architecture in  
combination with a hierarchical memory structure. Level 1 (L1)  
memories are those that typically operate at the full processor  
speed with little or no latency. At the L1 level, the instruction  
memory holds instructions only. The two data memories hold  
data, and a dedicated scratchpad data memory stores stack and  
local variable information.  
MEMORY ARCHITECTURE  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors view  
memory as a single unified 4G byte address space, using 32-bit  
addresses. All resources, including internal memory, external  
memory, and I/O control registers, occupy separate sections of  
this common address space. The memory portions of this  
address space are arranged in a hierarchical structure to provide  
a good cost/performance balance of some very fast, low latency  
on-chip memory as cache or SRAM, and larger, lower cost and  
performance off-chip memory systems. See Figure 3, Figure 4,  
and Figure 5 on Page 6.  
The L1 memory system is the primary highest performance  
memory available to the Blackfin processor. The off-chip mem-  
ory system, accessed through the external bus interface unit  
(EBIU), provides expansion with SDRAM, flash memory, and  
SRAM, optionally accessing up to 132M bytes of  
physical memory.  
The memory DMA controller provides high bandwidth data-  
movement capability. It can perform block transfers of code or  
data between the internal memory and the external  
memory spaces.  
Internal (On-Chip) Memory  
The processors have three blocks of on-chip memory that pro-  
vide high bandwidth access to the core.  
The first block is the L1 instruction memory, consisting of up to  
80K bytes SRAM, of which 16K bytes can be configured as a  
four way set-associative cache. This memory is accessed at full  
processor speed.  
Rev. H  
|
Page 4 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
ADDRESS ARITHMETIC UNIT  
SP  
FP  
P5  
P4  
I3  
I2  
I1  
I0  
L3  
L2  
L1  
L0  
B3  
B2  
B1  
B0  
M3  
M2  
M1  
M0  
DAG1  
P3  
DAG0  
P2  
P1  
P0  
DA1 32  
DA0 32  
32  
PREG  
32  
RAB  
SD 32  
LD1 32  
LD0 32  
ASTAT  
32  
32  
SEQUENCER  
R7.H  
R6.H  
R5.H  
R4.H  
R3.H  
R2.H  
R1.H  
R0.H  
R7.L  
R6.L  
R5.L  
R4.L  
R3.L  
R2.L  
R1.L  
R0.L  
ALIGN  
16  
16  
8
8
8
8
DECODE  
BARREL  
SHIFTER  
LOOP BUFFER  
40  
40  
40 40  
A0  
A1  
CONTROL  
UNIT  
32  
32  
DATAARITHMETIC UNIT  
Figure 2. Blackfin Processor Core  
The second on-chip memory block is the L1 data memory, con-  
sisting of one or two banks of up to 32K bytes. The memory  
banks are configurable, offering both cache and SRAM func-  
tionality. This memory block is accessed at full processor speed.  
The third memory block is a 4K byte scratchpad SRAM, which  
runs at the same speed as the L1 memories, but is only accessible  
as data SRAM and cannot be configured as cache memory.  
1M byte segment regardless of the size of the devices used, so  
that these banks are only contiguous if each is fully populated  
with 1M byte of memory.  
I/O Memory Space  
Blackfin processors do not define a separate I/O space. All  
resources are mapped through the flat 32-bit address space.  
On-chip I/O devices have their control registers mapped into  
memory mapped registers (MMRs) at addresses near the top of  
the 4G byte address space. These are separated into two smaller  
blocks, one containing the control MMRs for all core functions,  
and the other containing the registers needed for setup and con-  
trol of the on-chip peripherals outside of the core. The MMRs  
are accessible only in supervisor mode and appear as reserved  
space to on-chip peripherals.  
External (Off-Chip) Memory  
External memory is accessed via the external bus interface unit  
(EBIU). This 16-bit interface provides a glueless connection to a  
bank of synchronous DRAM (SDRAM) as well as up to four  
banks of asynchronous memory devices including flash,  
EPROM, ROM, SRAM, and memory mapped I/O devices.  
The PC133-compliant SDRAM controller can be programmed  
to interface to up to 128M bytes of SDRAM. The SDRAM con-  
troller allows one row to be open for each internal SDRAM  
bank, for up to four internal SDRAM banks, improving overall  
system performance.  
Booting  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors con-  
tain a small boot kernel, which configures the appropriate  
peripheral for booting. If the processors are configured to boot  
from boot ROM memory space, the processor starts executing  
from the on-chip boot ROM. For more information, see Boot-  
ing Modes on Page 14.  
The asynchronous memory controller can be programmed to  
control up to four banks of devices with very flexible timing  
parameters for a wide variety of devices. Each bank occupies a  
Rev. H  
|
Page 5 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
0xFFFF FFFF  
0xFFFF FFFF  
0xFFE0 0000  
0xFFC0 0000  
0xFFB0 1000  
0xFFB0 0000  
0xFFA1 4000  
0xFFA1 0000  
0xFFA0 0000  
0xFF90 8000  
0xFF90 4000  
0xFF90 0000  
0xFF80 8000  
0xFF80 4000  
0xFF80 0000  
0xEF00 0000  
0x2040 0000  
0x2030 0000  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0800 0000  
0x0000 0000  
CORE MMR REGISTERS (2M BYTE)  
SYSTEM MMR REGISTERS (2M BYTE)  
RESERVED  
CORE MMR REGISTERS (2M BYTE)  
0xFFE0 0000  
SYSTEM MMR REGISTERS (2M BYTE)  
0xFFC0 0000  
RESERVED  
0xFFB0 1000  
SCRATCHPAD SRAM (4K BYTE)  
RESERVED  
SCRATCHPAD SRAM (4K BYTE)  
0xFFB0 0000  
RESERVED  
0xFFA1 4000  
INSTRUCTION SRAM/CACHE (16K BYTE)  
INSTRUCTION SRAM (64K BYTE)  
RESERVED  
INSTRUCTION SRAM/CACHE (16K BYTE)  
0xFFA1 0000  
RESERVED  
0xFFA0 C000  
INSTRUCTION SRAM (16K BYTE)  
0xFFA0 8000  
DATA BANK B SRAM/CACHE (16K BYTE)  
DATA BANK B SRAM (16K BYTE)  
RESERVED  
RESERVED  
0xFFA0 0000  
RESERVED  
0xFF90 8000  
RESERVED  
0xFF90 4000  
DATA BANK A SRAM/CACHE (16K BYTE)  
DATA BANK A SRAM (16K BYTE)  
RESERVED  
0xFF80 8000  
DATA BANK A SRAM/CACHE (16K BYTE)  
0xFF80 4000  
RESERVED  
RESERVED  
0xEF00 0000  
RESERVED  
0x2040 0000  
RESERVED  
ASYNC MEMORY BANK 3 (1M BYTE)  
ASYNC MEMORY BANK 2 (1M BYTE)  
ASYNC MEMORY BANK 1 (1M BYTE)  
ASYNC MEMORY BANK 0 (1M BYTE)  
RESERVED  
ASYNC MEMORY BANK 3 (1M BYTE)  
0x2030 0000  
ASYNC MEMORY BANK 2 (1M BYTE)  
0x2020 0000  
ASYNC MEMORY BANK 1 (1M BYTE)  
0x2010 0000  
ASYNC MEMORY BANK 0 (1M BYTE)  
0x2000 0000  
RESERVED  
0x0800 0000  
SDRAM MEMORY (16M BYTE TO 128M BYTE)  
0x0000 0000  
SDRAM MEMORY (16M BYTE TO 128M BYTE)  
Figure 3. ADSP-BF531 Internal/External Memory Map  
Figure 5. ADSP-BF533 Internal/External Memory Map  
Event Handling  
0xFFFF FFFF  
CORE MMR REGISTERS (2M BYTE)  
The event controller on the processors handle all asynchronous  
and synchronous events to the processor. The ADSP-BF531/  
ADSP-BF532/ADSP-BF533 processors provide event handling  
that supports both nesting and prioritization. Nesting allows  
multiple event service routines to be active simultaneously. Pri-  
oritization ensures that servicing of a higher priority event takes  
precedence over servicing of a lower priority event. The control-  
ler provides support for five different types of events:  
0xFFE0 0000  
SYSTEM MMR REGISTERS (2M BYTE)  
0xFFC0 0000  
RESERVED  
0xFFB0 1000  
SCRATCHPAD SRAM (4K BYTE)  
0xFFB0 0000  
RESERVED  
0xFFA1 4000  
INSTRUCTION SRAM/CACHE (16K BYTE)  
0xFFA1 0000  
INSTRUCTION SRAM (32K BYTE)  
0xFFA0 8000  
• Emulation – An emulation event causes the processor to  
enter emulation mode, allowing command and control of  
the processor via the JTAG interface.  
RESERVED  
0xFFA0 0000  
RESERVED  
0xFF90 8000  
DATA BANK B SRAM/CACHE (16K BYTE)  
0xFF90 4000  
• Reset – This event resets the processor.  
RESERVED  
0xFF80 8000  
• Nonmaskable Interrupt (NMI) – The NMI event can be  
generated by the software watchdog timer or by the NMI  
input signal to the processor. The NMI event is frequently  
used as a power-down indicator to initiate an orderly shut-  
down of the system.  
DATA BANK A SRAM/CACHE (16K BYTE)  
0xFF80 4000  
RESERVED  
0xEF00 0000  
RESERVED  
0x2040 0000  
ASYNC MEMORY BANK 3 (1M BYTE)  
0x2030 0000  
ASYNC MEMORY BANK 2 (1M BYTE)  
0x2020 0000  
• Exceptions – Events that occur synchronously to program  
flow (i.e., the exception is taken before the instruction is  
allowed to complete). Conditions such as data alignment  
violations and undefined instructions cause exceptions.  
• Interrupts – Events that occur asynchronously to program  
flow. They are caused by input pins, timers, and other  
peripherals, as well as by an explicit software instruction.  
ASYNC MEMORY BANK 1 (1M BYTE)  
0x2010 0000  
ASYNC MEMORY BANK 0 (1M BYTE)  
0x2000 0000  
RESERVED  
0x0800 0000  
SDRAM MEMORY (16M BYTE TO 128M BYTE)  
0x0000 0000  
Figure 4. ADSP-BF532 Internal/External Memory Map  
Rev. H  
|
Page 6 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Each event type has an associated register to hold the return  
address and an associated return-from-event instruction. When  
an event is triggered, the state of the processor is saved on the  
supervisor stack.  
Table 3. System Interrupt Controller (SIC)  
Peripheral Interrupt Event  
PLL Wakeup  
Default Mapping  
IVG7  
DMA Error  
IVG7  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors’ event  
controller consists of two stages, the core event controller (CEC)  
and the system interrupt controller (SIC). The core event con-  
troller works with the system interrupt controller to prioritize  
and control all system events. Conceptually, interrupts from the  
peripherals enter into the SIC, and are then routed directly into  
the general-purpose interrupts of the CEC.  
PPI Error  
IVG7  
SPORT 0 Error  
IVG7  
SPORT 1 Error  
IVG7  
SPI Error  
IVG7  
UART Error  
IVG7  
Real-Time Clock  
IVG8  
Core Event Controller (CEC)  
DMA Channel 0 (PPI)  
DMA Channel 1 (SPORT 0 Receive)  
DMA Channel 2 (SPORT 0 Transmit)  
DMA Channel 3 (SPORT 1 Receive)  
DMA Channel 4 (SPORT 1 Transmit)  
DMA Channel 5 (SPI)  
DMA Channel 6 (UART Receive)  
DMA Channel 7 (UART Transmit)  
Timer 0  
IVG8  
The CEC supports nine general-purpose interrupts (IVG15–7),  
in addition to the dedicated interrupt and exception events. Of  
these general-purpose interrupts, the two lowest priority inter-  
rupts (IVG15–14) are recommended to be reserved for software  
interrupt handlers, leaving seven prioritized interrupt inputs to  
support the peripherals of the processor. Table 2 describes the  
inputs to the CEC, identifies their names in the event vector  
table (EVT), and lists their priorities.  
IVG9  
IVG9  
IVG9  
IVG9  
IVG10  
IVG10  
IVG10  
IVG11  
IVG11  
IVG11  
IVG12  
IVG12  
IVG13  
IVG13  
IVG13  
Table 2. Core Event Controller (CEC)  
Timer 1  
Priority  
Timer 2  
(0 is Highest)  
Event Class  
Emulation/Test Control EMU  
Reset RST  
Nonmaskable Interrupt NMI  
EVT Entry  
Port F GPIO Interrupt A  
Port F GPIO Interrupt B  
Memory DMA Stream 0  
Memory DMA Stream 1  
Software Watchdog Timer  
0
1
2
3
Exception  
EVX  
4
Reserved  
5
Hardware Error  
IVHW  
IVTMR  
IVG7  
Event Control  
6
Core Timer  
The processors provide a very flexible mechanism to control the  
processing of events. In the CEC, three registers are used to  
coordinate and control events. Each register is 32 bits wide:  
7
General Interrupt 7  
General Interrupt 8  
General Interrupt 9  
General Interrupt 10  
General Interrupt 11  
General Interrupt 12  
General Interrupt 13  
General Interrupt 14  
General Interrupt 15  
8
IVG8  
9
IVG9  
• CEC interrupt latch register (ILAT) – The ILAT register  
indicates when events have been latched. The appropriate  
bit is set when the processor has latched the event and  
cleared when the event has been accepted into the system.  
This register is updated automatically by the controller, but  
it can also be written to clear (cancel) latched events. This  
register can be read while in supervisor mode and can only  
be written while in supervisor mode when the correspond-  
ing IMASK bit is cleared.  
10  
11  
12  
13  
14  
15  
IVG10  
IVG11  
IVG12  
IVG13  
IVG14  
IVG15  
System Interrupt Controller (SIC)  
• CEC interrupt mask register (IMASK) – The IMASK regis-  
ter controls the masking and unmasking of individual  
events. When a bit is set in the IMASK register, that event is  
unmasked and is processed by the CEC when asserted. A  
cleared bit in the IMASK register masks the event,  
preventing the processor from servicing the event even  
though the event may be latched in the ILAT register. This  
register can be read or written while in supervisor mode.  
Note that general-purpose interrupts can be globally  
enabled and disabled with the STI and CLI instructions,  
respectively.  
The system interrupt controller provides the mapping and rout-  
ing of events from the many peripheral interrupt sources to the  
prioritized general-purpose interrupt inputs of the CEC.  
Although the processors provide a default mapping, the user  
can alter the mappings and priorities of interrupt events by writ-  
ing the appropriate values into the interrupt assignment  
registers (SIC_IARx). Table 3 describes the inputs into the SIC  
and the default mappings into the CEC.  
Rev. H  
|
Page 7 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
• CEC interrupt pending register (IPEND) – The IPEND  
register keeps track of all nested events. A set bit in the  
IPEND register indicates the event is currently active or  
nested at some level. This register is updated automatically  
by the controller but can be read while in supervisor mode.  
The SIC allows further control of event processing by providing  
three 32-bit interrupt control and status registers. Each register  
contains a bit corresponding to each of the peripheral interrupt  
events shown in Table 3.  
• SIC interrupt mask register (SIC_IMASK) – This register  
controls the masking and unmasking of each peripheral  
interrupt event. When a bit is set in this register, that  
peripheral event is unmasked and is processed by the sys-  
tem when asserted. A cleared bit in this register masks the  
peripheral event, preventing the processor from servicing  
the event.  
peripherals include the SPORTs, SPI port, UART, and PPI. Each  
individual DMA-capable peripheral has at least one dedicated  
DMA channel.  
The DMA controller supports both 1-dimensional (1-D) and 2-  
dimensional (2-D) DMA transfers. DMA transfer initialization  
can be implemented from registers or from sets of parameters  
called descriptor blocks.  
The 2-D DMA capability supports arbitrary row and column  
sizes up to 64K elements by 64K elements, and arbitrary row  
and column step sizes up to 32K elements. Furthermore, the  
column step size can be less than the row step size, allowing  
implementation of interleaved data streams. This feature is  
especially useful in video applications where data can be  
de-interleaved on the fly.  
Examples of DMA types supported by the DMA controller  
include:  
• SIC interrupt status register (SIC_ISR) – As multiple  
peripherals can be mapped to a single event, this register  
allows the software to determine which peripheral event  
source triggered the interrupt. A set bit indicates the  
peripheral is asserting the interrupt, and a cleared bit indi-  
cates the peripheral is not asserting the event.  
• SIC interrupt wakeup enable register (SIC_IWR) – By  
enabling the corresponding bit in this register, a peripheral  
can be configured to wake up the processor, should the  
core be idled when the event is generated. See Dynamic  
Power Management on Page 11.  
Because multiple interrupt sources can map to a single general-  
purpose interrupt, multiple pulse assertions can occur simulta-  
neously, before or during interrupt processing for an interrupt  
event already detected on this interrupt input. The IPEND reg-  
ister contents are monitored by the SIC as the interrupt  
acknowledgement.  
The appropriate ILAT register bit is set when an interrupt rising  
edge is detected (detection requires two core clock cycles). The  
bit is cleared when the respective IPEND register bit is set. The  
IPEND bit indicates that the event has entered into the proces-  
sor pipeline. At this point the CEC recognizes and queues the  
next rising edge event on the corresponding event input. The  
minimum latency from the rising edge transition of the  
general-purpose interrupt to the IPEND output asserted is three  
core clock cycles; however, the latency can be much higher,  
depending on the activity within and the state of the processor.  
• A single, linear buffer that stops upon completion  
• A circular, autorefreshing buffer that interrupts on each  
