CY7C0830AV-133BBI [ROCHESTER]

64KX18 DUAL-PORT SRAM, 4ns, PBGA144, 13 X 13 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-144;
CY7C0830AV-133BBI
型号: CY7C0830AV-133BBI
厂家: Rochester Electronics    Rochester Electronics
描述:

64KX18 DUAL-PORT SRAM, 4ns, PBGA144, 13 X 13 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-144

静态存储器 内存集成电路
文件: 总29页 (文件大小:1383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
FLEx18™ 3.3V 64K/128K x 36 and  
128K/256K x 18 Synchronous Dual-Port RAM  
Features  
Functional Description  
True Dual-Ported Memory Cells that Allow Simultaneous  
Access of the Same Memory Location  
The FLEx18™ family includes 512 Kbit, 1 Mbit, 2 Mbit, 4 Mbit,  
and 9 Mbit pipelined, synchronous, true dual port static RAMs  
that are high speed, low power 3.3V CMOS. Two ports are  
provided, permitting independent, simultaneous access to any  
location in memory. The result of writing to the same location by  
more than one port at the same time is undefined. Registers on  
control, address, and data lines allow for minimal setup and hold  
time.  
Synchronous Pipelined Operation  
Family of 512 Kbit, 1 Mbit, 2 Mbit, 4 Mbit, and 9 Mbit Devices  
Pipelined Output Mode Allows Fast Operation  
0.18 micron CMOS for Optimum Speed and Power  
High Speed Clock to Data Access  
During a Read operation, data is registered for decreased cycle  
time. Each port contains a burst counter on the input address  
register. After externally loading the counter with the initial  
address, the counter increments the address internally (more  
details to follow). The internal Write pulse width is independent  
of the duration of the R/W input signal. The internal Write pulse  
is self-timed to allow the shortest possible cycle times.  
3.3V Low Power  
Active as Low as 225 mA (typ)  
Standby as Low as 55 mA (typ)  
Mailbox Function for Message Passing  
Global Master Reset  
A HIGH on CE0 or LOW on CE1 for one clock cycle powers down  
the internal circuitry to reduce the static power consumption. One  
cycle with chip enables asserted is required to reactivate the  
outputs.  
Separate Byte Enables on Both Ports  
Commercial and Industrial Temperature Ranges  
IEEE 1149.1 Compatible JTAG Boundary Scan  
144-Ball FBGA (13 mm × 13 mm) (1.0 mm pitch)  
120 TQFP (14 mm x 14 mm x 1.4 mm)  
Pb-Free Packages Available  
Additional features include: readback of burst-counter internal  
address value on address lines, counter-mask registers to  
control the counter wrap around, counter interrupt (CNTINT)  
flags, readback of mask register value on address lines,  
retransmit functionality, interrupt flags for message passing,  
JTAG for boundary scan, and asynchronous Master Reset  
(MRST).  
Counter Wrap Around Control  
The CY7C0833AV device in this family has limited features. See  
Address Counter and Mask Register Operations [16] on page 6  
for details.  
Internal Mask Register Controls Counter Wrap Around  
Counter-Interrupt Flags to Indicate Wrap Around  
Memory Block Retransmit Operation  
Counter Readback on Address Lines  
Mask Register Readback on Address Lines  
Dual Chip Enables on Both Ports for Easy Depth Expansion  
Table 1. Product Selection Guide  
512 Kbit  
1 Mbit  
2 Mbit  
4 Mbit  
9 Mbit  
Density  
(32K x 18)  
CY7C0837AV  
167  
(64K x 18)  
(128K x 18)  
(256K x 18)  
(512K x 18)  
Part Number  
CY7C0830AV  
CY7C0831AV  
CY7C0832AV CY7C0832BV [1] CY7C0833AV  
Maximum Speed (MHz)  
167  
4.0  
167  
4.0  
167  
4.0  
133  
4.4  
133  
4.7  
Maximum Access Time -  
Clock to Data (ns)  
4.0  
Typical Operating  
Current (mA)  
225  
225  
225  
225  
225  
270  
Package  
144 FBGA  
120 TQFP  
144 FBGA  
120 TQFP  
144 FBGA  
120 TQFP  
144 FBGA  
120 TQFP  
144 FBGA  
Note  
1. CY7C0832AV and CY7C0832BV are functionally identical.  
Cypress Semiconductor Corporation  
Document #: 38-06059 Rev. *S  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised March 03, 2009  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Logic Block Diagram [2]  
OE  
R/W  
OE  
R/W  
L
R
R
L
B0  
B1  
B0  
B1  
L
L
R
R
CE  
CE  
CE  
CE  
0L  
1L  
0R  
1R  
I/O  
Control  
I/O  
Control  
9
9
9
9
DQ9L–DQ17L  
DQ0L–DQ8L  
DQ9R–DQ17R  
DQ0R–DQ8R  
Addr.  
Read  
Back  
Addr.  
Read  
Back  
True  
Dual-Ported  
RAM Array  
19  
19  
A0L–A18L  
A0R–A18R  
Mask Register  
Mask Register  
CNT/MSKR  
CNT/MSKL  
ADS  
CNTEN  
ADSL  
Counter/  
Address  
Register  
Counter/  
Address  
Register  
Address  
Address  
Decode  
CNTENL  
Decode  
CNTRSTR  
CNTRSTL  
CLKL  
Mirror Reg  
Mirror Reg  
CLKR  
CNTINTR  
CNTINTL  
TMS  
TDI  
TCK  
Reset  
Logic  
Interrupt  
Interrupt  
JTAG  
TDO  
MRST  
INTL  
INTR  
Logic  
Logic  
Note  
2. CY7C0837AV has 15 address bits, CY7C0830AV has 16 address bits, CY7C0831AV has 17 address bits, CY7C0832AV/CY7C0832BV has 18 address bits and  
CY7C0833AV has 19 address bits.  
Document #: 38-06059 Rev. *S  
Page 2 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Pin Configurations  
Figure 1. 144-Ball BGA (Top View)  
CY7C0837AV / CY7C0830AV / CY7C0831AV / CY7C0832AV / CY7C0833AV  
1
2
3
4
5
6
7
DQ9  
NC  
8
9
10  
11  
12  
A
B
C
D
E
F
DQ17  
DQ16  
DQ14  
DQ12  
DQ13  
DQ10  
DQ9  
DQ10  
DQ12  
DQ13  
INT  
DQ14  
DQ16  
DQ17  
R
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
A0  
L
A1  
L
DQ15  
CE1  
DQ11  
MRST  
DQ11  
DQ15  
CE1  
A1  
R
A0  
R
L
R
ADS  
L
[8]  
ADS  
[8]  
CNTINTL  
[9]  
CNTINTR  
[9]  
L
R
R
A2  
L
A3  
L
INT  
L
A3  
R
A2  
R
R
[7]  
[7]  
CE0  
[8]  
CE0  
[8]  
L
R
A4  
L
A5  
L
NC  
NC  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VDD  
TMS  
VDD  
VDD  
VSS  
VSS  
VDD  
VDD  
NC  
A5  
R
A4  
R
A6  
L
A7  
L
B1  
VSS  
VSS  
VSS  
VSS  
VDD  
TCK  
NC  
NC  
B1  
A7  
R
A6  
R
L
R
A8  
L
A9  
L
C
NC  
C
A9  
R
A8  
R
L
R
A10  
A11  
L
B0  
NC  
NC  
B0  
A11  
A10  
R
G
H
J
L
L
L
R
R
A12  
A14  
A13  
OE  
NC  
NC  
OE  
A13  
A12  
A14  
L
L
L
R
R
R
R
A15  
[3]  
A15  
[3]  
RW  
NC  
NC  
RW  
R
L
L
L
R
R
A16  
[4]  
A17  
[5]  
A17  
[5]  
A16  
[4]  
CNT/MSKL  
[7]  
CNTRSTL  
[7]  
CNTRSTR  
[7]  
CNT/MSKR  
[7]  
L
R
TDO  
DQ4  
TDI  
DQ4  
K
L
A18  
[6]  
A18  
[6]  
CNTENL  
[8]  
CNTENR  
[8]  
L
R
NC  
DQ6  
L
DQ2  
L
DQ2  
R
DQ6  
R
NC  
L
R
M
DQ8  
DQ7  
DQ5  
L
DQ3  
DQ1  
L
DQ0  
L
DQ0  
R
DQ1  
R
DQ3  
DQ5  
R
DQ7  
DQ8  
R
L
L
L
R
R
Notes  
