CYD18S72V18-167BBXI [ROCHESTER]

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484;
CYD18S72V18-167BBXI
型号: CYD18S72V18-167BBXI
厂家: Rochester Electronics    Rochester Electronics
描述:

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484

静态存储器 内存集成电路
文件: 总49页 (文件大小:1623K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FullFlex™ Synchronous  
SDR Dual-Port SRAM  
— Selectable LVTTL (3.3V), Extended HSTL  
(1.4V–1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on  
each port  
Features  
• True dual-ported memory allows simultaneous access  
to the shared array from each port  
— Burst counters for sequential memory access  
— Mailbox with interrupt flags for message passing  
— Dual Chip Enables for easy depth expansion  
• Synchronous pipelined operation with SDR operation  
on each port  
— Single Data Rate (SDR) interface at 250 MHz  
— Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports)  
• Selectable pipeline or flow-through mode  
• Selectable 1.5V or 1.8V core power supply  
• Commercial and Industrial temperature  
• IEEE 1149.1 JTAG boundary scan  
Functional Description  
The FullFlex™ Dual-Port SRAM families consist of 4-Mbit,  
9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static  
RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two  
ports are provided, allowing the array to be accessed simulta-  
neously. Simultaneous access to a location triggers determin-  
istic access control. For FullFlex72 these ports can operate  
independently with 72-bit bus widths and each port can be  
independently configured for two pipeline stages. Each port  
can also be configured to operate in pipeline or flow-through  
mode.  
Advanced features include built-in deterministic access  
control to manage address collisions during simultaneous  
access to the same memory location, variable impedance  
matching (VIM) to improve data transmission by matching the  
output driver impedance to the line impedance, and echo  
clocks to improve data transfer.  
• Available in 484-ball PBGA Packages and 256-ball  
FBGA packages  
• FullFlex72 family  
— 36-Mbit: 512K x 72 (CYD36S72V18)  
— 18-Mbit: 256K x 72 (CYD18S72V18)  
— 9-Mbit: 128K x 72 (CYD09S72V18)  
— 4-Mbit: 64K x 72 (CYD04S72V18)  
• FullFlex36 family  
— 36-Mbit: 1M x 36 (CYD36S36V18)  
— 18-Mbit: 512K x 36 (CYD18S36V18)  
— 9-Mbit: 256K x 36 (CYD09S36V18)  
— 4-Mbit: 128K x 36 (CYD04S36V18)  
• FullFlex18 family  
To reduce the static power consumption, chip enables can be  
used to power down the internal circuitry. The number of  
cycles of latency before a change in CE0 or CE1 will enable  
or disable the databus matches the number of cycles of read  
latency selected for the device. In order for a valid write or read  
to occur, both chip enable inputs on a port must be active.  
— 36-Mbit: 2M x 18 (CYD36S18V18)  
— 18-Mbit: 1M x 18 (CYD18S18V18)  
— 9-Mbit: 512K x 18 (CYD09S18V18)  
— 4-Mbit: 256K x 18 (CYD04S18V18)  
Each port contains an optional burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally.  
Additional features of this device include a mask register and  
• Built-in deterministic access control to manage  
a mirror register to control counter increments and  
address collisions  
wrap-around, counter-interrupt (CNTINT) flags to notify that  
the counter will reach the maximum value on the next clock  
cycle, readback of the burst-counter internal address, mask  
register address, and BUSY address on the address lines,  
retransmit functionality, mailbox interrupt flags for message  
passing, JTAG for boundary scan, and asynchronous Master  
Reset (MRST). The logic block diagram in Figure 1 displays  
these features.  
— Deterministic flag output upon collision detection  
— Collision detection on back-to-back clock cycles  
— First Busy Address readback  
• Advanced features for improved high-speed data  
transfer and flexibility  
— Variable Impedance Matching (VIM)  
— Echo clocks  
The FullFlex72 is offered in a 484-ball plastic BGA package.  