full or fractionally full buffer  
• 1-D or 2-D DMA using a linked list of descriptors  
• 2-D DMA using an array of descriptors, specifying only the  
base DMA address within a common page  
In addition to the dedicated peripheral DMA channels, there are  
two pairs of memory DMA channels provided for transfers  
between the various memories of the processor system. This  
enables transfers of blocks of data between any of the memo-  
ries—including external SDRAM, ROM, SRAM, and flash  
memory—with minimal processor intervention. Memory DMA  
transfers can be controlled by a very flexible descriptor-based  
methodology or by a standard register-based autobuffer  
mechanism.  
REAL-TIME CLOCK  
The processor real-time clock (RTC) provides a robust set of  
digital watch features, including current time, stopwatch, and  
alarm. The RTC is clocked by a 32.768 kHz crystal external to  
the ADSP-BF531/ADSP-BF532/ADSP-BF533 processors. The  
RTC peripheral has dedicated power supply pins so that it can  
remain powered up and clocked even when the rest of the pro-  
cessor is in a low power state. The RTC provides several  
programmable interrupt options, including interrupt per sec-  
ond, minute, hour, or day clock ticks, interrupt on  
programmable stopwatch countdown, or interrupt at a pro-  
grammed alarm time.  
DMA CONTROLLERS  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have  
multiple, independent DMA channels that support automated  
data transfers with minimal overhead for the processor core.  
DMA transfers can occur between the processor’s internal  
memories and any of its DMA-capable peripherals. Addition-  
ally, DMA transfers can be accomplished between any of the  
DMA-capable peripherals and external devices connected to the  
external memory interfaces, including the SDRAM controller  
and the asynchronous memory controller. DMA-capable  
The 32.768 kHz input clock frequency is divided down to a 1 Hz  
signal by a prescaler. The counter function of the timer consists  
of four counters: a 60 second counter, a 60 minute counter, a 24  
hour counter, and a 32,768 day counter.  
When enabled, the alarm function generates an interrupt when  
the output of the timer matches the programmed value in the  
alarm control register. The two alarms are time of day and a day  
and time of that day.  
Rev. H  
|
Page 8 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
The stopwatch function counts down from a programmed  
value, with one second resolution. When the stopwatch is  
enabled and the counter underflows, an interrupt is generated.  
Like other peripherals, the RTC can wake up the processor from  
sleep mode upon generation of any RTC wakeup event.  
Additionally, an RTC wakeup event can wake up the processor  
from deep sleep mode, and wake up the on-chip internal voltage  
regulator from a powered-down state.  
TIMERS  
There are four general-purpose programmable timer units in  
the ADSP-BF531/ADSP-BF532/ADSP-BF533 processors. Three  
timers have an external pin that can be configured either as a  
pulse-width modulator (PWM) or timer output, as an input to  
clock the timer, or as a mechanism for measuring pulse widths  
and periods of external events. These timers can be synchro-  
nized to an external clock input to the PF1 pin (TACLK), an  
external clock input to the PPI_CLK pin (TMRCLK), or to the  
internal SCLK.  
Connect RTC pins RTXI and RTXO with external components  
as shown in Figure 6.  
The timer units can be used in conjunction with the UART to  
measure the width of the pulses in the data stream to provide an  
autobaud detect function for a serial channel.  
The timers can generate interrupts to the processor core provid-  
ing periodic events for synchronization, either to the system  
clock or to a count of external signals.  
RTXI  
RTXO  
R1  
X1  
C1  
C2  
In addition to the three general-purpose programmable timers,  
a fourth timer is also provided. This extra timer is clocked by the  
internal processor clock and is typically used as a system tick  
clock for generation of operating system periodic interrupts.  
SUGGESTED COMPONENTS:  
X1 = ECLIPTEK EC38J (THROUGH-HOLE PACKAGE) OR  
SERIAL PORTS (SPORTs)  
EPSON MC405 12 pF LOAD (SURFACE-MOUNT PACKAGE)  
C1 = 22 pF  
C2 = 22 pF  
R1 = 10 Mꢀ  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors  
incorporate two dual-channel synchronous serial ports  
(SPORT0 and SPORT1) for serial and multiprocessor commu-  
nications. The SPORTs support the following features:  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2  
SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 pF.  
• I2S capable operation.  
Figure 6. External Components for RTC  
• Bidirectional operation – Each SPORT has two sets of inde-  
pendent transmit and receive pins, enabling eight channels  
of I2S stereo audio.  
• Buffered (8-deep) transmit and receive ports – Each port  
has a data register for transferring data words to and from  
other processor components and shift registers for shifting  
data in and out of the data registers.  
• Clocking – Each transmit and receive port can either use an  
external serial clock or generate its own, in frequencies  
ranging from (fSCLK/131,070) Hz to (fSCLK/2) Hz.  
• Word length – Each SPORT supports serial data words  
from 3 bits to 32 bits in length, transferred most-signifi-  
cant-bit first or least-significant-bit first.  
• Framing – Each transmit and receive port can run with or  
without frame sync signals for each data word. Frame sync  
signals can be generated internally or externally, active high  
or low, and with either of two pulse widths and early or late  
frame sync.  
• Companding in hardware – Each SPORT can perform  
A-law or μ-law companding according to ITU recommen-  
dation G.711. Companding can be selected on the transmit  
and/or receive channel of the SPORT without additional  
latencies.  
WATCHDOG TIMER  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors  
include a 32-bit timer that can be used to implement a software  
watchdog function. A software watchdog can improve system  
availability by forcing the processor to a known state through  
generation of a hardware reset, nonmaskable interrupt (NMI),  
or general-purpose interrupt, if the timer expires before being  
reset by software. The programmer initializes the count value of  
the timer, enables the appropriate interrupt, then enables the  
timer. Thereafter, the software must reload the counter before it  
counts to zero from the programmed value. This protects the  
system from remaining in an unknown state where software,  
which would normally reset the timer, has stopped running due  
to an external noise condition or software error.  
If configured to generate a hardware reset, the watchdog timer  
resets both the core and the processor peripherals. After a reset,  
software can determine if the watchdog was the source of the  
hardware reset by interrogating a status bit in the watchdog  
timer control register.  
The timer is clocked by the system clock (SCLK), at a maximum  
frequency of fSCLK  
.
• DMA operations with single-cycle overhead – Each SPORT  
can automatically receive and transmit multiple buffers of  
memory data. The processor can link or chain sequences of  
DMA transfers between a SPORT and memory.  
Rev. H  
| Page 9 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
• Interrupts – Each transmit and receive port generates an  
interrupt upon completing the transfer of a data-word or  
after transferring an entire data buffer or buffers  
through DMA.  
• Multichannel capability – Each SPORT supports 128 chan-  
nels out of a 1,024-channel window and is compatible with  
the H.100, H.110, MVIP-90, and HMVIP standards.  
An additional 250 mV of SPORT input hysteresis can be  
enabled by setting Bit 15 of the PLL_CTL register. When this bit  
is set, all SPORT input pins have the increased hysteresis.  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
The baud rate, serial data format, error code generation and sta-  
tus, and interrupts for the UART port are programmable.  
The UART programmable features include:  
• Supporting bit rates ranging from (fSCLK/1,048,576) bits per  
second to (fSCLK/16) bits per second.  
• Supporting data formats from seven bits to 12 bits per  
frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
The UART port’s clock rate is calculated as:  
SERIAL PERIPHERAL INTERFACE (SPI) PORT  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have  
an SPI-compatible port that enables the processor to communi-  
cate with multiple SPI-compatible devices.  
The SPI interface uses three pins for transferring data: two data  
pins (master output-slave input, MOSI, and master input-slave  
output, MISO) and a clock pin (serial clock, SCK). An SPI chip  
select input pin (SPISS) lets other SPI devices select the proces-  
sor, and seven SPI chip select output pins (SPISEL7–1) let the  
processor select other SPI devices. The SPI select pins are recon-  
figured general-purpose I/O pins. Using these pins, the SPI port  
provides a full-duplex, synchronous serial interface which sup-  
ports both master/slave modes and multimaster environments.  
The baud rate and clock phase/polarities for the SPI port are  
programmable, and it has an integrated DMA controller, con-  
figurable to support transmit or receive data streams. The SPI  
DMA controller can only service unidirectional accesses at any  
given time.  
fSCLK  
-----------------------------------------------  
UART Clock Rate =  
16 UART_Divisor  
where the 16-bit UART_Divisor comes from the UART_DLH  
register (most significant 8 bits) and UART_DLL register (least  
significant 8 bits).  
In conjunction with the general-purpose timer functions,  
autobaud detection is supported.  
The capabilities of the UART are further extended with support  
for the Infrared Data Association (IrDA®) serial infrared physi-  
cal layer link specification (SIR) protocol.  
The SPI port clock rate is calculated as:  
GENERAL-PURPOSE I/O PORT F  
fSCLK  
2 SPI_BAUD  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have  
16 bidirectional, general-purpose I/O pins on Port F (PF15–0).  
Each general-purpose I/O pin can be individually controlled by  
manipulation of the GPIO control, status and interrupt  
registers:  
-----------------------------------  
SPI Clock Rate =  
where the 16-bit SPI_BAUD register contains a value of 2 to  
65,535.  
During transfers, the SPI port simultaneously transmits and  
receives by serially shifting data in and out on its two serial data  
lines. The serial clock line synchronizes the shifting and sam-  
pling of data on the two serial data lines.  
• GPIO direction control register – Specifies the direction of  
each individual PFx pin as input or output.  
• GPIO control and status registers – The processor employs  
a “write one to modify” mechanism that allows any combi-  
nation of individual GPIO pins to be modified in a single  
instruction, without affecting the level of any other GPIO  
pins. Four control registers are provided. One register is  
written in order to set GPIO pin values, one register is writ-  
ten in order to clear GPIO pin values, one register is written  
in order to toggle GPIO pin values, and one register is writ-  
ten in order to specify GPIO pin values. Reading the GPIO  
status register allows software to interrogate the sense of  
the GPIO pin.  
• GPIO interrupt mask registers – The two GPIO interrupt  
mask registers allow each individual PFx pin to function as  
an interrupt to the processor. Similar to the two GPIO  
control registers that are used to set and clear individual  
GPIO pin values, one GPIO interrupt mask register sets  
bits to enable interrupt function, and the other GPIO inter-  
rupt mask register clears bits to disable interrupt function.  
UART PORT  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors pro-  
vide a full-duplex universal asynchronous receiver/transmitter  
(UART) port, which is fully compatible with PC-standard  
UARTs. The UART port provides a simplified UART interface  
to other peripherals or hosts, supporting full-duplex, DMA-sup-  
ported, asynchronous transfers of serial data. The UART port  
includes support for 5 data bits to 8 data bits, 1 stop bit or 2 stop  
bits, and none, even, or odd parity. The UART port supports  
two modes of operation:  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
Rev. H  
| Page 10 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
PFx pins defined as inputs can be configured to generate  
hardware interrupts, while output PFx pins can be trig-  
gered by software interrupts.  
• GPIO interrupt sensitivity registers – The two GPIO inter-  
rupt sensitivity registers specify whether individual PFx  
pins are level- or edge-sensitive and specify—if edge-sensi-  
tive—whether just the rising edge or both the rising and  
falling edges of the signal are significant. One register  
selects the type of sensitivity, and one register selects which  
edges are significant for edge-sensitivity.  
Output Mode  
Output mode is used for transmitting video or other data with  
up to three output frame syncs. Typically, a single frame sync is  
appropriate for data converter applications, whereas two or  
three frame syncs could be used for sending video with hard-  
ware signaling.  
ITU-R 656 Mode Descriptions  
The ITU-R 656 modes of the PPI are intended to suit a wide  
variety of video capture, processing, and transmission applica-  
tions. Three distinct sub modes are supported:  
• Active video only mode  
• Vertical blanking only mode  
• Entire field mode  
PARALLEL PERIPHERAL INTERFACE  
The processors provide a parallel peripheral interface (PPI) that  
can connect directly to parallel ADCs and DACs, video encod-  
ers and decoders, and other general-purpose peripherals. The  
PPI consists of a dedicated input clock pin, up to three frame  
synchronization pins, and up to 16 data pins. The input clock  
supports parallel data rates up to half the system clock rate and  
the synchronization signals can be configured as either inputs or  
outputs.  
The PPI supports a variety of general-purpose and ITU-R 656  
modes of operation. In general-purpose mode, the PPI provides  
half-duplex, bi-directional data transfer with up to 16 bits of  
data. Up to three frame synchronization signals are also pro-  
vided. In ITU-R 656 mode, the PPI provides half-duplex bi-  
directional transfer of 8- or 10-bit video data. Additionally, on-  
chip decode of embedded start-of-line (SOL) and start-of-field  
(SOF) preamble packets is supported.  
Active Video Only Mode  
Active video only mode is used when only the active video por-  
tion of a field is of interest and not any of the blanking intervals.  
The PPI does not read in any data between the end of active  
video (EAV) and start of active video (SAV) preamble symbols,  
or any data present during the vertical blanking intervals. In this  
mode, the control byte sequences are not stored to memory;  
they are filtered by the PPI. After synchronizing to the start of  
Field 1, the PPI ignores incoming samples until it sees an SAV  
code. The user specifies the number of active video lines per  
frame (in PPI_COUNT register).  
Vertical Blanking Interval Mode  
In this mode, the PPI only transfers vertical blanking interval  
(VBI) data.  
General-Purpose Mode Descriptions  
The general-purpose modes of the PPI are intended to suit a  
wide variety of data capture and transmission applications.  
Entire Field Mode  
Three distinct sub modes are supported:  
• Input mode – Frame syncs and data are inputs into the PPI.  
• Frame capture mode – Frame syncs are outputs from the  
PPI, but data are inputs.  
• Output mode – Frame syncs and data are outputs from the  
PPI.  
In this mode, the entire incoming bit stream is read in through  
the PPI. This includes active video, control preamble sequences,  
and ancillary data that can be embedded in horizontal and verti-  
cal blanking intervals. Data transfer starts immediately after  
synchronization to Field 1. Data is transferred to or from the  
synchronous channels through eight DMA engines that work  
autonomously from the processor core.  
Input Mode  
DYNAMIC POWER MANAGEMENT  
Input mode is intended for ADC applications, as well as video  
communication with hardware signaling. In its simplest form,  
PPI_FS1 is an external frame sync input that controls when to  
read data. The PPI_DELAY MMR allows for a delay (in  
PPI_CLK cycles) between reception of this frame sync and the  
