CY7C1360A-150ACT [ROCHESTER]

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
CY7C1360A-150ACT
型号: CY7C1360A-150ACT
厂家: Rochester Electronics    Rochester Electronics
描述:

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

静态存储器 内存集成电路
文件: 总29页 (文件大小:1245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1360A  
CY7C1362A  
256K x 36/512K x 18 Synchronous  
Pipelined Burst SRAM  
synchronous peripheral circuitry and a two-bit counter for  
internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE), depth-expansion  
Chip Enables (CE2 and CE3), burst control inputs (ADSC,  
ADSP, and ADV), Write Enables (BWa, BWb, BWc, BWd, and  
BWE), and global Write (GW). However, the CE3 chip enable  
input is only available for the TA package version.  
Features  
• Fast access times: 2.5 ns, 3.0 ns, and 3.5 ns  
• Fast clock speed: 225, 200, 166, and 150 MHz  
• Fast OE access times: 2.5 ns, 3.0 ns, and 3.5 ns  
• Optimal for depth expansion (one cycle chip deselect  
to eliminate bus contention)  
• 3.3V –5% and +10% power supply  
• 3.3V or 2.5V I/O supply  
• 5V-tolerant inputs except I/Os  
• Clamp diodes to VSS at all inputs and outputs  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Multiple chip enables for depth expansion:  
three chip enables for A package version and two chip  
enables for BG and AJ package versions  
Asynchronous inputs include the Output Enable (OE) and  
burst mode control (MODE). The data outputs (Q), enabled by  
OE, are also asynchronous.  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or Address Status  
Controller (ADSC) input pins. Subsequent burst addresses  
can be internally generated as controlled by the Burst Advance  
Pin (ADV).  
• Address pipeline capability  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
• Burst control pins (interleaved or linear burst  
sequence)  
• Automatic power-down feature available using ZZ  
mode or CE deselect  
• JTAG boundary scan for BG and AJ package version  
• Low-profile119-bump,14-mm×22-mmPBGA(BallGrid  
Array) and 100-pin TQFP packages  
Address, data inputs, and Write controls are registered on-chip  
to initiate self-timed Write cycle. Write cycles can be one to  
four bytes wide as controlled by the Write control inputs.  
Individual byte Write allows individual byte to be written. BWa  
controls DQa. BWb controls DQb. BWc controls DQc. BWd  
controls DQd. BWa, BWb, BWc, and BWd can be active only  
with BWE being LOW. GW being LOW causes all bytes to be  
written. The x18 version only has 18 data inputs/outputs (DQa  
and DQb) along with BWa and BWb (no BWc, BWd, DQc, and  
DQd).  
For the BGA and TQFP AJ package versions, four pins are  
used to implement JTAG test capabilities: Test Mode Select  
(TMS), Test Data-In (TDI), Test Clock (TCK), and Test  
Data-Out (TDO). The JTAG circuitry is used to serially shift  
data to and from the device. JTAG inputs use LVTTL/LVCMOS  
levels to shift data during this testing mode of operation. The  
TA package version does not offer the JTAG capability.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low-power CMOS designs using advanced  
triple-layer polysilicon, double-layer metal technology. Each  
memory cell consists of four transistors and two high-valued  
resistors.  
The CY7C1360A and CY7C1362A operate from a +3.3V  
power supply. All inputs and outputs are LVTTL-compatible.  
The CY7C1360A and CY7C1362A SRAMs integrate 262,144  
×
36 and 524,288 × 18 SRAM cells with advanced  
Selection Guide  
7C1360A-225  
7C1362A-225  
7C1360A-200  
7C1362A-200  
7C1360A-166  
7C1362A-166  
7C1360A-150  
7C1362A-150  
Unit  
ns  
Maximum Access Time  
2.5  
650  
10  
3.0  
600  
10  
3.5  
520  
10  
3.5  
460  
10  
Maximum Operating Current  
Maximum CMOS Standby Current  
mA  
mA  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-05258 Rev. *C  
Revised January 18, 2003  
CY7C1360A  
CY7C1362A  
Functional Block Diagram256K × 36[1]  
BYTE a WRITE  
BW  
a
BWE  
D
Q
CLK  
BYTE b WRITE  
BW  
b
D
Q
GW  
BYTE c WRITE  
BW  
c
D
Q
BYTE d WRITE  
BW  
d
D
Q
CE  
ENABLE  
1
CE  
D
Q
D
Q
2
[2]  
CE  
3
OE  
ZZ
Power Down Logic  
Input  
Register  
ADSP  
16  
A
Address  
Register  
OUTPUT  
REGISTER  
ADSC  
DQa,DQb  
DQc,DQd  
DQa, DQb,  
DQc, DQd  
CLR  
D
Q
ADV  
Binary  
Counter  
& Logic  
A0-A1  
MODE  
Functional Block Diagram512K × 18[1]  
BYTE b  
WRITE  
BW  
b
D
Q
BWE  
CLK  
BYTE a  
WRITE  
BW  
a
D
Q
GW  
ENABLE  
CE
1
CE  
CE  
D
Q
D
Q
2
3
[2]  
ZZ  
Power Down Logic  
OE  
ADSP  
Input  
Register  
17  
A
Address  
Register  
OUTPUT  
REGISTER  
ADSC  
DQa, DQb,  
DQa,DQb  
CLR  
D
Q
ADV  
Binary  
Counter  
& Logic  
A0-A1  
MODE  
Notes:  
1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions, and timing diagrams for detailed information.  
2. CE3 is for A version only.  
Document #: 38-05258 Rev. *C  
Page 2 of 28  
CY7C1360A  
CY7C1362A  
Pin Configurations  
CY7C1360A  
256K × 36 100-p  
in TQFP  
Top View  
DQc  
DQc  
DQc  
VCCQ  
VSS  
DQc  
DQc  
DQc  
DQc  
VSS  
VCCQ  
DQc  
DQc  
NC  
VCC  
NC  
DQb  
DQb  
DQb  
VCCQ  
VSS  
DQb  
DQb  
DQb  
DQb  
VSS  
VCCQ  
DQb  
DQb  
VSS  
NC  
VCC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
1
DQb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
3
4
5
6
7
8
9
V
CCQ  
V
CCQ  
V
SS  
V
SS  
DQc  
DQc  
DQc  
DQc  
DQb  
DQb  
DQb  
DQb  
9
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
V
CCQ  
V
CCQ  
DQc  
DQc  
NC  
DQb  
DQb  
V
SS  
V
CC  
NC  
NC  
100-pin TQFP  
A Version  
100-pin TQFP  
AJ Version  
V
CC  
VSS  
V
ZZ  
SS  
ZZ  
DQa  
DQa  
DQd  
DQd  
VCCQ  
VSS  
DQd  
DQd  
DQd  
DQd  
VSS  
VCCQ  
DQd  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
VCCQ  
VSS  
DQa  
DQa  
DQa  
DQa  
VSS  
VCCQ  
DQa  
DQa  
DQa  
V
V
CCQ  
CCQ  
V
SS  
V
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
V
SS  
V
SS  
V
CCQ  
V
CCQ  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
CY7C1362A  
512K × 18 100-p  
in TQFP  
Top View  
NC  
NC  
NC  
NC  
NC  
NC  
A
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
V
NC  
NC  
V
V
V
CCQ  
CCQ  
