CY7C09389V-9AXC [ROCHESTER]

64KX18 DUAL-PORT SRAM, 9ns, PQFP100, LEAD FREE, PLASTIC, MS-026, TQFP-100;
CY7C09389V-9AXC
型号: CY7C09389V-9AXC
厂家: Rochester Electronics    Rochester Electronics
描述:

64KX18 DUAL-PORT SRAM, 9ns, PQFP100, LEAD FREE, PLASTIC, MS-026, TQFP-100

静态存储器 内存集成电路
文件: 总20页 (文件大小:1325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
3.3V 16K/32K/64K x 16/18  
Synchronous Dual-Port Static RAM  
3.3V low operating power:  
Active = 115 mA (typical)  
Standby = 10 A (typical)  
Features  
True dual-ported memory cells that allow simultaneous access  
of the same memory location  
Fully synchronous interface for easier operation  
Six flow through/pipelined devices:  
Burst counters increment addresses internally:  
Shorten cycle times  
Minimize bus noise  
16K x 16/18 organization (CY7C09269V/369V)  
32K x 16/18 organization (CY7C09279V/379V)  
64K x 16/18 organization (CY7C09289V/389V)  
Supported in flow through and pipelined modes  
Three modes:  
Flow through  
Pipelined  
Burst  
Dual chip enables easy depth expansion  
Upper and lower byte controls for bus matching  
Automatic power down  
Pipelined output mode on both ports allows fast 100 MHz  
operation  
Commercial and industrial temperature ranges  
Pb-Free 100-pin TQFP package available  
0.35 micron CMOS for optimum speed and power  
High speed clock to data access: 6.5[1, 2], 7.5[2], 9, 12 ns (max)  
Logic Block Diagram  
R/WL  
R/WR  
UB  
UB  
R
L
CE  
CE  
CE  
CE  
0L  
1L  
0R  
1R  
1
1
0
0
0/1  
0/1  
LB  
LB  
L
R
OE  
OE  
L
R
1b 0b 1a 0a  
0a 1a 0b 1b  
0/1  
b
a
a
b
0/1  
FT/PipeL  
FT/PipeR  
8/9  
8/9  
8/9  
8/9  
[3]  
[3]  
I/O8/9L–I/O15/17L  
I/O8/9R–I/O15/17R  
I/O  
Control  
I/O  
Control  
[4]  
[4]  
I/O0L–I/O7/8L  
I/O0R–I/O7/8R  
14/15/16  
A
0L–A  
14/15/16 A0RA[5]  
[5]  
13/14/15L  
13/14/15R  
Counter/  
Address  
Register  
Decode  
Counter/  
Address  
Register  
Decode  
CLK  
CLK  
ADS  
L
R
R
R
R
True Dual-Ported  
ADS  
L
RAM Array  
CNTEN  
CNTEN  
CNTRST  
L
CNTRST  
L
Notes  
1. Call for availability.  
2. See page 6 for Load Conditions.  
3. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
8
15  
9
17  
4. I/O –I/O for x16 devices. I/O –I/O for x18 devices.  
0
7
0
8
5. A –A for 16K; A –A for 32K; A –A for 64K devices.  
0
13  
0
14  
0
15  
Cypress Semiconductor Corporation  
Document #: 38-06056 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 22, 2010  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Pinouts  
Figure 1. 100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
NC  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A9R  
2
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
NC  
3
4
5
[6]  
[7]  
6
[6]  
[7]  
7
8
NC  
9
NC  
LBL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
LBR  
UBL  
UBR  
CE0R  
CE1R  
CY7C09289V (64K x 16)  
CY7C09279V (32K x 16)  
CY7C09269V (16K x 16)  
CE0L  
CE1L  
CNTRSTL  
VCC  
CNTRSTR  
GND  
R/WL  
R/WR  
OEL  
OER  
FT/PIPEL  
FT/PIPER  
[8]  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
GND  
[8]  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O10R  
I/O11L  
I/O10L  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Notes  
6. This pin is NC for CY7C09269V.  
7. This pin is NC for CY7C09269V and CY7C09279V.  
8. For CY7C09269V and CY7C09279V, pin #18 connected to V is pin compatible to an IDT 5V x16 pipelined device; connecting pin #18 and #58 to GND is pin compatible  