initiation of data reads. The number of input data samples is  
user programmable and defined by the contents of the  
PPI_COUNT register. The PPI supports 8-bit and 10-bit  
through 16-bit data, programmable in the PPI_CONTROL  
register.  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors pro-  
vides four operating modes, each with a different performance/  
power profile. In addition, dynamic power management pro-  
vides the control functions to dynamically alter the processor  
core supply voltage, further reducing power dissipation. Control  
of clocking to each of the processor peripherals also reduces  
power consumption. See Table 4 for a summary of the power  
settings for each mode.  
Full-On Operating Mode—Maximum Performance  
In the full-on mode, the PLL is enabled and is not bypassed,  
providing capability for maximum operational frequency. This  
is the power-up default execution state in which maximum per-  
formance can be achieved. The processor core and all enabled  
peripherals run at full speed.  
Frame Capture Mode  
Frame capture mode allows the video source(s) to act as a slave  
(e.g., for frame capture). The processors control when to read  
from the video source(s). PPI_FS1 is an HSYNC output and  
PPI_FS2 is a VSYNC output.  
Rev. H  
| Page 11 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
0 V to provide the lowest static power dissipation. Any critical  
information stored internally (memory contents, register con-  
tents, etc.) must be written to a nonvolatile storage device prior  
to removing power if the processor state is to be preserved.  
Since VDDEXT is still supplied in this mode, all of the external  
pins three-state, unless otherwise specified. This allows other  
devices that may be connected to the processor to still have  
power applied without drawing unwanted current. The internal  
supply regulator can be woken up either by a real-time clock  
wakeup or by asserting the RESET pin.  
Active Operating Mode—Moderate Power Savings  
In the active mode, the PLL is enabled but bypassed. Because the  
PLL is bypassed, the processor’s core clock (CCLK) and system  
clock (SCLK) run at the input clock (CLKIN) frequency. DMA  
access is available to appropriately configured L1 memories.  
In the active mode, it is possible to disable the PLL through the  
PLL control register (PLL_CTL). If disabled, the PLL must be  
re-enabled before it can transition to the full-on or sleep modes.  
Table 4. Power Settings  
Power Savings  
Core  
Clock  
System Internal  
Clock Power  
As shown in Table 5, the processors support three different  
power domains. The use of multiple power domains maximizes  
flexibility, while maintaining compliance with industry stan-  
dards and conventions. By isolating the internal logic of the  
processor into its own power domain, separate from the RTC  
and other I/O, the processor can take advantage of dynamic  
power management without affecting the RTC or other I/O  
devices. There are no sequencing requirements for the various  
power domains.  
PLL  
Mode  
Full On  
Active  
PLL  
Bypassed (CCLK) (SCLK) (VDDINT)  
Enabled No  
Enabled Enabled On  
Enabled Enabled On  
Enabled/ Yes  
Disabled  
Sleep  
Enabled  
Disabled  
Disabled Enabled On  
Disabled Disabled On  
Deep  
Sleep  
Hibernate Disabled  
Disabled Disabled Off  
Table 5. Power Domains  
Sleep Operating Mode—High Dynamic Power Savings  
Power Domain  
VDD Range  
VDDINT  
All internal logic, except RTC  
RTC internal logic and crystal I/O  
All other I/O  
The sleep mode reduces dynamic power dissipation by disabling  
the clock to the processor core (CCLK). The PLL and system  
clock (SCLK), however, continue to operate in this mode. Typi-  
cally an external event or RTC activity will wake up the  
processor. When in the sleep mode, assertion of wakeup causes  
the processor to sense the value of the BYPASS bit in the PLL  
control register (PLL_CTL). If BYPASS is disabled, the proces-  
sor will transition to the full-on mode. If BYPASS is enabled, the  
processor will transition to the active mode.  
VDDRTC  
VDDEXT  
The power dissipated by a processor is largely a function of the  
clock frequency of the processor and the square of the operating  
voltage. For example, reducing the clock frequency by 25%  
results in a 25% reduction in dynamic power dissipation, while  
reducing the voltage by 25% reduces dynamic power dissipation  
by more than 40%. Further, these power savings are additive, in  
that if the clock frequency and supply voltage are both reduced,  
the power savings can be dramatic.  
The dynamic power management feature of the processor  
allows both the processor’s input voltage (VDDINT) and clock fre-  
quency (fCCLK) to be dynamically controlled.  
The savings in power dissipation can be modeled using the  
power savings factor and % power savings calculations.  
When in the sleep mode, system DMA access to L1 memory is  
not supported.  
Deep Sleep Operating Mode—Maximum Dynamic Power  
Savings  
The deep sleep mode maximizes dynamic power savings by dis-  
abling the clocks to the processor core (CCLK) and to all  
synchronous peripherals (SCLK). Asynchronous peripherals,  
such as the RTC, may still be running but cannot access internal  
resources or external memory. This powered-down mode can  
only be exited by assertion of the reset interrupt (RESET) or by  
an asynchronous interrupt generated by the RTC. When in deep  
sleep mode, an RTC asynchronous interrupt causes the proces-  
sor to transition to the active mode. Assertion of RESET while  
in deep sleep mode causes the processor to transition to the full-  
on mode.  
The power savings factor is calculated as:  
power savings factor  
2
fCCLKRED  
---------------------  
fCCLKNOM  
VDDINTRED  
--------------------------  
VDDINTNOM  
tRED  
----------  
tNOM  
=
where the variables in the equation are:  
Hibernate State—Maximum Static Power Savings  
f
f
V
V
CCLKNOM is the nominal core clock frequency  
CCLKRED is the reduced core clock frequency  
DDINTNOM is the nominal internal supply voltage  
DDINTRED is the reduced internal supply voltage  
The hibernate state maximizes static power savings by disabling  
the voltage and clocks to the processor core (CCLK) and to all  
the synchronous peripherals (SCLK). The internal voltage  
regulator for the processor can be shut off by writing b#00 to  
the FREQ bits of the VR_CTL register. In addition to disabling  
the clocks, this sets the internal power supply voltage (VDDINT) to  
Rev. H  
| Page 12 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
t
t
NOM is the duration running at fCCLKNOM  
RED is the duration running at fCCLKRED  
For further details on the on-chip voltage regulator and related  
board design guidelines, see the Switching Regulator Design  
Considerations for ADSP-BF533 Blackfin Processors (EE-228)  
applications note on the Analog Devices web site (www.ana-  
log.com)—use site search on “EE-228”.  
The percent power savings is calculated as:  
% power savings = 1 power savings factor  100%  
CLOCK SIGNALS  
VOLTAGE REGULATION  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors can  
be clocked by an external crystal, a sine wave input, or a buff-  
ered, shaped clock derived from an external clock oscillator.  
If an external clock is used, it should be a TTL-compatible signal  
and must not be halted, changed, or operated below the speci-  
fied frequency during normal operation. This signal is  
connected to the processor’s CLKIN pin. When an external  
clock is used, the XTAL pin must be left unconnected.  
The Blackfin processor provides an on-chip voltage regulator  
that can generate appropriate VDDINT voltage levels from the  
V
DDEXT supply. See Operating Conditions on Page 21 for regula-  
tor tolerances and acceptable VDDEXT ranges for specific models.  
Figure 7 shows the typical external components required to  
complete the power management system. The regulator con-  
trols the internal logic voltage levels and is programmable with  
the voltage regulator control register (VR_CTL) in increments  
of 50 mV. To reduce standby power consumption, the internal  
voltage regulator can be programmed to remove power to the  
processor core while keeping I/O power (VDDEXT) supplied.  
While in the hibernate state, I/O power is still being applied,  
eliminating the need for external buffers. The voltage regulator  
can be activated from this power-down state either through an  
RTC wakeup or by asserting RESET, both of which initiate a  
boot sequence. The regulator can also be disabled and bypassed  
at the user’s discretion.  
Alternatively, because the processors include an on-chip oscilla-  
tor circuit, an external crystal can be used. For fundamental  
frequency operation, use the circuit shown in Figure 8.  
Blackfin  
CLKOUT  
TO PLL CIRCUITRY  
EN  
SET OF DECOUPLING  
CAPACITORS  
V
DDEXT  
700ꢀ  
(LOW-INDUCTANCE)  
V
V
V
DDEXT  
DDEXT  
DDINT  
+
XTAL  
CLKIN  
100μF  
10μH  
1Mꢀ  
0*  
100nF  
+
+
FOR OVERTONE  
18pF*  
18pF*  
100μF  
OPERATION ONLY  
FDS9431A  
100μF  
10μF  
LOW ESR  
ZHCS1000  
VR  
VR  
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED  
DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE  
ANALYZE CAREFULLY.  
OUT  
SHORT AND LOW-  
INDUCTANCE WIRE  
OUT  
Figure 8. External Crystal Connections  
NOTE: DESIGNER SHOULD MINIMIZE  
TRACE LENGTH TO FDS9431A.  
GND  
A parallel-resonant, fundamental frequency, microprocessor-  
grade crystal is connected across the CLKIN and XTAL pins.  
The on-chip resistance between CLKIN and the XTAL pin is in  
the 500 krange. Further parallel resistors are typically not rec-  
ommended. The two capacitors and the series resistor shown in  
Figure 8 fine tune the phase and amplitude of the sine fre-  
quency. The capacitor and resistor values shown in Figure 8 are  
typical values only. The capacitor values are dependent upon  
the crystal manufacturer's load capacitance recommendations  
and the physical PCB layout. The resistor value depends on the  
drive level specified by the crystal manufacturer. System designs  
should verify the customized values based on careful investiga-  
tion on multiple devices over the allowed temperature range.  
Figure 7. Voltage Regulator Circuit  
Voltage Regulator Layout Guidelines  
Regulator external component placement, board routing, and  
bypass capacitors all have a significant effect on noise injected  
into the other analog circuits on-chip. The VROUT1–0 traces  
and voltage regulator external components should be consid-  
ered as noise sources when doing board layout and should not  
be routed or placed near sensitive circuits or components on the  
board. All internal and I/O power supplies should be well  
bypassed with bypass capacitors placed as close to the proces-  
sors as possible.  
A third-overtone crystal can be used at frequencies above  
25 MHz. The circuit is then modified to ensure crystal operation  
only at the third overtone, by adding a tuned inductor circuit as  
shown in Figure 8.  
Rev. H  
| Page 13 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
As shown in Figure 9, the core clock (CCLK) and system  
peripheral clock (SCLK) are derived from the input clock  
(CLKIN) signal. An on-chip PLL is capable of multiplying the  
CLKIN signal by a user programmable 0.5to 64multiplica-  
tion factor (bounded by specified minimum and maximum  
VCO frequencies). The default multiplier is 10, but it can be  
modified by a software instruction sequence. On-the-fly  
frequency changes can be effected by simply writing to the  
PLL_DIV register.  
Table 7. Core Clock Ratios  
Example Frequency Ratios  
(MHz)  
Signal Name Divider Ratio  
CSEL1–0  
VCO/CCLK  
VCO  
CCLK  
300  
150  
100  
25  
00  
01  
10  
11  
1:1  
2:1  
4:1  
8:1  
300  
300  
400  
200  
“FINE” ADJUSTMENT  
REQUIRES PLL SEQUENCING  
“COARSE” ADJUSTMENT  
ON-THE-FLY  
BOOTING MODES  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have  
two mechanisms (listed in Table 8) for automatically loading  
internal L1 instruction memory after a reset. A third mode is  
provided to execute from external memory, bypassing the boot  
sequence.  
CCLK  
SCLK  
÷ 1, 2, 4, 8  
÷ 1 to 15  
PLL  
0.5to 64ꢁ  
CLKIN  
VCO  
Table 8. Booting Modes  
BMODE1–0 Description  
SCLK CCLK  
00  
Execute from 16-bit external memory (bypass  
boot ROM)  
SCLK 133 MHz  
Figure 9. Frequency Modification Methods  
01  
10  
11  
Boot from 8-bit or 16-bit FLASH  
Boot from serial master connected to SPI  
All on-chip peripherals are clocked by the system clock (SCLK).  
The system clock frequency is programmable by means of the  
SSEL3–0 bits of the PLL_DIV register. The values programmed  
into the SSEL fields define a divide ratio between the PLL output  
(VCO) and the system clock. SCLK divider values are 1 through  
15. Table 6 illustrates typical system clock ratios.  
Boot from serial slave EEPROM/flash (8-,16-, or 24-  
bit address range, or Atmel AT45DB041,  
AT45DB081, or AT45DB161serial flash)  
The BMODE pins of the reset configuration register, sampled  
during power-on resets and software-initiated resets, imple-  
ment the following modes:  
Table 6. Example System Clock Ratios  
• Execute from 16-bit external memory – Execution starts  
from address 0x2000 0000 with 16-bit packing. The boot  
ROM is bypassed in this mode. All configuration settings  
are set for the slowest device possible (3-cycle hold time;  
15-cycle R/W access times; 4-cycle setup).  
• Boot from 8-bit or 16-bit external flash memory – The flash  
boot routine located in boot ROM memory space is set up  
using asynchronous Memory Bank 0. All configuration set-  
tings are set for the slowest device possible (3-cycle hold  
time; 15-cycle R/W access times; 4-cycle setup).  
• Boot from SPI serial EEPROM/flash (8-, 16-, or 24-bit  
addressable, or Atmel AT45DB041, AT45DB081, or  
AT45DB161) – The SPI uses the PF2 output pin to select a  
single SPI EEPROM/flash device, submits a read command  
and successive address bytes (0x00) until a valid 8-, 16-, or  
24-bit addressable EEPROM/flash device is detected, and  
begins clocking data into the processor at the beginning of  
L1 instruction memory.  
• Boot from SPI serial master – The Blackfin processor oper-  
ates in SPI slave mode and is configured to receive the bytes  
of the LDR file from an SPI host (master) agent. To hold off  
the host device from transmitting while the boot ROM is  
busy, the Blackfin processor asserts a GPIO pin, called host  
wait (HWAIT), to signal the host device not to send any  
Example Frequency Ratios  
(MHz)  
Signal Name Divider Ratio  
SSEL3–0  
VCO/SCLK  
VCO  
100  
400  
500  
SCLK  
0001  
1:1  
100  
80  
0101  
5:1  
1010  
10:1  
50  
The maximum frequency of the system clock is fSCLK. The divi-  
sor ratio must be chosen to limit the system clock frequency to  
its maximum of fSCLK. The SSEL value can be changed dynami-  
cally without any PLL lock latencies by writing the appropriate  
values to the PLL divisor register (PLL_DIV). When the SSEL  
value is changed, it affects all of the peripherals that derive their  
clock signals from the SCLK signal.  
The core clock (CCLK) frequency can also be dynamically  
changed by means of the CSEL1–0 bits of the PLL_DIV register.  
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in  
Table 7. This programmable core clock capability is useful for  
fast core frequency modifications.  
Rev. H  
| Page 14 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
more bytes until the flag is deasserted. The GPIO pin is  
chosen by the user and this information is transferred to  
the Blackfin processor via bits[10:5] of the FLAG header in  
the LDR image.  
DEVELOPMENT TOOLS  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors are  
supported by a complete set of CROSSCORE® software and  
hardware development tools, including Analog Devices emula-  
tors and VisualDSP++® development environment. The same  
emulator hardware that supports other Blackfin processors also  
fully emulates the processor.  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy to use assembler (which is based on an alge-  
braic syntax), an archiver (librarian/library builder), a linker, a  
loader, a cycle-accurate instruction level simulator, a C/C++  
compiler, and a C/C++ runtime library that includes DSP and  
mathematical functions. A key point for these tools is C/C++  
code efficiency. The compiler has been developed for efficient  
translation of C/C++ code to processor assembly. The processor  
has architectural features that improve the efficiency of com-  