CCQ  
CCQ  
V
V
SS  
V
SS  
V
SS  
SS  
NC  
NC  
DQb  
DQb  
NC  
NC  
DQb  
DQb  
NC  
NC  
DQa  
DQa  
DQa  
DPa  
DQa  
DQa  
9
9
V
V
SS  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
V
V
CCQ  
V
CCQ  
DQb  
DQb  
NC  
V
CCQ  
CCQ  
DQb  
DQb  
NC  
DQa  
DQa  
DQa  
DQa  
V
V
SS  
SS  
V
V
CC  
100-pin TQFP  
A Version  
NC  
CC  
100-pin TQFP  
AJ Version  
NC  
NC  
NC  
V
V
CC  
CC  
V
V
SS  
ZZ  
DQa  
DQa  
SS  
ZZ  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
V
V
V
CCQ  
V
CCQ  
CCQ  
CCQ  
V
V
SS  
V
SS  
V
SS  
SS  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
NC  
DQa  
DQa  
NC  
NC  
NC  
V
V
SS  
V
SS  
V
SS  
SS  
V
V
CCQ  
NC  
NC  
NC  
V
CCQ  
NC  
NC  
NC  
V
CCQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05258 Rev. *C  
Page 3 of 28  
CY7C1360A  
CY7C1362A  
Pin Configurations (continued)  
CY7C1360A 256K × 36 119-ball BGA Top View  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
A
6
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
VCCQ  
NC  
CE2  
A
A
A
A
NC  
A
A
A
NC  
DQc  
DQc  
VCCQ  
DQc  
DQc  
VCCQ  
DQd  
DQd  
VCCQ  
DQd  
DQd  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
VCC  
DQd  
DQd  
DQd  
DQd  
DQd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
VCC  
DQa  
DQa  
DQa  
DQa  
DQa  
A
DQb  
DQb  
VCCQ  
DQb  
DQb  
VCCQ  
DQa  
DQa  
VCCQ  
DQa  
DQa  
NC  
CE  
OE  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
K
L
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
M
N
P
R
T
BWE  
A1  
A0  
VCC  
A
NC  
NC  
NC  
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
CY7C1362A 512K × 18 119-ball BGA Top View  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
A
6
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
VCCQ  
NC  
CE2  
A
A
A
CE3  
A
NC  
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
DQb  
NC  
VCC  
DQb  
NC  
DQb  
NC  
DQb  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQa  
NC  
DQa  
NC  
DQa  
VCC  
NC  
DQa  
NC  
DQa  
NC  
A
NC  
CE  
DQa  
VCCQ  
DQa  
NC  
VCCQ  
NC  
OE  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
DQb  
VCCQ  
NC  
VCCQ  
DQa  
NC  
K
L
DQb  
VCCQ  
DQb  
NC  
M
N
P
R
T
BWE  
A1  
VCCQ  
NC  
A0  
DQa  
NC  
NC  
VCC  
NC  
NC  
A
A
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
Document #: 38-05258 Rev. *C  
Page 4 of 28  
CY7C1360A  
CY7C1362A  
256K × 36 Pin Descriptions  
X36 PBGA Pins  
X36 QFP Pins  
Name  
A0  
A1  
Type  
Description  
Addresses: These inputs are registered and must meet  
4P  
4N  
37  
36  
Input-  
Synchronous the set-up and hold times around the rising edge of CLK.  
The burst counter generates internal addresses  
associated with A0 and A1, during burst cycle and wait  
cycle.  
2A,3A,5A,6A,3B,5B, 35, 34, 33, 32, 100, A  
6B, 2C, 3C, 5C, 6C,  
2R, 6R, 3T, 4T, 5T  
99, 82, 81, 44, 45,  
46, 47, 48, 49, 50  
92 (AJ Version)  
43 (A Version)  
5L  
93  
94  
95  
96  
BWa  
BWb  
BWc  
BWd  
Input-  
Byte Write: A byte Write is LOW for a Write cycle and  
5G  
3G  
3L  
Synchronous HIGH for a Read cycle. BWa controls DQa. BWb controls  
DQb. BWc controls DQc. BWd controls DQd. Data I/O are  
high impedance if either of these inputs are LOW, condi-  
tioned by BWE being LOW.  
4M  
4H  
87  
88  
BWE  
GW  
Input-  
Write Enable: This active LOW input gates byte Write  
Synchronous operations and must meet the set-up and hold times  
around the rising edge of CLK.  
Input-  
Global Write: This active LOW input allows a full 36-bit  
Synchronous Write to occur independent of the BWE and BWn lines  
andmustmeettheset-upandholdtimesaroundtherising  
edge of CLK.  
4K  
89  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip  
Synchronous enables, Write control, and burst control inputs on its  
rising edge. All synchronous inputs must meet set-up and  
hold times around the clocks rising edge.  
4E  
2B  
98  
97  
CE  
Input-  
Chip Enable: This active LOW input is used to enable the  
Synchronous device and to gate ADSP.  
CE2  
CE3  
Input-  
Chip Enable: This active HIGH input is used to enable  
Synchronous the device.  
92  
Input-  
Chip Enable: This active LOW input is used to enable the  
(not available for  
PBGA)  
(for A version only)  
Synchronous device. Not available for BG and AJ package versions.  
4F  
86  
83  
OE  
Input  
Output Enable: This active LOW asynchronous input  
enables the data output drivers.  
4G  
ADV  
Input-  
Address Advance: This active LOW input is used to  
Synchronous control the internal burst counter. A HIGH on this pin  
generates wait cycle (no address advance).  
4A  
4B  
84  
85  
ADSP  
ADSC  
Input-  
Address Status Processor: This active LOW input,  
Synchronous alongwithCEbeingLOW, causesanewexternaladdress  
to be registered and a Read cycle is initiated using the  
new address.  
Input-  
Address Status Controller: This active LOW input  
Synchronous causes the device to be deselected or selected along with  
new external address to be registered. A Read or Write  
cycle is initiated depending upon Write control inputs.  
3R  
7T  
31  
64  
MODE  
ZZ  
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on  
this pin selects Linear Burst. A NC or HIGH on this pin  
selects Interleaved Burst.  
Input-  
Sleep: This active HIGH input puts the device in low  
Asynchronous power consumption standby mode. For normal operation,  
this input has to be either LOW or NC (No Connect).  
Document #: 38-05258 Rev. *C  
Page 5 of 28  
CY7C1360A  
CY7C1362A  
256K × 36 Pin Descriptions (continued)  
X36 PBGA Pins  
(a) 6P, 7P, 7N, 6N, 6M, (a) 51, 52, 53, 56, DQa  
6L, 7L, 6K, 7K, 57, 58, 59, 62, 63 DQb  
(b) 7H, 6H, 7G, 6G, 6F, (b) 68, 69, 72, 73, DQc  
6E, 7E, 7D, 6D, 74, 75, 78, 79, 80 DQd  
(c) 2D, 1D, 1E, 2E, 2F, (c) 1, 2, 3, 6, 7, 8, 9,  
1G, 2G, 1H, 2H, 12, 13  
(d) 1K, 2K, 1L, 2L, 2M, (d) 18, 19, 22, 23,  
X36 QFP Pins  
Name  
Type  
Description  
Input/  
Output  
Data Inputs/Outputs: First Byte is DQa. Second Byte is  
DQb. Third Byte is DQc. Fourth Byte is DQd. Input data  
must meet set-up and hold times around the rising edge  