3. Leave this ball unconnected for CY7C0837AV.  
4. Leave this ball unconnected for CY7C0837AV and CY7C0830AV.  
5. Leave this ball unconnected for CY7C0837AV, CY7C0830AV and CY7C0831AV.  
6. Leave this ball unconnected for CY7C0837AV, CY7C0830AV, CY7C0831AV, and CY7C0832AV.  
7. These balls are not applicable for CY7C0833AV device. They must be tied to VDD.  
8. These balls are not applicable for CY7C0833AV device. They must be tied to VSS.  
9. These balls are not applicable for CY7C0833AV device. They must not be connected.  
Document #: 38-06059 Rev. *S  
Page 3 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Pin Configurations  
Figure 2. 120-Pin Thin Quad Flat Pack (TQFP) (Top View)  
CY7C0830AV / CY7C0831AV / CY7C0832AV / CY7C0832BV  
A
90  
89  
2L  
1
2
A
A
V
2R  
3R  
SS  
A
3L  
V
V
SS  
88  
87  
3
4
DD  
V
A
A
A
A
DD  
4R  
A
86  
85  
84  
83  
4L  
5L  
6L  
5
6
7
8
A
A
5R  
6R  
7R  
A
CE  
B
7L  
1L  
0L  
1L  
82  
81  
9
10  
CE  
1R  
B
B
0R  
1R  
B
80  
79  
78  
11  
12  
13  
OE  
L
OE  
R
CE  
V
0L  
CE  
0R  
77  
76  
DD  
14  
15  
V
V
R/W  
R
DD  
SS  
V
SS  
R/W  
75  
74  
73  
16  
17  
18  
L
L
CLK  
V
CLK  
MRST  
ADS  
R
SS  
ADS  
L
L
L
L
72  
71  
19  
20  
R
CNTEN  
CNTEN  
R
CNTRST  
70  
69  
68  
67  
21  
22  
23  
24  
CNTRST  
CNT/MSK  
R
CNT/MSK  
A
R
8L  
9L  
A
A
8R  
A
9R  
A
A
A
10L  
11L  
12L  
66  
65  
25  
26  
A
A
A
V
V
A
10R  
11R  
12R  
SS  
64  
63  
62  
61  
27  
28  
29  
30  
V
SS  
V
DD  
DD  
A
13L  
13R  
Notes  
10. Leave this pin unconnected for CY7C0830AV.  
11. Leave this pin unconnected for CY7C0830AV and CY7C0831AV.  
Document #: 38-06059 Rev. *S  
Page 4 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Pin Definitions  
Left Port  
Right Port  
Description  
[2]  
[2]  
A0L–A18L  
A0R–A18R  
Address Inputs.  
[8]  
[8]  
ADSL  
ADSR  
Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW for  
the part using the externally supplied address on the address pins and for loading this address  
into the burst address counter.  
[8]  
[8]  
[7]  
CE0L  
CE0R  
CE1R  
CLKR  
Active LOW Chip Enable Input.  
Active HIGH Chip Enable Input.  
[7]  
CE1L  
CLKL  
Clock Signal. Maximum clock input rate is fMAX.  
[8]  
[8]  
CNTENL  
CNTENR  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. The increment is disabled if ADS or CNTRST are  
asserted LOW.  
[7]  
[7]  
CNTRSTL  
CNTRSTR  
Counter Reset Input. Asserting this signal LOW resets to zero the unmasked portion of the  
burst address counter of its respective port. CNTRST is not disabled by asserting ADS or  
CNTEN.  
[7]  
[7]  
CNT/MSKL  
CNT/MSKR  
Address Counter Mask Register Enable Input. Asserting this signal LOW enables access to  
the mask register. When tied HIGH, the mask register is not accessible and the address counter  
operations are enabled based on the status of the counter control signals.  
DQ0L–DQ17L  
OEL  
DQ0R–DQ17R  
OER  
Data Bus Input/Output.  
Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ data  
pins during Read operations.  
INTL  
INTR  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The  
upper two memory locations are used for message passing. INTL is asserted LOW when the  
right port writes to the mailbox location of the left port, and vice versa. An interrupt to a port is  
deasserted HIGH when it reads the contents of its mailbox.  
[9]  
[9]  
CNTINTL  
CNTINTR  
Counter Interrupt Output. This pin is asserted LOW when the unmasked portion of the counter  
is incremented to all ‘1s.’  
R/WL  
R/WR  
Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from the dual port  
memory array.  
B0L–B1L  
B0R–B1R  
Byte Select Inputs. Asserting these signals enables Read and Write operations to the corre-  
sponding bytes of the memory array.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting  
MRST LOW performs all of the reset functions as described in the text. A MRST operation is  
required at power up.  
TMS  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State  
machine transitions occur on the rising edge of TCK.  
TDI  
TCK  
TDO  
JTAG Test Data Input. Data on the TDI input is shifted serially into selected registers.  
JTAG Test Clock Input.  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally  
three-stated except when captured data is shifted out of the JTAG TAP.  
VSS  
VDD  
Ground Inputs.  
Power Inputs.  
Byte Select Operation  
Control Pin  
Effect  
B0  
B1  
DQ0–8 Byte Control  
DQ9–17 Byte Control  
Document #: 38-06059 Rev. *S  
Page 5 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
The counter register contains the address used to access the  
RAM array. It is changed only by the Counter Load, Increment,  
Counter Reset, and by master reset (MRST) operations.  
Master Reset  
The FLEx18 family devices undergo a complete reset by taking  
its MRST input LOW. The MRST input can switch asynchro-  
nously to the clocks. An MRST initializes the internal burst  
counters to zero, and the counter mask registers to all ones  
(completely unmasked). MRST also forces the Mailbox Interrupt  
(INT) flags and the Counter Interrupt (CNTINT) flags HIGH.  
MRST must be performed on the FLEx18 family devices after  
power up.  
The mask register value affects the Increment and Counter  
Reset operations by preventing the corresponding bits of the  
counter register from changing. It also affects the counter  
interrupt output (CNTINT). The mask register is changed only by  
the Mask Load and Mask Reset operations and by the MRST.  
The mask register defines the counting range of the counter  
register. It divides the counter register into two regions: zero or  
more ‘0s’ in the most significant bits define the masked region,  
one or more ‘1s’ in the least significant bits define the unmasked  
region. Bit 0 may also be ‘0,’ masking the least significant counter  
bit and causing the counter to increment by two instead of one.  
Mailbox Interrupts  
The upper two memory locations may be used for message  
passing and permit communications between ports. Table 2  
shows the interrupt operation for both ports of CY7C0833AV.  
The highest memory location, 7FFFF is the mailbox for the right  
port and 7FFFE is the mailbox for the left port. Table 2 shows that  
to set the INTR flag, a Write operation by the left port to address  
7FFFF asserts INTR LOW. At least one byte has to be active for  
