AM79C940B-25JC-G [ROCHESTER]

LAN Controller, CMOS;
AM79C940B-25JC-G
型号: AM79C940B-25JC-G
厂家: Rochester Electronics    Rochester Electronics
描述:

LAN Controller, CMOS

局域网
文件: 总14页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REI Datasheet  
AM79C940B  
Media Access Controller for Ethernet (MACE)  
The Media Access Controller for Ethernet (MACE) chip is a CMOS VLSI device designed to  
provide flexibility in customized LAN design. The MACE device is specifically designed to address  
applications where multiple I/O peripherals are present, and a centralized or system specific DMA is  
required. The high speed, 16-bit synchronous system interface is optimized for an external DMA or  
I/O processor system, and is similar to many existing peripheral devices such as SCSI and serial link  
controllers.  
Quality Overview  
Rochester Electronics  
Manufactured Components  
ISO-9001  
AS9120 certification  
Qualified Manufacturers List (QML) MIL-PRF-38535  
Rochester branded components are  
manufactured using either die/wafers  
purchased from the original suppliers  
or Rochester wafers recreated from the  
original IP. All recreations are done with  
the approval of the OCM.  
Class Q Military  
Class V Space Level  
Qualified Suppliers List of Distributors (QSLD)  
Rochester is a critical supplier to DLA and  
meets all industry and DLA standards.  
Parts are tested using original factory  
test programs or Rochester developed  
test solutions to guarantee product  
meets or exceeds the OCM data sheet.  
RochesterElectronics, LLCiscommittedtosupplying  
products that satisfy customer expectations for  
quality and are equal to those originally supplied by  
industry manufacturers.  
The original manufacturer’s datasheet accompanying this document reflects the performance  
and specifications of the Rochester manufactured version of this device. Rochester Electronics  
guarantees the performance of its semiconductor products to the original OEM specifications.  
‘Typical’ values are for reference purposes only. Certain minimum or maximum ratings may be  
based on product characterization, design, simulation, or sample testing.  
© 2013 Rochester Electronics, LLC. All Rights Reserved 07112013  
To learn more, please visit www.rocelec.com  
FINAL  
Am79C940  
Media Access Controller for Ethernet (MACE™)  
DISTINCTIVE CHARACTERISTICS  
Integrated Controller with Manchester  
encoder/decoder and 10BASE-T transceiver  
and AUI port  
Arbitrary byte alignment and little/big endian  
memory interface supported  
Internal/external loopback capabilities  
Supports IEEE 802.3/ANSI 8802-3 and Ethernet  
External Address Detection Interface (EADI)  
for external hardware address filtering in  
bridge/router applications  
standards  
84-pin PLCC and 100-pin PQFP Packages  
80-pin Thin Quad Flat Pack (TQFP) package  
available for space critical applications such as  
PCMCIA  
JTAG Boundary Scan (IEEE 1149.1) test access  
port interface for board level production test  
Integrated Manchester Encoder/Decoder  
Modular architecture allows easy tuning to  
Digital Attachment Interface (DAI) allows  
by-passing of differential Attachment Unit  
Interface (AUI)  
specific applications  
High speed, 16-bit synchronous host system  
interface with 2 or 3 cycles/transfer  
Supports the following types of network  
Individual transmit (136 byte) and receive (128  
byte) FlFOs provide increase of system latency  
and support the following features:  
interface:  