of CLK.  
1N, 2N, 1P, 2P  
24, 25, 28, 29, 30  
2U  
3U  
4U  
38  
39  
43  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 test inputs. LVTTL-level inputs. Not  
available for A package version.  
for BG and AJ  
version  
5U  
42  
TDO  
VCC  
Output  
IEEE 1149.1 test output. LVTTL-level output. Not  
available for A package version.  
for BG and AJ  
version  
4C, 2J, 4J, 6J, 4R  
15, 41, 65, 91  
Power Supply Core power supply: +3.3V 5% and +10%  
3D, 5D, 3E, 5E, 3F, 5F, 5, 10, 17, 21, 26, VSS  
3H, 5H, 3K, 5K, 3M, 40, 55, 60, 67, 71,  
Ground  
Ground: GND.  
5M, 3N, 5N, 3P, 5P  
1A, 7A, 1F, 7F, 1J, 7J, 4, 11, 20, 27, 54,  
1M, 7M, 1U, 7U 61, 70, 77  
76, 90  
VCCQ  
NC  
I/O Power  
Supply  
Power Supply for the I/O circuitry  
1B,7B,1C,7C,4D,3J, 14, 16, 66  
-
No Connect: These signals are not internally connected.  
5J, 4L, 1R, 5R, 7R, 1T, 38, 39, 42 for A  
User can leave it floating or connect it to VCC or VSS.  
2T, 6T, 6U  
version  
512K × 18 Pin Descriptions  
X18 PBGA Pins  
4P  
4N  
2A, 3A, 5A, 6A, 3B, 35, 34, 33, 32, 100, A  
5B, 6B, 2C, 3C, 5C, 99, 82, 81, 80, 48,  
6C,2R,6R,2T,3T,5T, 47, 46, 45, 44, 49,  
X18 QFP Pins  
Name  
Type  
Description  
37  
36  
A0  
A1  
Input-  
Addresses: These inputs are registered and must meet  
Synchronous the set up and hold times around the rising edge of CLK.  
The burst counter generates internal addresses  
associated with A0 and A1, during burst cycle and wait  
cycle.  
6T  
50  
92 (AJ Version)  
43 (A Version)  
5L  
3G  
93  
94  
BWa  
BWb  
Input-  
Byte Write Enables: A byte Write enable is LOW for a  
Synchronous WritecycleandHIGHfor aReadcycle. BWacontrolsDQa.  
BWb controls DQb. Data I/O are high impedance if either  
of these inputs are LOW, conditioned by BWE being LOW.  
4M  
4H  
87  
88  
BWE  
GW  
Input-  
Write Enable: This active LOW input gates byte Write  
Synchronous operations and must meet the set-up and hold times  
around the rising edge of CLK.  
Input-  
Global Write: This active LOW input allows a full 18-bit  
Synchronous Write to occur independent of the BWE and WEn lines and  
must meet the set-up and hold times around the rising  
edge of CLK.  
4K  
89  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip  
Synchronous enables, Write control and burst control inputs on its rising  
edge. All synchronous inputs must meet set-up and hold  
times around the clocks rising edge.  
4E  
2B  
98  
97  
CE  
Input-  
Chip Enable: This active LOW input is used to enable the  
Synchronous device and to gate ADSP.  
CE2  
Input-  
Synchronous device.  
Chip Enable: This active HIGH input is used to enable the  
Document #: 38-05258 Rev. *C  
Page 6 of 28  
CY7C1360A  
CY7C1362A  
512K × 18 Pin Descriptions (continued)  
X18 PBGA Pins  
X18 QFP Pins  
92  
Name  
Type  
Description  
Chip Enable: This active LOW input is used to enable the  
CE3  
Input-  
(not available for  
PBGA)  
(for A Version only)  
Synchronous device. Not available for BG and AJ package versions.  
4F  
86  
83  
OE  
Input  
Output Enable: This active LOW asynchronous input  
enables the data output drivers.  
4G  
ADV  
Input-  
Address Advance: This active LOW input is used to  
Synchronous control the internal burst counter. A HIGH on this pin  
generates wait cycle (no address advance).  
4A  
4B  
84  
85  
ADSP  
ADSC  
Input-  
Address Status Processor: This activeLOWinput, along  
Synchronous with CE being LOW, causes a new external address to be  
registered and a Read cycle is initiated using the new  
address.  
Input-  
Address Status Controller: This active LOW input  
Synchronous causes device to be deselectedor selectedalongwith new  
external address to be registered. A Read or Write cycle  
is initiated depending upon Write control inputs.  
3R  
7T  
31  
64  
MODE  
ZZ  
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on  
this pin selects Linear Burst. An NC or HIGH on this pin  
selects Interleaved Burst.  
Input-  
Sleep:This active HIGH inputputs thedevice in low power  
Asynchronous consumption standby mode. For normal operation, this  
input has to be either LOW or NC (No Connect).  
(a)6D,7E,6F,7G,6H, (a) 58, 59, 62, 63, DQa  
Input/  
Output  
Data Inputs/Outputs: Low Byte is DQa. HighByte is DQb.  
Input data must meet set up and hold times around the  
rising edge of CLK.  
7K, 6L, 6N, 7P  
68, 69, 72, 73, 74 DQb  
(b) 8, 9, 12, 13, 18,  
19, 22, 23, 24  
(b) 1D, 2E, 2G, 1H,  
2K, 1L, 2M, 1N, 2P  
2U  
3U  
4U  
38  
39  
43  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 test inputs. LVTTL-level inputs. Not  
available for A package version.  
for BG and AJ  
versions  
5U  
42  
TDO  
Output  
IEEE 1149.1 test output. LVTTL-level output. Not  
for BG and AJ  
available for A package version.  
version  
4C, 2J, 4J, 6J, 4R  
15, 41,65, 91  
VCC  
Supply  
Ground  
Core power supply: +3.3V 5% and +10%  
Ground: GND.  
3D, 5D, 3E, 5E, 3F, 5, 10, 17, 21, 26, VSS  
5F, 5G, 3H, 5H, 3K, 40, 55, 60, 67, 71,  
5K, 3L, 3M, 5M, 3N, 76, 90  
5N, 3P, 5P  
1A, 7A, 1F, 7F, 1J, 7J, 4, 11, 20, 27, 54,  
1M, 7M, 1U, 7U 61, 70, 77  
VCCQ  
I/O Power  
Supply  
Power Supply for the I/O circuitry  
1B, 7B, 1C, 7C, 2D, 13, 6, 7, 14, 16, NC  
4D, 7D, 1E, 6E, 2F, 25, 2830, 5153,  
1G, 6G, 2H, 7H, 3J, 56, 57, 66, 75, 78,  
5J, 1K, 6K, 2L, 4L, 7L, 79, 80, 95, 96  
6M, 2N, 7N, 1P, 6P, 38, 39, 42 for A  
1R, 5R, 7R, 1T, 4T, 6U Version  
No Connect: These signals are not internally connected.  
User can leave it floating or connect it to VCC or VSS  
.
Document #: 38-05258 Rev. *C  
Page 7 of 28  
CY7C1360A  
CY7C1362A  
Write signals (GW, BWE, and BWx) and ADV inputs are  
ignored during this first cycle.  
Introduction  
Functional Overview  
ADSP triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the Write operation is controlled by BWE and BWx  
signals. The CY7C1360A/CY7C1362A provides byte Write  
capability that is described in the Write cycle description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write (BWa,b,c,d for CY7C1360A and BWa,b for  
CY7C1362A) input will selectively write to only the desired  