piled C/C++ code.  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity.  
Statistical profiling enables the programmer to non intrusively  
poll the processor as it is running the program. This feature,  
unique to VisualDSP++, enables the software developer to pas-  
sively gather important code execution metrics without  
interrupting the real-time characteristics of the program. Essen-  
tially, the developer can identify bottlenecks in software quickly  
and efficiently. By using the profiler, the programmer can focus  
on those areas in the program that impact performance and take  
corrective action.  
For each of the boot modes, a 10-byte header is first read from  
an external memory device. The header specifies the number of  
bytes to be transferred and the memory destination address.  
Multiple memory blocks can be loaded by any boot sequence.  
Once all blocks are loaded, program execution commences from  
the start of L1 instruction SRAM.  
In addition, Bit 4 of the reset configuration register can be set by  
application code to bypass the normal boot sequence during a  
software reset. For this case, the processor jumps directly to the  
beginning of L1 instruction memory.  
INSTRUCTION SET DESCRIPTION  
The Blackfin processor family assembly language instruction set  
employs an algebraic syntax designed for ease of coding and  
readability. The instructions have been specifically tuned to pro-  
vide a flexible, densely encoded instruction set that compiles to  
a very small final memory size. The instruction set also provides  
fully featured multifunction instructions that allow the pro-  
grammer to use many of the processor core resources in a single  
instruction. Coupled with many features more often seen on  
microcontrollers, this instruction set is very efficient when com-  
piling C and C++ source code. In addition, the architecture  
supports both user (algorithm/application code) and supervisor  
(O/S kernel, device drivers, debuggers, ISRs) modes of opera-  
tion, allowing multiple levels of access to core processor  
resources.  
The assembly language, which takes advantage of the proces-  
sor’s unique architecture, offers the following advantages:  
• Seamlessly integrated DSP/CPU features are optimized for  
both 8-bit and 16-bit operations.  
• A multi-issue load/store modified Harvard architecture,  
which supports two 16-bit MAC or four 8-bit ALU + two  
load/store + two pointer updates per cycle.  
• All registers, I/O, and memory are mapped into a unified  
4G byte memory space, providing a simplified program-  
ming model.  
Debugging both C/C++ and assembly programs with the  
VisualDSP++ debugger, programmers can:  
• View mixed C/C++ and assembly code (interleaved source  
and object information).  
• Insert breakpoints.  
• Set conditional breakpoints on registers, memory,  
and stacks.  
• Microcontroller features, such as arbitrary bit and bit-field  
manipulation, insertion, and extraction; integer operations  
on 8-, 16-, and 32-bit data types; and separate user and  
supervisor stack pointers.  
• Code density enhancements, which include intermixing of  
16-bit and 32-bit instructions (no mode switching, no code  
segregation). Frequently used instructions are encoded in  
16 bits.  
• Trace instruction execution.  
• Perform linear or statistical profiling of program execution.  
• Fill, dump, and graphically plot the contents of memory.  
• Perform source level debugging.  
• Create custom debugger windows.  
Rev. H  
| Page 15 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
The VisualDSP++ IDDE lets programmers define and manage  
software development. Its dialog boxes and property pages let  
programmers configure and manage all of the Blackfin develop-  
ment tools, including the color syntax highlighting in the  
VisualDSP++ editor. This capability permits programmers to:  
• Control how the development tools process inputs and  
generate outputs  
processors, platforms, and software tools. Each EZ-KIT Lite  
includes an evaluation board along with an evaluation suite of  
the VisualDSP++ development and debugging environment  
with the C/C++ compiler, assembler, and linker. Also included  
are sample application programs, power supply, and a USB  
cable. All evaluation versions of the software tools are limited  
for use only with the EZ-KIT Lite product.  
The USB controller on the EZ-KIT Lite board connects  
the board to the USB port of the user’s PC, enabling the  
VisualDSP++ evaluation suite to emulate the on-board proces-  
sor in-circuit. This permits the customer to download, execute,  
and debug programs for the EZ-KIT Lite system. It also allows  
in-circuit programming of the on-board flash device to store  
user-specific boot code, enabling the board to run as a stand-  
alone unit without being connected to the PC.  
With a full version of VisualDSP++ installed (sold separately),  
engineers can develop software for the EZ-KIT Lite or any cus-  
tom defined system. Connecting one of Analog Devices JTAG  
emulators to the EZ-KIT Lite board enables high speed, non-  
intrusive emulation.  
For evaluation of ADSP-BF531/ADSP-BF532/ADSP-BF533  
processors, use the EZ-KIT Lite board available from Analog  
Devices. Order part number ADDS-BF533-EZLITE. The board  
comes with on-chip emulation capabilities and is equipped to  
enable software development. Multiple daughter cards are  
available.  
• Maintain a one-to-one correspondence with the tool’s  
command line switches  
The VisualDSP++ Kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning, when  
developing new application code. The VDK features include  
threads, critical and unscheduled regions, semaphores, events,  
and device flags. The VDK also supports priority-based, pre-  
emptive, cooperative, and time-sliced scheduling approaches. In  
addition, the VDK was designed to be scalable. If the application  
does not use a specific feature, the support code for that feature  
is excluded from the target system.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK-based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
DESIGNING AN EMULATOR-COMPATIBLE  
PROCESSOR BOARD  
The Analog Devices family of emulators are tools that every sys-  
tem developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG test  
access port (TAP) on each JTAG processor. The emulator uses  
the TAP to access the internal features of the processor, allow-  
ing the developer to load code, set breakpoints, observe  
variables, observe memory, and examine registers. The proces-  
sor must be halted to send data and commands, but once an  
operation has been completed by the emulator, the processor  
system is set running at full speed with no impact on  
system timing.  
Use the expert linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color coded graphical form, easily move code and data  
to different areas of the processor or external memory with the  
drag of the mouse, and examine runtime stack and heap usage.  
The expert linker is fully compatible with existing linker defini-  
tion file (LDF), allowing the developer to move between the  
graphical and textual environments.  
Analog Devices emulators use the IEEE 1149.1 JTAG test access  
port of the ADSP-BF531/ADSP-BF532/ADSP-BF533 proces-  
sors to monitor and control the target board processor during  
emulation. The emulator provides full speed emulation, allow-  
ing inspection and modification of memory, registers, and  
processor stacks. Non intrusive in-circuit emulation is assured  
by the use of the processor’s JTAG interface—the emulator does  
not affect target system loading or timing.  
To use these emulators, the target board must include a header  
that connects the processor’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, see the Analog Devices JTAG Emulation Technical Refer-  
ence (EE-68) on the Analog Devices website  
(www.analog.com)—use site search on “EE-68.” This document  
is updated regularly to keep pace with improvements to emula-  
tor support.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the Blackfin processor family.  
Hardware tools include Blackfin processor PC plug-in cards.  
Third party software tools include DSP libraries, real-time oper-  
ating systems, and block diagram design tools.  
EZ-KIT Lite Evaluation Board  
Analog Devices offers a range of EZ-KIT Lite® evaluation plat-  
forms to use as a cost effective method to learn more about  
developing or prototyping applications with Analog Devices  
Rev. H  
| Page 16 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
RELATED DOCUMENTS  
The following publications that describe the ADSP-BF531/  
ADSP-BF532/ADSP-BF533 processors (and related processors)  
can be ordered from any Analog Devices sales office or accessed  
electronically on our website:  
Getting Started With Blackfin Processors  
ADSP-BF533 Blackfin Processor Hardware Reference  
Blackfin Processor Programming Reference  
ADSP-BF531/ADSP-BF532/ADSP-BF533 Blackfin  
Processor Anomaly List  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal-conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena. For more information about  
this term and related topics, see the "signal chain" entry in  
Wikipedia or the Glossary of EE Terms on the Analog Devices  
website.  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
The Application Signal Chains page in the Circuits from the  
TM  
Lab site (http://www.analog.com/circuits) provides:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
• Reference designs applying best practice design techniques  
Rev. H  
| Page 17 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
PIN DESCRIPTIONS  
The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors pin  
definitions are listed in Table 9.  
All pins are three-stated during and immediately after reset,  
except the memory interface, asynchronous memory control,  
and synchronous memory control pins. These pins are all  
driven high, with the exception of CLKOUT, which toggles at  
the system clock rate. During hibernate, all outputs are three-  
stated unless otherwise noted in Table 9.  
If BR is active (whether or not RESET is asserted), the memory  
pins are also three-stated. All unused I/O pins have their input  
buffers disabled with the exception of the pins that need pull-  
ups or pull-downs as noted in the table.  
In order to maintain maximum functionality and reduce pack-  
age size and pin count, some pins have dual, multiplexed  
functionality. In cases where pin functionality is reconfigurable,  
the default state is shown in plain text, while alternate function-  
ality is shown in italics.  
Table 9. Pin Descriptions  
Driver  
Pin Name  
Type Function  
Type1  
Memory Interface  
ADDR19–1  
O
Address Bus for Async/Sync Access  
A
A
A
DATA15–0  
I/O Data Bus for Async/Sync Access  
ABE1–0/SDQM1–0  
O
I
Byte Enables/Data Masks for Async/Sync Access  
Bus Request (This pin should be pulled high if not used.)  
Bus Grant  
BR  
BG  
O
O
A
A
BGH  
Bus Grant Hang  
Asynchronous Memory Control  
AMS3–0  
O
I
Bank Select (Require pull-ups if hibernate is used.)  
A
ARDY  
Hardware Ready Control (This pin should be pulled high if not used.)  
AOE  
O
O
O
Output Enable  
Read Enable  
Write Enable  
A
A
A
ARE  
AWE  
Synchronous Memory Control  
SRAS  
O
O
O
O
O
O
O
Row Address Strobe  
A
A
A
A
B
SCAS  
Column Address Strobe  
SWE  
Write Enable  
SCKE  
Clock Enable (Requires pull-down if hibernate is used.)  
CLKOUT  
SA10  
Clock Output  
A10 Pin  
A
A
SMS  
Bank Select  
Timers  
TMR0  
I/O Timer 0  
C
C
C
TMR1/PPI_FS1  
TMR2/PPI_FS2  
PPI Port  
PPI3–0  
I/O Timer 1/PPI Frame Sync1  
I/O Timer 2/PPI Frame Sync2  
I/O PPI3–0  
C
PPI_CLK/TMRCLK  
I
PPI Clock/External Timer Reference  
Rev. H  
| Page 18 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 9. Pin Descriptions (Continued)  
Driver  
Type1  
Pin Name  
Type Function  
Port F: GPIO/Parallel Peripheral  
Interface Port/SPI/Timers  
PF0/SPISS  
PF1/SPISEL1/TACLK  
PF2/SPISEL2  
PF3/SPISEL3/PPI_FS3  
PF4/SPISEL4/PPI15  
PF5/SPISEL5/PPI14  
PF6/SPISEL6/PPI13  
PF7/SPISEL7/PPI12  
PF8/PPI11  
PF9/PPI10  
PF10/PPI9  
PF11/PPI8  
PF12/PPI7  
PF13/PPI6  
PF14/PPI5  
PF15/PPI4  
JTAG Port  
I/O GPIO/SPI Slave Select Input  
C
I/O GPIO/SPI Slave Select Enable 1/Timer Alternate Clock Input  
I/O GPIO/SPI Slave Select Enable 2  
I/O GPIO/SPI Slave Select Enable 3/PPI Frame Sync 3  
I/O GPIO/SPI Slave Select Enable 4/PPI 15  
I/O GPIO/SPI Slave Select Enable 5/PPI 14  
I/O GPIO/SPI Slave Select Enable 6/PPI 13  
I/O GPIO/SPI Slave Select Enable 7/PPI 12  
I/O GPIO/PPI 11  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
I/O GPIO/PPI 10  
I/O GPIO/PPI 9  
I/O GPIO/PPI 8  
I/O GPIO/PPI 7  
I/O GPIO/PPI 6  
I/O GPIO/PPI 5  
I/O GPIO/PPI 4  
TCK  
I
JTAG Clock  
TDO  
O
I
JTAG Serial Data Out  
C
TDI  
JTAG Serial Data In  
TMS  
I
JTAG Mode Select  
TRST  
I
JTAG Reset (This pin should be pulled low if JTAG is not used.)  
Emulation Output  
EMU  
O
C
SPI Port  
MOSI  
I/O Master Out Slave In  
C
C
MISO  
I/O Master In Slave Out (This pin should be pulled high through a 4.7 kresistor if booting via the  
SPI port.)  
SCK  
I/O SPI Clock  
D
Serial Ports  
RSCLK0  
RFS0  
I/O SPORT0 Receive Serial Clock  
I/O SPORT0 Receive Frame Sync  
D
C
DR0PRI  
DR0SEC  
TSCLK0  
TFS0  
I
I
SPORT0 Receive Data Primary  
SPORT0 Receive Data Secondary  
I/O SPORT0 Transmit Serial Clock  
I/O SPORT0 Transmit Frame Sync  
D
C
C
C
D
DT0PRI  
DT0SEC  
RSCLK1  
O
O
SPORT0 Transmit Data Primary  
SPORT0 Transmit Data Secondary  
I/O SPORT1 Receive Serial Clock  
Rev. H  
| Page 19 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 9. Pin Descriptions (Continued)  
Driver  
Type1  
Pin Name  
RFS1  
Type Function  
I/O SPORT1 Receive Frame Sync  
C
DR1PRI  
DR1SEC  
TSCLK1  
TFS1  
I
I
SPORT1 Receive Data Primary  
SPORT1 Receive Data Secondary  
I/O SPORT1 Transmit Serial Clock  
I/O SPORT1 Transmit Frame Sync  
D
C
C
C
DT1PRI  
DT1SEC  
UART Port  
RX  
O
O
SPORT1 Transmit Data Primary  
SPORT1 Transmit Data Secondary  
I
UART Receive  
UART Transmit  
TX  
O
C
Real-Time Clock  
RTXI  
I
RTC Crystal Input (This pin should be pulled low when not used.)  
RTC Crystal Output (Does not three-state in hibernate.)  
RTXO  
O
Clock  
CLKIN  
I
Clock/Crystal Input (This pin needs to be at a level or clocking.)  
Crystal Output  
XTAL  
O
Mode Controls  
RESET  
I
I
I
Reset (This pin is always active during core power-on.)  
NMI  
Nonmaskable Interrupt (This pin should be pulled low when not used.)  
Boot Mode Strap (These pins must be pulled to the state required for the desired boot mode.)  
BMODE1–0  
Voltage Regulator  
VROUT1–0  
O
External FET Drive (These pins should be left unconnected when unused and are driven high  
during hibernate.)  
Supplies  
VDDEXT  
VDDINT  
P
P
P
I/O Power Supply  
Core Power Supply  
VDDRTC  
Real-Time Clock Power Supply (This pin should be connected to VDDEXT when not used and should  
remain powered at all times.)  
GND  
G
External Ground  
1 Refer to Figure 32 on Page 44 to Figure 43 on Page 45.  
Rev. H  
| Page 20 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
SPECIFICATIONS  
Component specifications are subject to change  
without notice.  
OPERATING CONDITIONS  
Parameter  
Conditions  
Min Nominal Max Unit  
VDDINT Internal Supply Voltage1  
VDDINT Internal Supply Voltage1  
VDDINT Internal Supply Voltage1  
VDDINT Internal Supply Voltage1  
VDDINT Internal Supply Voltage1  
VDDEXT External Supply Voltage3  
VDDEXT External Supply Voltage  
Nonautomotive 400 MHz and 500 MHz speed grade models2  
Nonautomotive 533 MHz speed grade models2  
600 MHz speed grade models2  
Automotive 400 MHz speed grade models2  
Automotive 533 MHz speed grade models2  
Nonautomotive grade models2  
0.8 1.2  
1.45  
1.45  
1.45  
1.45  
1.45  
3.6  
V
V
V
V
V
V
V
V
0.8 1.25  
0.8 1.30  
0.95 1.2  
0.95 1.25  
1.75 1.8/3.3  
2.7 3.3  
Automotive grade models2  
Nonautomotive grade models2  
3.6  
VDDRTC Real-Time Clock  
Power Supply Voltage  
1.75 1.8/3.3  
3.6  
VDDRTC Real-Time Clock  
Power Supply Voltage  
Automotive grade models2  
2.7 3.3  
3.6  
V
VIH  
VIH  
High Level Input Voltage4, 5 VDDEXT =1.85 V  
High Level Input Voltage4, 5 VDDEXT =Maximum  
1.3  
2.0  
2.2  
V
V
V
V
V
VIHCLKIN High Level Input Voltage6  
VDDEXT =Maximum  
VIL  
VIL  
TJ  
TJ  
TJ  
TJ  
TJ  
TJ  
Low Level Input Voltage7  
Low Level Input Voltage7  
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
VDDEXT =1.75 V  
+0.3  
+0.6  
VDDEXT =2.25 V  
160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ TAMBIENT = 0°C to +70°C  
0
+95 °C  
+105 °C  