— AUI to external 10BASE2, 10BASE5 or  
10BASE-F MAU  
— Automatic retransmission with no FIFO  
reload  
— DAI port to external 10BASE2, 10BASE5,  
10BASE-T, 10BASE-F MAU  
— Automatic receive stripping and transmit  
padding (individually programmable)  
— General Purpose Serial Interface (GPSI) to  
external encoding/decoding scheme  
— Automatic runt packet rejection  
— Internal 10BASE-T transceiver with  
— Automatic deletion of collision frames  
automatic selection of 10BASE-T or AUI port  
— Automatic retransmission with no FIFO  
reload  
Sleep mode allows reduced power consump-  
tion for critical battery powered applications  
Direct slave access to all on board  
configuration/status registers and transmit/  
receive FlFOs  
5 MHz-25 MHz system clock speed  
Support for operation in industrial temperature  
range (–40°C to +85°C) available in all three  
packages  
Direct FIFO read/write access for simple  
interface to DMA controllers or l/O processors  
GENERAL DESCRIPTION  
The Media Access Controller for Ethernet (MACE) chip  
is a CMOS VLSI device designed to provide flexibility  
in customized LAN design. The MACE device is specif-  
ically designed to address applications where multiple  
I/O peripherals are present, and a centralized or sys-  
tem specific DMA is required. The high speed, 16-bit  
synchronous system interface is optimized for an exter-  
nal DMA or I/O processor system, and is similar to  
many existing peripheral devices, such as SCSI and  
serial link controllers.  
The MACE device is a slave register based peripheral.  
All transfers to and from the system are performed  
using simple memory or I/O read and write commands.  
In conjunction with a user defined DMA engine, the  
MACE chip provides an IEEE 802.3 interface tailored  
to a specific application. Its superior modular architec-  
ture and versatile system interface allow the MACE  
device to be configured as a stand-alone device or  
as a connectivity cell incorporated into a larger,  
integrated system.  
Publication# 16235 Rev: E Amendment/0  
Issue Date: May 2000  
The MACE device provides a complete Ethernet node  
solution with an integrated 10BASE-T transceiver, and  
supports up to 25-MHz system clocks. The MACE  
device embodies the Media Access Control (MAC)  
and Physical Signaling (PLS) sub-layers of the IEEE  
802.3 standard, and provides an IEEE defined Attach-  
ment Unit Interface (AUI) for coupling to an external  
Medium Attachment Unit (MAU). The MACE device is  
compliant with 10BASE2, 10BASE5, 10BASE-T, and  
10BASE-F transceivers.  
The Am79C940 MACE chip is offered in a Plastic  
Leadless Chip Carrier (84-pin PLCC), a Plastic Quad  
Flat Package (100-pin PQFP), and a Thin Quad Flat  
Package (TQFP 80-pin). There are several small func-  
tional and physical differences between the 80-pin  
TQFP and the 84-pin PLCC and 100-pin PQFP config-  
urations. Because of the smaller number of pins in the  
TQFP configuration versus the PLCC configuration,  
four pins are not bonded out. Though the die is identical  
in all three package configurations, the removal of  
these four pins does cause some functionality differ-  
ences between the TQFP and the PLCC and PQFP  
configurations. Depending on the application, the  
removal of these pins will or will not have an effect.  
(See section: “Pins Removed for TQFP Package and  
Their Effects.)  
Additional features also enhance over-all system  
design. The individual transmit and receive FIFOs  