CC  
to an IDT 5V x16 flow through device.  
Document #: 38-06056 Rev. *D  
Page 2 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Pinouts (continued)  
Figure 2. 100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
A8R  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
LBL  
2
A9R  
3
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
LBR  
4
5
6
[9]  
[10]  
7
[9]  
8
[10]  
UBL  
9
CE0L  
CE1L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
UBR  
CE0R  
CE1R  
CY7C09389V (64K x 18)  
CY7C09379V (32K x 18)  
CY7C09369V (16K x 18)  
CNTRSTL  
R/WL  
CNTRSTR  
R/WR  
OEL  
VCC  
GND  
FT/PIPEL  
I/O17L  
I/O16L  
GND  
OER  
FT/PIPER  
I/O17R  
GND  
I/O15L  
I/O14L  
I/O13L  
1/012L  
I/O16R  
I/O15R  
I/O14R  
I/O13R  
I/O11L  
I/O10L  
24  
25  
52  
51  
I/O12R  
I/O11R  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Selection Guide  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Specifications  
[1, 2]  
[2]  
-6  
-7  
-9  
67  
9
-12  
50  
12  
f
(MHz) (Pipelined)  
100  
6.5  
83  
MAX2  
Max. Access Time (ns)  
(Clock to Data, Pipelined)  
7.5  
Typical Operating Current  
CC  
175  
25  
155  
25  
135  
20  
115  
20  
I
(mA)  
Typical Standby Current for  
(mA)  
I
SB1  
(Both Ports TTL Level)  
Typical Standby Current for  
10  
10  
10  
10  
I
(A)  
SB3  
(Both Ports CMOS Level)  
Notes  
9. This pin is NC for CY7C09369V.  
10. This pin is NC for CY7C09369V and CY7C09379V.  
Document #: 38-06056 Rev. *D  
Page 3 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Pin Definitions  
Left Port  
A0L–A15L  
ADSL  
Right Port  
Description  
A0R–A15R  
ADSR  
Address Inputs (A0–A14 for 32K, A0–A13 for 16K devices).  
Address Strobe Input. Used as an address qualifier. This signal must be asserted LOW to access  
the part using an externally supplied address. Asserting this signal LOW also loads the burst counter  
with the address present on the address pins.  
CE0L, CE1L CE0R,CE1R  
Chip Enable Input. To select either the left or right port, both CE0 AND CE1 must be asserted to their  
active states (CE0 VIL and CE1 VIH).  
CLKL  
CLKR  
Clock Signal. This input can be free running or strobed. Maximum clock input rate is fMAX.  
CNTENL  
CNTENR  
Counter Enable Input. Asserting this signal LOW increments the burst address counter of its  
respective port on each rising edge of CLK. CNTEN is disabled if ADS or CNTRST are asserted LOW.  
CNTRSTL  
CNTRSTR  
Counter Reset Input. Asserting this signal LOW resets the burst address counter of its respective  
port to zero. CNTRST is not disabled by asserting ADS or CNTEN.  
I/O0L–I/O17L I/O0R–I/O17R Data Bus Input/Output (I/O0–I/O15 for x16 devices).  
LBL  
LBR  
Lower Byte Select Input. Asserting this signal LOW enables read and write operations to the lower  
byte. (I/O0–I/O8 for x18, I/O0–I/O7 for x16) of the memory array. For read operations both the LB and  
OE signals must be asserted to drive output data on the lower byte of the data pins.  
UBL  
OEL  
UBR  
OER  
Upper Byte Select Input. Same function as LB, but to the upper byte (I/O8/9L–I/O15/17L).  
Output Enable Input. This signal must be asserted LOW to enable the I/O data pins during read  
operations.  
R/WL  
R/WR  
Read/Write Enable Input. This signal is asserted LOW to write to the dual port memory array. For  
read operations, assert this pin HIGH.  
FT/PIPEL  
FT/PIPER  