bytes. Bytes not selected during a byte Write operation will  
remain unaltered. A synchronous self-timed Write mechanism  
has been provided to simplify the Write operations.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.8 ns  
(133-MHz device).  
The CY7C1360A/CY7C1362A supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1360A/CY7C1362A is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ are  
automatically three-stated whenever a Write cycle is detected,  
regardless of the state of OE.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWa,b,c,d for 1360A and BWa,b  
for 1362A) inputs. A Global Write Enable (GW) overrides all  
byte Write inputs and writes data to all four bytes. All writes are  
simplified with on-chip synchronous self-timed Write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the Write inputs (GW, BWE,  
and BWx) are asserted active to conduct a Write to the desired  
byte(s). ADSC triggered Write accesses require a single clock  
cycle to complete. The address presented to A[17:0] is loaded  
into the address register and the address advancement logic  
while being delivered to the RAM core. The ADV input is  
ignored during this cycle. If a global Write is conducted, the  
data presented to the DQ[x:0] is written into the corresponding  
address location in the RAM core. If a byte Write is conducted,  
only the selected bytes are written. Bytes not selected during  
a byte Write operation will remain unaltered. A synchronous  
self-timed Write mechanism has been provided to simplify the  
Write operations.  
Synchronous Chip Selects (CE1, CE2, CE3 for TQFP / CE1 for  
BGA) and an asynchronous Output Enable (OE) provide for  
easy bank selection and output three-state control. ADSP is  
ignored if CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) chip selects are all asserted active, and (3) the Write  
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored  
if CE1 is HIGH. The address presented to the address inputs  
is stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within preliminary ns (200-MHz device) if OE is  
active LOW. The only exception occurs when the SRAM is  
emerging from a deselected state to a selected state, its  
outputs are always three-stated during the first cycle of the  
access. After the first cycle of the access, the outputs are  
controlled by the OE signal. Consecutive single Read cycles  
are supported. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will three-state immediately.  
Because the CY7C1360A/CY7C1362A is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ[x:0] inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ[x:0]  
are automatically three-stated whenever a Write cycle is  
detected, regardless of the state of OE.  
Burst Sequences  
The CY7C1360A/CY7C1362A provides a two-bit wraparound  
counter, fed by A[1:0], that implements either an interleaved or  
linear burst sequence. The interleaved burst sequence is  
designed specifically to support Intel® Pentium® applications.  
The linear burst sequence is designed to support processors  
that follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
Document #: 38-05258 Rev. *C  
Page 8 of 28  
CY7C1360A  
CY7C1362A  
Burst Address Table (MODE = NC/V  
)
Burst Address Table (MODE = GND)  
CC  
First  
Address (ex-  
ternal)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
A[1:0]]  
00  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]]  
A[1:0]  
A[1:0]  
A[1:0]  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
01  
10  
11  
Truth Table[3, 4, 5, 6, 7, 8, 9]  
Next Cycle  
Unselected  
Address Used ZZ CE3 CE2 CE1 ADSP ADSC ADV  
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
None  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
1
X
1
X
X
0
1
0
0
0
0
0
0
X
X
1
1
X
X
1
1
X
1
0
X
1
X
1
X
X
0
0
1
1
0
1
1
1
X
X
1
1
X
X
1
X
1
1
X
1
X
X
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
1
1
X
0
0
1
1
X
X
X
X
X
X
X
Unselected  
None  
Unselected  
None  
X
1
Unselected  
None  
X
0
Unselected  
None  
X
0
Begin Read  
External  
External  
Next  
1
Begin Read  
0
1
Hi-Z Read  
Hi-Z Read  
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
Next  
0
DQ  
Hi-Z Read  
DQ Read  
Hi-Z Read  
DQ Read  
Hi-Z Read  
DQ Read  
Read  
Next  
1
Next  
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
1
0
1
0
X
X
X
X
X
X
X
X
Hi-Z Write  
Hi-Z Write  
Hi-Z Write  
Hi-Z Write  
Hi-Z Write  
Hi-Z Write  
Hi-Z Write  
Begin Write  
Begin Write  
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
Next  
Current  
Current  
None  
ZZ sleep”  
Hi-Z  
X
Notes:  
3. X = Dont Care.H = logic HIGH. L = logic LOW.  
For X36 product, Write = L means [BWE + BWa*BWb*BWc*BWd]*GW equals LOW. Write = H means [BWE + BWa*BWb*BWc*BWd]*GW equals HIGH.  
For X18 product, Write = L means [BWE + BWa*BWb]*GW equals LOW. Write = H means [BWE + BWa*BWb]*GW equals HIGH.  
4. BWa enables Write to DQa. BWb enables Write to DQb. BWc enables Write to DQc. BWd enables Write to DQd.  
5. All inputs except OE must meet set-up and hold times around the rising edge (LOW to HIGH) of CLK.  
6. Suspending burst generates wait cycle.  
7. For a Write operation following a Read operation, OE must be HIGH before the input-data-required set-up time plus High-Z time for OE and staying HIGH  
throughout the input data hold time.  
8. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
9. ADSP LOW along with chip being selected always initiates a Read cycle at the L-H edge of CLK. A Write cycle can be performed by setting Write LOW for the  
CLK L-H edge of the subsequent wait cycle. Refer to Write timing diagram for clarification.  
Document #: 38-05258 Rev. *C  
Page 9 of 28  
CY7C1360A  
CY7C1362A  
Partial Truth Table for Read/Write[10]  
Function (1360A)  
GW  
1
BWE  
1
BWd  
X
1
BWc  
X
1
BWb  
X
1
BWa  
X
1
Read  
Read  
1
0
Write Byte 0 DQa  
Write Byte 1 DQb  
Write Bytes 1, 0  
Write Byte 2 DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
0
1
1
1
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
Write All Bytes  
0
X
X
X
X
X