optimize system overhead, providing substantial  
latency during packet transmission and reception, and  
minimizing intervention during normal network error  
recovery. The integrated Manchester encoder/decoder  
eliminates the need for an external Serial Interface  
Adapter (SIA) in the node system. If support for an  
external encoding/decoding scheme is desired, the  
General Purpose Serial Interface (GPSI) allows direct  
access to/from the MAC. In addition, the Digital Attach-  
ment Interface (DAI), which is a simplified electrical  
attachment specification, allows implementation of  
MAUs that do not require DC isolation between the  
MAU and DTE. The DAI port can also be used to  
indicate transmit, receive, or collision status by  
connecting LEDs to the port. The MACE device also  
provides an External Address Detection Interface  
(EADI) to allow external hardware address filtering in  
internet working applications.  
With the rise of embedded networking applications op-  
erating in harsh environments where temperatures  
may exceed the normal commercial temperature (0°C  
to +70°C) window, an industrial temperature (-40°C to  
+85°C) version is available in all three packages; 84-  
pin PLCC, 100-pin PQFP and 80-pin TQFP. The indus-  
trial temperature version of the MACE Ethernet control-  
ler is characterized across the industrial temperature  
range (-40°C to +85°C) within the published power  
supply specification (4.75 V to 5.25 V; i.e., 5% VCC).  
Thus, conformance of MACE performance over this  
temperature range is guaranteed by the design and  
characterization monitor.  
2
Am79C940  
CONNECTION DIAGRAMS  
PL 084  
PLCC PACKAGE  
11 10 9  
12  
8
7
6
5
4
3 2 1 84 83 82 81 80 79 78 77 76 75  
SRDCLK  
EAM/R  
SRD  
SF/BD  
RESET  
SLEEP  
DVDD  
INTR  
TC  
DBUS0  
DVSS  
DBUS1  
DBUS2  
DBUS3  
DBUS4  
DVSS  
DBUS5  
DBUS6  
DBUS7  
DBUS8  
DBUS9  
74 XTAL2  
73 AVSS  
72 XTAL1  
71 AVDD  
70 TXD+  
69 TXP+  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
68  
TXD-  
67  
TXP-  
66  
AVDD  
Am79C940JC  
MACE  
65  
RXD+  
64  
RXD-  
63  
DVDD  
62  
TDI  
61  
DVSS  
60  
TCK  
59  
TMS  
58  
TDO  
57  
LNKST  
56  
RXPOL  
55  
CS  
RW/  
54  
35  
39  
43 44  
48  
49  
52 53  
50 51  
33  
37 38  
41 42  
45 46 47  
36  
40  
34  
16235D-2  
Am79C940  
7
CONNECTION DIAGRAMS  
PQR100  
PQFP PACKAGE  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
AVSS  
NC  
NC  
NC  
XTAL2  
AVSS  
XTAL1  
AVDD  
TXD+  
TXP+  
TXD  
NC  
SRDCLK  
EAM/R  
SRD  
SF/BD  
RESET  
SLEEP  
DVDD  
INTR  
TC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
TXP  
AVDD  
RXD+  
RXD  
DBUS0  
DVSS  
MACE  
Am79C940KC  
DBUS1  
DBUS2  
DBUS3  
DBUS4  
DVSS  
DBUS5  
DBUS6  
DBUS7  
DBUS8  
DBUS9  
NC  
DVDD  
TDI  
DVSS  
TCK  
TMS  
TDO  
LNKST  
RXPOL  
CS  
R/W  
NC  
NC  
NC  
NC  
NC  
NC  
DBUS10  
NC  
16235D-3  
8
Am79C940  
CONNECTION DIAGRAMS  
PQT080  
TQFP PACKAGE  
80 79 78 77 76 757473 72 717069 68 67 65 64 63 62 61  
66  
SRDCLK  
EAM/R  
SF/BD  
1
2
3
4
60  
59  
58  
57  
XTAL2  
AVSS  
XTAL1  
AVDD  
RESET  
SLEEP  
DV  
DD  
5
6
56  
55  
TXD+  
TXP+  
INTR  
TC  
7
8
9
10  
11  
12  
13  
54  
53  
52  
51  
50  
49  
48  
TXD-  
TXP-  
AVDD  
DBUS0  
DVSS  
DBUS1  
DBUS2  
DBUS3  
RXD+  
RXD-  
DVDD  
TDI  
MACE  
Am79C940VC  
DVSS  
TCK  
TMS  
TD0  
LNKST  
CS  
DBUS4  
DVSS  
14  
15  
16  
17  
18  
19  
20  
47  
46  
45  
44  
43  
42  
41  
DBUS5  
DBUS6  
DBUS7  
DBUS8  
DBUS9  
R/W  