Flow Through/Pipelined Select Input. For flow through mode operation, assert this pin LOW. For  
pipelined mode operation, assert this pin HIGH.  
GND  
NC  
Ground Input.  
No Connect.  
Power Input.  
VCC  
A HIGH on CE0 or LOW on CE1 for one clock cycle powers down  
Functional Description  
the internal circuitry to reduce the static power consumption. The  
use of multiple Chip Enables enables easier banking of multiple  
chips for depth expansion configurations. In the pipelined mode,  
one cycle is required with CE0 LOW and CE1 HIGH to reactivate  
the outputs.  
The CY7C09269V/79V/89V and CY7C09369V/79V/89V are  
high speed 3.3V synchronous CMOS 16K, 32K, and 64K x 16/18  
dual-port static RAMs. Two ports are provided, permitting  
independent, simultaneous access for reads and writes to any  
location in memory[11]. Registers on control, address, and data  
lines allow for minimal setup and hold times. In pipelined output  
mode, data is registered for decreased cycle time. Clock to data  
valid tCD2 = 6.5 ns[1, 2] (pipelined). Flow through mode can also  
be used to bypass the pipelined output register to eliminate  
Counter enable inputs are provided to stall the operation of the  
address input and use the internal address generated by the  
internal counter for fast interleaved memory applications. A  
port’s burst counter is loaded with the port’s Address Strobe  
(ADS). When the port’s Count Enable (CNTEN) is asserted, the  
address counter increments on each LOW to HIGH transition of  
that port’s clock signal. This reads/writes one word from or into  
each successive address location, until CNTEN is deasserted.  
The counter can address the entire memory array and loop back  
to the start. Counter Reset (CNTRST) is used to reset the burst  
counter.  
access latency. In flow through mode, data is available tCD1  
18 ns after the address is clocked into the device. Pipelined  
output or flow through mode is selected through the FT/Pipe pin.  
=
Each port contains a burst counter on the input address register.  
The internal write pulse width is independent of the LOW to HIGH  
transition of the clock signal. The internal write pulse is self timed  
to allow the shortest possible cycle times.  
All parts are available in 100-pin Thin Quad Plastic Flatpack  
(TQFP) packages.  
Note  
11. When writing simultaneously to the same location, the final value cannot be guaranteed.  
Document #: 38-06056 Rev. *D  
Page 4 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Maximum Ratings [12]  
DC Input Voltage0.5V to VCC+0.5V  
Output Current into Outputs (LOW)............................. 20 mA  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage.......................................... > 1100V  
(per MIL-STD-883, Method 3015)  
Storage Temperature  65C to +150°C  
Latch up Current.................................................... > 200 mA  
Ambient Temperature with  
Power Applied 55C to +125C  
Operating Range  
Supply Voltage to Ground Potential 0.5V to +4.6V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
DC Voltage Applied to Outputs  
in High Z State 0.5V to VCC+0.5V  
3.3V 300 mV  
3.3V 300 mV  
–40°C to +85°C  
Electrical Characteristics  
Over the Operating Range  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
-7[2]  
-9  
Parameter  
Description  
Unit  
-12  
-6[1, 2]  
Min Typ Max Min Typ Max Min Typ Max Min Typ Max  
VOH  
VOL  
Output HIGH Voltage  