a Write to generate an interrupt. A valid Read of the 7FFFF  
location by the right port resets INTR HIGH. At least one byte  
must be active for a Read to reset the interrupt. When one port  
Writes to the other port’s mailbox, the INT of the port that the  
mailbox belongs to is asserted LOW. The INT is reset when the  
owner (port) of the mailbox Reads the contents of the mailbox.  
The interrupt flag is set in a flow-through mode (that is, it follows  
the clock edge of the writing port). Also, the flag is reset in a  
flow-through mode (that is, it follows the clock edge of the  
reading port).  
The mirror register is used to reload the counter register on  
increment operations (see Retransmit on page 8). It always  
contains the value last loaded into the counter register, and is  
changed only by the Counter Load, and by the MRST instruc-  
tions. Table 3 on page 7 summarizes the operation of these  
registers and the required input control signals. The MRST  
control signal is asynchronous. All the other control signals in  
Table 3 on page 7 (CNT/MSK, CNTRST, ADS, CNTEN) are  
synchronized to the port’s CLK. All these counter and mask  
operations are independent of the port’s chip enable inputs (CE0  
and CE1).  
Counter enable (CNTEN) inputs are provided to stall the  
operation of the address input and use the internal address  
generated by the internal counter for fast, interleaved memory  
applications. A port’s burst counter is loaded when the port’s  
address strobe (ADS) and CNTEN signals are LOW. When the  
port’s CNTEN is asserted and the ADS is deasserted, the  
address counter increments on each LOW to HIGH transition of  
that port’s clock signal. This reads and writes one word from and  
to each successive address location until CNTEN s deasserted.  
The counter can address the entire memory array, and loops  
back to the start. Counter reset (CNTRST) is used to reset the  
unmasked portion of the burst counter to I/0s. A counter-mask  
register is used to control the counter wrap.  
Each port can read the other port’s mailbox without resetting the  
interrupt. And each port can write to its own mailbox without  
setting the interrupt. If an application does not require message  
passing, INT pins should be left open.  
Address Counter and Mask Register Operations [16]  
This section describes the features only apply to 512 Kbit,1 Mbit,  
2 Mbit, and 4 Mbit devices. It does not apply to 9 Mbit device.  
Each port of these devices has a programmable burst address  
counter. The burst counter contains three registers: a counter  
register, a mask register, and a mirror register.  
Table 2. Interrupt Operation Example [2, 12, 13, 14, 15, 17]  
FUNCTION  
LEFT PORT  
RIGHT PORT  
R/WL  
CEL  
L
A0L–A18L  
3FFFF  
X
INTL  
X
R/WR  
CER  
X
A0R–A18R  
INTR  
Set Right INTR Flag  
L
X
X
H
L
X
H
L
X
3FFFF  
3FFFE  
X
L
H
X
X
L
Reset Right INTR Flag  
Set Left INTL Flag  
X
X
L
X
X
L
L
Reset Left INTL Flag  
Set Right INTR Flag  
L
3FFFE  
3FFFF  
H
X
X
X
L
X
X
X
Notes  
12. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK and  
0
1
can be deasserted after that. Data is out after the following CLK edge and is three-stated after the next CLK edge.  
13. OE is “Don’t Care” for mailbox operation.  
14. At least one of BE0, BE1 must be LOW.  
15. A18x is a NC for CY7C0832AV/CY7C0832BV, therefore the Interrupt Addresses are 3FFFF and 3FFFE. A18x and A17x are NC for CY7C0831AV, therefore the Interrupt  
addresses are 1FFFF and 1FFFE; A18x, A17x and A16x are NC for CY7C0830AV, therefore the Interrupt Addresses are FFFF and FFFE;A18x, A17x, A16x and A15x  
are NC for CY7C0837AV, therefore the Interrupt Addresses are 7FFF and 7FFE.  
16. This section describes the CY7C0832AV/CY7C0832BV, CY7C0831AV, CY7C0830AV and CY7C0837AV having 18, 17, 16 and 15 address bits.  
17. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
Document #: 38-06059 Rev. *S  
Page 6 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
address counter is then loaded with an initial value of 8h. The  
base address bits (in this case, the 6th address through the 16th  
address) are loaded with an address value but do not increment  
after the counter is configured for increment operation. The  
counter address starts at address 8h. The counter increments its  
internal address value until it reaches the mask register value of  
3Fh. The counter wraps around the memory block to location 8h  
at the next count. CNTINT is issued when the counter reaches  
its maximum value  
Counter Reset Operation  
All unmasked bits of the counter are reset to ‘0.’ All masked bits  
remain unchanged. The mirror register is loaded with the value  
of the burst counter. A Mask Reset followed by a Counter Reset  
resets the counter and mirror registers to 00000, as does master  
reset (MRST).  
Counter Load Operation  
The address counter and mirror registers are both loaded with  
the address value presented at the address lines.  
Counter Hold Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are needed,  
or when address is available a few cycles ahead of data in a  
shared bus interface.  
Counter Increment Operation  
When the address counter register is initially loaded with an  
external address, the counter can internally increment the  
address value, potentially addressing the entire memory array.  
Only the unmasked bits of the counter register are incremented.  
The corresponding bit in the mask register must be a ‘1’ for a  
counter bit to change. The counter register is incremented by 1  
if the least significant bit is unmasked, and by 2 if it is masked. If  
all unmasked bits are ‘1,’ the next increment wraps the counter  
back to the initially loaded value. If an Increment results in all the  
unmasked bits of the counter being ‘1s,’ a counter interrupt flag  
(CNTINT) is asserted. The next Increment returns the counter  
register to its initial value, which was stored in the mirror register.  
The counter address can instead be forced to loop to 00000 by  
externally connecting CNTINT to CNTRST.[19] An increment that  
results in one or more of the unmasked bits of the counter being  
‘0’ deasserts the counter interrupt flag. The example in Figure 4  
on page 10 shows the counter mask register loaded with a mask  
value of 0003Fh unmasking the first 6 bits with bit ‘0’ as the LSB  