21 22 23 24 25 262728 29 303132 33 34 36 37 38 39 40  
35  
16235D-4  
Notes: Four pin functions available on the PLCC and PQFP packages are not available with the TQFP package.  
(See full data sheet for description of pins not included with the 80-pin TQFP package. In particular, see section  
“Pin Functions not available with the 80-pin TQFP package.”)  
Am79C940  
9
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed  
by a combination of:  
AM79C940  
V
C
\W  
ALTERNATE PACKAGING OPTION  
\W = Trimmed and Formed in a Tray  
OPTIONAL PROCESSING  
Blank  
=
Standard Processing  
TEMPERATURE RANGE  
C
I
=
=
Commercial (0° to +70°C)  
Industrial (-40°C to +85°C)  
PACKAGE TYPE (per Prod. Nomenclature/16-038)  
J
K
V
=
=
=
84-Pin Plastic Leaded Chip Carrier (PL 084)  
100-Pin Plastic Quad Flat Pack (PQR100)  
80-Pin Thin Quad Flat Package (PQT080)  
SPEED  
Not Applicable  
DEVICE NUMBER/DESCRIPTION (include revision letter)  
Am79C940  
Media Access Controller for Ethernet  
Valid Combinations  
Valid Combinations  
The Valid Combinations table lists configurations planned to  
be supported in volume for this device. Consult the local AMD  
sales office to confirm availability of specific valid  
JC, KC,  
KC\W, VC,  
VC\W  
AM79C940  
combinations and to check on newly released combinations.  
JI, KI,  
AM79C940  
KI\W, VI,  
VI\W  
Note:  
Currently the silicon revision level of the MACE Ethernet controller is revision C0. This is designated by the marking on the package  
as Am79C940Bxx, where “xx” indicate package type and temperature range.  
10  
Am79C940  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . -65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . .  
Under Bias . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Ambient Temperature (TA) . . . . . . . . . . .0°C to +70°C  
Industrial (I) Devices  
Supply Voltage to AVSS  
or DVss (AVDD, DVDD). . . . . . . . . . .-0.3 V to +6.0 V  
Ambient Temperature (TA) . . . . . . . . .–40°C to +85°C  
VCC Supply Voltages  
Stresses above those listed under Absolute Maximum Rat-  
ings may cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to Absolute Max-  
imum Ratings for extended periods may affect device reliabil-  
ity. Programming conditions may differ.  
. . . . . . . . . . . . . . . . . . . . . . (AVDD, DVDD) 5 V 5%  
All inputs within the range: . . AVDD – 0.5 V Vin ≤  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . AVSS + 0.5 V, or  
. . . . . . . . . . . . . . . . . . . . . . . . . DVDD – 0.5 V Vin ≤  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DVSS + 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS (Unless otherwise noted, parametric values are the same  
between Commercial devices and Industrial devices.)  
Parameter  
Symbol  
Parameter Description  
Input LOW Voltage  
Test Conditions  
Min  
Max  
Unit  
V
VIL  
0.8  
VIH  
Input HIGH Voltage  
2.0  
V
XTAL1 Input LOW Voltage  
(External Clock Signal)  
XTAL1 Input HIGH Voltage  
(External Clock Signal)  
Output LOW Voltage  
VSS = 0.0 V  
VILX  
VIHX  
–0.5  
0.8  
V
V
VSS = 0.0 V  
VDD–  
0.8  
VDD+  
0.5  
VOL  
VOH  
IOL = 3.2 mA  
0.45  
V
V
Output HIGH Voltage  
IOH = -0.4 mA (Note 1)  
2.4  
V
DD = 5 V, VIN = 0 V  
(Note 2)  
DD = 5 V, VIN = 0 V  
(Note 2)  
DD = 5 V, VIN = 2.7 V  
IIL1  
IIL2  
Input Leakage Current  
Input Leakage Current  
Input Leakage Current  
–10  
10  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mV  
mV  
V
–200  
200  
V
IIH  
–100  
+500  