+125 °C  
+125 °C  
+105 °C  
+100 °C  
160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ TAMBIENT = –40°C to +85°C –40  
160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ TAMBIENT = –40°C to +105°C –40  
169-Ball Plastic Ball Grid Array (PBGA) @ TAMBIENT = –40°C to +105°C  
169-Ball Plastic Ball Grid Array (PBGA) @ TAMBIENT = –40°C to +85°C  
176-Lead Quad Flatpack (LQFP) @ TAMBIENT = –40°C to +85°C  
–40  
–40  
–40  
1 The regulator can generate VDDINT at levels of 0.85 V to 1.2 V with –5% to +10% tolerance, 1.25 V with –4% to +10% tolerance, and 1.3 V with –0% to +10% tolerance.  
2 See Ordering Guide on Page 64.  
3 When VDDEXT < 2.25 V, on-chip voltage regulation is not supported.  
4 Applies to all input and bidirectional pins except CLKIN.  
5 The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors are 3.3 V tolerant (always accepts up to 3.6 V maximum VIH), but voltage compliance (on outputs, VOH) depends on  
the input VDDEXT, because VOH (maximum) approximately equals VDDEXT (maximum). This 3.3 V tolerance applies to bidirectional pins (DATA15–0, TMR2–0, PF15–0, PPI3–0,  
RSCLK1–0, TSCLK1–0, RFS1–0, TFS1–0, MOSI, MISO, SCK) and input only pins (BR, ARDY, PPI_CLK, DR0PRI, DR0SEC, DR1PRI, DR1SEC, RX, RTXI, TCK, TDI, TMS,  
TRST, CLKIN, RESET, NMI, and BMODE1–0).  
6 Applies to CLKIN pin only.  
7 Applies to all input and bidirectional pins.  
Rev. H  
| Page 21 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
The following three tables describe the voltage/frequency  
requirements for the processor clocks. Take care in selecting  
MSEL, SSEL, and CSEL ratios so as not to exceed the maximum  
core clock (Table 10 and Table 11) and system clock (Table 13)  
specifications. Table 12 describes phase-locked loop operating  
conditions.  
Table 10. Core Clock (CCLK) Requirements—500 MHz, 533 MHz, and 600 MHz Models  
Parameter  
Internal Regulator Setting Max  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fCCLK CCLK Frequency (VDDINT =1.3 V Minimum)1  
fCCLK CCLK Frequency (VDDINT =1.2 V Minimum)2  
1.30 V  
1.25 V  
600  
533  
500  
444  
400  
333  
250  
fCCLK CCLK Frequency (VDDINT =1.14 V Minimum)3 1.20 V  
fCCLK CCLK Frequency (VDDINT =1.045 V Minimum) 1.10 V  
fCCLK CCLK Frequency (VDDINT =0.95 V Minimum)  
fCCLK CCLK Frequency (VDDINT =0.85 V Minimum)  
fCCLK CCLK Frequency (VDDINT =0.8 V Minimum)  
1.00 V  
0.90 V  
0.85 V  
1 Applies to 600 MHz models only. See Ordering Guide on Page 64.  
2 Applies to 533 MHz and 600 MHz models only. See Ordering Guide on Page 64. 533 MHz models cannot support internal regulator levels above 1.25 V.  
3 Applies to 500 MHz, 533 MHz, and 600 MHz models. See Ordering Guide on Page 64. 500 MHz models cannot support internal regulator levels above 1.20 V.  
Table 11. Core Clock (CCLK) Requirements—400 MHz Models1  
TJ = 125°C  
Max  
All2 Other TJ  
Max  
Parameter  
Internal Regulator Setting  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
fCCLK CCLK Frequency (VDDINT =1.14 V Minimum) 1.20 V  
fCCLK CCLK Frequency (VDDINT =1.045 V Minimum) 1.10 V  
fCCLK CCLK Frequency (VDDINT =0.95 V Minimum) 1.00 V  
fCCLK CCLK Frequency (VDDINT =0.85 V Minimum) 0.90 V  
400  
400  
333  
364  
295  
333  
280  
fCCLK CCLK Frequency (VDDINT =0.8 V Minimum)  
0.85 V  
250  
1 See Ordering Guide on Page 64.  
2 See Operating Conditions on Page 21.  
Table 12. Phase-Locked Loop Operating Conditions  
Parameter  
Min  
Max  
Unit  
fVCO Voltage Controlled Oscillator (VCO) Frequency  
50  
Max fCCLK  
MHz  
Table 13. System Clock (SCLK) Requirements  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter1  
Max  
Unit  
CSP_BGA/PBGA  
fSCLK  
fSCLK  
LQFP  
fSCLK  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
100  
100  
133  
100  
MHz  
MHz  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
100  
83  
133  
83  
MHz  
MHz  
1 tSCLK (= 1/fSCLK) must be greater than or equal to tCCLK  
.
Rev. H  
| Page 22 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
ELECTRICAL CHARACTERISTICS  
400 MHz1  
Typical  
500 MHz/533 MHz/600 MHz2  
Parameter  
Test Conditions  
Min  
Max  
Min  
Typical  
Max  
Unit  
VOH  
High Level  
VDDEXT = 1.75 V, IOH = –0.5 mA 1.5  
1.5  
1.9  
2.4  
V
V
V
Output Voltage3  
V
V
DDEXT = 2.25 V, IOH = –0.5 mA 1.9  
2.4  
DDEXT = 3.0 V, IOH = –0.5 mA  
VOL  
Low Level  
VDDEXT = 1.75 V, IOL = 2.0 mA  
0.2  
0.4  
0.2  
0.4  
V
V
Output Voltage3 VDDEXT = 2.25 V/3.0 V,  
IOL = 2.0 mA  
IIH  
High Level Input VDDEXT = Max, VIN = VDD Max  
Current4  
10.0  
50.0  
10.0  
10.0  
10.0  
50.0  
10.0  
10.0  
μA  
μA  
μA  
μA  
IIHP  
High Level Input VDDEXT = Max, VIN = VDD Max  
Current JTAG5  
6
IIL  
Low Level Input VDDEXT = Max, VIN = 0 V  
Current4  
IOZH  
Three-State  
Leakage  
VDDEXT = Max, VIN = VDD Max  
Current7  
6
IOZL  
Three-State  
Leakage  
VDDEXT = Max, VIN = 0 V  
10.0  
89  
10.0  
89  
μA  
Current7  
CIN  
Input  
fIN = 1 MHz, TAMBIENT = 25°C,  
VIN = 2.5 V  
4
4
pF  
Capacitance8  
10  
IDDDEEPSLEEP VDDINT Current in VDDINT = 1.0 V, fCCLK = 0 MHz,  
7.5  
32.5  
mA  
Deep Sleep  
Mode  
TJ = 25°C, ASF = 0.00  
IDDSLEEP  
VDDINT Current in VDDINT = 0.8 V, TJ = 25°C,  
10  
37.5  
mA  
mA  
mA  
mA  
mA  
A  
Sleep Mode  
SCLK = 25 MHz  
11  
IDD-TYP  
IDD-TYP  
IDD-TYP  
IDD-TYP  
VDDINT Current  
VDDINT = 1.14 V, fCCLK = 400 MHz,  
TJ = 25°C  
125  
152  
190  
200  
245  
50  
11  
11  
11  
VDDINT Current  
VDDINT Current  
VDDINT Current  
VDDINT = 1.2 V, fCCLK = 500 MHz,  
TJ = 25°C  
VDDINT = 1.2 V, fCCLK = 533 MHz,  
TJ = 25°C  
VDDINT = 1.3 V, fCCLK = 600 MHz,  
TJ = 25°C  
10  
IDDHIBERNATE VDDEXT Current in VDDEXT = 3.6 V, CLKIN=0 MHz,  
Hibernate State TJ = Max, voltage regulator off  
(VDDINT = 0 V)  
50  
100  
100  
IDDRTC  
VDDRTC Current  
VDDRTC = 3.3 V, TJ = 25°C  
20  
6
20  
16  
A  
10  
IDDDEEPSLEEP VDDINT Current in fCCLK = 0 MHz  
Table 15  
Table 14  
mA  
Deep Sleep  
Mode  
IDD-INT  
VDDINT Current  
fCCLK > 0 MHz  
IDDDEEPSLEEP  
+(Table 17  
ASF)  
IDDDEEPSLEEP mA  
+(Table 17  
ASF)  
1 Applies to all 400 MHz speed grade models. See Ordering Guide on Page 64.  
2 Applies to all 500 MHz, 533 MHz, and 600 MHz speed grade models. See Ordering Guide on Page 64.  
3 Applies to output and bidirectional pins.  
4 Applies to input pins except JTAG inputs.  
Rev. H  
| Page 23 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
5 Applies to JTAG input pins (TCK, TDI, TMS, TRST).  
6 Absolute value.  
7 Applies to three-statable pins.  
8 Applies to all signal pins.  
9 Guaranteed, but not tested.  
10See the ADSP-BF533 Blackfin Processor Hardware Reference Manual for definitions of sleep, deep sleep, and hibernate operating modes.  
11See Table 16 for the list of IDDINT power vectors covered by various Activity Scaling Factors (ASF).  
System designers should refer to Estimating Power for the  
ADSP-BF531/BF532/BF533 Blackfin Processors (EE-229), which  
provides detailed information for optimizing designs for lowest  
power. All topics discussed in this section are described in detail  
in EE-229. Total power dissipation has two components:  
1. Static, including leakage current  
2. Dynamic, due to transistor switching characteristics  
Many operating conditions can also affect power dissipation,  
including temperature, voltage, operating frequency, and pro-  
cessor activity. Electrical Characteristics on Page 23 shows the  
current dissipation for internal circuitry (VDDINT). IDDDEEPSLEEP  
specifies static power dissipation as a function of voltage  
(VDDINT) and temperature (see Table 14 or Table 15), and IDDINT  
specifies the total power specification for the listed test condi-  
tions, including the dynamic component as a function of voltage  
(VDDINT) and frequency (Table 17).  
The dynamic component is also subject to an Activity Scaling  
Factor (ASF) which represents application code running on the  
processor (Table 16).  
Table 14. Static Current–500 MHz, 533 MHz, and 600 MHz Speed Grade Devices (mA)1  
2
Voltage (VDDINT  
)
TJ (°C)2 0.80 V 0.85 V 0.90 V 0.95 V 1.00 V 1.05 V 1.10 V 1.15 V 1.20 V 1.25 V 1.30 V 1.32 V 1.375 V 1.43 V 1.45 V  
–45  
0
4.3  
5.3  
5.9  
7.0  
8.2  
9.8  
11.2  
40.1  
72.9  
13.0  
45.3  
80.9  
15.2  
51.4  
90.3  
17.7  
58.1  
20.2  
65.0  
21.6  
68.5  
25.5  
78.4  
30.1  
89.8  
32.0  
94.3  
18.8  
35.3  
52.3  
73.6  
21.3  
39.9  
58.5  
82.5  
24.1  
45.0  
65.1  
92.0  
27.8  
50.9  
73.3  
31.6  
57.3  
81.3  
35.6  
64.4  
90.9  
25  
101.4 112.1 118.0 133.7 151.6 158.7  
40  
101.2 112.5 125.5 138.7 154.4 160.6 180.6 203.1 212.0  
55  
102.7 114.4 126.3 141.2 155.7 172.7 191.1 212.1 220.8 247.6 277.7 289.5  
70  
100.8 112.5 124.5 137.4 152.6 168.4 186.5 205.4 227.0 250.3 276.2 287.1 320.4 357.4 371.9  
133.3 148.5 164.2 180.5 198.8 219.0 241.0 264.5 290.6 319.7 350.2 364.6 404.9 449.7 467.2  
178.3 196.3 216.0 237.6 259.9 284.6 311.9 342.0 373.1 408.0 446.1 462.6 511.1 564.7 585.6  
223.3 245.9 270.2 295.7 323.5 353.3 386.1 421.1 460.1 500.9 545.0 566.5 624.3 688.1 712.8  
278.5 305.8 334.1 364.3 397.4 432.4 470.6 509.3 553.4 600.6 652.1 676.5 742.1 814.1 841.9  
85  
100  
115  
125  
1 Values are guaranteed maximum IDDDEEPSLEEP specifications.  
2 Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 21.  
Table 15. Static Current–400 MHz Speed Grade Devices (mA)1  
2
Voltage (VDDINT  
)
TJ (°C)2 0.80 V  
0.85 V  
1.1  
0.90 V  
1.3  
0.95 V  
1.5  
1.00 V  
1.8  
1.05 V  
2.2  
1.10 V  
1.15 V  
3.1  
1.20 V  
3.8  
1.25 V  
4.4  
1.30 V  
5.0  
1.32 V  
5.4  
–45  
0
0.9  
2.6  
3.3  
3.7  
4.2  
4.8  
5.5  
6.3  
7.2  
8.1  
8.9  
10.1  
11.2  
11.9  
25  
7.5  
8.4  
9.4  
10.0  
15.9  
23.6  
35.3  
48.6  
67.8  
91.9  
122.1  
11.2  
17.4  
26.0  
38.2  
52.7  
73.2  
99.1  
130.8  
12.6  
19.4  
28.2  
41.7  
57.3  
78.8  
106.6  
140.2  
14.1  
21.5  
30.8  
45.2  
61.7  
84.9  
114.1  
149.7  
15.5  
23.5  
33.7  
49.0  
66.7  
91.5  
122.4  
160.4  
17.2  
25.8  
36.8  
52.8  
72.0  
98.4  
131.1  
171.9  
19.0  
21.2  
21.9  
40  
12.0  
18.3  
27.7  
38.2  
54.1  
73.9  
98.7  
13.1  
20.0  
30.3  
41.7  
58.1  
80.0  
106.3  
14.3  
21.9  
32.6  
44.9  
63.2  
86.3  
113.8  
28.1  
30.8  
32.0  
55  
39.8  
43.4  
45.0  
70  
57.6  
62.4  
64.2  
85  
77.5  
83.9  
86.5  
100  
115  
125  
106.0  
140.9  
183.8  
113.8  
151.1  
197.0  
117.2  
155.5  
202.4  
1 Values are guaranteed maximum IDDDEEPSLEEP specifications.  
2 Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 21.  
Rev. H  
| Page 24 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 16. Activity Scaling Factors  
IDDINT Power Vector1  
IDD-PEAK  
Activity Scaling Factor (ASF)2  
1.27  
1.25  
1.00  
0.86  
0.72  
0.41  
IDD-HIGH  
IDD-TYP  
IDD-APP  
IDD-NOP  
IDD-IDLE  
1 See EE-229 for power vector definitions.  
2 All ASF values determined using a 10:1 CCLK:SCLK ratio.  
Table 17. Dynamic Current (mA, with ASF = 1.0)1  
2
Voltage (VDDINT  
)
Frequency 0.80 V 0.85 V 0.90 V 0.95 V 1.00 V 1.05 V 1.10 V 1.15 V 1.20 V 1.25 V 1.30 V 1.32 V 1.375 V 1.43 V 1.45 V  
(MHz)2  
50  
12.7  
22.6  
40.8  
50.1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
13.9  
24.2  
44.1  
53.8  
63.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
15.3  
26.2  
46.9  
57.2  
67.4  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
16.8  
28.1  
50.3  
61.4  
72.4  
88.6  
93.9  
N/A  
N/A  
N/A  
N/A  
N/A  
18.1  
30.1  
53.3  
64.7  
76.2  
93.5  
99.3  
N/A  
N/A  
N/A  
N/A  
N/A  
19.4  
31.8  
56.9  
68.9  
81.0  
99.0  
21.0  
34.7  
59.9  
72.9  
85.9  
22.3  
36.2  
63.1  
76.8  
90.6  
24.0  
38.4  
66.7  
81.0  
95.2  
25.4  
40.5  
70.2  
85.1  
26.4  
43.0  
73.8  
89.3  
27.2  
43.4  
75.0  
90.8  
28.7  
45.7  
78.7  
95.2  
30.3  
47.9  
82.4  
99.6  
30.7  
48.9  
84.6  
102.0  
100  
200  
250  
300  
375  
400  
425  
475  
500  
533  
600  
100.0 104.8 106.6 111.8  
116.9 119.4  
142.4 145.5  
151.2 154.3  
159.7 162.8  
176.6 179.7  
185.2 188.2  
196.8 200.5  
219.0 222.6  
104.6 110.3 116.0 122.1 128.0 130.0 136.2  
105.0 110.8 116.8 123.0 129.4 135.7 137.9 144.6  
111.0 117.3 123.5 129.9 136.8 143.2 145.6 152.6  
N/A  
N/A  
N/A  
N/A  
130.3 136.8 143.8 151.4 158.1 161.1 168.9  
N/A  
N/A  
N/A  
143.5 150.7 158.7 165.6 168.8 177.0  
N/A  
160.4 168.8 176.5 179.6 188.2  
N/A  
N/A N/A 196.2 199.6 209.3  
1 The values are not guaranteed as stand-alone maximum specifications, they must be combined with static current per the equations of Electrical Characteristics on Page 23.  
2 Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 21.  
Rev. H  
| Page 25 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in Table 18 may cause perma-  
nent damage to the device. These are stress ratings only.  
Functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods can affect device  
reliability.  
Table 18. Absolute Maximum Ratings  
Parameter  
Rating  
Internal (Core) Supply Voltage (VDDINT  
)
–0.3 V to +1.45 V  
–0.5 V to +3.8 V  
–0.5 V to +3.8 V  
–0.5 V to VDDEXT + 0.5 V  
–65°C to +150°C  
125°C  
External (I/O) Supply Voltage (VDDEXT  
Input Voltage1, 2  
)
Output Voltage Swing  
Storage Temperature Range  
Junction Temperature While Biased  
1 Applies to 100% transient duty cycle. For other duty cycles see Table 19.  
2 Applies only when VDDEXT is within specifications. When VDDEXT is outside speci-  
fications, the range is VDDEXT 0.2 V  
Table 19. Maximum Duty Cycle for Input Transient Voltage1  
VIN Min (V)2  
–0.50  
VIN Max (V)2  
+3.80  
Maximum Duty Cycle3  
100%  
40%  
25%  
15%  
10%  
–0.70  
+4.00  
–0.80  
+4.10  
–0.90  
+4.20  
–1.00  
+4.30  
1 Applies to all signal pins with the exception of CLKIN, XTAL, VROUT1–0.  
2 The individual values cannot be combined for analysis of a single instance of  
overshoot or undershoot. The worst case observed value must fall within one of  
the voltages specified and the total duration of the overshoot or undershoot  
(exceeding the 100% case) must be less than or equal to the corresponding  
duty cycle.  
3 Duty cycle refers to the percentage of time the signal exceeds the value for the  
100% case. This is equivalent to the measured duration of a single instance of  
overshoot or undershoot as a percentage of the period of occurrence.  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Rev. H  
| Page 26 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
PACKAGE INFORMATION  
The information presented in Figure 10 and Table 20 provides  
details about the package branding for the Blackfin processors.  
For a complete listing of product availability, see the Ordering  
Guide on Page 64.  
a
ADSP-BF53x  
tppZccc  
vvvvvv.x n.n  
yyww country_of_origin  
B
Figure 10. Product Information on Package  
Table 20. Package Brand Information1  
Brand Key Field Description  
ADSP-BF53x Either ADSP-BF531, ADSP-BF532, or ADSP-BF533  
t
Temperature Range  
Package Type  
pp  
Z
RoHS Compliant Part  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Date Code  
cc  
vvvvvv.x  
n.n  
yyww  
1 Non Automotive only. For branding information specific to Automotive  
products, contact Analog Devices Inc.  
Rev. H  
| Page 27 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
TIMING SPECIFICATIONS  
Clock and Reset Timing  
Table 21 and Figure 11 describe clock and reset operations. Per  
Absolute Maximum Ratings on Page 26, combinations of  
CLKIN and clock multipliers/divisors must not result in core/  
system clocks exceeding the maximum limits allowed for the  
processor, including system clock restrictions related to supply  
voltage.  
Table 21. Clock and Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tCKIN  
CLKIN Period1, 2, 3, 4  
25.0  
100.0  
ns  
ns  
ns  
ns  
ns  
tCKINL  
tCKINH  
tWRST  
tNOBOOT  
CLKIN Low Pulse  
10.0  
CLKIN High Pulse  
RESET Asserted Pulse Width Low5  
RESET Deassertion to First External Access Delay6  
10.0  
11 tCKIN  
3 tCKIN  
5 tCKIN  
1 Applies to PLL bypass mode and PLL non bypass mode.  
2 CLKIN frequency must not change on the fly.  
3 Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed fVCO, fCCLK, and fSCLK settings discussed in Table 11 on Page 22 through  
Table 13 on Page 22. Since the default behavior of the PLL is to multiply the CLKIN frequency by 10, the 400 MHz speed grade parts cannot use the full CLKIN period range.  
4 If the DF bit in the PLL_CTL register is set, then the maximum tCKIN period is 50 ns.  
5 Applies after power-up sequence is complete. See Table 22 and Figure 12 for power-up reset timing.  
6 Applies when processor is configured in No Boot Mode (BMODE1-0 = b#00).  
tCKIN  
CLKIN  
tNOBOOT  
tCKINL  
tCKINH  
tWRST  
RESET  
Figure 11. Clock and Reset Timing  