Function (1362A)  
GW  
1
BWE  
BWb  
BWa  
Read  
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Read  
1
Write Byte 0 DQ[7:0] and DP0  
Write Byte 1 DQ[15:8] and DP1  
Write All Bytes  
1
1
1
Write All Bytes  
0
Sleep Mode  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
Min.  
Max.  
10  
Unit  
mA  
ns  
IDDZZ  
tZZS  
2tCYC  
tZZREC  
2tCYC  
ns  
Note:  
10. For the X18 product, there are only BWa and BWb.  
Document #: 38-05258 Rev. *C  
Page 10 of 28  
CY7C1360A  
CY7C1362A  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TAP circuitry does not have a reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
Overview  
This device incorporates a serial boundary scan access port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1-1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the critical speed path of the device. Never-  
theless, the device supports the standard TAP controller archi-  
tecture (the TAP controller is the state machine that controls  
the TAPs operation) and can be expected to function in a  
manner that does not conflict with the operation of devices with  
IEEE Standard 1149.1-compliant TAPs. The TAP operates  
using LVTTL/ LVCMOS logic level signaling.  
performed for the TAP controller by forcing TMS HIGH (VCC)  
for five rising edges of TCK and pre-loads the instruction  
register with the IDCODE command. This type of reset does  
not affect the operation of the system logic. The reset affects  
test logic only.  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
TAP Registers  
Overview  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on subsequent falling edge of TCK. When  
a register is selected, it is connected between the TDI and  
TDO pins.  
Disabling the JTAG Feature  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to  
prevent clocking the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be pulled  
up to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Instruction Register  
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The parallel outputs of  
the instruction register are automatically preloaded with the  
IDCODE instruction upon power-up or whenever the controller  
is placed in the test-logic reset state. When the TAP controller  
is in the Capture-IR state, the two LSBs of the serial instruction  
register are loaded with a binary 01pattern to allow for fault  
isolation of the board-level serial test data path.  
Test Access Port  
TCKTest Clock (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMSTest Mode Select (INPUT)  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
Bypass Register  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
with minimum delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
TDITest Data In (INPUT)  
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the  
instruction that is currently loaded in the TAP instruction  
register (refer to Figure 1, TAP Controller State Diagram). It is  
allowable to leave this pin unconnected if it is not used in an  
application. The pin is pulled up internally, resulting in a logic  
HIGH level. TDI is connected to the Most Significant Bit (MSB)  
of any register (see Figure 2.).  
Boundary Scan Register  
The Boundary Scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for the x36 device and  
51 bits for the x18 device. The boundary scan register, under  
the control of the TAP controller, is loaded with the contents of  
the device I/O ring when the controller is in Capture-DR state  
and then is placed between the TDI and TDO pins when the  
controller is moved to Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE-Z instructions can be used  
to capture the contents of the I/O ring.  
TDOTest Data Out (OUTPUT)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1, TAP Controller State  
Diagram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed  
between TDI and TDO. TDO is connected to the Least Signif-  
icant Bit (LSB) of any register (see Figure 2.).  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bits  
position in the boundary scan register. The MSB of the register  
is connected to TDI, and LSB is connected to TDO. The  
second column is the signal name, the third column is the  
TQFP pin number, and the fourth column is the BGA bump  
number.  
Document #: 38-05258 Rev. *C  
Page 11 of 28  
CY7C1360A  
CY7C1362A  
Identification (ID) Register  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
SAMPLE/PRELOAD  
TAP Controller Instruction Set  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory instruction.  
The PRELOAD portion of the command is not implemented in  
this device, so the device TAP controller is not fully IEEE  
1149.1-compliant.  
Overview  
There are two classes of instructions defined in IEEE Standard  
1149.1-1990; the standard (public) instructions and device  
specific (private) instructions. Some public instructions are  
mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
When the SAMPLE/PRELOAD instruction is loaded in the  
instruction register and the TAP controller is in the Capture-DR  
state, a snap shot of the data in the devices input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controllers capture set up plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
Although the TAP controller in this device follows IEEE 1149.1  
conventions, it is not IEEE 1149.1-compliant because some of  
the mandatory instructions are not fully implemented. The TAP  
on this device may be used to monitor all input and I/O pads,  
but can not be used to load address, data, or control signals  
into the device or to preload the I/O buffers. In other words, the  
device will not perform IEEE 1149.1 EXTEST, INTEST, or the  
preload portion of the SAMPLE/PRELOAD command.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the  
instruction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the  
controller is moved to Update-IR state. The TAP instruction  
sets for this device are listed in the following tables.  
Moving the controller to Shift-DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the Update-DR  