and bit ‘16’ as the MSB. The maximum value the mask register  
can be loaded with is 3FFFFh. Setting the mask register to this  
value allows the counter to access the entire memory space. The  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW when an  
increment operation results in the unmasked portion of the  
counter register being all ‘1s.’ It is deasserted HIGH when an  
Increment operation results in any other value. It is also  
de-asserted by Counter Reset, Counter Load, Mask Reset and  
Mask Load operations, and by MRST.  
Counter Readback Operation  
The internal value of the counter register can be read out on the  
address lines. Readback is pipelined; the address is valid tCA2  
after the next rising edge of the port’s clock. If address readback  
occurs while the port is enabled (CE0 LOW and CE1 HIGH), the  
data lines (DQs) are three-stated. Figure 3 on page 9 shows a  
block diagram of the operation.  
Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port) [17, 18]  
CLK MRST CNT/MSK  
CNTRST  
ADS  
CNTEN  
Operation  
Description  
X
L
X
X
X
X
Master Reset  
Reset address counter to all 0s and mask  
register to all 1s.  
H
H
H
H
L
X
L
X
L
Counter Reset  
Counter Load  
Reset counter unmasked portion to all 0s.  
H
Load counter with external address value  
presented on address lines.  
H
H
H
L
H
Counter Readback Read out counter internal value on address  
lines.  
H
H
H
H
H
H
H
H
L
Counter Increment Internally increment address counter value.  
H
Counter Hold  
Constantly hold the address value for multiple  
clock cycles.  
H
H
L
L
L
X
L
X
L
Mask Reset  
Mask Load  
Reset mask register to all 1s.  
H
Load mask register with value presented on  
the address lines.  
H
H
L
L
H
H
L
H
X
Mask Readback  
Reserved  
Read out mask register value on address  
lines.  
H
Operation undefined  
Notes  
18. Counter operation and mask register operation is independent of chip enables.  
19. CNTINT and CNTRST specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.  
Document #: 38-06059 Rev. *S  
Page 7 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Retransmit  
Mask Readback Operation  
Retransmit is a feature that allows the Read of a block of memory  
more than once without the need to reload the initial address.  
This eliminates the need for external logic to store and route  
data. It also reduces the complexity of the system design and  
saves board space. An internal mirror register is used to store  
the initially loaded address counter value. When the counter  
unmasked portion reaches its maximum value set by the mask  
register, it wraps back to the initial value stored in this mirror  
register. If the counter is continuously configured in increment  
mode, it increments again to its maximum value and wraps back  
to the value initially stored into the mirror register. Thus, the  
repeated access of the same data is allowed without the need  
for any external logic.  
The internal value of the mask register can be read out on the  
address lines. Readback is pipelined; the address is valid tCM2  
after the next rising edge of the port’s clock. If mask readback  
occurs while the port is enabled (CE0 LOW and CE1 HIGH), the  
data lines (DQs) is three-stated. Figure 3 on page 9 shows a  
block diagram of the operation.  
Counting by Two  
When the least significant bit of the mask register is ‘0,’ the  
counter increments by two. This may be used to connect the x18  
devices as a 36-bit single port SRAM in which the counter of one  
port counts even addresses and the counter of the other port  
counts odd addresses. This even-odd address scheme stores  
one half of the 36-bit data in even memory locations, and the  
other half in odd memory locations.  
Mask Reset Operation  
The mask register is reset to all ‘1s,’ which unmasks every bit of  
the counter. Master reset (MRST) also resets the mask register  
to all ‘1s’.  
Mask Load Operation  
The mask register is loaded with the address value presented at  
the address lines. Not all values permit correct increment opera-  
tions. Permitted values are of the form 2n – 1 or 2n – 2. From the  
most significant bit to the least significant bit, permitted values  
have zero or more ‘0s,’ one or more ‘1s,’ or one ‘0.’ Thus 3FFFF,  
003FE, and 00001 are permitted values, but 3F0FF, 003FC, and  
00000 are not.  
Document #: 38-06059 Rev. *S  
Page 8 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Figure 3. Counter, Mask, and Mirror Logic Block Diagram [1]  
CNT/MSK  
CNTEN  
ADS  
Decode  
Logic  
CNTRST  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
CLK  
Load/Increment  
17  
17  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
Register  
17  
Wrap  
17  
17  
17  
Bit 0  
From  
Mask  
From  
Counter  
+1  
+2  
Wrap  
Detect  
Wrap  
To  
1
0
17  
1
0
Counter  
Document #: 38-06059 Rev. *S  
Page 9 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Figure 4. Programmable Counter-Mask Register Operation [2, 20]  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Unmasked Address  
Mask  
Register  
bit-0  
Masked Address  
Load  
Address  
Counter = 8  
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1
1
1
216 215  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
H
X
X
X
0
0
1
0
0
0
216 215  
26 25 24 23 22 21 20  
IEEE 1149.1 Serial Boundary Scan (JTAG) [21]  
Boundary Scan Hierarchy for 9-Mbit Device  
Internally, the CY7C0833AV have two DIEs. Each DIE contain all  
the circuitry required to support boundary scan testing. The  
circuitry includes the TAP, TAP controller, instruction register,  
and data registers. The circuity and operation of the DIE  
boundary scan are described in detail below. The scan chain of  
each DIE are connected serially to form the scan chain of the  
CY7C0833AV as shown in Figure 5 on page 11. TMS and TCK  
are connected in parallel to each DIE to drive all TAP controllers  
in unison. In many cases, each DIE is supplied with the same  
instruction. In other cases, it might be useful to supply different  
instructions to each DIE. One example would be testing the  
device ID of one DIE while bypassing the others.  
The FLEx18 family devices incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 compliant TAPs. The TAP operates  
using JEDEC-standard 3.3V I/O logic levels. It is composed of  