(VCC = Min. lOH = –4.0 mA)  
2.4  
2.4  
2.4  
2.4  
V
V
Output LOW Voltage  
(VCC = Min. lOH = +4.0 mA)  
0.4  
0.8  
0.4  
0.8  
0.4  
0.8  
0.4  
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
2.0  
2.0  
2.0  
V
V
0.8  
10  
Output Leakage Current  
–10  
10 –10  
175 320  
10 –10  
155 275  
275 390  
10 –10  
135 230  
185 300  
A  
Operating Current  
(VCC = Max, IOUT = 0 mA)  
Outputs Disabled  
Com’l.  
Indust.  
115 180 mA  
mA  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
Com’l.  
Indust.  
25 95  
115 175  
10 250  
105 135  
25  
85  
20  
35  
75  
85  
20  
70 mA  
mA  
(Both Ports TTL Level)[13]  
CEL & CER VIH, f = fMAX  
85 120  
Standby Current  
Com’l.  
Indust.  
105 165  
165 210  
95 155  
105 165  
85 140 mA  
mA  
(One Port TTL Level)[13]  
CEL | CER VIH, f = fMAX  
Standby Current  
Com’l.  
Indust.  
10 250  
10 250  
10 250  
10 250  
10 250 A  
A  
(Both Ports CMOS Level)[13]  
CEL & CER VCC – 0.2V, f = 0  
Standby Current  
Com’l.  
Indust.  
95 125  
125 170  
85 115  
95 125  
75 100 mA  
mA  
(One Port CMOS Level)[13]  
CEL | CER VIH, f = fMAX  
Capacitance  
Tested initially and after any design or process changes that may affect these parameters.  
Parameter  
CIN  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25C, f = 1 MHz, VCC = 3.3V  
Max  
10  
Unit  
pF  
COUT  
10  
pF  
Notes  
12. The voltage on any input or I/O pin can not exceed the power pin during power up.  
13. CE and CE are internal signals. To select either the left or right port, both CE and CE must be asserted to their active states (CE V and CE V ).  
L
R
0
1
0
IL  
1
IH  
Document #: 38-06056 Rev. *D  
Page 5 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Figure 3. AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250  
R1 = 590  
OUTPUT  
C = 30 pF  
OUTPUT  
C = 30 pF  
R1 = 590  
OUTPUT  
C = 5 pF  
R2 = 435  
R2 = 435  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(b) Thévenin Equivalent (Load 1)  
(Used for tCKLZ, tOLZ, and tOHZ  
including scope and jig)  
[14]  
Figure 4. AC Test Loads (Applicable to -6 and -7 only)  
ALL INPUTPULSES  
Z = 50  
R = 50  
0
OUTPUT  
3.0V  
GND  
90%  
90%  
10%  
C
10%  
3 ns  
3 ns  
V
TH  
= 1.4V  
(a) Load 1 (-6 and -7 only)  
0.60  
0.50  
0.40  
0.30  
0.20  
0.1 0  
0.00  
1 0  
1 5  
20  
25  
30  
35  
Capacitance (pF)  
(b) Load Derating Curve  
Note  
14. Test Conditions: C = 10 pF.  
Document #: 38-06056 Rev. *D  
Page 6 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Characteristics  
Over the Operating Range  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Parameter  
Description  
Unit  
-6 [1, 2]  
-7[2]  
-9  
-12  
Min  
Max  
Min  
Max  
Min  
Max  
40  
Min  
Max  
33  
fMAX1  
fMAX2  
tCYC1  
tCYC2  
tCH1  
tCL1  
tCH2  
tCL2  
tR  
fMax Flow Through  
53  
45  
83  
MHz  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fMax Pipelined  
100  
67  
50  
Clock Cycle Time - Flow Through  
Clock Cycle Time - Pipelined  
Clock HIGH Time - Flow Through  
Clock LOW Time - Flow Through  
Clock HIGH Time - Pipelined  
Clock LOW Time - Pipelined  
Clock Rise Time  
19  
10  
6.5  
6.5  
4
22  
12  
7.5  
7.5  
5
25  
15  
12  
12  
6
30  
20  
12  
12  
8
4
5
6
8
3
3
3
3
3
3
3
3
tF  
Clock Fall Time  
tSA  
Address Set-Up Time  
Address Hold Time  
3.5  
0
4
0
4
1
4
1
4
1
4
1
4
1
5
1
4
1
4
1
4
1
4
1
4
1
4
1
5
1
4
1
tHA  
tSC  
Chip Enable Setup Time  
Chip Enable Hold Time  