Table 22. Power-Up Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRST_IN_PWR RESET Deasserted After the VDDINT, VDDEXT, VDDRTC, and CLKIN Pins Are Stable and 3500 tCKIN  
ns  
Within Specification  
tRST_IN_PWR  
RESET  
CLKIN  
V
DD_SUPPLIES  
In Figure 12, VDD_SUPPLIES is VDDINT, VDDEXT, VDDRTC  
Figure 12. Power-Up Reset Timing  
Rev. H  
| Page 28 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Asynchronous Memory Read Cycle Timing  
Table 23. Asynchronous Memory Read Cycle Timing  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSDAT  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
2.1  
1.0  
4.0  
1.0  
2.1  
0.8  
4.0  
0.0  
ns  
ns  
ns  
ns  
tHDAT  
tSARDY  
tHARDY  
Switching Characteristics  
tDO  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
6.0  
6.0  
ns  
ns  
tHO  
1.0  
0.8  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, ARE.  
SETUP  
PROGRAMMED READ  
ACCESS 4 CYCLES  
ACCESS EXTENDED  
3 CYCLES  
HOLD  
1 CYCLE  
2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
ADDR19–1  
AOE  
ARE  
tDO  
tHO  
tHARDY  
tSARDY  
tHARDY  
ARDY  
tSARDY  
tSDAT  
tHDAT  
DATA 15–0  
Figure 13. Asynchronous Memory Read Cycle Timing  
Rev. H  
| Page 29 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Asynchronous Memory Write Cycle Timing  
Table 24. Asynchronous Memory Write Cycle Timing  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSARDY  
tHARDY  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
4.0  
1.0  
4.0  
0.0  
ns  
ns  
Switching Characteristics  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6.0  
6.0  
6.0  
6.0  
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
1.0  
1.0  
1.0  
0.8  
tHO  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, AWE.  
PROGRAMMED ACCESS  
WRITE ACCESS EXTEND HOLD  
2 CYCLES 1 CYCLE 1 CYCLE  
SETUP  
2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
ADDR19–1  
tDO  
tHO  
AWE  
tSARDY tHARDY  
ARDY  
tHARDY  
tSARDY  
tENDAT  
tDDAT  
DATA 15–0  
Figure 14. Asynchronous Memory Write Cycle Timing  
Rev. H  
| Page 30 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
SDRAM Interface Timing  
Table 25. SDRAM Interface Timing1  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before CLKOUT  
DATA Hold After CLKOUT  
2.1  
0.8  
1.5  
0.8  
ns  
ns  
Switching Characteristics  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
tSCLK  
Command, ADDR, Data Delay After CLKOUT2  
6.0  
6.0  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Command, ADDR, Data Hold After CLKOUT2  
Data Disable After CLKOUT  
Data Enable After CLKOUT  
CLKOUT Period3  
1.0  
1.0  
1.0  
1.0  
7.5  
2.5  
2.5  
10.0  
2.5  
tSCLKH  
tSCLKL  
CLKOUT Width High  
CLKOUT Width Low  
2.5  
1 SDRAM timing for TJ > 105°C is limited to 100 MHz.  
2 Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
3 Refer to Table 13 on Page 22 for maximum fSCLK at various VDDINT  
.
tSCLK  
CLKOUT  
tSSDAT  
tHSDAT  
tSCLKL  
tSCLKH  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA (OUT)  
tDCAD  
tHCAD  
COMMAND,  
ADDRESS  
(OUT)  
NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
Figure 15. SDRAM Interface Timing  
Rev. H  
| Page 31 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
External Port Bus Request and Grant Cycle Timing  
Table 26 and Figure 16 describe external port bus request and  
bus grant operations.  
Table 26. External Port Bus Request and Grant Cycle Timing  
VDDEXT = 1.8 V  
LQFP/PBGA Packages CSP_BGA Package  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V/3.3 V  
All Packages  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tBS BR Asserted to CLKOUT High Setup  
tBH CLKOUT High to BR Deasserted Hold Time  
Switching Characteristics  
4.6  
1.0  
4.6  
1.0  
4.6  
0.0  
ns  
ns  
tSD CLKOUT Low to AMSx, Address, and ARE/AWE Disable  
tSE CLKOUT Low to AMSx, Address, and ARE/AWE Enable  
tDBG CLKOUT High to BG High Setup  
tEBG CLKOUT High to BG Deasserted Hold Time  
tDBH CLKOUT High to BGH High Setup  
tEBH CLKOUT High to BGH Deasserted Hold Time  
4.5  
4.5  
6.0  
6.0  
6.0  
6.0  
4.5  
4.5  
5.5  
4.6  
5.5  
4.6  
4.5  
4.5  
3.6  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT  
tBH  
tBS  
BR  
tSD  
tSE  
AMSx  
tSD  
tSE  
ADDR 19-1  
ABE1-0  
tSD  
tSE  
AWE  
ARE  
tDBG  
tEBG  
BG  
tDBH  
tEBH  
BGH  
Figure 16. External Port Bus Request and Grant Cycle Timing  
Rev. H  
| Page 32 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Parallel Peripheral Interface Timing  
Table 27 and Figure 17 through Figure 21 on Page 34 describe  
parallel peripheral interface operations.  
Table 27. Parallel Peripheral Interface Timing  
VDDEXT = 1.8 V  
LQFP/PBGA Packages CSP_BGA Package  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V/3.3 V  
All Packages  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tPCLKW PPI_CLK Width  
tPCLK PPI_CLK Period1  
8.0  
8.0  
6.0  
ns  
ns  
20.0  
6.0  
20.0  
6.0  
15.0  
4.02  
tSFSPE External Frame Sync Setup Before PPI_CLK Edge  
(Nonsampling Edge for Rx, Sampling Edge for Tx)  
ns  
ns  
tHFSPE External Frame Sync Hold After PPI_CLK  
tSDRPE Receive Data Setup Before PPI_CLK  
tHDRPE Receive Data Hold After PPI_CLK  
1.02  
3.5  
1.5  
1.02  
3.5  
1.5  
1.02  
3.5  
1.5  
ns  
ns  
ns  
Switching Characteristics—GP Output and Frame Capture Modes  
tDFSPE Internal Frame Sync Delay After PPI_CLK  
tHOFSPE Internal Frame Sync Hold After PPI_CLK  
tDDTPE Transmit Data Delay After PPI_CLK  
tHDTPE Transmit Data Hold After PPI_CLK  
11.0  
11.0  
8.0  
9.0  
8.0  
9.0  
ns  
ns  
ns  
ns  
1.7  
1.8  
1.7  
1.8  
1.7  
1.8  
1 PPI_CLK frequency cannot exceed fSCLK/2  
2 Applies when PPI_CONTROL Bit 8 is cleared. See Figure 18 on Page 33 and Figure 21 on Page 34.  
FRAME SYNC  
DRIVEN  
DATA  
SAMPLED  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tDFSPE  
tPCLKW  
tHOFSPE  
tPCLK  
tSDRPE  
tHDRPE  
Figure 17. PPI GP Rx Mode with Internal Frame Sync Timing  
DATA SAMPLED /  
DATA SAMPLED /  
FRAME SYNC SAMPLED  
FRAME SYNC SAMPLED  
PPI_CLK  
tPCLKW  
tSFSPE  
tHFSPE  
tPCLK  
PPI_FS1/2  
PPI_DATA  
tSDRPE  
tHDRPE  
Figure 18. PPI GP Rx Mode with External Frame Sync Timing (PPI_CONTROL Bit 8 = 1)  
Rev. H  
| Page 33 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
DATA  
SAMPLED  
FRAME SYNC  
SAMPLED  
PPI_CLK  
tPCLKW  
tSFSPE  
tHFSPE  
tPCLK  
PPI_FS1/2  
PPI_DATA  
tSDRPE  
tHDRPE  
Figure 19. PPI GP Rx Mode with External Frame Sync Timing (PPI_CONTROL Bit 8 = 0)  
FRAME SYNC  
DRIVEN  
DATA  
DRIVEN  
tPCLK  
DATA  
DRIVEN  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tDFSPE  
tPCLKW  
tHOFSPE  
tDDTPE  
tHDTPE  
Figure 20. PPI GP Tx Mode with Internal Frame Sync Timing  
DATA DRIVEN /  
FRAME SYNC SAMPLED  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tSFSPE  
tHFSPE  
tPCLKW  
tPCLK  
tDDTPE  
tHDTPE  
Figure 21. PPI GP Tx Mode with External Frame Sync Timing (PPI_CONTROL Bit 8 = 1)  
FRAME SYNC  
SAMPLED  
DATA  
DRIVEN  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tSFSPE  
tHFSPE  
tPCLKW  
tPCLK  
tDDTPE  
tHDTPE  
Figure 22. PPI GP Tx Mode with External Frame Sync Timing (PPI_CONTROL Bit 8 = 0)  
Rev. H  
| Page 34 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Serial Port Timing  
Table 28 through Table 31 on Page 38 and Figure 23 on Page 36  
through Figure 26 on Page 38 describe Serial Port operations.  
Table 28. Serial Ports—External Clock  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements  
tSFSE  
TFSx/RFSx Setup Before TSCLKx/RSCLKx1  
3.0  
3.0  
3.0  
3.0  
8.0  
20.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE TFSx/RFSx Hold After TSCLKx/RSCLKx1  
tSDRE Receive Data Setup Before RSCLKx1  
tHDRE Receive Data Hold After RSCLKx1  
3.0  
3.0  
3.0  
tSCLKEW TSCLKx/RSCLKx Width  
4.5  
tSCLKE TSCLKx/RSCLKx Period  
15.02  
4.0 × tSCLKE  
4.0 × tSCLKE  
tSUDTE Start-Up Delay From SPORT Enable To First External TFSx3  
tSUDRE Start-Up Delay From SPORT Enable To First External RFSx3  
Switching Characteristics  
4.0 × tSCLKE  
4.0 × tSCLKE  
tDFSE TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx)4  
tHOFSE TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx)1  
tDDTE Transmit Data Delay After TSCLKx1  
10.0  
10.0  
10.0  
10.0  
ns  
ns  
ns  
ns  
0.0  
0.0  
0.0  
0.0  
tHDTE Transmit Data Hold After TSCLKx1  
1 Referenced to sample edge.  
2 For receive mode with external RSCLKx and external RFSx only, the maximum specification is 11.11 ns (90 MHz).  
3 Verified in design but untested. After being enabled, the serial port requires external clock pulses—before the first external frame sync edge—to initialize the serial port.  
4 Referenced to drive edge.  
Table 29. Serial Ports—Internal Clock  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements  
tSFSI TFSx/RFSx Setup Before TSCLKx/RSCLKx1  
tHFSI TFSx/RFSx Hold After TSCLKx/RSCLKx1  
tSDRI Receive Data Setup Before RSCLKx1  
tHDRI Receive Data Hold After RSCLKx1  
Switching Characteristics  
11.0  
2.0  
9.5  
9.0  
ns  
ns  
ns  
ns  
2.0  
9.0  
0.0  
0.0  
tDFSI TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx)2  
tHOFSI TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx)1  
tDDTI Transmit Data Delay After TSCLKx1  
tHDTI Transmit Data Hold After TSCLKx1  
tSCLKIW TSCLKx/RSCLKx Width  
3.0  
3.0  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
2.5  
6.0  
2.0  
4.5  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Rev. H  
| Page 35 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
DATA RECEIVE—INTERNAL CLOCK  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKE  
tSCLKIW  
tSCLKEW  
RSCLKx  
RSCLKx  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
RFSx  
RFSx  
(OUTPUT)  
(OUTPUT)  
tSFSI  
tHFSI  
tSFSE  
tHFSE  
RFSx  
RFSx  
(INPUT)  
(INPUT)  
tHDRE  
tSDRI  
tHDRI  
tSDRE  
DRx  
DRx  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
SAMPLE EDGE  
tSCLKE  
tSCLKIW  
tSCLKEW  
TSCLKx  
TSCLKx  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
TFSx  
TFSx  
(OUTPUT)  
(OUTPUT)  
tSFSI  
tHFSI  
tSFSE  
tHFSE  
TFSx  
TFSx  
(INPUT)  
(INPUT)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DTx  
DTx  
Figure 23. Serial Ports  
TSCLKx  
(INPUT)  
tSUDTE  
TFSx  
(INPUT)  
RSCLKx  
(INPUT)  
tSUDRE  
RFSx  
(INPUT)  
FIRST  
TSCLKx/RSCLKx  
EDGE AFTER  
SPORT ENABLED  
Figure 24. Serial Port Start Up with External Clock and Frame Sync  
Rev. H  
| Page 36 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 30. Serial Ports—Enable and Three-State  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
0
Min  
Max  
Unit  
Switching Characteristics  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
Data Enable Delay from External TSCLKx1  
Data Disable Delay from External TSCLKx1  
Data Enable Delay from Internal TSCLKx1  
Data Disable Delay from Internal TSCLKx1  
0
ns  
ns  
ns  
ns  
10.0  
3.0  
10.0  
3.0  
2.0  
2.0  
1 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
TSCLKx  
DTx  
tDTENE/I  
tDDTTE/I  
Figure 25. Enable and Three-State  
Rev. H  
| Page 37 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 31. External Late Frame Sync  
VDDEXT = 1.8 V  
LQFP/PBGA Packages  
VDDEXT = 1.8 V  
CSP_BGA Package  
VDDEXT = 2.5 V/3.3 V  
All Packages  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Switching Characteristics  
tDDTLFSE Data Delay from Late External TFSx or External RFSx  
in multi channel mode with MCMEN = 01, 2  
10.5  
10.0  
10.0  
ns  
ns  
tDTENLFS Data Enable from Late FS or in multi channel mode 0  
0
0
with MCMEN = 01, 2  
1 In multichannel mode, TFSx enable and TFSx valid follow tDTENLFS and tDDTLFSE  
.
2 If external RFSx/TFSx setup to RSCLKx/TSCLK x> tSCLKE/2, then tDDTTE/I and tDTENE/I apply; otherwise tDDTLFSE and tDTENLFS apply.  
EXTERNAL RFSx IN MULTI-CHANNEL MODE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
RSCLKx  
RFSx  
tDDTLFSE  
tDTENLFSE  
DTx  
1ST BIT  
LATE EXTERNAL TFSx  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
TSCLKx  
TFSx  
tDDTLFSE  
DTx  
1ST BIT  
Figure 26. External Late Frame Sync  
Rev. H  
| Page 38 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Serial Peripheral Interface (SPI) Port—Master Timing  
Table 32. Serial Peripheral Interface (SPI) Port—Master Timing  
VDDEXT = 1.8 V  
LQFP/PBGA Packages  
VDDEXT = 1.8 V  
CSP_BGA Package  
VDDEXT = 2.5 V/3.3 V  
All Packages  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM Data Input Valid to SCK Edge (Data Input Setup) 10.5  
9
7.5  
ns  
ns  
tHSPIDM SCK Sampling Edge to Data Input Invalid  
Switching Characteristics  
–1.5  
–1.5  
–1.5  
tSDSCIM SPISELx Low to First SCK Edge  
tSPICHM Serial Clock High Period  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK –1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK –1.5  
2 × tSCLK –1.5  
2 × tSCLK –1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSPICLM Serial Clock Low Period  
tSPICLK Serial Clock Period  
tHDSM Last SCK Edge to SPISELx High  
tSPITDM Sequential Transfer Delay  
tDDSPIDM SCK Edge to Data Out Valid (Data Out Delay)  
6
6
6
tHDSPIDM SCK Edge to Data Out Invalid (Data Out Hold) –1.0  
–1.0  
–1.0  
SPIxSELy  
(OUTPUT)  
tSDSCIM  
tSPICLM  
tSPICHM  
tSPICLK  
tHDSM  
tSPITDM  
SPIxSCK  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
SPIxMOSI  
(OUTPUT)  
tSSPIDM  
CPHA = 1  
tHSPIDM  
SPIxMISO  
(INPUT)  
tHDSPIDM  
tDDSPIDM  
SPIxMOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHA = 0  
SPIxMISO  
(INPUT)  
Figure 27. Serial Peripheral Interface (SPI) Port—Master Timing  
Rev. H  
| Page 39 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Serial Peripheral Interface (SPI) Port—Slave Timing  
Table 33. Serial Peripheral Interface (SPI) Port—Slave Timing  
VDDEXT = 1.8 V  
LQFP/PBGA Packages  
VDDEXT = 1.8 V  
CSP_BGA Package  
VDDEXT = 2.5 V/3.3 V  
All Packages  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSPICHS Serial Clock High Period  
tSPICLS Serial Clock Low Period  
tSPICLK Serial Clock Period  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHDS  
Last SCK Edge to SPISS Not Asserted  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
1.6  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
1.6  
tSPITDS Sequential Transfer Delay  
tSDSCI SPISS Assertion to First SCK Edge  
tSSPID Data Input Valid to SCK Edge (Data Input Setup) 1.6  
tHSPID SCK Sampling Edge to Data Input Invalid  
Switching Characteristics  
1.6  
1.6  
1.6  
tDSOE SPISS Assertion to Data Out Active  
tDSDHI SPISS Deassertion to Data High Impedance  
tDDSPID SCK Edge to Data Out Valid (Data Out Delay)  
tHDSPID SCK Edge to Data Out Invalid (Data Out Hold)  
0
0
10  
10  
10  
0
0
9
0
0
8
ns  
ns  
ns  
ns  
9
8
10  
10  
0
0
0
SPIxSS  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
tSPICLK  
tHDS  
tSPITDS  
SPIxSCK  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
tDDSPID  
tDSDHI  
SPIxMISO  
(OUTPUT)  
CPHA = 1  
tSSPID  
tHSPID  
SPIxMOSI  
(INPUT)  
tDSOE  
tHDSPID  
tDDSPID  
tDSDHI  
SPIxMISO  
(OUTPUT)  
tHSPID  
CPHA = 0  
tSSPID  
SPIxMOSI  
(INPUT)  
Figure 28. Serial Peripheral Interface (SPI) Port—Slave Timing  
Rev. H  
| Page 40 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
General-Purpose I/O Port F Pin Cycle Timing  
Table 34. General-Purpose I/O Port F Pin Cycle Timing  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Min  
Max  
Unit  
ns  
Timing Requirement  
tWFI  
GPIO Input Pulse Width  
tSCLK + 1  
tSCLK + 1  
Switching Characteristic  
tGPOD GPIO Output Delay from CLKOUT Low  
6
6
ns  
CLKOUT  
GPIO OUTPUT  
GPIO INPUT  
tGPOD  
tWFI  
Figure 29. GPIO Cycle Timing  
Universal Asynchronous Receiver-Transmitter  
(UART) Ports—Receive and Transmit Timing  
For information on the UART port receive and transmit opera-  
tions, see the ADSP-BF533 Blackfin Processor Hardware  
Reference.  
Rev. H  
| Page 41 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Timer Cycle Timing  
Table 35 and Figure 30 describe timer expired operations. The  
input signal is asynchronous in width capture mode and exter-  
nal clock mode and has an absolute maximum input frequency  
of fSCLK/2 MHz.  
Table 35. Timer Cycle Timing  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Min  
Max  
Unit  
Timing Characteristics  
tWL Timer Pulse Width Input Low1 (Measured in SCLK Cycles)  
tWH Timer Pulse Width Input High1 (Measured in SCLK Cycles)  
Switching Characteristic  
1
1
1
1
SCLK  
SCLK  
tHTO Timer Pulse Width Output2 (Measured in SCLK Cycles)  
1
(232–1)  
1
(232–1)  
SCLK  
1 The minimum pulse widths apply for TMRx input pins in width capture and external clock modes. They also apply to the PF1 or PPI_CLK input pins in PWM output mode.  
2 The minimum time for tHTO is one cycle, and the maximum time for tHTO equals (232–1) cycles.  
CLKOUT  
tTOD  
TMRx OUTPUT  
tTIS  