three input connections and one output connection required by  
the test logic defined by the standard.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
devices, and may be performed while the device is operating. An  
MRST must be performed on the devices after power up.  
Each pin of FLEx18 family is typically connected to multiple DIEs.  
For connectivity testing with the EXTEST instruction, it is  
desirable to check the internal connections between DIEs and  
the external connections to the package. This is accomplished  
by merging the netlist of the devices with the netlist of the user’s  
circuit board. To facilitate boundary scan testing of the devices,  
Cypress provides the BSDL file for each DIE, the internal netlist  
of the device, and a description of the device scan chain. The  
user can use these materials to easily integrate the devices into  
the board’s boundary scan environment. Further information is  
found in the Cypress application note Using JTAG Boundary  
Scan For System in a Package (SIP) Dual-Port SRAMs.  
Performing a Pause/Restart  
When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the scan  
chain outputs the next bit in the chain twice. For example, if the  
value expected from the chain is 1010101, the device outputs a  
11010101. This extra bit causes some testers to report an  
erroneous failure for the devices in a scan test. Therefore the  
tester should be configured to never enter the PAUSE-DR state.  
Notes  
20. The “X” in this diagram represents the counter upper bits  
21. Boundary scan is IEEE 1149.1-compatible. See Performing a Pause/Restart on page 10 for deviation from strict 1149.1 compliance  
Document #: 38-06059 Rev. *S  
Page 10 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Figure 5. Scan Chain for 9 Mb Device  
TDO  
TDO  
D2  
TDI  
TDO  
D1  
TDI  
TDI  
Table 4. Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Cypress Device ID (27:12)  
Value  
Description  
0h  
Reserved for version number.  
C090h  
C091h  
C093h  
C094h  
034h  
1
Defines Cypress part number for CY7C0832AV/CY7C0832BV  
Defines Cypress part number for CY7C0831AV  
Defines Cypress part number for CY7C0830AV  
Defines Cypress part number for CY7C0837AV.  
Allows unique identification of the DP family device vendor.  
Indicates the presence of an ID register.  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
Table 5. Scan Registers Sizes  
Register Name  
Instruction  
Bit Size  
4
1
Bypass  
Identification  
Boundary Scan  
32  
n[22]  
Table 6. Instruction Identification Codes  
Instruction  
EXTEST  
Code  
Description  
0000  
1111  
1011  
0111  
0100  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all device output drivers to a High-Z state.  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
CLAMP  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
Resets the non-boundary scan logic. Places BYR between TDI and TDO.  
NBSRST  
1100  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Note  
22. See details in the device BSDL file.  
Document #: 38-06059 Rev. *S  
Page 11 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage........................................... > 2000V  
(JEDEC JESD22-A114-2000B)  
Maximum Ratings  
Exceeding maximum ratings[23] may impair the useful life of the  
device. These user guidelines are not tested.  
Latch Up Current.................................................... > 200 mA  
Storage Temperature................................. –65°C to +150°C  
Ambient Temperature with  
Operating Range  
Power Applied ............................................ –55°C to +125°C  
Supply Voltage to Ground Potential................–0.5V to +4.6V  
Ambient  
Range  
VDD  
Temperature  
0°C to +70°C  
–40°C to +85°C  
Commercial  
Industrial  
3.3V±165 mV  
3.3V±165 mV  
DC Voltage Applied to  
Outputs in High-Z State ......................... –0.5V to VDD + 0.5V  
DC Input Voltage .............................. –0.5V to VDD + 0.5V[24]  
Electrical Characteristics  
Over the Operating Range  
-167  
-133  
-100  
Parameter  
Description  
Unit  
Min Typ Max Min Typ Max Min Typ Max  
VOH  
VOL  
VIH  
VIL  
Output HIGH Voltage (VDD = Min., IOH= –4.0 mA)  
Output LOW Voltage (VDD = Min., IOL= +4.0 mA)  
Input HIGH Voltage  
2.4  
2.4  
2.4  
V
V
0.4  
0.8  
0.4  
0.4  
2.0  
2.0  
2.0  
V
Input LOW Voltage  
0.8  
10  
10  
0.8  
10  
10  
V
IOZ  
IIX1  
IIX2  
ICC  
Output Leakage Current  
–10  
–10  
–0.1  
10 –10  
10 –10  
1.0 –0.1  
–10  
–10  
μA  
μA  
Input Leakage Current Except TDI, TMS, MRST  
Input Leakage Current TDI, TMS, MRST  
1.0 –0.1  
225 300  
1.0 mA  
mA  
Operating Current for  
CY7C0837AV  
225 300  
(VDD = Max., IOUT = 0 mA), Outputs CY7C0830AV  
Disabled  
CY7C0831AV  
CY7C0832AV  
CY7C0832BV  
CY7C0833AV  
270 400  
90 115  
200 310 mA  
[25]  
ISB1  
Standby Current (Both Ports TTL Level)  
90 115  
160 210  
90  
160 210 mA  
55 75 mA  
160 210 mA  
115 mA  
CEL and CER VIH, f = fMAX  
[25]  
ISB2  
Standby Current (One Port TTL Level)  
160 210  
55 75  
160 210  
70 100  
CEL | CER VIH, f = fMAX  
[25]  
ISB3  
Standby Current (Both Ports CMOS Level)  
55  
75  
CEL and CER VDD – 0.2V, f = 0  
[25]  
ISB4  
Standby Current (One Port CMOS Level)  
160 210  
CEL | CER VIH, f = fMAX  
ISB5  
Operating Current (VDD = Max, IOUT CY7C0833AV  
= 0 mA, f = 0) Outputs Disabled  
70  
100 mA  
Capacitance  
Part Number [26]  
Parameter  
Description  
Test Conditions Max  
Unit  
CY7C0837AV/CY7C0830AV/CY7C0831AV  
CY7C0832AV/CY7C0832BV  
CIN  
Input Capacitance  
TA = 25  
f = 1 MHz,  
VDD = 3.3V  
°
C,  
13  
pF  
COUT  
Output Capacitance  
10  
pF  
CY7C0833AV  
CIN  
Input Capacitance  
Output Capacitance  
22  
20  
pF  
pF  
COUT  
Notes  
23. The voltage on any input or I/O pin can not exceed the power pin during power up.  
24. Pulse width < 20 ns.  
25. I  
, I  
, I  
and I  
are not applicable for CY7C0833AV because it can not be powered down by using chip enable pins.  
SB1 SB2 SB3  
SB4  
26. C  
also references C  
.
I/O  
OUT  
Document #: 38-06059 Rev. *S  
Page 12 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Figure 6. AC Test Load and Waveforms  
3.3V  
Z = 50  
Ω
R = 50Ω  
0
OUTPUT  
R1 = 590  
R2 = 435  
Ω
Ω
OUTPUT  
C = 10 pF  
C = 5 pF  
V
= 1.5V  
TH  
(a) Normal Load (Load 1)  
(b) Three-state Delay (Load 2)  
3.0V  
90%  
10%  