R/W Set-Up Time  
3.5  
0
4
tHC  
0
tSW  
3.5  
0
4
tHW  
tSD  
R/W Hold Time  
0
Input Data Setup Time  
Input Data Hold Time  
ADS Set-Up Time  
3.5  
0
4
tHD  
0
tSAD  
tHAD  
tSCN  
tHCN  
tSRST  
tHRST  
tOE  
3.5  
0
4
0
ADS Hold Time  
3.5  
0
4.5  
0
CNTEN Setup Time  
CNTEN Hold Time  
3.5  
0
4
CNTRST Setup Time  
CNTRST Hold Time  
0
8
9
10  
12  
Output Enable to Data Valid  
OE to Low Z  
[15,16]  
tOLZ  
2
1
2
1
2
1
2
1
[15,16]  
tOHZ  
7
7
7
20  
9
7
OE to High Z  
tCD1  
tCD2  
tDC  
Clock to Data Valid - Flow Through  
Clock to Data Valid - Pipelined  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output Low Z  
15  
6.5  
18  
7.5  
25  
12  
2
2
2
2
2
2
2
2
2
2
2
2
[15,16]  
tCKZ  
9
9
9
9
[15,16]  
tCKZ  
Port to Port Delays  
tCWDD Write Port Clock HIGH to Read Data Delay  
tCCS Clock to Clock Setup Time  
30  
9
35  
10  
40  
15  
40  
15  
ns  
ns  
Notes  
15. Test conditions used are Load 2.  
16. This parameter is guaranteed by design, but it is not production tested.  
Document #: 38-06056 Rev. *D  
Page 7 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms  
Figure 5. Read Cycle for Flow Through Output (FT/PIPE = VIL) [17, 18, 19, 20]  
tCYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
tSC  
tHC  
CE1  
R/W  
tSW  
tSA  
tHW  
tHA  
An  
An+1  
An+2  
An+3  
ADDRESS  
DATAOUT  
tCKHZ  
Qn+2  
tDC  
tDC  
Qn  
tCD1  
Qn+1  
tCKLZ  
tOHZ  
tOLZ  
OE  
tOE  
Figure 6. Read Cycle for Pipelined Operation (FT/PIPE = VIH)[17, 18, 19, 20]  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
tSC  
tHC  
CE1  
R/W  
tSW  
tSA  
tHW  
tHA  
ADDRESS  
DATAOUT  
An  
An+1  
An+2  
An+3  
tDC  
1 Latency  
tCD2  
Qn  
Qn+1  
Qn+2  
tOHZ  
tCKLZ  
tOLZ  
OE  
t
OE  
Notes  
17. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.  
18. ADS = V , CNTEN and CNTRST = V  
.
IH  
IL  
19. The output is disabled (high impedance state) by CE =V or CE = V following the next rising edge of the clock.  
0
IH  
1
IL  
20. Addresses do not have to be accessed sequentially since ADS = V constantly loads the address on the rising edge of the CLK. Numbers are for reference only.  
IL  
Document #: 38-06056 Rev. *D  
Page 8 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms (continued)  
Figure 7. Bank Select Pipelined Read[21, 22]  
tCYC2  
tCH2  
tCL2  
CLKL  
tHA  
tSA  
A3  
A4  
ADDRESS(B1)  
A5  
A0  
A1  
A2  
tHC  
tSC  
CE0(B1)  
tCD2  
tCD2  
tCD2  
tCKHZ  
tHC  
tCKHZ  
tSC  
D0  
D3  
D1  
DATAOUT(B1)  
ADDRESS(B2)  
tHA  
tSA  
tDC  
A2  
tDC  
A3  
tCKLZ  
A4  
A5  
A0  
A1  
tHC  
tSC  
CE0(B2)  
tCD2  
tCKHZ  
tCD2  
tSC  
tHC  
DATAOUT(B2)  
D4  
D2  
tCKLZ  
tCKLZ  
Figure 8. Left Port Write to Flow Through Right Port Read[23, 24, 25, 26]  
CLK  
L
t
t
HW  
SW  
R/WL  
t
t
HA  
SA  
NO  
MATCH  
ADDRESS  
MATCH  
L
t
t
HD  
SD  
VALID  
DATA  
INL  
t
CCS  
CLK  
R
t
CD1  
t
t
t
t
SW  
SA  
HW  
HA  
R/WR  
NO  
MATCH  
MATCH  
ADDRESS  
R
t
t
CWDD  
CD1  
DATA  
VALID  
VALID  
OUTR  
t
DC  
t
DC  
Notes  
21. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress dual-port device from this datasheet.  
ADDRESS = ADDRESS  
.
(B2)  
(B1)  
22. UB, LB, OE and ADS = V ; CE  
, CE  
, R/W, CNTEN, and CNTRST = V .  
IL  
1(B1)  
1(B2) IH  
23. The same waveforms apply for a right port write to flow through left port read.  
24. CE , UB, LB, and ADS = V ; CE , CNTEN, and CNTRST = V  
.
IH  
0
IL  
1