The FullFlex36 and FullFlex18 are offered in a 256-ball fine  
pitch BGA package.  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document #: 38-06082 Rev. *C  
Revised October 11, 2005  
PRELIMINARY  
FullFlex  
FTSEL  
CQEN  
PORTSTD[1:0]  
FTSEL  
L
R
CQEN  
L
R
CONFIG Block  
CONFIG Block  
PORTSTD[1:0]  
L
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
R
BE [7:0]  
L
CE0  
R
CE0  
L
IO  
Control  
IO  
Control  
CE1  
R
CE1  
L
OE  
R
OE  
L
R/W  
R
R/W  
L
CQ1  
CQ1  
L
CQ1  
R
R
R
CQ1  
L
CQ0  
CQ0  
CQ0  
L
CQ0  
L
R
Dual Ported Array  
VC_SEL  
BUSY  
Collision Detection Logic  
BUSY  
L
R
A [20:0]  
A [20:0]  
L
L
R
R
CNT/MSK  
CNT/MSK  
ADS  
ADS  
R
L
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
L
RET  
R
CNTINT  
L
CNTINT  
R
C
L
C
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
ZQ0  
ZQ0  
L
R
ZQ1  
ZQ1  
L
R
RESET  
LOGIC  
MRST  
READY  
READY  
LowSPD  
L
L
R
LowSPD  
R
Figure 1. FullFlex72 18-Mbit (CYD18S72V18) Block Diagram[1, 2, 3]  
Notes:  
1. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and the CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18,  
and the CYD09S18V18 devices have 19 address bits. The CYD18S72V18, CYD09S36V18, and the CYD04S18V18 devices have 18 address bits. The  
CYD09S72V18 and the CYD04S36V18 devices have 17 address bits. The CYD04S72V18 has 16 address bits.  
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.  
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte  
enables.  
Document #: 38-06082 Rev. *C  
Page 2 of 48  
PRELIMINARY  
FullFlex  
FullFlex72 SDR 484-ball BGA Pinout (Top View)  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC DQ61 DQ59 DQ57 DQ54 DQ51 DQ48 DQ45 DQ42 DQ39 DQ36 DQ36 DQ39 DQ42 DQ45 DQ48 DQ51 DQ54 DQ57 DQ59 DQ61 NC  
A
B
C
L
L
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
R
R
DQ63 DQ62 DQ60 DQ58 DQ55 DQ52 DQ49 DQ46 DQ43 DQ40 DQ37 DQ37 DQ40 DQ43 DQ46 DQ49 DQ52 DQ55 DQ58 DQ60 DQ62 DQ63  
L
L
L
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
R
R
R
DQ65 DQ64 VSS VSS DQ56 DQ53 DQ50 DQ47 DQ44 DQ41 DQ38 DQ38 DQ41 DQ44 DQ47 DQ50 DQ53 DQ56 VSS VSS DQ64 DQ65  
L
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
R
[
DQ67 DQ66 VSS VSS VSS CQ1L CQ1L  
LOW PORT ZQ0L BUSY CNTI PORT NC CQ1R CQ1R VSS VSS VSS DQ66 DQ67  
4]  
VSS  
L
L
SPDL STD0  
L
L
NTL STD1  
L
R
R
D
E
F
DQ69 DQ68 VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI NC VSS VDDI DQ68 DQ69  
OL OL OL OL OL OL OR OR OR OR OR  
L
L
R
R
DQ71 DQ70 CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DQ70 DQ71  
OL OL OL OL OL RE RE RE RE OR OR OR OR OR  
L
L
R
R
A0L A1L RETL BE4L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE4R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP BE5L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE5R WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ BE6L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE6R READ A5R A4R  
YL OL OL OR OR YR  
[
A6L A7L ZQ1L BE7L VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI BE7R ZQ1R A7R A6R  
4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L VSS BE3L VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE3R VSS A11R A10R  
RE RE  
M
N
A12L A13L ADSL BE2L VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE2R ADSR A13R A12R  
OL RE RE  
A14L A15L CNT BE1L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE1R CNT A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
[
[
[
[
[
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
7]  
6]  
6]  
7]  
NL  
OL  
OL  
OR  
OR  
NR  
[
A18L NC CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR NC A18R  
5]  
5]  
STL  
OL  
OL  
L
R
OR  
OR  
STR  
DQ35 DQ34 R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DQ34 DQ35  
U
V
L
L
NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR  
R
R
DQ33 DQ32 FTSE VDDI NC VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE DQ32 DQ33  
LL OL OL OL OL OL OR OR OR OR OR OR LR  
L
L
R
R
DQ31 DQ30 VSS MRST VSS CQ0L CQ0L VC_S PORT CNTI BUSY ZQ0R PORT LOW VSS CQ0R CQ0R VSS TDI TDO DQ30 DQ31  
[4]  
L
L
EL STD1 NTR  
R
R
STD0 SPDR  
R
R
R
W
Y
DQ29 DQ28 VSS VSS DQ20 DQ17 DQ14 DQ11 DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11 DQ14 DQ17 DQ20 TMS TCK DQ28 DQ29  
L
L
L
L
L
L
R
R
R
R
R
R
DQ27 DQ26 DQ24 DQ22 DQ19 DQ16 DQ13 DQ10 DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10 DQ13 DQ16 DQ19 DQ22 DQ24 DQ26 DQ27  
AA  
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
NC DQ25 DQ23 DQ21 DQ18 DQ15 DQ12 DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12 DQ15 DQ18 DQ21 DQ23 DQ25 NC  
AB  
L
L
L
L
L
L
R
R
R
R
R
R
Notes:  
4. Leaving this pin NC disables VIM  
5. Leave this ball unconnected for CYD18S72V18, CYD09S72V18 and CYD04S72V18.  
6. Leave this ball unconnected for CYD09S72V18 and CYD04S72V18  
7. Leave this ball unconnected for CYD04S72V18  
Document #: 38-06082 Rev. *C  
Page 3 of 48  
PRELIMINARY  
FullFlex  
FullFlex36 SDR 484-ball BGA Pinout (Top View)[8]  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
NC  
NC  
NC  
NC DQ33 DQ30 DQ27 DQ24 DQ21 DQ18 DQ18 DQ21 DQ24 DQ27 DQ30 DQ33 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A
B
C
L
L
L
L
L
L
R
R
R
R
R
R
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ34 DQ31 DQ28 DQ25 DQ22 DQ19 DQ19 DQ22 DQ25 DQ28 DQ31 DQ34 NC  
NC  
NC  
NC  
L
L
L
L
L
L
R
R
R
R
R
R
NC VSS VSS NC DQ35 DQ32 DQ29 DQ26 DQ23 DQ20 DQ20 DQ23 DQ26 DQ29 DQ32 DQ35 NC VSS VSS NC  
L
L
L
L
L
L
R
R
R
R
R
R
[
NC VSS VSS VSS CQ1L CQ1L  
LOW PORT ZQ0L BUSY CNTI PORT NC CQ1R CQ1R VSS VSS VSS NC  
4]  
VSS  
SPDL STD0  
L
L
NTL STD1  
L
D
E
F
NC  
NC  
NC VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI NC VSS VDDI NC  
OL OL OL OL OL OL OR OR OR OR OR  
NC  
NC  
NC CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R NC  
OL OL OL OL OL RE RE RE RE OR OR OR OR OR  
A0L A1L RETL BE2L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE2R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP BE3L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE3R WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC READ A5R A4R  
YL OL OL OR OR YR  
[
A6L A7L ZQ1L NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI NC ZQ1R A7R A6R  
4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L VSS NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC VSS A11R A10R  
RE RE  
M
N
A12L A13L ADSL NC VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC ADSR A13R A12R  
OL RE RE  
A14L A15L CNT BE1L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE1R CNT A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
NL OL OL OR OR NR  
A18L A19L CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR A19R A18R  
STL OL OL OR OR STR  
L
R
NC  
NC  
NC  
NC R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR NC  
NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR  
NC  
NC  
NC  
U
V
NC FTSE VDDI NC VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE NC  
LL OL OL OL OL OL OR OR OR OR OR OR LR  
NC VSS MRST VSS CQ0L CQ0L VC_S PORT CNTI BUSY ZQ0R PORT LOW VSS CQ0R CQ0R VSS TDI TDO NC  
[4]  
EL STD1 NTR  
R
R
STD0 SPDR  
R
W
Y
NC  
NC  
NC  
NC VSS VSS NC DQ17 DQ14 DQ11 DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11 DQ14 DQ17 NC TMS TCK NC  
NC  
NC  
NC  
L
L
L
R
R
R
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ16 DQ13 DQ10 DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10 DQ13 DQ16 NC  
NC  
NC  
NC  
NC  
NC  
NC  
AA  
L
L
L
R
R
R
NC DQ15 DQ12 DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12 DQ15 NC  
AB  
L
L
R
R
Note:  