+500  
(Note 3)  
Input Current at DI+  
and DI–  
IIAXD  
IIAXC  
IILXN  
IIHXN  
IILXS  
IIHXS  
IOZ  
–1 V < VIN < AVDD + 0.5 V  
–500  
–500  
Input Current at CI+  
and CI–  
–1 V < VIN < AVDD + 0.5 V  
XTAL1 Input LOW Current  
during normal operation  
XTAL1 Input HIGH Current  
during normal operation  
XTAL1 Input LOW Current  
during Sleep  
VIN = 0 V  
–92  
(Note 9)  
SLEEP = HIGH  
VIN = 5.5 V  
92  
(Note 10)  
SLEEP = HIGH  
VIN = 0 V  
<10  
410  
10  
SLEEP = LOW  
VIN = 5.5 V  
XTAL1 Input HIGH Current  
during Sleep  
SLEEP = LOW  
0.4 V < VOUT < VDD  
(Note 4)  
Output Leakage Current  
–10  
630  
–40  
Differential Output Voltage  
|(DO+)–(DO–)|  
VAOD  
VAODOFF  
RL = 78 Ω  
1200  
+40  
Transmit Differential Output  
Idle Voltage  
RL = 78 (Note 5)  
90  
DC CHARACTERISTICS (Continued)  
Parameter  
Symbol  
Parameter Description  
Transmit Differential  
Output Idle Current  
DO Common Mode  
Output Voltage  
Test Conditions  
RL = 78 Ω  
Min  
Max  
Unit  
IAODOFF  
–1  
+1  
mA  
VAOCM  
RL = 78 Ω  
2.5  
–25  
AVDD  
25  
V
DO Differential Output  
Voltage Imbalance  
VOD  
VATH  
VASQ  
I
RL = 78 (Note 6)  
RL = 78 (Note 6)  
RL = 78 (Note 6)  
mV  
mV  
mV  
V
Receive Data Differential  
Input Threshold  
–35  
35  
DI and CI Differential  
Input Threshold Squelch  
DI and CI Differential  
Mode Input Voltage Range  
DI and CI Input Bias  
Voltage  
–160  
–275  
1.5  
VIRDVD  
VICM  
I
IN= 0 mA  
AVDD –3.0  
AVDD –0.8  
–100  
V
VOPD  
(Note 5)  
mV  
DI Undershoot Voltage at Zero  
Differential on Transmit Return  
to Zero (ETD)  
SCLK = 25 MHz  
IDD  
Power Supply Current  
Power Supply Current  
Power Supply Current  
Power Supply Current  
75  
100  
10  
mA  
µA  
XTAL1 = 20 MHz  
SLEEP Asserted, AWAKE = 0  
RWAKE = 1 (Note 7)  
IDDSLEEP  
IDDSLEEP  
IDDSLEEP  
SLEEP Asserted, AWAKE = 1  
RWAKE = 0 (Note 7)  
mA  
mA  
SLEEP Asserted, AWAKE = 0  
RWAKE = 1 (Note 7)  
20  
Twisted Pair Interface  
IIRXD  
Input Current at RXD  
AVSS< VIN < AVDD  
(Note 8)  
–500  
10  
500  
µA  
RXD Differential Input  
Resistance  
RRXD  
KΩ  
RXD , RXD– Open Circuit  
Input Voltage (Bias)  
Differential Mode Input  
Voltage Range (RXD )  
RXD Positive Squelch  
Threshold (Peak)  
VTIVB  
VTIDV  
IIN= 0 mA  
AVDD –3.0  
–3.1  
300  
AVDD –1.5  
+3.1  
V
AVDD= +5V  
V
Sinusoid  
VTSQ+  
VTSQ–  
VTHS+  
VTHS–  
VLTSQ+  
VLTSQ–  
VLTHS+  
520  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
5 MHz f 10 MHz  
Sinusoid  
RXD Negative Squelch  
Threshold (Peak)  
–520  
150  
–300  
293  
5 MHz f 10 MHz  
Sinusoid  
RXD Post-Squelch  
Positive Threshold (Peak)  
RXD Post-Squelch  
5 MHz f 10 MHz  
Sinusoid  
–293  
180  
–150  
312  
Negative Threshold) (Peak)  
RXD Positive Squelch  
Threshold (Peak)  
5 MHz f 10 MHz  
LRT = LOW  
LRT = LOW  
LRT = LOW  
RXD Negative Squelch  
Threshold (Peak)  
–312  
90  
–180  
156  
RXD Post-Squelch Positive  
Threshold (Peak)  
91  
DC CHARACTERISTICS (Continued)  
Parameter  
Symbol  
VLTHS–  
VRXDTH  
VTXH  
Parameter Description  
RXD Post-Squelch  
Test Conditions  
LRT = LOW  
Min  
–156  
Max  
–90  
Unit  
mV  
mV  
V
Negative Threshold (Peak)  
RXD Switching Threshold  
(Note 4)  
–35  
35  
TXD and TXD Output  
HIGH Voltage  
DVSS = 0V  
DVDD –0.6  
DVDD  
TXD and TXD Output  
LOW Voltage  
VTXL  
DVDD = +5V  
DVSS  
–40  
DVSS + 0.6  
V
TXD and TXD Differential  
Output Voltage Imbalance  
VTXI  
VTXOFF  
RTX  
+40  
40  
mV  
mV  
TXD and TXD Idle Output  
Voltage  
DVDD = +5V  