90%  
10%  
ALL INPUT PULSES  
Vss  
< 2 ns  
< 2 ns  
Switching Characteristics  
Over the Operating Range  
-167  
-133  
CY7C0837AV  
CY7C0830AV  
-100  
CY7C0837AV  
CY7C0830AV  
CY7C0831AV  
CY7C0832AV  
Parameter  
Description  
CY7C0831AV CY7C0833AV CY7C0833AV Unit  
CY7C0832AV  
CY7C0832BV  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
fMAX2  
tCYC2  
tCH2  
Maximum Operating Frequency  
Clock Cycle Time  
167  
133  
133  
100  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.0  
2.7  
2.7  
7.5  
3.0  
3.0  
7.5  
3.0  
3.0  
10  
4.0  
4.0  
Clock HIGH Time  
tCL2  
Clock LOW Time  
[27]  
tR  
Clock Rise Time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
[27]  
tF  
Clock Fall Time  
tSA  
Address Setup Time  
Address Hold Time  
Byte Select Setup Time  
Byte Select Hold Time  
Chip Enable Setup Time  
Chip Enable Hold Time  
R/W Setup Time  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
0.6  
2.3  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
0.6  
2.5  
2.5  
0.6  
2.5  
0.6  
NA  
NA  
2.5  
0.6  
2.5  
0.6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
3.0  
0.6  
3.0  
0.6  
NA  
NA  
3.0  
0.6  
3.0  
0.6  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
tHA  
tSB  
tHB  
tSC  
tHC  
tSW  
tHW  
tSD  
R/W Hold Time  
Input Data Setup Time  
Input Data Hold Time  
ADS Setup Time  
tHD  
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tSCM  
ADS Hold Time  
CNTEN Setup Time  
CNTEN Hold Time  
CNTRST Setup Time  
CNTRST Hold Time  
CNT/MSK Setup Time  
Note  
27. Except JTAG signals (t and t < 10 ns [max.]).  
r
f
Document #: 38-06059 Rev. *S  
Page 13 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Characteristics (continued)  
Over the Operating Range  
-167  
-133  
CY7C0837AV  
CY7C0830AV  
-100  
CY7C0837AV  
CY7C0830AV  
CY7C0831AV  
CY7C0832AV  
Parameter  
Description  
CY7C0831AV CY7C0833AV CY7C0833AV Unit  
CY7C0832AV  
CY7C0832BV  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
tHCM  
tOE  
CNT/MSK Hold Time  
0.6  
0.6  
NA  
NA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable to Data Valid  
OE to Low Z  
4.0  
4.4  
4.7  
5.0  
[28,29]  
tOLZ  
0
0
0
0
[28,29]  
tOHZ  
OE to High Z  
4.0  
4.0  
4.0  
4.0  
4.4  
4.4  
4.4  
4.4  
4.7  
4.7  
NA  
NA  
5.0  
5.0  
NA  
NA  
tCD2  
tCA2  
tCM2  
tDC  
Clock to Data Valid  
Clock to Counter Address Valid  
Clock to Mask Register Readback Valid  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
Clock to INT Set Time  
1.0  
0
1.0  
0
1.0  
1.0  
[28,29]  
tCKHZ  
4.0  
4.0  
6.7  
6.7  
5.0  
5.0  
4.4  
4.4  
7.5  
7.5  
5.7  
5.7  
4.7  
4.7  
7.5  
7.5  
NA  
NA  
5.0  
5.0  
10  
[28, 29]  
tCKLZ  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
0.5  
NA  
NA  
1.0  
0.5  
0.5  
NA  
NA  
tSINT  
tRINT  
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset time  
10  
tSCINT  
tRCINT  
NA  
NA  
Port to Port Delays  
tCCS  
Clock to Clock Skew  
5.2  
6.0  
6.0  
8.0  
ns  
Master Reset Timing  
tRS  
Master Reset Pulse Width  
7.0  
6.0  
6.0  
7.5  
6.0  
7.5  
7.5  
6.0  
7.5  
10  
8.5  
10  
ns  
ns  
ns  
ns  
ns  
tRS  
Master Reset Setup Time  
tRSR  
Master Reset Recovery Time  
Master Reset to Outputs Inactive  
tRSF  
10.0  
10.0  
10.0  
10.0  
10.0  
NA  
10.0  
NA  
tRSCNTINT  
Master Reset to Counter Interrupt Flag  
Reset Time  
Notes  
28. This parameter is guaranteed by design, but is not production tested.  
29. Test conditions used are Load 2.  
Document #: 38-06059 Rev. *S  
Page 14 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
JTAG Timing and Switching Waveforms  
CY7C0837AV/CY7C0830AV  
CY7C0831AV/CY7C0832AV  
CY7C0832BV/CY7C0833AV  
Parameter  
Description  
Unit  
Min  
Max  
fJTAG  
tTCYC  
tTH  
Maximum JTAG TAP Controller Frequency  
TCK Clock Cycle Time  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
40  
40  
10  
10  
10  
10  
TCK Clock HIGH Time  
tTL  
TCK Clock LOW Time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
TMS Setup to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Setup to TCK Clock Rise  
TDI Hold After TCK Clock Rise  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
30  
0
Figure 7. JTAG Switching Waveform  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Document #: 38-06059 Rev. *S  
Page 15 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms  
Figure 8. Master Reset  
tRS  
MRST  
tRSF  
ALL  
ADDRESS/  
DATA  
tRSS  
INACTIVE  
LINES  
tRSR  
ALL  
OTHER  
INPUTS  
ACTIVE  
TMS  
CNTINT  
INT  
TDO  
Figure 9. Read Cycle[12, 30, 31, 32, 33]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSC  
tHC  
tSB  
tHB  
BE0–BE1  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
DATAOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes  
30. OE is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.  
31. ADS = CNTEN = LOW, and MRST = CNTRST = CNT/MSK = HIGH.  
32. The output is disabled (high-impedance state) by CE = V following the next rising edge of the clock.  
IH  
33. Addresses need not be accessed sequentially because ADS = CNTEN = V with CNT/MSK = V constantly loads the address on the rising edge of the CLK.  
IL  
IH  
Numbers are for reference only.  
Document #: 38-06059 Rev. *S  
Page 16 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 10. Bank Select Read[34, 35]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
t
t
t
HA  
SA  
A
A
4
ADDRESS  
A
5
A
A
A
3
(B1)  
0
1
2
t
HC  
SC  
CE  
(B1)  
t
t
t
t
CKHZ  
t
t
t
CD2  
CD2  
CD2  
HC  
CKHZ  
SC  
Q
Q
Q
1
3
DATA  
0
OUT(B1)  
t
t
HA  
SA  
t
t
t
CKLZ  
DC  
DC  
A
A
4
A
ADDRESS  
A
0
A
A
3
5
(B2)  
1
2
t
t
HC  
SC  
CE  
(B2)  
t
t
t
CD2  
t
CD2  
CKHZ  
t
SC  
HC  
DATA  
OUT(B2)  
Q
Q
4
2
t
t
CKLZ  
CKLZ  
Figure 11. Read-to-Write-to-Read (OE = LOW)[33, 36, 37, 38, 39]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tSW  
tHW  
R/W  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
ADDRESS  
DATAIN  
tSD tHD  
tSA  
tHA  
Dn+2  
tCD2  
tCD2  
tCKHZ  
Qn  
Qn+3  
DATAOUT  
tCKLZ  
READ  
NO OPERATION  
WRITE  
READ  
Notes  
34. In this depth-expansion example, B1 represents Bank #1 and B2 is Bank #2; each bank consists of one Cypress FLEx18 device from this data sheet. ADDRESS  
(B1)  
= ADDRESS  
.
(B2)  
35. ADS = CNTEN= BE0 – BE1 = OE = LOW; MRST = CNTRST = CNT/MSK = HIGH.  
36. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