8. Use this pinout only for device CYD36S36V18 of the FullFlex36 famiy.  
Document #: 38-06082 Rev. *C  
Page 4 of 48  
PRELIMINARY  
FullFlex  
FullFlex18 SDR 484-ball BGA Pinout (Top View)[9]  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ15 DQ12 DQ9L DQ9R DQ12 DQ15 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A
B
C
L
L
R
R
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ16 DQ13 DQ10 DQ10 DQ13 DQ16 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
L
L
L
R
R
R
NC VSS VSS NC  
NC DQ17 DQ14 DQ11 DQ11 DQ14 DQ17 NC  
NC VSS VSS NC  
L
L
L
R
R
R
[
NC VSS VSS VSS CQ1L CQ1L  
LOW PORT ZQ0L BUSY CNTI PORT NC CQ1R CQ1R VSS VSS VSS NC  
4]  
VSS  
SPDL STD0  
L
L
NTL STD1  
L
D
E
F
NC  
NC  
NC VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI NC VSS VDDI NC  
OL OL OL OL OL OL OR OR OR OR OR  
NC  
NC  
NC CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R NC  
OL OL OL OL OL RE RE RE RE OR OR OR OR OR  
A0L A1L RETL BE1L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE1R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC READ A5R A4R  
YL OL OL OR OR YR  
[
A6L A7L ZQ1L NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI NC ZQ1R A7R A6R  
4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L VSS NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC VSS A11R A10R  
RE RE  
M
N
A12L A13L ADSL NC VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC ADSR A13R A12R  
OL RE RE  
A14L A15L CNT NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC CNT A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
NL OL OL OR OR NR  
A18L A19L CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR A19R A18R  
STL OL OL OR OR STR  
L
R
A20L NC R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR NC A20R  
NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR  
U
V
NC  
NC FTSE VDDI NC VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE NC  
LL OL OL OL OL OL OR OR OR OR OR OR LR  
NC  
NC  
NC VSS MRST VSS CQ0L CQ0L VC_S PORT CNTI BUSY ZQ0R PORT LOW VSS CQ0R CQ0R VSS TDI TDO NC  
NC  
[4]  
EL STD1 NTR  
R
R
STD0 SPDR  
R
W
Y
NC  
NC  
NC  
NC VSS VSS NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R NC  
NC DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R NC  
NC DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC TMS TCK NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AA  
AB  
Note:  