(Note 8)  
TXD Differential Driver Output  
Impedance  
40  
TXD Differential Driver Output  
Impedance  
(Note 8)  
80  
Notes:  
1. VOH does not apply to open-drain output pins.  
2. IIL1 and IIL2 applies to all input only pins except DI , CI , and XTAL1.  
IIL1 = ADD4–0, BE1–0, CS, EAM/R, FDS, RESET, RXDAT, R/W, SCLK.  
IIL2 = TC, TDI, TCK, TMS.  
3. Specified for input only pins with internal pull-ups: TC, TDI, TCK, TMS.  
4. IOZ applies to all three-state output pins and bi-directional pins.  
5. Test not implemented to data sheet specification.  
6. Tested, but to values in excess of limits. Test accuracy not sufficient to allow screening guard bands.  
7. During the activation of SLEEP:  
–The following pins are placed in a high impedance state: SRD, SF/BD, TXDAT, DXCVR, DTV, TDTREQ, RDTREQ, NTR  
and TDO.  
–The following I/O pins are placed in a high impedance mode and have their internal TTL level translators disabled:  
DBUS15–0, EOF, SRDCLK, RXCRS, RXDAT, CLSN, TXEN, STDCLK and TXDAT+.  
–The following input pin has its internal pull-up and TTL level translator disabled: TC.  
–The following input pins have their internal TTL level translators disabled and do not have internal pull-ups: CS, FDS,  
R/W, ADD4-0, SCLK, BE0, BE1 and EAM/R.  
–The following pins are pulled low: XTAL1 (XTAL2 feedback is cut off from XTAL1), TXD+, TXD–, TXP+, TXP–, DO+  
and DO.  
–The following pins have their input voltage bias disabled: DI+, DI, CI+ and CI.  
–AWAKE and RWAKE are reset to zero. IDDSLEEP, with either AWAKE set or RWAKE set, will be much higher and its  
value remains to be determined.  
8. Parameter not tested.  
9. For industrial temperature version, Max value is –150 µA.  
10. For industrial temperature version, Max value is +150 µA.  
92  
AC CHARACTERISTICS (Unless otherwise noted, parametric values are the same  
between Commercial devices and Industrial devices.)  
Parameter  
No.  
Symbol  
Parameter Description  
Test Conditions  
Min (ns)  
Max (ns)  
Clock and Reset Timing  
1
2
3
4
5
6
7
tSCLK  
tSCLKL  
tSCLKH  
tSCLKR  
tSCLKF  
tRST  
SCLK period  
40  
1000  
SCLK LOW pulse width  
SCLK HIGH pulse width  
SCLK rise time  
0.4*tSCLK  
0.4*tSCLK  
0.6*tSCLK  
0.6*tSCLK  
5
5
SCLK fall time  
RESET pulse width  
15*tSCLK  
99  
tBT  
Network Bit Time (BT)=2*tX1 or tSTDC  
101  
Internal MENDEC Clock Timing  
9
tX1  
XTAL1 period  
49.995  
20  
50.005  
11  
12  
13  
14  
tX1H  
tX1L  
tX1R  
tX1F  
XTAL1 HIGH pulse width  
XTAL1 LOW pulse width  
XTAL1 rise time  
20  
5
5
XTAL1 fall time  
BIU TIMING (Note 1)  
31  
32  
tADDS  
tADDH  
Address valid setup to SCLK↓  
Address valid hold after SCLK↓  
CS or FDS and TC, BE1–0,  
9
2
1. 33  
tSLVS  
tSLVH  
9
2
R/W setup to SCLK↓  
CS or FDS and TC, BE1–0,  
34  
R/W hold after SCLK↓  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
tDATD  
tDATH  
tDTVD  
tDTVH  
tEOFD  
tEOFH  
tCSIS  
Data out valid delay from SCLK↓  
Data out valid hold from SCLK↓  
DTV valid delay from SCLK↓  
DTV valid hold after SCLK↓  
CL = 100 pF (Note 2)  
CL = 100 pF (Note 2)  
CL = 100 pF (Note 2)  
32  
32  
32  
6
6
EOF valid delay from SCLK↓  
EOF output valid hold after SCLK↓  
CS inactive prior to SCLK↓  
6
9
9
2
tEOFS  
tEOFH  
tRDTD  
tRDTH  
tTDTD  
tTDTH  
tDATS  
tDATIH  
EOF input valid setup to SCLK↓  
EOF input valid hold after SCLK↓  
RDTREQ valid delay from SCLK↓  
RDTREQ input valid hold after SCLK↓  
TDTREQ valid delay from SCLK↓  
TDTREQ input valid hold after SCLK↓  