tTIH  
tHTO  
TMRx INPUT  
tWH,tWL  
Figure 30. Timer PWM_OUT Cycle Timing  
Rev. H  
| Page 42 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
JTAG Test and Emulation Port Timing  
Table 36. JTAG Port Timing  
VDDEXT = 1.8 V  
Max  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
20  
4
20  
4
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High1  
System Inputs Hold After TCK High1  
ns  
4
4
ns  
4
4
ns  
5
5
ns  
tTRSTW TRST Pulse Width2 (Measured in TCK Cycles)  
4
4
TCK  
Switching Characteristics  
tDTDO  
TDO Delay from TCK Low  
System Outputs Delay After TCK Low3  
10  
12  
10  
12  
ns  
ns  
tDSYS  
0
0
1 System Inputs = DATA15–0, ARDY, TMR2–0, PF15–0, PPI_CLK, RSCLK0–1, RFS0–1, DR0PRI, DR0SEC, TSCLK0–1, TFS0–1, DR1PRI, DR1SEC, MOSI, MISO, SCK, RX,  
RESET, NMI, BMODE1–0, BR, PPI3–0.  
2 50 MHz maximum  
3 System Outputs = DATA15–0, ADDR19–1, ABE1–0, AOE, ARE, AWE, AMS3–0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS, TMR2–0, PF15–0, RSCLK0–1, RFS0–1,  
TSCLK0–1, TFS0–1, DT0PRI, DT0SEC, DT1PRI, DT1SEC, MOSI, MISO, SCK, TX, BG, BGH, PPI3–0.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 31. JTAG Port Timing  
Rev. H  
| Page 43 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
OUTPUT DRIVE CURRENTS  
150  
100  
50  
Figure 32 through Figure 43 show typical current-voltage char-  
acteristics for the output drivers of the processors. The curves  
represent the current drive capability of the output drivers as a  
function of output voltage.  
VDDEXT = 2.75V  
VDDEXT = 2.50V  
VDDEXT = 2.25V  
150  
0
–50  
VOH  
VDDEXT = 2.75V  
VDDEXT = 2.50V  
VDDEXT = 2.25V  
100  
50  
–100  
–150  
VOL  
0
VOH  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
–50  
Figure 35. Drive Current B (VDDEXT = 2.5 V)  
VOL  
–100  
80  
60  
–150  
VDDEXT = 1.9V  
VDDEXT = 1.8V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
VDDEXT = 1.7V  
40  
Figure 32. Drive Current A (VDDEXT = 2.5 V)  
20  
80  
60  
0
V
DDEXT = 1.9V  
VDDEXT = 1.8V  
20  
40  
60  
VDDEXT = 1.7V  
40  
20  
0
80  
0
0.5  
1.0  
1.5  
2.0  
20  
40  
60  
80  
SOURCE VOLTAGE (V)  
Figure 36. Drive Current B (VDDEXT = 1.8 V)  
150  
100  
50  
0
0.5  
1.0  
1.5  
2.0  
V
DDEXT = 3.65V  
VDDEXT = 3.30V  
DDEXT = 2.95V  
SOURCE VOLTAGE (V)  
V
Figure 33. Drive Current A (VDDEXT = 1.8 V)  
150  
VDDEXT = 3.65V  
VDDEXT = 3.30V  
VDDEXT = 2.95V  
0
100  
50  
VOH  
–50  
–100  
0
VOL  
VOH  
–150  
0
–50  
–100  
–150  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
VOL  
Figure 37. Drive Current B (VDDEXT = 3.3 V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
Figure 34. Drive Current A (VDDEXT = 3.3 V)  
Rev. H  
| Page 44 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
60  
40  
20  
100  
VDDEXT = 2.75V  
DDEXT = 2.50V  
VDDEXT = 2.25V  
V
V
DDEXT = 2.75V  
DDEXT = 2.50V  
80  
60  
40  
V
VDDEXT = 2.25V  
20  
0
0
–20  
–40  
–60  
VOH  
VOH  
–20  
–40  
–60  
VOL  
VOL  
–80  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 38. Drive Current C (VDDEXT = 2.5 V)  
Figure 41. Drive Current D (VDDEXT = 2.5 V)  
30  
V
DDEXT = 1.9V  
VDDEXT = 1.8V  
DDEXT = 1.7V  
60  
40  
20  
10  
VDDEXT = 1.9V  
V
VDDEXT = 1.8V  
VDDEXT = 1.7V  
20  
0
0
10  
20  
20  
40  
30  
40  
0
0.5  
1.0  
1.5  
2.0  
60  
0
0.5  
1.0  
1.5  
2.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 39. Drive Current C (VDDEXT = 1.8 V)  
Figure 42. Drive Current D (VDDEXT = 1.8 V)  
100  
80  
60  
40  
20  
150  
100  
50  
V
DDEXT = 3.65V  
V
V
DDEXT = 3.65V  
DDEXT = 3.30V  
VDDEXT = 3.30V  
VDDEXT = 2.95V  
VDDEXT = 2.95V  
0
VOH  
0
–20  
–40  
–60  
VOH  
–50  
VOL  
VOL  
–100  
–80  
–150  
–100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 43. Drive Current D (VDDEXT = 3.3 V)  
Figure 40. Drive Current C (VDDEXT = 3.3 V)  
Rev. H  
| Page 45 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
The time tDECAY is calculated with test loads CL and IL, and with  
V equal to 0.1 V for VDDEXT (nominal) = 1.8 V or 0.5 V for  
TEST CONDITIONS  
All timing parameters appearing in this data sheet were mea-  
sured under the conditions described in this section. Figure 44  
shows the measurement point for ac measurements (except out-  
put enable/disable). The measurement point VMEAS is 0.95 V for  
V
DDEXT (nominal) = 2.5 V/3.3 V.  
The time tDIS_MEASURED is the interval from when the reference  
signal switches, to when the output voltage decays V from the  
measured output high or output low voltage.  
V
DDEXT (nominal) = 1.8 V or 1.5 V for VDDEXT (nominal) = 2.5 V/  
3.3 V.  
REFERENCE  
SIGNAL  
INPUT  
OR  
OUTPUT  
V
V
MEAS  
MEAS  
tDIS_MEASURED  
tENA_MEASURED  
tDIS  
tENA  
V
OH  
V
(MEASURED)  
Figure 44. Voltage Reference Levels for AC  
Measurements (Except Output Enable/Disable)  
OH  
(MEASURED)  
V
(MEASURED) ؊ ⌬V  
(MEASURED) + V  
OH  
V
(HIGH)  
TRIP  
V
(LOW)  
V
V
TRIP  
OL  
V
OL  
(MEASURED)  
OL  
(MEASURED)  
Output Enable Time Measurement  
tDECAY  
tTRIP  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to the point when they  
start driving.  
The output enable time tENA is the interval from the point when  
a reference signal reaches a high or low voltage level to the point  
when the output starts driving as shown on the right side of  
Figure 45.  
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
HIGH IMPEDANCE STATE  
Figure 45. Output Enable/Disable  
Example System Hold Time Calculation  
The time tENA_MEASURED is the interval, from when the reference  
signal switches, to when the output voltage reaches VTRIP(high)  
or VTRIP (low).  
For VDDEXT (nominal) = 1.8 V—VTRIP (high) is 1.3 V and VTRIP  
(low) is 0.7 V.  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the processor’s output voltage and  
the input threshold for the device requiring the hold time. CLis  
the total bus capacitance (per data line), and IL is the total leak-  
age or three-state current (per data line). The hold time is tDECAY  
plus the various output disable times as specified in the Timing  
Specifications on Page 28 (for example tDSDAT for an SDRAM  
write cycle as shown in SDRAM Interface Timing on Page 31).  
For VDDEXT (nominal) = 2.5 V/3.3 V—VTRIP (high) is 2.0 V and  
VTRIP (low) is 1.0 V.  
Time tTRIP is the interval from when the output starts driving to  
when the output reaches the VTRIP (high) or VTRIP (low) trip  
voltage.  
Time tENA is calculated as shown in the equation:  
tENA = tENA_MEASURED tTRIP  
If multiple pins (such as the data bus) are enabled, the measure-  
ment value is that of the first pin to start driving.  
Output Disable Time Measurement  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The output disable time tDIS is the  
difference between tDIS_MEASURED and tDECAY as shown on the left  
side of Figure 44.  
tDIS = tDIS_MEASURED tDECAY  
The time for the voltage on the bus to decay by V is dependent  
on the capacitive load CL and the load current II. This decay time  
can be approximated by the equation:  
tDECAY = CLV  IL  
Rev. H  
| Page 46 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Capacitive Loading  
16  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 46). VLOAD is 0.95 V for VDDEXT  
(nominal) = 1.8 V or 1.5 V for VDDEXT (nominal) =  
14  
RISE TIME  
12  
2.5 V/3.3 V. Figure 47 through Figure 58 on Page 49 show how  
output rise time varies with capacitance. The delay and hold  
specifications given should be derated by a factor derived from  
these figures. The graphs in these figures may not be linear out-  
side the ranges shown.  
10  
FALL TIME  
8
6
4
2
0
TESTER PIN ELECTRONICS  
50Ω  
V
LOAD  
T1  
DUT  
OUTPUT  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
45Ω  
70Ω  
Figure 47. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver A at VDDEXT = 1.75 V  
ZO = 50Ω (impedance)  
50Ω  
TD = 4.04 1.18 ns  
0.5pF  
4pF  
2pF  
14  
400Ω  
12  
RISE TIME  
10  
NOTES:  
FALL TIME  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD) IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
8
6
4
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
2
0
Figure 46. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 48. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver A at VDDEXT = 2.25 V  
12  
10  
RISE TIME  
8
FALL TIME  
6
4
2
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 49. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver A at VDDEXT = 3.65 V  
Rev. H  
| Page 47 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
30  
25  
20  
15  
10  
5
14  
12  
RISE TIME  
RISE TIME  
10  
8
FALL TIME  
FALL TIME  
6
4
2
0
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 53. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver C at VDDEXT = 1.75 V  
Figure 50. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver B at VDDEXT = 1.75 V  
30  
25  
12  
10  
RISE TIME  
RISE TIME  
20  
8
15  
FALL TIME  
FALL TIME  
6
10  
5
4
2
0
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 54. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver C at VDDEXT = 2.25 V  
Figure 51. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver B at VDDEXT = 2.25 V  
20  
10  
18  
16  
9
8
RISE TIME  
14  
RISE TIME  
7
12  
FALL TIME  
6
10  
FALL TIME  
5
8
6
4
2
0
4
3
2
1
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 55. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver C at VDDEXT = 3.65 V  
Figure 52. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver B at VDDEXT = 3.65 V  
Rev. H  
| Page 48 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
SCK (66MHz DRIVER), V  
= 1.7V  
DDEXT  
18  
16  
14  
12  
10  
8
RISE TIME  
FALL TIME  
6
4
2
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 56. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver D at VDDEXT = 1.75 V  
18  
16  
14  
RISE TIME  
12  
10  
FALL TIME  
8
6
4
2
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 57. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver D at VDDEXT = 2.25 V  
14  
12  
RISE TIME  
10  
8
FALL TIME  
6
4
2
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 58. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for  
Driver D at VDDEXT = 3.65 V  
Rev. H  
| Page 49 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 37. Thermal Characteristics for BC-160 Package  
Parameter Condition Typical Unit  
THERMAL CHARACTERISTICS  
To determine the junction temperature on the application  
printed circuit board, use:  
JA  
0 Linear m/s Airflow  
27.1  
23.85  
22.7  
7.26  
0.14  
0.26  
0.35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
TJ = TCASE + JT PD  
JMA  
JMA  
JC  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Not Applicable  
where:  
TJ = Junction temperature (°C).  
T
CASE = Case temperature (°C) measured by customer at top  
JT  
JT  
JT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
center of package.  
JT = From Table 37 through Table 39.  
PD = Power dissipation (see the power dissipation discussion  
and the tables on 24 for the method to calculate PD).  
Values of JA are provided for package comparison and printed  
circuit board design considerations. JA can be used for a first  
order approximation of TJ by the equation:  
Table 38. Thermal Characteristics for ST-176-1 Package  
Parameter Condition Typical Unit  
JA  
0 Linear m/s Airflow  
34.9  
33.0  
32.0  
0.50  
0.75  
1.00  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
TJ = TA + JA PD  
JMA  
JMA  
JT  
JT  
JT  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
where:  
TA = ambient temperature (°C).  
In Table 37 through Table 39, airflow measurements comply  
with JEDEC standards JESD51–2 and JESD51–6, and the junc-  
tion-to-board measurement complies with JESD51–8. The  
junction-to-case measurement complies with MIL-STD-883  
(Method 1012.1). All measurements use a 2S2P JEDEC test  
board.  
Table 39. Thermal Characteristics for B-169 Package  
Parameter Condition Typical Unit  
JA  
0 Linear m/s Airflow  
22.8  
20.3  
19.3  
10.39  
0.59  
0.88  
1.37  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal resistance JA in Table 37 through Table 39 is the figure  
of merit relating to performance of the package and board in a  
convective environment. JMA represents the thermal resistance  
under two conditions of airflow. JT represents the correlation  
JMA  
JMA  
JC  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Not Applicable  
between TJ and TCASE  
.
JT  
JT  
JT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Rev. H  
| Page 50 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
160-BALL CSP_BGA BALL ASSIGNMENT  
Table 40 lists the CSP_BGA ball assignment by signal. Table 41  
on Page 52 lists the CSP_BGA ball assignment by ball number.  
Table 40. 160-Ball CSP_BGA Ball Assignment (Alphabetical by Signal)  
Signal  
ABE0  
Ball No.  
H13  
H12  
J14  
Signal  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DR0PRI  
DR0SEC  
DR1PRI  
DR1SEC  
DT0PRI  
DT0SEC  
DT1PRI  
DT1SEC  
EMU  
Ball No.  
N8  
Signal  
GND  
GND  
GND  
GND  
GND  
GND  
MISO  
MOSI  
NMI  
Ball No.  
L6  
Signal  
SCK  
Ball No.  
D1  
ABE1  
P8  
L8  
SCKE  
SMS  
B13  
C13  
D13  
D12  
P2  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
M7  
N7  
L10  
M4  
M10  
P14  
E2  
K14  
L14  
J13  
SRAS  
SWE  
P7  
M6  
N6  
TCK  
K13  
L13  
K12  
L12  
M12  
M13  
M14  
N14  
N13  
N12  
M11  
N11  
P13  
P12  
P11  
E14  
F14  
F13  
G12  
G13  
E13  
G14  
H14  
P10  
N10  
N4  
TDI  
M3  
N3  
P6  
D3  
B10  
D2  
C1  
TDO  
M5  
N5  
TFS0  
H3  
PF0  
TFS1  
E1  
P5  
PF1  
TMR0  
TMR1  
TMR2  
TMS  
L2  
P4  
PF2  
C2  
M1  
K2  
K1  
PF3  
C3  
J2  
PF4  
B1  
N2  
G3  
PF5  
B2  
TRST  
N1  
F3  
PF6  
B3  
TSCLK0  
TSCLK1  
TX  
J1  
H1  
PF7  
B4  
F1  
H2  
PF8  
A2  
A3  
A4  
A5  
B5  
K3  
F2  
PF9  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
A1  
E3  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PPI_CLK  
PPI0  
PPI1  
PPI2  
PPI3  
RESET  
RFS0  
RFS1  
RSCLK0  
RSCLK1  
RTXI  
RTXO  
RX  
C7  
M2  
A10  
A14  
B11  
C4  
C12  
D5  
GND  
AMS1  
GND  
B6  
D9  
AMS2  
GND  
A6  
C6  
F12  
G4  
AMS3  
GND  
AOE  
GND  
C5  
C9  
J4  
ARDY  
GND  
C11  
D4  
C8  
J12  
L7  
ARE  
GND  
B8  
AWE  
GND  
D7  
A7  
B7  
L11  
P1  
BG  
GND  
D8  
BGH  
GND  
D10  
D11  
F4  
C10  
J3  
D6  
BMODE0  
BMODE1  
BR  
GND  
E4  
P3  
GND  
G2  
L1  
E11  
J11  
L4  
D14  
A12  
B14  
M9  
GND  
F11  
G11  
H4  
CLKIN  
GND  
G1  
A9  
A8  
L3  
CLKOUT  
DATA0  
DATA1  
DATA2  
DATA3  
GND  
L9  
GND  
H11  
K4  
B9  
N9  
GND  
A13  
B12  
A11  
P9  
GND  
K11  
L5  
SA10  
SCAS  
E12  
C14  
M8  
GND  
Rev. H  
| Page 51 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 41. 160-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)  
Ball No.  
A1  
Signal  
VDDEXT  
PF8  
Ball No.  
C13  
C14  
D1  
Signal  
SMS  
Ball No.  
H1  
Signal  
DT0PRI  
DT0SEC  
TFS0  
Ball No.  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
Signal  
TDI  
A2  
SCAS  
SCK  
H2  
GND  
A3  
PF9  
H3  
DATA12  
DATA9  
DATA6  
DATA3  
DATA0  
GND  
A4  
PF10  
PF11  
PF14  
PPI2  
D2  
PF0  
H4  
GND  
A5  
D3  
MOSI  
GND  
H11  
H12  
H13  
H14  
J1  
GND  
A6  
D4  
ABE1  
A7  
D5  
VDDEXT  
VDDINT  
GND  
ABE0  
A8  
RTXO  
RTXI  
D6  
AWE  
A9  
D7  
TSCLK0  
DR0SEC  
RFS0  
ADDR15  
ADDR9  
ADDR10  
ADDR11  
TRST  
A10  
A11  
A12  
A13  
A14  
B1  
GND  
XTAL  
CLKIN  
VROUT0  
GND  
PF4  
D8  
GND  
J2  
D9  
VDDEXT  
GND  
J3  
D10  
D11  
D12  
D13  
D14  
E1  
J4  
VDDEXT  
VDDINT  
VDDEXT  
ADDR4  
ADDR1  
DR0PRI  
TMR2  
TX  
GND  
J11  
J12  
J13  
J14  
K1  
SWE  
N2  
TMS  
SRAS  
BR  
N3  
TDO  
B2  
PF5  
N4  
BMODE0  
DATA13  
DATA10  
DATA7  
DATA4  
DATA1  
BGH  
B3  
PF6  
TFS1  
N5  
B4  
PF7  
E2  
MISO  
DT1SEC  
VDDINT  
VDDINT  
SA10  
ARDY  
AMS0  
TSCLK1  
DT1PRI  
DR1SEC  
GND  
K2  
N6  
B5  
PF12  
PF13  
PPI3  
E3  
K3  
N7  
B6  
E4  
K4  
GND  
N8  
B7  
E11  
E12  
E13  
E14  
F1  
K11  
K12  
K13  
K14  
L1  
GND  
N9  
B8  
PPI1  
ADDR7  
ADDR5  
ADDR2  
RSCLK0  
TMR0  
RX  
N10  
N11  
N12  
N13  
N14  
P1  
B9  
VDDRTC  
NMI  
ADDR16  
ADDR14  
ADDR13  
ADDR12  
VDDEXT  
B10  
B11  
B12  
B13  
B14  
C1  
GND  
VROUT1  
SCKE  
CLKOUT  
PF1  
F2  
L2  
F3  
L3  
F4  
L4  
VDDINT  
GND  
P2  
TCK  
F11  
F12  
F13  
F14  
G1  
GND  
L5  
P3  
BMODE1  
DATA15  
DATA14  
DATA11  
DATA8  
DATA5  
DATA2  
BG  
C2  
PF2  
VDDEXT  
AMS2  
AMS1  
RSCLK1  
RFS1  
L6  
GND  
P4  
C3  
PF3  
L7  
VDDEXT  
GND  
P5  
C4  
GND  
GND  
PF15  
VDDEXT  
PPI0  
L8  
P6  
C5  
L9  
VDDINT  
GND  
P7  
C6  
G2  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
P8  
C7  
G3  
DR1PRI  
VDDEXT  
GND  
VDDEXT  
ADDR8  
ADDR6  
ADDR3  
TMR1  
EMU  
P9  
C8  
G4  