9. Use this pinout only for device CYD36S18V18 of the FullFlex18 famiy.  
Document #: 38-06082 Rev. *C  
Page 5 of 48  
PRELIMINARY  
FullFlex  
FullFlex36 SDR 256-Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R  
A
B
C
D
E
F
DQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R  
[4]  
DQ34L DQ35L  
RETL  
WRPL  
CE0L  
INTL  
CQ1L  
CQ1L VC_SEL TRST  
MRST ZQ0R  
VTTL VSS  
CQ1R  
CQ1R  
INTR  
RETR DQ35R DQ34R  
A0L  
A2L  
A1L  
A3L  
VREF FTSELL LOWSP  
DL  
VSS  
VTTL  
LOWSP FTSELR VREF  
DR  
WRPR  
CE0R  
A1R  
A3R  
A0R  
A2R  
CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R  
A4L  
A5L  
CNINTL BE3L VDDIOL  
[4]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIOR BE3R CNINTR  
VSS VDDIOR BE2R BUSYR  
A5R  
A4R  
A6L  
A7L  
BUSYL  
CL  
BE2L  
ZQ0L  
A7R  
A6R  
G
H
J
A8L  
A9L  
VTTL VCORE  
VSS  
VSS  
VCORE VTTL  
CR  
A9R  
A8R  
A10L  
A12L  
A14L  
A11L  
A13L  
A15L  
VSS PORTST VCORE  
D1L  
VCORE PORTST VSS  
D1R  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
A16R  
OEL  
BE1L VDDIOL  
VSS VDDIOR BE1R  
OER  
K
L
ADSL  
BE0L VDDIOL  
VSS VDDIOR BE0R  
ADSR  
[11]  
[11]  
A16L A17L  
[10]  
R/WL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR R/WR A17R  
M
N
P
R
T
[4]  
[4]  
[10]  
A18L  
NC  
CNTMS VREF PORTST READYL ZQ1L  
KL D0L  
VTTL  
TMS  
VTTL ZQ1R  
READY PORTST VREF CNTMS  
NC  
A18R  
R
D0R  
KR  
DQ16L DQ17L CNTENL CNTRST CQ0L  
L
CQ0L  
DQ5L  
DQ4L  
TCK  
TDO  
DQ1R  
DQ0R  
TDI  
CQ0R  
CQ0R CNTRST CNTEN DQ17R DQ16R  
R
R
DQ15L DQ13L DQ11L  
DQ9L  
DQ7L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ3R  
DQ2R  
DQ5R  
DQ4R  
DQ7R  
DQ6R  
DQ9R DQ11R DQ13R DQ15R  
DQ14L DQ12L DQ10L  
DQ8L  
DQ6L  
DQ8R DQ10R DQ12R DQ14R  
Notes:  
10. Leave this ball unconnected for CYD09S36V18 and CYD04S36V18.  
11. Leave this ball unconnected for CYD04S36V18.  
Document #: 38-06082 Rev. *C  
Page 6 of 48  
PRELIMINARY  
FullFlex  
FullFlex18 SDR 256-Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
NC  
DQ17L DQ16L DQ13L DQ12L  
DQ9L  
DQ9R DQ12R DQ13R DQ16R DQ17R  
NC  
NC  
NC  
A
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
RETL  
WRPL  
CE0L  
CNINTL  
BUSYL  
CL  
NC  
DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R  
[4]  
NC  
NC  
RETR  
WRPR  
CE0R  
CNINTR  
BUSYR  
CR  
NC  
NC  
NC  
NC  
INTL  
CQ1L  
CQ1L VC_SEL TRST  
MRST ZQ0R  
VTTL VSS  
CQ1R  
CQ1R  
INTR  
A0L  
A1L  
A3L  
A5L  
VREF FTSELL LOWSP  
DL  
VSS  
VTTL  
LOWSP FTSELR VREF  
DR  
A1R  
A3R  
A5R  
A7R  
A9R  
A11R  
A13R  
A15R  
A17R  
A0R  
A2R  
A4R  
A6R  
A8R  
A10R  
A12R  
A14R  
A16R  
A2L  
CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R  
A4L  
NC  
NC  
VDDIOL  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIOR  
VSS VDDIOR  
NC  
NC  
[4]  
A6L  
A7L  
A9L  
A11L  
A13L  
A15L  
A17L  
ZQ0L  
G
H
J
A8L  
VTTL VCORE  
VSS  
VSS  
VCORE VTTL  
A10L  
A12L  
A14L  
A16L  
VSS PORTST VCORE  
D1L  
VCORE PORTST VSS  
D1R  
OEL  
BE1L VDDIOL  
VSS VDDIOR BE1R  
OER  
K
L
ADSL  
BE0L VDDIOL  
VSS VDDIOR BE0R  
ADSR  
R/WL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR R/WR  
M
N
P
R
T
[13]  
[12]  
[4]  
[4]  
[12]  
[13]  
A18L  
A19L  
CNTMS VREF PORTST READYL ZQ1L  
KL D0L  
VTTL  
TMS  
VTTL ZQ1R  
READY PORTST VREF CNTMS A19R  
A18R  
R
D0R  
KR  
NC  
NC  
NC  
NC  
NC  
NC  
CNTENL CNTRST CQ0L  
L
CQ0L  
DQ5L  
DQ4L  
TCK  
TDO  
DQ1R  
DQ0R  
TDI  
CQ0R  
CQ0R CNTRST CNTEN  
NC  
NC  
NC  
NC  
NC  
NC  
R
R
NC  
NC  
DQ6L  
DQ2L  
DQ3L  
DQ1L  
DQ0L  
DQ2R  
DQ3R  
DQ5R  
DQ4R  
DQ6R  
DQ7R  
NC  
NC  
NC  
DQ8L  
DQ7L  
DQ8R  
NC  
Notes:  