state with the SAMPLE/PRELOAD instruction loaded in the  
instruction register has the same effect as the Pause-DR  
command.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
BYPASS  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP controller is in the Shift-DR state, the  
bypass register is placed between TDI and TDO. This allows  
the board level scan path to be shortened to facilitate testing  
of other devices in the scan path.  
Reserved  
IDCODE  
Do not use these instructions. They are reserved for future  
use.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
Capture-DR mode and places the ID register between the TDI  
Document #: 38-05258 Rev. *C  
Page 12 of 28  
CY7C1360A  
CY7C1362A  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
SELECT  
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram[11]  
Note:  
11. The 0/1next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05258 Rev. *C  
Page 13 of 28  
CY7C1360A  
CY7C1362A  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register [12]  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP Electrical Characteristics (20°C < Tj < 110°C; VCC = 3.3V 0.2V and +0.3V unless otherwise noted)  
Parameter  
Description  
Test Conditions  
Min.  
2.0  
Max.  
VCC + 0.3  
0.8  
Unit  
V
VIH  
VIl  
Input High (Logic 1) Voltage[13, 14]  
Input Low (Logic 0) Voltage[13, 14]  
Input Leakage Current  
0.3  
5.0  
30  
5.0  
V
ILI  
0V < VIN < VCC  
5.0  
µA  
µA  
µA  
ILI  
TMS and TDI Input Leakage Current 0V < VIN < VCC  
30  
ILO  
Output Leakage Current  
Output disabled,  
0V < VIN < VCCQ  
5.0  
VOLC  
VOHC  
VOLT  
LVCMOS Output Low Voltage[13, 15] IOLC = 100 µA  
LVCMOS Output High Voltage[13, 15] IOHC = 100 µA  
0.2  
0.4  
V
V
V
V
VCC 0.2  
LVTTL Output Low Voltage[13]  
LVTTL Output High Voltage[13]  
IOLT = 8.0 mA  
IOHT = 8.0 mA  
VOHT  
2.4  
Notes:  
12. X = 69 for the x36 configuration;  
X = 50 for the x18 configuration.  
13. All voltage referenced to VSS (GND).  
14. Overshoot: VIH(AC) < VCC + 1.5V for t < tKHKH/2; undershoot: VIL(AC) < 0.5V for t < tKHKH/2; power-up: VIH < 3.6V and VCC < 3.135V and VCCQ < 1.4V for  
t < 200 ms. During normal operation, VCCQ must not exceed VCC. Control input signals (such as R/W, ADV/LD, etc.) may not have pulse widths less than  
tKHKL (min.).  
15. This parameter is sampled.  
Document #: 38-05258 Rev. *C  
Page 14 of 28  
CY7C1360A  
CY7C1362A  
TAP AC Switching Characteristics Over the Operating Range[16, 17]  
Parameter  
Clock  
Description  
Min.  
Max.  
Unit  
tTHTH  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
fTF  
50  
tTHTL  
8
8
tTLTH  
ns  
Output Times  
tTLQX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
tTLQV  
10  
tDVTH  
5
5
tTHDX  
Set-up Times  
tMVTH  
TMS Set-up  
5
5
5
ns  
ns  
ns  
tTDIS  
TDI Set-up to TCK Clock Rise  
Capture Set-up  
tCS  
Hold Times  
tTHMX  
TMS Hold  
5
5
5
ns  
ns  
ns  
tTDIH  
TDI Hold after Clock Rise  
Capture Hold  
tCH  
Notes:  
16.  
tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
17. Test conditions are specified using the load in TAP AC test conditions.  
TAP Timing and Test Conditions  
ALL INPUT PULSES  
1.5V  
TDO  
3.0V  
Z =  
5
0
50Ω  
5
20 pF  
0
V
SS  
Vt = 1.5V  
1.5 ns  
1.5 ns  
(b)  
(a)  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
t
t
MVTH  
THMX  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
Document #: 38-05258 Rev. *C  
Page 15 of 28  
CY7C1360A  
CY7C1362A  
Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Device Depth (27:23)  
256K × 36  
512K × 18  
XXXX  
Description  
Reserved for revision number.  
XXXX  
00110  
00111  
Defines depth of 256K or 512K words.  
Defines width of x36 or x18 bits.  
Reserved for future use.  
Device Width (22:18)  
00100  
00011  
Reserved (17:12)  
XXXXXX  
00011100100  
1
XXXXXX  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
00011100100 Allows unique identification of DEVICE vendor.  
1
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Instruction  
Bypass  
Bit Size (x36)  
Bit Size (x18)  
3
1
3
1
ID  
32  
70  
32  
51  
Boundary Scan  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between  
TDI and TDO. Forces all device outputs to High-Z state. This instruction is  
not IEEE 1149.1-compliant.  
IDCODE  
001  
010  
Preloads ID register with vendor ID code and places it between TDI and  
TDO. This instruction does not affect device operations.  
SAMPLE-Z  
Captures I/O ring contents. Places the boundary scan register between  
TDI and TDO. Forces all device outputs to High-Z state.  
RESERVED  
011  
100  
Do not use these instructions; they are reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between  
TDI and TDO. This instruction does not affect device operations. This  
instruction does not implement IEEE 1149.1 PRELOAD function and is  
therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Places the bypass register between TDI and TDO. This instruction does  
not affect device operations.  
Document #: 38-05258 Rev. *C  
Page 16 of 28  
CY7C1360A  
CY7C1362A  
Boundary Scan Order (256K × 36) (continued)  
Boundary Scan Order (256K × 36)  
Bit#  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
A
TQFP  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
Bump ID  
6B  
5L  
Bit#  
1
Signal Name  
A
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
56  
57  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
75  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Bump ID  
2R  
3T  
BWa  
BWb  
BWc  
BWd  
CE2  
CE  
2
A
5G  
3G  
3L  
3
A
4T  
4
A
5T  
5
A
6R  
3B  
5B  
6P  
7N  
6M  
7L  
2B  
4E  
3A  
2A  
2D  
1E  
2F  
6
A
7
A
A
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
A
9
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
2
3
6K  
7P  
6N  
6L  
6
1G  
2H  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
7
8
9
7K  
7T  
12  
13  
14  
18  
19  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
6H  
7G  
6F  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
4A  
4B  
4F  
2M  
1N  