25. OE = V for the Right Port, which is being read from. OE = V for the Left Port, which is being written to.  
IL  
IH  
26. It t  
maximum specified, then data from right port READ is not valid until the maximum specified for t  
CD1 CWDD  
. If t >maximum specified, then data is not valid until  
CCS  
CCS  
CWDD  
t
+ t  
. t  
does not apply in this case.  
CCS  
Document #: 38-06056 Rev. *D  
Page 9 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms (continued)  
Figure 9. Pipelined Read-to-Write-to-Read (OE = VIL)[20, 27, 28, 29]  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tSW  
tHW  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
ADDRESS  
DATAIN  
tSD tHD  
tSA  
tHA  
Dn+2  
tCD2  
tCD2  
tCKHZ  
tCKLZ  
Qn  
Qn+3  
DATAOUT  
READ  
NO OPERATION  
WRITE  
READ  
Figure 10. Pipelined Read-to-Write-to-Read (OE Controlled)[20, 27, 28, 29]  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tHW  
tSW  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
DATAIN  
tSA  
tHA  
tSD tHD  
Dn+2  
Dn+3  
tCD2  
tCKLZ  
tCD2  
DATAOUT  
Qn  
Qn+4  
tOHZ  
OE  
READ  
WRITE  
READ  
Notes  
27. Output state (High, LOW, or high impedance) is determined by the previous cycle control signals.  
28. CE and ADS = V ; CE , CNTEN, and CNTRST = V  
.
IH  
0
IL  
1
29. During “No Operation”, data in memory at the selected address may be corrupted and must be rewritten to ensure data integrity.  
Document #: 38-06056 Rev. *D  
Page 10 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms (continued)  
Figure 11. Flow Through Read-to-Write-to-Read (OE = VIL)[18, 20, 28, 29]  
tCYC1  
tCL1  
tCH1  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tSW  
tHW  
tSW  
tHW  
An  
An+1  
An+2  
An+2  
An+3  
An+4  
ADDRESS  
DATAIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
tCD1  
tCD1  
tCD1  
tCD1  
DATAOUT  
Qn  
tDC  
Qn+1  
tCKHZ  
Qn+3  
tDC  
tCKLZ  
NO  
OPERATION  
READ  
WRITE  
READ  
Figure 12. Flow Through Read-to-Write-to-Read (OE Controlled)[18, 20, 27, 28, 29]  
tCYC1  
tCH1  
tCL1  
CLK  
CE0  
tSC  
tHC  
CE1  
R/W  
tSW  
tHW  
tSW  
tHW  
An  
An+1  
An+2  
An+3  
An+4  
An+5  
ADDRESS  
DATAIN  
tSD  
tHD  
tSA  
tHA  
Dn+2  
Dn+3  
tOE  
tCD1  
tDC  
tCD1  
tCD1  
Qn  
Qn+4  
tDC  
DATAOUT  
OE  
tOHZ  
tCKLZ  
READ  
WRITE  
READ  
Document #: 38-06056 Rev. *D  
Page 11 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms (continued)  
Figure 13. Pipelined Read with Address Counter Advance[30]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
ADDRESS  
An  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tSCN  
tHCN  
tCD2  
DATAOUT  
Qx-1  
Qx  
tDC  
Qn  
Qn+1  
COUNTER HOLD  
Qn+2  
Qn+3  
READ  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Figure 14. Flow Through Read with Address Counter Advance[30]  
tCYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
An  
ADDRESS  
tSAD  
tHAD  
ADS  
tSAD  
tHAD  
CNTEN  
tSCN  
tHCN  
tCD1  
tSCN  
tHCN  
Qx  
tDC  
Qn  
Qn+1  
Qn+2  
Qn+3  
DATAOUT  
READ  
READ  
WITH  
COUNTER HOLD  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
COUNTER  
Note  
30. CE and OE = V ; CE , R/W and CNTRST = V .  
IH  
0
IL  
1
Document #: 38-06056 Rev. *D  
Page 12 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms (continued)  
Figure 15. Write with Address Counter Advance (Flow Through or Pipelined Outputs)[31, 32]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA  
tHA  
An  
ADDRESS  
INTERNAL  
ADDRESS  
An  