12. Leave this ball unconnected for CYD09S18V18 and CYD04S18V18.  
13. Leave this ball unconnected for CYD04S18V18.  
Document #: 38-06082 Rev. *C  
Page 7 of 48  
PRELIMINARY  
FullFlex  
Table 1. Selection Guide  
-250[14, 15]  
-200[14]  
200  
3.3  
TBD  
TBD  
-167[14]  
167  
4.0  
TBD  
TBD  
-133[14]  
133  
4.5  
TBD  
TBD  
Unit  
MHz  
ns  
mA  
mA  
fMAX  
250  
2.64  
TBD  
TBD  
Max. Access Time (Clock to Data)  
Typical Operating Current ICC  
Typical Standby Current for ISB3 (Both Ports CMOS Level)  
Pin Definitions  
Left Port  
0L–A20L  
DQ0L–DQ71L  
BE0L–BE7L  
Right Port  
A0R–A20R  
DQ0R–DQ71R  
BE0R–BE7R  
Description  
A
Address Inputs.[1]  
Data Bus Input/Output.[2]  
Byte Select Inputs.[3] Asserting these signals enables Read and Write operations to  
the corresponding bytes of the memory array.  
BUSYL  
BUSYR  
Port Busy Output. When there is an address match and both chip enables are active  
for both ports, an external BUSY signal is asserted on the fifth clock cycles from when  
the collision occurs.  
CL  
CR  
Clock Signal. Maximum clock input rate is fMAX  
.
CE0L  
CE1L  
CQENL  
CQ0L  
CE0R  
CE1R  
CQENR  
CQ0R  
Active LOW Chip Enable Input.  
Active HIGH Chip Enable Input.  
Echo Clock Enable Input. Assert HIGH to enable echo clocking on respective port.  
Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal  
Output for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for  
FullFlex18 devices.  
CQ0L  
CQ1L  
CQ1L  
CQ0R  
CQ1R  
CQ1R  
Inverted Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Inverted  
Echo Clock Signal Output for DQ[17:0] for FullFlex36 devices. Inverted Echo Clock  
Signal Output for DQ[8:0] for FullFlex18 devices.  
Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal  
Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9]  
for FullFlex18 devices.  
Inverted Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Inverted  
Echo Clock Signal Output for DQ[35:18] for FullFlex36 devices. Inverted Echo Clock  
Signal Output for DQ[17:9] forFullFlex18 devices.  
VIM Output Impedance Matching Input. To use, connect a calibrating resistor  
between ZQ and ground. The resistor must be five times larger than the intended line  
impedance driven by the dual-port. Assert HIGH to disable Variable Impedance  
Matching.  
[16]  
[16]  
ZQ[1:0]L  
ZQ[1:0]R  
OEL  
INTL  
OER  
INTR  
Output Enable Input. This asynchronous signal must be asserted LOW to enable the  
DQ data pins during Read operations.  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports.  
The upper two memory locations can be used for message passing. INTL is asserted  
LOW when the right port writes to the mailbox location of the left port, and vice versa.  
An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox.  
LowSPDL  
LowSPDR  
Port Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation  
at less than 100 MHz, assert this pin LOW.  
[17]  
[17]  
PORTSTD[1:0]L  
PORTSTD[1:0]R  
Port Clock/Address/Control/Data/Echo Clock/ I/O Standard Select Input. Assert  
these pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS,  
and HIGH/HIGH for 1.8V LVCMOS, respectively. Connect these pins to a VTTL supply.  
R/WL  
R/WR  
Read/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the  
dual-port memory array.  