37. During “No Operation,” data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
38. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
39. CE = BE0 – BE1 = R/W = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH. When R/W first switches low, because OE = LOW, the Write operation cannot be  
0
1
completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.  
Document #: 38-06059 Rev. *S  
Page 17 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 12. Read-to-Write-to-Read (OE Controlled)[33, 36, 38, 39]  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
tSC  
tHC  
tHW  
tSW  
R/W tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
tSA  
tHA  
tSD tHD  
Dn+2  
DATAIN  
Dn+3  
tCD2  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Figure 13. Read with Address Counter Advance[38]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
Qx–1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
DATAOUT  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Document #: 38-06059 Rev. *S  
Page 18 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 14. Write with Address Counter Advance[39]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Figure 15. Counter Reset[40, 41]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
t
HA  
t
SA  
A
p
A
m
A
n
ADDRESS  
INTERNAL  
ADDRESS  
A
p
A
x
A
n
1
0
A
m
t
t
HW  
SW  
R/W  
ADS  
CNTEN  
CNTRST  
t
t
HRST  
SRST  
t
t
SD  
HD  
DATA  
IN  
D
0
t
t
CD2  
CD2  
[42]  
DATA  
Q
0
Q
n
OUT  
Q
1
t
CKLZ  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS A  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS A  
m
n
Notes  
40. CE = BE0 – BE1 = LOW; CE = MRST = CNT/MSK = HIGH.  
0
1
41. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
42. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.  
Document #: 38-06059 Rev. *S  
Page 19 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 16. Readback State of Address Counter or Mask Register[43, 44, 45, 46]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
t
or t  
CM2  
t
t
CA2  
SA  
HA  
EXTERNAL  
ADDRESS  
A
A
n*  
n
A –A  
0
16  
INTERNAL  
ADDRESS  
An+4  
An+1  
An+2  
An+3  
An  
t
t
t
SAD  
HAD  
ADS  
t
SCN  
HCN  
CNTEN  
t
t
t
CD2  
CKHZ  
CKLZ  
DATA  
OUT  
Q
n+1  
Q
Q
Q
Q
Qn+3  
x-1  
n+2  
x-2  
n
LOAD  
EXTERNAL  
ADDRESS  
READBACK  
COUNTER  
INTERNAL  
ADDRESS  
INCREMENT  
Notes  
43. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
44. Address in output mode. Host must not be driving address bus after t  
in next clock cycle.  
CKLZ  
45. Address in input mode. Host can drive address bus after t  
.
CKHZ  
46. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.  
Document #: 38-06059 Rev. *S  
Page 20 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 17. Left_Port (L_Port) Write to Right_Port (R_Port) Read[47, 48, 49]  
tCYC2  
tCL2  
tCH2  
CLKL  
tHA  
tSA  
L_PORT  
ADDRESS  
An  
tSW  
tHW  
R/WL  
tCKHZ  
tSD  
tHD  
tCKLZ  
L_PORT  
DATAIN  
Dn  
tCCS  
tCYC2  
tCL2  
CLKR  
tCH2  
tSA  
tHA  
R_PORT  
ADDRESS  
An  
R/WR  
tCD2  
R_PORT  
DATAOUT  
Qn  
tDC  
Notes  
47. CE = OE = ADS = CNTEN = BE0 – BE1 = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
48. This timing is valid when one port is writing, and other port is reading the same location at the same time. If t  
is violated, indeterminate data is Read out.  
CCS  
49. If t  
< minimum specified value, then R_Port is Read the most recent data (written by L_Port) only (2 * t  
+ t  
) after the rising edge of R_Port's clock. If t  
CCS  
CYC2  
CD2 CCS  
> minimum specified value, then R_Port is Read the most recent data (written by L_Port) (t  
+ t  
) after the rising edge of R_Port's clock.  
CYC2  
CD2  
Document #: 38-06059 Rev. *S  
Page 21 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 18. Counter Interrupt and Retransmit [15, 42, 50, 51, 52, 53]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
tSCM  
tHCM  
CNT/MSK  
ADS  
CNTEN  
COUNTER  
INTERNAL  
ADDRESS  
3FFFE  
3FFFC  
Last_Loaded  
3FFFD  
3FFFF  
Last_Loaded +1  
t
t
RCINT  
SCINT  
CNTINT  
Notes  
50. CE = OE = BE0 – BE1 = LOW; CE = R/W = CNTRST = MRST = HIGH.  
0
1
51. CNTINT is always driven.  
52. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.  
53. The mask register assumed to have the value of 3FFFFh.  
Document #: 38-06059 Rev. *S  
Page 22 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Switching Waveforms (continued)  
Figure 19. MailBox Interrupt Timing [54, 55, 56, 57, 58]  
tCYC2  
tCL2  
tCH2  
CLKL  
tSA tHA  
7FFFF  
L_PORT  
ADDRESS  
An+1  
An  
An+2  
An+3  
tSINT  
tRINT  
INTR  
tCYC2  
tCL2  
tCH2  
CLKR  
tSA tHA  
Am  
R_PORT  
ADDRESS  
Am+1  
7FFFF  
Am+3  
Am+4  
Table 7. Read/Write and Enable Operation (Any Port) [2, 17, 59, 60, 61]  
Inputs  
Outputs  
DQ0 DQ17  
High-Z  
Operation  
OE  
CLK  
CE0  
CE1  
R/W  
X
H
X
X
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
H
H
H
X
L
High-Z  
DIN  
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Notes  
54. CE = OE = ADS = CNTEN = LOW; CE = CNTRST = MRST = CNT/MSK = HIGH.  
0
1
55. Address “7FFFF” is the mailbox location for R_Port of the 9Mb device.  
56. L_Port is configured for Write operation, and R_Port is configured for Read operation.  
57. At least one byte enable (BE0 – BE1) is required to be active during interrupt operations.  
58. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.  
59. OE is an asynchronous input signal.  
60. When CE changes state, deselection and Read happen after one cycle of latency.  
61. CE = OE = LOW; CE = R/W = HIGH.  
0
1
Document #: 38-06059 Rev. *S  
Page 23 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Ordering Information  
512K  
×
18 (9M) 3.3V Synchronous CY7C0833AV Dual-Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
133 CY7C0833AV-133BBC  
CY7C0833AV-133BBI  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
Commercial  
Industrial  
100 CY7C0833AV-100BBC  
CY7C0833AV-100BBI  
Commercial  
Industrial  
256K  
× 18 (4M) 3.3V Synchronous CY7C0832AV/CY7C0832BV Dual-Port SRAM  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
167 CY7C0832AV-167BBC  
CY7C0832AV-167AC  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)  
Commercial  
Commercial  
Industrial  
CY7C0832AV-167AXC  
133 CY7C0832AV-133BBC  
CY7C0832AV-133AC  
CY7C0832AV-133AXC  
CY7C0832AV-133BBI  
CY7C0832BV-133AI  
CY7C0832AV-133AXI  