An+1  
An+2  
An+3  
An+4  
tSAD  
tHAD  
ADS  
CNTEN  
DATAIN  
tSCN  
tHCN  
Dn  
Dn+1  
Dn+1  
Dn+2  
Dn+3  
Dn+4  
tSD  
tHD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Notes  
31. CE , UB, LB, and R/W = V ; CE and CNTRST = V .  
IH  
0
IL  
1
32. The “Internal Address” is equal to the “External Address” when ADS = V and equals the counter output when ADS = V  
.
IL  
IH  
Document #: 38-06056 Rev. *D  
Page 13 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Switching Waveforms (continued)  
Figure 16. Counter Reset (Pipelined Outputs)[20, 27, 33, 34]  
tCYC2  
tCL2  
tCH2  
CLK  
tSA tHA  
An  
An+1  
ADDRESS  
INTERNAL  
ADDRESS  
AX  
0
1
An  
An+1  
tSW tHW  
R/W  
ADS  
tSAD  
tHAD  
tSCN  
tHCN  
CNTEN  
tSRST  
tHRST  
CNTRST  
DATAIN  
tSD tHD  
D0  
DATAOUT  
Q0  
Q1  
Qn  
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS n  
Notes  
33. CE , UB, and LB = V ; CE = V .  
IH  
0
IL  
1
34. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
Document #: 38-06056 Rev. *D  
Page 14 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Read/Write and Enable Operation[35, 36, 37]  
Inputs  
Outputs  
I/O0I/O17  
High-Z  
Operation  
OE  
CLK  
CE0  
CE1  
R/W  
X
H
X
X
Deselected[38]  
Deselected[38]  
Write  
X
X
L
X
L
L
L
L
X
L
High-Z  
DIN  
H
H
H
H
X
DOUT  
High-Z  
Read[35]  
H
X
Outputs Disabled  
Address Counter Control Operation[35, 39, 40, 41]  
Previous  
Address  
Address  
CLK  
ADS  
CNTEN CNTRST  
I/O  
Mode  
Operation  
X
X
X
X
X
H
L
H
H
Dout(0)  
Dout(n)  
Dout(n)  
Reset  
Counter Reset to Address 0  
An  
X
X
L
Load  
Hold  
Address Load into Counter  
An  
H
ExternalAddressBlocked—Counter  
Disabled  
X
X
An  
An  
H
H
L
L
H
H
Dout(n+1) Increment Counter Enabled—Internal Address  
Generation  
Dout(n+1) Increment Counter Enabled—Internal Address  
Generation  
Notes  
35. “X” = “Don’t Care”, “H” = V , “L” = V  
.
IL  
IH  
36. ADS, CNTEN, CNTRST = “Don’t Care”.  
37. OE is an asynchronous input signal.  
38. When CE changes state In the pipelined mode, deselection and read happen in the following clock cycle.  
39. CE and OE = V ; CE and R/W = V  
.
IH  
0
IL  
1
40. Data shown for flow through mode; pipelined mode output is delayed by one cycle.  
41. Counter operation is independent of CE and CE .  
0
1
Document #: 38-06056 Rev. *D  
Page 15 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Ordering Information  
16K x16 3.3V Synchronous Dual-Port SRAM  
Package  
Diagram  
Speed (ns)  
Ordering Code  
Package Type  
Operating Range  
7.5[2]  
9
CY7C09269V-7AXC  
CY7C09269V-9AXC  
CY7C09269V-12AXC  
51-85048  
51-85048  
51-85048  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
Commercial  
Commercial  
Commercial  
12  
32K x16 3.3V Synchronous Dual-Port SRAM  
Package  
Diagram  
Speed (ns)  
Ordering Code  
Package Type  
Operating Range  
7.5[2]  
CY7C09279V-7AC  
CY7C09279V-7AXC  
CY7C09279V-12AXC  
51-85048  
100-Pin Thin Quad Flat Pack  
Commercial  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
12  
51-85048  
Commercial  
64K x16 3.3V Synchronous Dual-Port SRAM  
Package  
Diagram  
Speed (ns)  
Ordering Code  
Package Type  
Operating Range  
9
CY7C09289V-9AC  
CY7C09289V-9AXC  
CY7C09289V-9AI  
CY7C09289V-9AXI  
CY7C09289V-12AXC  
51-85048  
51-85048  
51-85048  
100-Pin Thin Quad Flat Pack  
Commercial  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack  
Industrial  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