Data in valid setup to SCLK↓  
Data in valid setup after SCLK↓  
CL = 100 pF (Note 2)  
CL = 100 pF (Note 2)  
32  
32  
6
6
9
2
Data output enable delay from SCLK(Note  
50  
tDATE  
tDATD  
0
3)  
Data output disable delay from SCLK(Note  
3, 4)  
51  
25  
Notes:  
1. The following BIU timing assumes that EDSEL = 1. Therefore, these parameters are specified with respect to the falling edge  
of SCLK (SCLK). If EDSEL = 0, the same parameters apply but should be referenced to the rising edge of SCLK ).  
2. Tested with CL set at 100 pF and derated to support the Indicated distributed capacitive Load. See the BIU output valid delay  
vs. Load Chart.  
3. Guaranteed by design–not tested.  
4. tDATD is defined as the time required for outputs to turn high impedence and is not referred to as output voltage lead.  
93  
AC CHARACTERISTICS (continued)  
Parameter  
No.  
Symbol  
Parameter Description  
Test Conditions  
Min (ns)  
Max (ns)  
AUI Timing  
53  
54  
55  
56  
57  
58  
tDOTD  
tDOTR  
XTAL1 (externally driven) to DO ουτπυτ  
DO rise time (10% to 90%)  
DO fall time (10% to 90%)  
DO rise and fall mismatch  
DO End of Transmit Delimiter  
DI pulse width to reject  
100  
5.0  
5.0  
1
2.5  
2.5  
tDOTF  
tDOETM  
tDOETD  
tPWRDI  
200  
375  
15  
|input| > |VASQ  
|
DI pulse width to turn on internal DI carrier  
sense  
59  
60  
61  
tPWODI  
tPWMDI  
tPWKDI  
|input| > |VASQ  
|input| > |VASQ  
|
45  
45  
DI pulse width to maintain internal DI carrier  
sense on  
|
|
136  
DI pulse width to turn internal DI carrier  
sense off  
|input| > |VASQ  
|input| > |VASQ  
200  
62  
63  
tPWRCI  
tPWOCI  
CI pulse width to reject  
|
|
10  
90  
CI pulse width to turn on internal SQE sense |input| > |VASQ  
26  
26  
CI pulse width to maintain internal SQE  
|input| > |VASQ  
64  
tPWMCI  
|
sense on  
65  
66  
67  
79  
80  
tPWKCI  
tSQED  
tSQEL  
tCLSHI  
tTXH  
CI pulse width to turn internal SQE sense off |input| > |VASQ  
|
|
|
160  
CI SQE Test delay from O inactive  
CI SQE Test length  
|input| > |VASQ  
|input| > |VASQ  
CLSN high time  
tSTDC + 30  
32*tSTDC  
TXEN or DO hold time from CLSN↑  
|input| > |VASQ  
|
96*tSTDC  
DAI Port Timing  
70  
72  
80  
tTXEND  
tTXDD  
tTXH  
STDCLKdelay to TXEN↓  
CL = 50 pF  
CL = 50 pF  
70  
70  
STDCLKdelay to TXDAT change  
TXEN or TXDAT hold time from CLSN↑  
32*tSTDC  
96*tSTDC  
Mismatch in STDCLK to TXENand  
TXDAT change  
95  
tDOTF  
15  
96  
97  
tTXDTR  
tTXDTF  
TXDAT rise time  
See Note 1  
See Note 1  
See Note 1  
5
TXDAT fall time  
5
98  
tTXDTM  
TXDAT rise and fall mismatch  
TXEN End of Transmit Delimiter  
First RXDATdelay to RXCRS↑  
Last RXDAT delay to RXCRS↓  
RXCRSdelay to CLSN(TXEN = 0)  
1
99  
tTXENETD  
tFRXDD  
250  
350  
100  
120  
100  
100  
101  
102  
tLRXDD  
tCRSCLSD  
94  
AC CHARACTERISTICS (continued)  
Parameter  
No.  
Symbol  
Parameter Description  
Test Conditions  
Min (ns)  
Max (ns)  
GPSI Clock Timing  
17  
tSTDC  
STDCLK period  
99  
45  
45  
101  
18  
tSTDCL  
tSTDCH  
tSTDCR  
tSTDCF  
tSRDC  
STDCLK low pulse width  
STDCLK high pulse width  
STDCLK rise time  
See Note 1  
19  
20  
See Note 1  
See Note 1  
5
5
21  
STDCLK fall time  
22  
SRDCLK period  
85  
38  
38  
115  
23  
tSRDCH  
tSRDCL  
tSRDCR  
tSRDCF  
SRDCLK HIGH pulse width  
SRDCLK LOW pulse width  
SRDCLK rise time  
24  
25  
See Note 1  
See Note 1  
5
5
26  
SRDCLK fall time  
GPSI Timing  
70  
71  
72  
73  
74  
75  
tTXEND  
tTXENH  
tTXDD  
tTXDH  