2P  
1K  
2L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV  
ADSP  
ADSC  
OE  
A
A
A
BWE  
GW  
CLK  
4M  
4H  
4K  
A1  
A0  
Document #: 38-05258 Rev. *C  
Page 17 of 28  
CY7C1360A  
CY7C1362A  
Boundary Scan Order (512K × 18) (continued)  
Boundary Scan Order (512K × 18)  
Bit#  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal Name  
CLK  
A
TQFP  
89  
92  
93  
94  
97  
98  
99  
100  
8
Bump ID  
4K  
Bit#  
1
Signal Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
80  
81  
82  
83  
84  
85  
86  
87  
88  
Bump ID  
2R  
2T  
A
A
6B  
2
BWa  
BWb  
CE2  
CE  
5L  
3
A
3T  
3G  
2B  
4
A
5T  
5
A
6R  
3B  
5B  
7P  
6N  
6L  
4E  
6
A
A
3A  
7
A
A
2A  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
DQb  
DQb  
DQb  
DQb  
NC  
1D  
2E  
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
12  
13  
14  
18  
19  
22  
23  
24  
31  
32  
33  
34  
35  
36  
37  
2G  
1H  
5R  
2K  
7K  
7T  
DQa  
DQa  
DQa  
DQa  
DQa  
A
6H  
7G  
6F  
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
1L  
2M  
1N  
2P  
7E  
6D  
6T  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
6A  
5A  
4G  
4A  
4B  
4F  
A
A
ADV  
ADSP  
ADSC  
OE  
BWE  
GW  
A
A
A1  
A0  
4M  
4H  
Document #: 38-05258 Rev. *C  
Page 18 of 28  
CY7C1360A  
CY7C1362A  
Short Circuit Output Current........................................ 50 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... >200mA  
Operating Range  
Voltage on VCC Supply Relative to VSS[19] .... 0.5V to +4.6V  
VIN ................................................................... 0.5V to 5.5V  
Storage Temperature (plastic) ...................... 55°C to +150°  
Junction Temperature ..................................................+150°  
Power Dissipation .........................................................1.0W  
Ambient  
[19,20,21]  
Range  
Commercial  
Industrial  
Temperature[18] VCC  
VCCQ  
0°C to +70°C  
40°C to +85°C  
3.3V  
2.5V 5/  
5/+10% 3.3V + 10%  
Electrical Characteristics Over the Operating Range  
Parameter  
VIHD  
Description  
Input High (Logic 1) Voltage[13, 22]  
Test Conditions  
All other inputs  
Min.  
2.0  
Max.  
Unit  
V
VCC + 0.3  
VIH  
3.3V I/O  
2.0  
V
2.5V I/O  
1.7  
V
Input Low (Logic 0) Voltage[13, 22]  
Input Leakage Current  
VIL  
3.3V I/O  
0.3  
0.3  
0.8  
0.7  
5
V
2.5V I/O  
V
ILI  
0V < VIN < VCC  
MODE and ZZ Input Leakage Current[23] 0V < VIN < VCC  
µA  
µA  
µA  
V
ILI  
-
30  
5
ILO  
VOH  
Output Leakage Current  
Output High Voltage[13]  
Output(s) disabled, 0V < VOUT < VCC  
-
IOH = 5.0 mA for 3.3V I/O  
IOH = 1.0 mA for 2.5V I/O  
IOL = 8.0 mA for 3.3V I/O  
IOL = 1.0 mA for 2.5V I/O  
2.4  
2.0  
V
VOL  
VCC  
Output Low Voltage[13]  
0.4  
0.4  
V
V
[19]  
Supply Voltage[13]  
I/O Supply Voltage[13]  
3.135  
3.135  
2.375  
3.63  
3.63  
2.9  
V
VCCQ  
3.3V I/O  
2.5V I/O  
V
V
Max.  
225 200 166 150  
Typ. MHz MHz MHz MHz Unit  
Parameter  
Description  
VCC Operating Supply[24, 25, 26]  
Conditions  
ICC  
Device selected; all inputs < VILor > VIH; 150 650 600 520 460 mA  
VCC = Max.;  
outputs open, f = f MAX = 1/tcyc  
.
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE Power-down  
Device deselected;  
150 250 230 220 190 mA  
CurrentTTL Inputs[25, 26]  
all inputs < VIL or > VIH; VCC = Max.;  
f = f MAX = 1/tcyc  
.
Automatic CE Power-down  
Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or > VCC 0.2;  
all inputs static; CLK frequency = 0  
5
30  
30  
30  
30 mA  
CurrentCMOS Inputs[25, 26]  
Automatic CE Power-down  
Current—  
CMOS Inputs  
Max. VDD Device Deselected, or V IN  
0.3V or VIN > VDDQ 0.3V  
f = f MAX = 1/t CYC  
<
90 260 230 200 180 mA  
Automatic CS Power-down  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
15  
30  
30  
30  
30 mA  
CurrentTTL Inputs[25, 26]  
VCC = Max. CLK frequency = 0  
Capacitance[15]  
Parameter  
Description  
Test Conditions  
Typ.  
5
Max.  
Unit  
pF  
CI  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
7
8
CI/O  
Notes:  
Input/Output Capacitance (DQ)  
7
pF  
18.  
TA is the case temperature.  
19. The ground level at the start of power onon the VCC pins should be no greater than 200mV.  
20. Please refer to waveform (d).  
21. Power supply ramp up should be monotonic.  
22. Overshoot: VIH < + 6.0V for t < tKC /2; undershoot:VIL < 2.0V for t < tKC /2.  
23. Output loading is specified with CL=5 pF as in AC Test Loads.  
24. ICC is given with no output current. ICC increases with greater output loading and faster cycle times.  
25. Device Deselectedmeans the device is in Power-Down mode as defined in the truth table. Device Selectedmeans the device is active.  
Document #: 38-05258 Rev. *C  
Page 19 of 28  
CY7C1360A  
CY7C1362A  
Thermal Resistance[15]  
Parameter  
Description  
Test Conditions  
TQFP Typ.  
Unit  
°C/W  
°C/W  
ΘJA  
ΘJC  
Thermal Resistance (Junction to Ambient) Still Air, soldered on a 4.25 x 1.125 inch,  
25  
9
4-layer PCB  
Thermal Resistance (Junction to Case)  
AC Test Loads and Waveforms  
tPU = 200us  
ALL INPUT PULSES  
90%  
OUTPUT  
R = 317  
VCCQ  
OUTPUT  
VCCQ  
Vcctyp  
Vccmin  
90%  
10%  
Z
= 50Ω  
For proper RESET  
bring Vcc down to 0V  
0
10%  
R
= 50Ω  
L
GND  
1 V/ns  
5 pF  
1 V/ns  
R = 351  
= 1.5V  
VTH  
(c)  
INCLUDING  
JIG AND  
SCOPE  
(a)  
(b)  
(d)  
Switching Characteristics Over the Operating Range[27]  
225 MHz  
200 MHz  
166 MHz  
150 MHz  
Parameter  
Clock  
tKC  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Clock Cycle Time  
4.4  
1.8  
1.8  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
6.7  
2.6  
2.6  
ns  
ns  
ns  
tKH  
Clock HIGH Time  
Clock LOW Time  
tKL  
Output Times  
tKQ  
Clock to Output Valid  
VCCQ = 3.3V  
VCCQ = 2.5V  
2.8  
2.8  
3.1  
3.1  
3.5  
4.0  
3.5  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
Clock to Output Invalid  
1.25  
0
1.25  
0
1.25  
0
1.25  
0
tKQLZ  
tKQHZ  
tOEQ  
Clock to Output in Low-Z[15, 22, 28]  
Clock to Output in High-Z[15, 22, 28]  
OE to Output Valid[29]  
1.25  
3.0  
2.8  
2.8  
1.25  
2.6  
3.0  
3.0  
1.0  
2.8  
3.5  
4.0  
1.25  