12  
Commercial  
Document #: 38-06056 Rev. *D  
Page 16 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Ordering Information (Continued)  
16K x18 3.3V Synchronous Dual-Port SRAM  
Package  
Diagram  
Speed (ns)  
Ordering Code  
Package Type  
Operating Range  
9
CY7C09369V-9AXC  
CY7C09369V-12AXC  
51-85048  
51-85048  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
Commercial  
Commercial  
12  
32K x18 3.3V Synchronous Dual-Port SRAM  
Package  
Diagram  
Speed (ns)  
Ordering Code  
Package Type  
Operating Range  
12  
CY7C09379V-12AXC  
51-85048  
100-Pin Thin Quad Flat Pack (Pb-Free)  
Commercial  
64K x18 3.3V Synchronous Dual-Port SRAM  
Package  
Diagram  
Speed (ns)  
Ordering Code  
Package Type  
Operating Range  
7.5[2]  
9
CY7C09389V-7AXC  
CY7C09389V-9AXC  
CY7C09389V-9AI  
51-85048  
51-85048  
51-85048  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack  
Commercial  
Commercial  
Industrial  
CY7C09389V-9AXI  
CY7C09389V-12AXC  
100-Pin Thin Quad Flat Pack (Pb-Free)  
100-Pin Thin Quad Flat Pack (Pb-Free)  
12  
51-85048  
Commercial  
Document #: 38-06056 Rev. *D  
Page 17 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Package Diagrams  
Figure 17. 100-Pin Thin Plastic Quad Flat Pack (TQFP), 51-85048  
51-85048 *D  
Document #: 38-06056 Rev. *D  
Page 18 of 19  
[+] Feedback  
CY7C09269V/79V/89V  
CY7C09369V/79V/89V  
Document History Page  
Document Title: CY7C09269V/79V/89V CY7C09369V/79V/89V 3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM  
Document Number: 38-06056  
Revision  
ECN  
Submission Orig. of  
Description of Change  
Date  
Change  
**  
110215  
122306  
344354  
2678221  
2896210  
12/18/01  
12/27/02  
See ECN  
SZV  
Change from Spec number: 38-00668 to 38-06056  
Power up requirements added to Maximum Ratings Information  
Added Pb-Free Part Ordering Information  
*A  
*B  
*C  
*D  
RBI  
PCX  
03/25/2009 VKN/AESA Added CY7C09379V-12AXCT part. Updated 51-85048 to *C.  
03/22/2010  
RAME  
Updated Ordering Information  
Updated Package Diagrams  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2001-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used  
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use  
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support  
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-06056 Rev. *D  
Revised March 22, 2010  
Page 19 of 19  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C09389V-9AXCT

Dual-Port SRAM, 64KX18, 9ns, CMOS, PQFP100, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C09389V-9AXI

3.3V 16K/32K/64K x 16/18 Synchronous Dual-Port Static RAM
CYPRESS

CY7C09389V-9AXI

64KX18 DUAL-PORT SRAM, 9ns, PQFP100, LEAD FREE, PLASTIC, MS-026, TQFP-100
ROCHESTER
ETC

CY7C09449PV-AC

128 Kb Dual-Port SRAM with PCI Bus Controller (PCI-DP)
CYPRESS

CY7C09449PVA-AC

128 Kb Dual-Port SRAM with PCI Bus Controller
CYPRESS

CY7C09569V

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09569V-100AC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09569V-100AXC

3.3 V 16 K / 32 K × 36 FLEx36® Synchronous Dual-Port Static RAM
CYPRESS

CY7C09569V-100BBC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS

CY7C09569V-133BAC

Dual-Port SRAM, 16KX36, 4.1ns, CMOS, PBGA172, 15 X 15 MM, 0.51 MM HEIGHT, 1 MM PITCH, BGA-172
CYPRESS

CY7C09569V-67AC

3.3V 16K/32K x 36 FLE x 36-TM Synchronous Dual-Port Static RAM
CYPRESS