tRXDR  
tRXDF  
STDCLKdelay to TXEN↑  
(CL = 50 pF)  
(CL = 50 pF)  
70  
70  
TXEN hold time from STDCLK↑  
5
5
STDCLKdelay to TXDAT+ change (CL = 50 pF)  
TXDAT+ hold time from STDCLK(CL = 50 pF)  
RXDAT rise time  
RXDAT fall time  
See Note 1  
See Note 1  
8
8
RXDAT hold time (SRDCLKto  
76  
77  
tRXDH  
tRXDS  
25  
0
RXDAT change)  
RXDAT setup time (RXDAT stable  
to SRDCLK)  
78  
79  
tCRSL  
tCLSHI  
RXCRS low time  
CLSN high time  
tSTDC + 20  
tSTDC + 30  
TXEN or TXDAT hold time from  
CLSN↑  
80  
tTXH  
32*tSTDC  
0
96*tSTDC  
81  
tCRSH  
RXCRS hold time from SRDCLK↑  
EADI Feature Timing  
85  
86  
tDSFBDR  
tDSFBDF  
SRDCLKdelay to SF/BD↑  
SRDCLKdelay to SF/BD↑  
20  
20  
EAM/R invalid setup prior to  
SRDCLKafter SFD  
87  
tEAMRIS  
–150  
0
EAM setup to SRDCLKat bit 6 of  
Source Address byte 1 (match  
packet)  
88  
tEAMS  
89  
90  
t
EAMRL  
EAM/R low time  
200  
100  
SF/BD high hold from last  
SRDCLK↓  
tSFBDHIH  
EAR setup SRDCLKat bit 6 of  
message byte 64  
91  
tEARS  
0
(reject normal packet)  
Note:  
1. Not tested but data available upon request.  
95  
AC CHARACTERISTICS (continued)  
Parameter  
No.  
Parameter Description  
Test Conditions  
Min  
Max  
Symbol  
IEEE 1149.1 Timing  
109  
tTCLK  
TCK Period, 50% duty cycle (+5%)  
100  
110  
111  
112  
113  
114  
115  
tsu1  
tsu2  
thd1  
thd2  
td1  
TMS setup to TCK↑  
8
5
TDI setup to TCK↑  
TMS hold time from TCK↑  
TDI hold time from TCK↑  
TCKdelay to TDO  
5
10  
30  
35  
td2  
TCKdelay to SYSTEM OUTPUT  
10BASE–T Transmit Timing  
Min  
Max  
350  
5.5  
5.5  
1
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
tTETD  
tTR  
Transmit Start of Idle  
250  
Transmitter Rise Time  
(10% to 90%)  
(90% to 10%)  
tTF  
Transmitter Fall Time  
tTM  
Transmitter Rise and Fall Time Mismatch  
XMT# Asserted Delay  
tXMTON  
tXMTOFF  
tPERLP  
tPWLP  
tPWPLP  
tJA  
100  
TBD  
24  
XMT# De-asserted Delay  
Idle Signal Period  
TBD  
8
Idle Link Pulse Width  
(Note 1)  
(Note 1)  
75  
120  
55  
Predistortion Idle Link Pulse Width  
Transmit Jabber Activation Time  
Transmit Jabber Reset Time  
45  
20  
150  
750  
tJR  
250  
1.0  
tJREC  
Transmit Jabber RecoveryTime(Minimum  
TimeGapBetweenTransmittedPacketsto  
Prevent Jabber Activation)  
10BASE–T Receive Timing  
RXD Pulse Width Not to Turn Off Internal VIN > VTHS  
140  
141  
tPWNRD  
136  
200  
Carrier Sense  
(min)  
RXD Pulse Width to Turn Off VIN> VTHS  
(min)  
tPWROFF  
142  
143  
144  
tRETD  
tRCVON  
tRCVOFF  
Receive Start of Idle  
200  
tRON – 50  
TBD  
RCV# Asserted Delay  
RCV# De-asserted Delay  
tRON – 100  
TBD  
Note:  
1. Not tested but data available upon request.  
96  

相关型号:

Am79C940BJC

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

Am79C940BJI

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

Am79C940BKC

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

AM79C940BKC-G

LAN Controller, CMOS
ROCHESTER

Am79C940BKCW

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

Am79C940BKI

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

AM79C940BKI-G

LAN Controller, CMOS
ROCHESTER

Am79C940BKIW

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

Am79C940BKW

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

Am79C940BVC

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER

AM79C940BVC-G

LAN Controller, CMOS
ROCHESTER

Am79C940BVCW

Media Access Controller for Ethernet (MACE) 84-pin PLCC and 100-pin PQFP Packages
ROCHESTER