P10  
P11  
P12  
P13  
P14  
C9  
PPI_CLK  
RESET  
GND  
VDDEXT  
G11  
G12  
G13  
G14  
ADDR19  
ADDR18  
ADDR17  
GND  
C10  
C11  
C12  
AMS3  
AOE  
ARE  
Rev. H  
| Page 52 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Figure 59 shows the top view of the CSP_BGA ball configura-  
tion. Figure 60 shows the bottom view of the CSP_BGA ball  
configuration.  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
M
N
P
KEY:  
KEY:  
V
V
V
V
V
DDINT  
GND  
I/O  
DDRTC  
DDINT  
GND  
I/O  
DDRTC  
V
V
V
DDEXT  
ROUT  
DDEXT  
ROUT  
Figure 60. 160-Ball CSP_BGA Ground Configuration (Bottom View)  
Figure 59. 160-Ball CSP_BGA Ground Configuration (Top View)  
Rev. H  
|
Page 53 of 64  
|
January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
169-BALL PBGA BALL ASSIGNMENT  
Table 42 lists the PBGA ball assignment by signal. Table 43 on  
Page 55 lists the PBGA ball assignment by ball number.  
Table 42. 169-Ball PBGA Ball Assignment (Alphabetical by Signal)  
Signal  
ABE0  
Ball No.  
H16  
H17  
J16  
Signal  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DR0PRI  
DR0SEC  
DR1PRI  
DR1SEC  
DT0PRI  
DT0SEC  
DT1PRI  
DT1SEC  
EMU  
Ball No.  
U12  
U11  
T10  
U10  
T9  
Signal  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MISO  
MOSI  
NMI  
Ball No.  
K9  
Signal  
RTXI  
Ball No.  
A10  
A11  
T1  
Signal  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
Ball No.  
K6  
ABE1  
K10  
K11  
L7  
RTXO  
RX  
L6  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
M6  
J17  
SA10  
SCAS  
SCK  
B15  
A16  
D1  
M7  
K16  
K17  
L16  
L17  
M16  
M17  
N17  
N16  
P17  
P16  
R17  
R16  
T17  
U15  
T15  
U16  
T14  
D17  
E16  
E17  
F16  
F17  
C16  
G16  
G17  
T13  
U17  
U5  
L8  
VDDEXT  
VDDEXT  
VROUT0  
VROUT1  
XTAL  
M8  
U9  
L9  
T2  
T8  
L10  
L11  
M9  
T16  
E2  
SCKE  
SMS  
B14  
A17  
A15  
B17  
U4  
B12  
B13  
A13  
U8  
U7  
SRAS  
SWE  
T7  
U6  
TCK  
T6  
E1  
TDI  
U3  
M2  
M1  
H1  
B11  
D2  
C1  
TDO  
T4  
PF0  
TFS0  
TFS1  
TMR0  
TMR1  
TMR2  
TMS  
L1  
PF1  
G2  
H2  
PF2  
B1  
R1  
K2  
PF3  
C2  
P2  
K1  
PF4  
A1  
A2  
P1  
F1  
PF5  
T3  
F2  
PF6  
B3  
TRST  
TSCLK0  
TSCLK1  
TX  
U2  
U1  
PF7  
A3  
B4  
L2  
GND  
B16  
F11  
G7  
PF8  
G1  
AMS1  
GND  
PF9  
A4  
B5  
R2  
AMS2  
GND  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PPI_CLK  
PPI0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
F12  
G12  
H12  
J12  
K12  
L12  
M10  
M11  
M12  
B2  
AMS3  
GND  
G8  
A5  
A6  
B6  
AOE  
GND  
G9  
ARDY  
GND  
G10  
G11  
H7  
ARE  
GND  
A7  
B7  
AWE  
GND  
BG  
GND  
H8  
B10  
B9  
BGH  
GND  
H9  
BMODE0  
BMODE1  
BR  
GND  
H10  
H11  
J7  
PPI1  
A9  
B8  
T5  
GND  
PPI2  
C17  
A14  
D16  
U14  
T12  
U13  
T11  
GND  
PPI3  
A8  
A12  
N1  
J1  
F6  
CLKIN  
GND  
J8  
RESET  
RFS0  
RFS1  
RSCLK0  
RSCLK1  
RTCVDD  
F7  
CLKOUT  
DATA0  
DATA1  
DATA2  
DATA3  
GND  
J9  
F8  
GND  
J10  
J11  
K7  
F9  
GND  
N2  
J2  
G6  
GND  
H6  
GND  
K8  
F10  
J6  
Rev. H  
| Page 54 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 43. 169-Ball PBGA Ball Assignment (Numerical by Ball Number)  
Ball No.  
A1  
Signal  
PF4  
Ball No.  
D16  
D17  
E1  
Signal  
CLKOUT  
AMS0  
MOSI  
MISO  
AMS1  
AMS2  
DT1PRI  
DT1SEC  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
RTCVDD  
GND  
Ball No.  
J2  
Signal  
RSCLK1  
VDDEXT  
GND  
Ball No.  
M12  
M16  
M17  
N1  
Signal  
VDD  
Ball No.  
U9  
Signal  
DATA9  
DATA7  
DATA5  
DATA4  
DATA2  
DATA0  
ADDR16  
ADDR18  
BGH  
A2  
PF5  
J6  
ADDR7  
ADDR8  
RFS0  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
A3  
PF7  
J7  
A4  
PF9  
E2  
J8  
GND  
A5  
PF11  
PF12  
PF14  
PPI3  
E16  
E17  
F1  
J9  
GND  
N2  
RSCLK0  
ADDR10  
ADDR9  
TMR2  
A6  
J10  
J11  
J12  
J16  
J17  
K1  
GND  
N16  
N17  
P1  
A7  
GND  
A8  
F2  
VDD  
A9  
PPI1  
F6  
ADDR1  
ADDR2  
DT0SEC  
DT0PRI  
VDDEXT  
GND  
P2  
TMR1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
RTXI  
RTXO  
RESET  
XTAL  
CLKIN  
SRAS  
SCAS  
SMS  
F7  
P16  
P17  
R1  
ADDR12  
ADDR11  
TMR0  
F8  
F9  
K2  
F10  
F11  
F12  
F16  
F17  
G1  
K6  
R2  
TX  
K7  
R16  
R17  
T1  
ADDR14  
ADDR13  
RX  
VDD  
K8  
GND  
AMS3  
AOE  
K9  
GND  
K10  
K11  
K12  
K16  
K17  
L1  
GND  
T2  
VDDEXT  
PF2  
TSCLK1  
TFS1  
GND  
T3  
TMS  
B2  
VDDEXT  
PF6  
G2  
VDD  
T4  
TDO  
B3  
G6  
VDDEXT  
GND  
ADDR3  
ADDR4  
TFS0  
T5  
BMODE1  
DATA15  
DATA13  
DATA10  
DATA8  
DATA6  
DATA3  
DATA1  
BG  
B4  
PF8  
G7  
T6  
B5  
PF10  
PF13  
PF15  
PPI2  
G8  
GND  
T7  
B6  
G9  
GND  
L2  
TSCLK0  
VDDEXT  
GND  
T8  
B7  
G10  
G11  
G12  
G16  
G17  
H1  
GND  
L6  
T9  
B8  
GND  
L7  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
B9  
PPI0  
VDD  
L8  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
PPI_CLK  
NMI  
ARE  
L9  
GND  
AWE  
L10  
L11  
L12  
L16  
L17  
M1  
M2  
M6  
M7  
M8  
M9  
M10  
M11  
GND  
VROUT0  
VROUT1  
SCKE  
SA10  
GND  
SWE  
PF1  
DR1PRI  
DR1SEC  
VDDEXT  
GND  
GND  
ADDR19  
ADDR17  
GND  
H2  
VDD  
H6  
ADDR5  
ADDR6  
DR0SEC  
DR0PRI  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
H7  
ADDR15  
EMU  
H8  
GND  
H9  
GND  
U2  
TRST  
H10  
H11  
H12  
H16  
H17  
J1  
GND  
U3  
TDI  
C2  
PF3  
GND  
U4  
TCK  
C16  
C17  
D1  
ARDY  
BR  
VDD  
U5  
BMODE0  
DATA14  
DATA12  
DATA11  
ABE0  
ABE1  
RFS1  
U6  
SCK  
VDD  
U7  
D2  
PF0  
VDD  
U8  
Rev. H  
| Page 55 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
A1 BALL PAD CORNER  
A
B
C
D
E
F
KEY  
G
H
J
V
V
GND  
I/O  
NC  
V
DDINT  
K
L
DDEXT  
ROUT  
M
N
P
R
T
U
2
4
6
8
10  
12  
14  
16  
1
3
5
7
9
11  
13  
15  
17  
TOP VIEW  
Figure 61. 169-Ball PBGA Ground Configuration (Top View)  
A1 BALL PAD CORNER  
A
B
C
D
KEY:  
V
GND  
I/O  
NC  
V
E
DDINT  
F
V
G
DDEXT  
ROUT  
H
J
K
L
M
N
P
R
T
U
17  
15  
13  
11  
9
7
5
3
1
16  
14  
12  
10  
8
6
4
2
BOTTOM VIEW  
Figure 62. 169-Ball PBGA Ground Configuration (Bottom View)  
Rev. H  
| Page 56 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
176-LEAD LQFP PINOUT  
Table 44 lists the LQFP pinout by signal. Table 45 on Page 58  
lists the LQFP pinout by lead number.  
Table 44. 176-Lead LQFP Pin Assignment (Alphabetical by Signal)  
Signal  
ABE0  
ABE1  
Lead No.  
151  
150  
149  
148  
147  
146  
142  
141  
140  
139  
138  
137  
136  
135  
127  
126  
125  
124  
123  
122  
121  
161  
160  
159  
158  
154  
162  
153  
152  
119  
120  
96  
Signal  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DR0PRI  
DR0SEC  
DR1PRI  
DR1SEC  
DT0PRI  
DT0SEC  
DT1PRI  
DT1SEC  
EMU  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Lead No.  
113  
112  
110  
109  
108  
105  
104  
103  
102  
101  
100  
99  
98  
74  
73  
63  
62  
68  
67  
59  
58  
83  
1
2
3
7
8
9
15  
19  
30  
39  
40  
41  
42  
43  
Signal  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MISO  
MOSI  
NMI  
Lead No.  
88  
89  
90  
91  
Signal  
PPI_CLK  
PPI0  
PPI1  
PPI2  
Lead No.  
21  
22  
23  
24  
26  
13  
75  
64  
76  
65  
17  
16  
Signal  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
Lead No.  
71  
93  
107  
118  
134  
145  
156  
171  
25  
52  
66  
80  
111  
143  
157  
168  
18  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
92  
97  
PPI3  
RESET  
RFS0  
RFS1  
RSCLK0  
RSCLK1  
RTXI  
RTXO  
RX  
SA10  
SCAS  
SCK  
SCKE  
SMS  
SRAS  
SWE  
TCK  
TDI  
106  
117  
128  
129  
130  
131  
132  
133  
144  
155  
170  
174  
175  
176  
54  
55  
14  
51  
50  
49  
48  
47  
46  
82  
164  
166  
53  
173  
172  
167  
165  
94  
86  
87  
69  
60  
79  
78  
77  
85  
84  
72  
61  
81  
5
4
11  
AMS1  
AMS2  
AMS3  
AOE  
ARDY  
ARE  
AWE  
BG  
TDO  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
TFS0  
TFS1  
TMR0  
TMR1  
TMR2  
TMS  
TRST  
TSCLK0  
TSCLK1  
TX  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
38  
37  
36  
35  
34  
33  
32  
29  
BGH  
BMODE0  
BMODE1  
BR  
PF8  
PF9  
95  
163  
10  
169  
116  
115  
114  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
6
12  
20  
31  
45  
57  
CLKIN  
CLKOUT  
DATA0  
DATA1  
DATA2  
44  
56  
70  
28  
27  
GND  
Rev. H  
| Page 57 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
Table 45. 176-Lead LQFP Pin Assignment (Numerical by Lead Number)  
Lead No.  
1
2
3
4
5
6
7
8
Signal  
GND  
GND  
GND  
VROUT1  
VROUT0  
VDDEXT  
GND  
GND  
GND  
CLKIN  
XTAL  
VDDEXT  
RESET  
NMI  
GND  
RTXO  
RTXI  
VDDRTC  
GND  
VDDEXT  
PPI_CLK  
PPI0  
PPI1  
PPI2  
VDDINT  
PPI3  
PF15  
PF14  
PF13  
GND  
VDDEXT  
PF12  
PF11  
PF10  
PF9  
Lead No.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Signal  
GND  
GND  
GND  
GND  
VDDEXT  
PF5  
PF4  
PF3  
PF2  
Lead No.  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Signal  
TX  
RX  
EMU  
TRST  
TMS  
TDI  
TDO  
GND  
GND  
GND  
GND  
GND  
VDDEXT  
TCK  
BMODE1  
BMODE0  
GND  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
GND  
VDDEXT  
DATA7  
DATA6  
DATA5  
VDDINT  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
GND  
Lead No.  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
Signal  
ADDR19  
ADDR18  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
ADDR13  
GND  
GND  
GND  
GND  
GND  
Lead No.  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
Signal  
AMS0  
ARDY  
BR  
SA10  
SWE  
SCAS  
SRAS  
VDDINT  
CLKOUT  
GND  
VDDEXT  
SMS  
SCKE  
GND  
GND  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PF1  
PF0  
VDDINT  
SCK  
MISO  
MOSI  
GND  
VDDEXT  
DT1SEC  
DT1PRI  
TFS1  
TSCLK1  
DR1SEC  
DR1PRI  
RFS1  
GND  
VDDEXT  
ADDR12  
ADDR11  
ADDR10  
ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
VDDINT  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
GND  
VDDEXT  
RSCLK1  
VDDINT  
DT0SEC  
DT0PRI  
TFS0  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ABE1  
ABE0  
AWE  
ARE  
AOE  
GND  
VDDEXT  
VDDINT  
AMS3  
AMS2  
AMS1  
GND  
VDDEXT  
TSCLK0  
DR0SEC  
DR0PRI  
RFS0  
RSCLK0  
TMR2  
TMR1  
TMR0  
VDDINT  
PF8  
PF7  
PF6  
GND  
GND  
VDDEXT  
BG  
BGH  
Rev. H  
| Page 58 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
OUTLINE DIMENSIONS  
Dimensions in the outline dimension figures are shown in  
millimeters.  
26.20  
26.00 SQ  
25.80  
0.75  
0.60  
0.45  
1.60  
MAX  
133  
132  
176  
1
PIN 1  
24.20  
24.00 SQ  
23.80  
TOP VIEW  
(PINS DOWN)  
1.45  
0.20  
1.40  
0.09  
1.35  
7°  
3.5°  
0°  
0.15  
0.05  
89  
44  
45  
SEATING  
PLANE  
0.08 MAX  
88  
COPLANARITY  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
LEAD PITCH  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BGA  
Figure 63. 176-Lead Low Profile Quad Flat Package [LQFP]  
(ST-176-1)  
Dimensions shown in millimeters  
Rev. H  
| Page 59 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
12.10  
12.00 SQ  
11.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
14 13 12 11 10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
G
H
J
10.40  
BSC SQ  
0.80  
BSC  
K
L
M
N
P
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
1.31  
1.21  
1.11  
1.70  
1.60  
1.35  
DETAIL A  
0.40 NOM  
0.25 MIN  
*
0.55  
0.45  
0.40  
SEATING  
PLANE  
COPLANARITY  
0.12  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-205-AE WITH THE EXCEPTION  
TO BALL DIAMETER.  
Figure 64. 160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-160-2)  
Dimensions shown in millimeters  
Rev. H  
| Page 60 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
A1 CORNER  
INDEX AREA  
19.20  
19.00 SQ  
18.80  
16 14 12 10  
17 15 13 11  
8
6
4
2
9
7
5
3
1
A
B
C
D
E
F
A1 BALL PAD  
INDICATOR  
16.00  
G
H
J
BSC SQ  
17.05  
16.95 SQ  
16.85  
TOP VIEW  
K
L
M
N
P
R
T
1.00  
BSC  
U
BOTTOM VIEW  
DETAIL A  
2.50  
2.23  
1.97  
0.65  
0.56  
0.45  
1.22  
1.17  
1.12  
DETAIL A  
0.50 NOM  
0.40 MIN  
0.20 MAX  
COPLANARITY  
0.70  
0.60  
0.50  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MS-034-AAG-2  
Figure 65. 169-Ball Plastic Ball Grid Array [PBGA]  
(B-169)  
Dimensions shown in millimeters  
Rev. H  
| Page 61 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
SURFACE-MOUNT DESIGN  
Table 46 is provided as an aid to PCB design. For industry-  
standard design recommendations, refer to IPC-7351,  
Generic Requirements for Surface-Mount Design and Land Pat-  
tern Standard.  
Table 46. BGA Data for Use with Surface-Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
0.40 mm diameter  
0.43 mm diameter  
Ball Pad Size  
Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-2  
Plastic Ball Grid Array (PBGA) B-169  
Solder Mask Defined  
Solder Mask Defined  
0.55 mm diameter  
0.56 mm diameter  
Rev. H  
| Page 62 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
AUTOMOTIVE PRODUCTS  
The ADBF531W, ADBF532W, and ADBF533W models are  
available with controlled manufacturing to support the quality  
and reliability requirements of automotive applications. Note  
that these automotive models may have specifications that differ  
from the commercial models and designers should review the  
Specifications section of this data sheet carefully. Only the auto-  
motive grade products shown in Table 47 are available for use in  
automotive applications. Contact your local ADI account repre-  
sentative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these  
models.  
Table 47. Automotive Products  
Speed Grade  
(Max)  
Product Family1,2  
ADBF531WBSTZ4xx  
ADBF531WBBCZ4xx  
ADBF531WYBCZ4xx  
ADBF532WBSTZ4xx  
ADBF532WBBCZ4xx  
ADBF532WYBCZ4xx  
ADBF533WBBCZ5xx  
ADBF533WBBZ5xx  
ADBF533WYBCZ4xx  
ADBF533WYBBZ4xx  
Temperature Range3  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
176-Lead LQFP  
Package Option  
ST-176-1  
BC-160-2  
BC-160-2  
ST-176-1  
BC-160-2  
BC-160-2  
BC-160-2  
B-169  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
533 MHz  
533 MHz  
400 MHz  
400 MHz  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
176-Lead LQFP  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
169-Ball PBGA  
160-Ball CSP_BGA  
169-Ball PBGA  
BC-160-2  
B-169  
1 Z = RoHS compliant part.  
2 xx denotes silicon revision.  
3 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 21 for junction temperature (TJ)  
specification which is the only temperature specification.  
Rev. H  
| Page 63 of 64 | January 2011  
ADSP-BF531/ADSP-BF532/ADSP-BF533  
ORDERING GUIDE  
Temperature  
Range2  
Speed Grade  
(Max)  
Package  
Option  
Model 1  
Package Description  
169-Ball PBGA  
ADSP-BF531SBB400  
ADSP-BF531SBBZ400  
ADSP-BF531SBBC400  
ADSP-BF531SBBCZ400  
ADSP-BF531SBBCZ4RL  
ADSP-BF531SBSTZ400  
ADSP-BF532SBBZ400  
ADSP-BF532SBBC400  
ADSP-BF532SBBCZ400  
ADSP-BF532SBSTZ400  
ADSP-BF533SBBZ400  
ADSP-BF533SBBCZ400  
ADSP-BF533SBSTZ400  
ADSP-BF533SBB500  
ADSP-BF533SBBZ500  
ADSP-BF533SBBC500  
ADSP-BF533SBBCZ500  
ADSP-BF533SBBC-5V  
ADSP-BF533SBBCZ-5V  
ADSP-BF533SKBC-6V  
ADSP-BF533SKBCZ-6V  
ADSP-BF533SKSTZ-5V  
1 Z = RoHS compliant part.  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
500 MHz  
500 MHz  
500 MHz  
500 MHz  
533 MHz  
533 MHz  
600 MHz  
600 MHz  
533 MHz  
B-169  
169-Ball PBGA  
B-169  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA, 13" Tape and Reel  
176-Lead LQFP  
BC-160-2  
BC-160-2  
BC-160-2  
ST-176-1  
B-169  
169-Ball PBGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
176-Lead LQFP  
BC-160-2  
BC-160-2  
ST-176-1  
B-169  
169-Ball PBGA  
160-Ball CSP_BGA  
176-Lead LQFP  
BC-160-2  
ST-176-1  
B-169  
169-Ball PBGA  
169-Ball PBGA  
B-169  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
160-Ball CSP_BGA  
176-Lead LQFP  
BC-160-2  
BC-160-2  
BC-160-2  
BC-160-2  
BC-160-2  
BC-160-2  
ST-176-1  
0°C to +70°C  
0°C to +70°C  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 21 for junction temperature (TJ)  
specification which is the only temperature specification.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03728-0-1/11(H)  
Rev. H  
| Page 64 of 64 | January 2011  

相关型号:

ADSP-BF531SBBCZ400

Blackfin Embedded Processor
ADI

ADSP-BF531SBBCZ400

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF531SBBCZ4RL

Blackfin Embedded Processor
ADI

ADSP-BF531SBBZ400

Blackfin Embedded Processor
ADI

ADSP-BF531SBBZ400

16-BIT, 40 MHz, OTHER DSP, PBGA169, ROHS COMPLIANT, PLASTIC, MO-034AAG-2, BGA-169
ROCHESTER

ADSP-BF531SBST400

Blackfin Embedded Processor
ADI

ADSP-BF531SBSTZ400

Blackfin Embedded Processor
ADI

ADSP-BF531SBSTZ400

16-BIT, 40 MHz, OTHER DSP, PQFP176, ROHS COMPLIANT, MO-026BGA, LQFP-176
ROCHESTER

ADSP-BF531WBBCZ-4A

Blackfin Embedded Processor
ADI

ADSP-BF531WBBZ-4A

Blackfin Embedded Processor
ADI

ADSP-BF531WBSTZ-4A

Blackfin Embedded Processor
ADI

ADSP-BF531WYBCZ-4A

Blackfin Embedded Processor
ADI