4.0  
3.5  
4.5  
VCCQ = 3.3V  
VCCQ = 2.5V  
tOELZ  
tOEHZ  
Set-up Times  
OE to Output in Low-Z[15, 22, 28]  
OE to Output in High-Z[15, 22, 28]  
0
0
0
0
2.8  
3.0  
3.5  
3.5  
tS  
Address, Controls, and Data In[30]  
1.4  
0.4  
1.4  
0.4  
1.5  
0.5  
2.0  
0.5  
ns  
ns  
Hold Times  
tH  
Address, Controls, and Data In[30]  
Notes:  
26. Typical values are measured at 3.3V, 25°C, and 20 ns cycle time.  
27. Test conditions as specified with the output loading as shown in part (a) of AC Test Loads unless otherwise noted.  
28. At any given temperature and voltage condition, tKQHZ is less than tKQLZ and tOEHZ is less than tOELZ  
29. OE is a Dont Carewhen a byte Write enable is sampled LOW.  
30. This is a synchronous device. All synchronous inputs must meet specified set up and hold time, except for Dont Careas defined in the truth table.  
.
Document #: 38-05258 Rev. *C  
Page 20 of 28  
CY7C1360A  
CY7C1362A  
Switching Waveforms  
Read Timing[31, 32]  
tKC  
t
KL  
CLK
tS  
tKH  
ADSP  
tH  
ADSC  
tS  
A
A1  
A2  
tH  
BWx  
GW
BWE  
tS  
CE
tS  
ADV  
tH  
OE  
tOEQ  
tKQ  
tKQ  
tOELZ  
tKQLZ  
Q(A1)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
Q(A2+3)  
Q(A2)  
Q(A2+1)  
DQx  
SINGLE READ  
BURST READ  
Notes:  
31. CE active in this timing diagram means that all chip enables CE, CE2, and CE2 are active. CE2 is only available for TA package version.  
32. For the X18 product, there are only BWa and BWb for byte Write control.  
Document #: 38-05258 Rev. *C  
Page 21 of 28  
CY7C1360A  
CY7C1362A  
Switching Waveforms (continued)  
Write Timing[31, 32]  
CLK
tS  
ADSP  
tH  
ADSC  
tS  
A
A1  
A2  
A3  
tH  
BW  
x
BWE  
GW  
CE  
tS  
ADV  
tH  
OE
tOEHZ  
tKQX  
Q
D(A1)  
D(A2) D(A2+1) D(A2+1)  
D(A2+2)  
D(A2+3)  
D(A3)  
D(A3+1)  
D(A3+2)  
DQ  
x
SINGLE WRITE  
BURST WRITE  
BURST WRITE  
Document #: 38-05258 Rev. *C  
Page 22 of 28  
CY7C1360A  
CY7C1362A  
Switching Waveforms (continued)  
Read/Write Timing[31, 32]  
CLK  
tS  
ADSP
tH  
ADSC  
tS  
A
A2  
A3  
A4  
A5  
A1  
tH  
BW
x
BWE  
GW  
CE
ADV  
OE  
DQx  
Q(A1)  
Single Reads  
D(A3)  
Q(A4)  
Q(A4+1) Q(A4+2)  
D(A5)  
D(A5+1)  
Q(A2)  
Single Write  
Burst Read  
Burst Write  
Document #: 38-05258 Rev. *C  
Page 23 of 28  
CY7C1360A  
CY7C1362A  
Switching Waveforms (continued)  
ZZ Mode Timing[33, 34]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
IDD  
IDD(active)  
tZZREC  
IDDZZ  
I/Os  
Three-state  
Notes:  
33. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
34. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05258 Rev. *C  
Page 24 of 28  
CY7C1360A  
CY7C1362A  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
225  
CY7C1360A-225AJC  
CY7C1360A-225AC  
CY7C1360A-225BGC  
CY7C1360A-200AJC  
CY7C1360A-200AC  
CY7C1360A-200BGC  
CY7C1360A-166AJC  
CY7C1360A-166AC  
CY7C1360A-166BGC  
CY7C1360A-150AJC  
CY7C1360A-150AC  
CY7C1360A-150BGC  
CY7C1362A-225AJC  
CY7C1362A-225AC  
CY7C1362A-225BGC  
CY7C1362A-200AJC  
CY7C1362A-200AC  
CY7C1362A-200BGC  
CY7C1362A-166AJC  
CY7C1362A-166AC  
CY7C1362A-166BGC  
CY7C1362A-150AJC  
CY7C1362A-150AC  
CY7C1362A-150BGC  
CY7C1360A-200AJI  
CY7C1360A-200AI  
CY7C1360A-200BGI  
CY7C1360A-166AJI  
CY7C1360A-166AI  
CY7C1360A-166BGI  
CY7C1360A-150AJI  
CY7C1360A-150AI  
CY7C1360A-150BGI  
CY7C1362A-200AJI  
CY7C1362A-200AI  
CY7C1362A-200BGI  
CY7C1362A-166AJI  
CY7C1362A-166AI  
CY7C1362A-166BGI  
CY7C1362A-150AJI  
CY7C1362A-150AI  
CY7C1362A-150BGI  
A101  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
Commercial  
BG119  
A101  
200  
166  
150  
225  
200  
166  
150  
200  
166  
150  
200  
166  
150  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
Commercial  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
Industrial  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
Industrial  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
A101  
BG119  
Document #: 38-05258 Rev. *C  
Page 25 of 28  
CY7C1360A  
CY7C1362A  
Package Diagrams  
100-pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05258 Rev. *C  
Page 26 of 28  
CY7C1360A  
CY7C1362A  
Package Diagrams (continued)  
119-Lead BGA (14 x 22 x 2.4) BG119  
51-85115-*A  
Intel and Pentium are registered trademarks of Intel Corporation. All product and company names mentioned in this document  
are the trademarks of their respective holders.  
Document #: 38-05258 Rev. *C  
Page 27 of 28  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1360A  
CY7C1362A  
Document Title:CY7C1360A CY7C1362A 256K x 36/512K x 18 Synchronous Pipelined Burst SRAM  
Document Number: 38-05258  
Issue  
Date  
Orig. of  
Change  
REV  
**  
ECN No.  
113846  
116062  
Description of Change  
05/22/02  
05/28/02  
GLC  
BRI  
Change from Spec.: 38-00990 to 38-05258  
*A  
Removed GVT part numbers from title and body of data sheet  
Added note 19 (pg. 19) regarding VCC on Power On”  
*B  
*C  
116765  
123144  
09/09/02  
01/18/03  
BRI  
RBI  
Updated package type names on page 3  
ICC, ISB3, and ISB4 values corrected on page 19  
Updated power-up requirements in Operating Range and in AC Test Loads  
and Waveforms.  
Document #: 38-05258 Rev. *C  
Page 28 of 28  

相关型号:

CY7C1360A-150AI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150AJC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150AJI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150BGC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150BGCT

Cache SRAM, 256KX36, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
ROCHESTER

CY7C1360A-150BGCT

Cache SRAM, 256KX36, 3.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1360A-150BGI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-150BGI

Cache SRAM, 256KX36, 4.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, BGA-119
ROCHESTER

CY7C1360A-166AC

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS

CY7C1360A-166AC

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
ROCHESTER

CY7C1360A-166ACT

Cache SRAM, 256KX36, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1360A-166AI

256K x 36/512K x 18 Synchronous Pipelined Burst SRAM
CYPRESS