128K  
× 18 (2M) 3.3V Synchronous CY7C0831AV Dual-Port SRAM  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
167 CY7C0831AV-167BBC  
CY7C0831AV-167AC  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch (Pb-Free)  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch (Pb-Free)  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm) (Pb-Free)  
Commercial  
CY7C0831AV-167AXC  
133 CY7C0831AV-133BBC  
CY7C0831AV-133BBXC  
CY7C0831AV-133AC  
Commercial  
CY7C0831AV-133AXC  
CY7C0831AV-133BBI  
CY7C0831AV-133BBXI  
CY7C0831AV-133AI  
Industrial  
CY7C0831AV-133AXI  
64K  
× 18 (1M) 3.3V Synchronous CY7C0830AV Dual-Port SRAM  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
167 CY7C0830AV-167BBC  
CY7C0830AV-167AC  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85100 120-Pin Thin Quad Flat Pack (14 x 14 x 1.4 mm)  
Commercial  
Commercial  
Industrial  
133 CY7C0830AV-133BBC  
CY7C0830AV-133AC  
CY7C0830AV-133BBI  
CY7C0830AV-133AI  
Document #: 38-06059 Rev. *S  
Page 24 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Ordering Information  
32K  
×
18 (512K) 3.3V Synchronous CY7C0837AV Dual-Port SRAM  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Package Type  
Diagram  
167 CY7C0837AV-167BBC  
133 CY7C0837AV-133BBC  
CY7C0837AV-133BBI  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
51-85141 144-Ball Grid Array (13 x 13 x 1.6 mm) with 1 mm pitch  
Commercial  
Commercial  
Industrial  
Package Diagrams  
Figure 20. 144-Ball FBGA (13 x 13 x 1.6 mm) (51-85141)  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
+0.10  
A1 CORNER  
Ø0.50 (144X)  
-0.05  
1
2
3
4
5
6
7
8
9
10  
11 12  
12 11 10  
9
8
7
6
5
3
2
1
4
A
B
A
B
C
D
E
C
D
E
F
G
F
G
H
J
H
J
K
K
L
L
M
M
5.50  
A
A
1.00  
13.00 0.10  
B
11.00  
13.00 0.10  
B
0.15(4X)  
DIMENSIONS IN MILLIMETERS  
REFERENCE JEDEC: PUBLICATION 95  
DESIGN GUIDE 4.14D  
PKG. WEIGHT: 0.53 gms  
SEATING PLANE  
C
51-85141-*B  
Document #: 38-06059 Rev. *S  
Page 25 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Package Diagrams  
Figure 21. 120-Pin Thin Quad Flatpack (14 x 14 x 1.4 mm) (51-85100)  
51-85100-**  
Document #: 38-06059 Rev. *S  
Page 26 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Document History Page  
Document Title: CY7C0837AV/CY7C0830AV/CY7C0831AV/CY7C0832AV/CY7C0832BV/CY7C0833AV, FLEx18™ 3.3V  
64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM  
Document Number: 38-06059  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
111473  
111942  
DSG  
JFU  
11/27/01  
12/21/01  
Change from Spec number: 38-01056 to 38-06059  
*A  
Updated capacitance values  
Updated switching parameters and ISB3  
Updated “Read-to-Write-to-Read (OE Controlled)” waveform  
Revised static discharge voltage  
Revised footnote regarding ISB3  
*B  
113741  
KRE  
04/02/02  
Updated Isb values  
Updated ESD voltage  
Corrected 0853 pins L3 and L12  
*C  
*D  
*E  
*F  
*G  
114704  
115336  
122307  
123636  
126053  
KRE  
KRE  
RBI  
04/24/02  
07/01/02  
12/27/02  
1/27/03  
Added discussion of Pause/Restart for JTAG boundary scan  
Revised speed offerings for all densities  
Power up requirements added to Maximum Ratings Information  
Revise tcd2, tOE, tOHZ, tCKHZ, tCKLZ for the CY7C0853V to 4.7 ns  
KRE  
SPN  
08/11/03  
Separated out 4M and 9M data sheets  
Updated Isb and ICC values  
*H  
*I  
129443  
231993  
RAZ  
YDT  
11/03/03  
See ECN  
Updated Isb and ICC values  
Removed “A particular port can write to a certain location while another port is  
reading that location.” from Functional Description.  
*J  
231813  
WWZ  
See ECN  
Removed x36 devices (CY7C0852/CY7C0851) from this datasheet. Added  
0.5M, 1M and 9M x18 devices to it. Changed title to FLEx18 3.3V  
32K/64K/128K/256K/512K x18 Synchronous Dual-Port RAM. Changed  
datasheet to accommodate the removals and additions. Removed general  
JTAG description. Updated JTAG ID codes for all devices. Added 144FBGA  
package for all devices. Updated selection guide table and moved to the front  
page. Updated block diagram to reflect x18 configuration. Added preliminary  
status back due to the addition of the new devices.  
*K  
*L  
311054  
329111  
RYQ  
SPN  
See ECN  
See ECN  
Minor Change: Correct the revision indicated on the footer.  
Updated Marketing part numbers  
Updated tRSF  
*M  
*N  
330561  
375198  
RUY  
YDT  
See ECN  
See ECN  
Added Byte Select Operation Table  
Removed Preliminary status  
Added ISB5  
Changed tRSCNTINT to 10ns  
*O  
*P  
391525  
414109  
SPN  
LIJ  
See ECN  
See ECN  
Updated Counter reset section to reflect what is loaded into the mirror register  
Corrected Ordering Codes for 0831 devices in the 133 Mhz speed bin.  
Added CY7C0833AV-133BBI.  
*Q  
461113  
YDT  
SEE ECN  
Changed VDDIO to VDD (typo)  
Added lead(Pb)-free parts  
Corrected typo in DC table  
*R  
*S  
2544945 VKN/AESA  
2668478 VKN/PYRS  
07/29/08  
02/04/09  
Updated Template. Updated ordering information  
Added CY7C0832BV part  
Added footnote #1  
Updated Ordering information table  
Document #: 38-06059 Rev. *S  
Page 27 of 28  
[+] Feedback  
CY7C0837AV, CY7C0830AV  
CY7C0831AV, CY7C0832AV  
CY7C0832BV, CY7C0833AV  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2001-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-06059 Rev. *S  
Revised March 03, 2009  
Page 28 of 28  
FLEx18 is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C0830AV-167AC

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830AV-167AC

64KX18 DUAL-PORT SRAM, 4ns, PQFP120, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-120
ROCHESTER

CY7C0830AV-167BBC

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830AV-167BBC

64KX18 DUAL-PORT SRAM, 4ns, PBGA144, 13 X 13 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-144
ROCHESTER

CY7C0830V

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830V-133AC

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830V-133AI

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830V-133BBC

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830V-133BBI

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830V-167AC

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0830V-167BBC

FLEx18-TM 3.3V 32K/64K/128K/256K/512K x 18 Synchronous Dual-Port RAM
CYPRESS

CY7C0831AV

FLEx18⑩ 3.3V 64K/128K x 36 and 128K/256K x 18 Synchronous Dual-Port RAM
CYPRESS