Notes:  
14. SDR mode with two pipeline stages.  
15. 250 MHz for HSTL and 1.8V LVCMOS I/O standards only  
16. Leaving pins K3, K20 of the 484-ball BGA package and pin C10 of the 256-ball BGA package disables VIM.  
17. For FullFlex72, pins D14 and W9 have an internal pull-down resistor.  
Document #: 38-06082 Rev. *C  
Page 8 of 48  
PRELIMINARY  
FullFlex  
Pin Definitions (continued)  
Left Port  
READYL  
Right Port  
READYR  
Description  
Port DLL Ready Output. This signal will be asserted LOW when the DLL and Variable  
Impedance Matching circuits have completed calibration. This is a wired OR capable  
output.  
CNT/MSKL  
ADSL  
CNTENL  
CNTRSTL  
CNTINTL  
CNT/MSKR  
ADSR  
CNTENR  
CNTRSTR  
CNTINTR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
Port Counter Interrupt Output. This pin is asserted LOW one cycle before the  
unmasked portion of the counter is incremented to all “1s”.  
WRPL  
RETL  
WRPR  
RETR  
Port Counter Wrap Input. When the burst counter reaches the maximum count, on  
the next counter increment WRP can be set LOW to load the unmasked counter bits  
to 0 or set HIGH to load the counter with the value stored in the mirror register.  
Port Counter Retransmit Input. Assert this pin LOW to reload the initial address for  
repeated access to the same segment of memory.  
VREFL  
VDDIOL  
VREFR  
VDDIOR  
FTSELR  
Port External HSTL I/O Reference Input.  
Port Data I/O Power Supply.  
FTSELL  
Port Flow-Through Mode Select Input. Assert this pin LOW to select Flow-Through  
mode. Assert this pin HIGH to select Pipeline mode.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports.  
Asserting MRST LOW performs all of the reset functions as described in the text. A  
MRST operation is required at power-up. This pin must be driven by a VDDIOL refer-  
enced signal.  
VC_SEL  
TMS  
Core Power Supply Select. Assert this pin LOW to select 1.8V Core operation. Assert  
this pin HIGH to select 1.5V Core operation. This pin must be driven by a VTTL refer-  
enced signal.  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine.  
State machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V  
LVCMOS.  
TDI  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected  
registers. Operation for LVTTL or 2.5V LVCMOS.  
TRST  
TCK  
JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.  
JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.  
TDO  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is  
normally three-stated except when captured data is shifted out of the JTAG TAP.  
Operation for LVTTL or 2.5V LVCMOS.  
VSS  
VCORE  
VTTL  
Ground Inputs.  
Device Core Power Supply.  
LVTTL Power Supply.  
Selectable I/O Standard  
Table 2. Port Standard Selection  
The FullFlex families of devices also offer the option of  
choosing one of four port standards for the device. Each port  
can independently select standards from single-ended HSTL  
class I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V  
LVCMOS. The selection of the standard is determined by the  
PORTSTD pins for each port. These pins should be connected  
to either an LVTTL or 2.5V LVCMOS power suppy. This will  
determine the input clock, address, control, data, and Echo  
clock standard for each port as shown in Table 2.  
PORTSTD1  
VSS  
PORTSTD0  
VSS  
I/O Standard  
LVTTL  
HSTL  
2.5V LVCMOS  
1.8V LVCMOS  
VSS  
VTTL  
VTTL  
VTTL  
VSS  
VTTL  
Operating mode with different IO standards combined with  
different core power supply will result in different maximum  
speed as shown in Table 3.  
Document #: 38-06082 Rev. *C  
Page 9 of 48  
PRELIMINARY  
FullFlex  
clock in the address and control signals for a read operation.  
The dual-port retransmits the input clocks relative to the data  
output. The buffered clocks are provided on the CQ1/CQ1 and  
CQ0/CQ0 outputs. Each port has a pair of Echo clocks. Each  
clock is associated with half the data bits. The output clock will  
match the corresponding ports I/O configuration.  
Table 3. Speed vs. I/O Standard and Pipeline Stages  
Maximum  
Core  
Latency  
Speed (MHz) Voltage (V)  
I/O Standard  
HSTL/1.8V LVCMOS  
LVTTL/2.5V LVCMOS  
HSTL/LVTTL  
2.5V LVCMOS  
1.8V LVCMOS  
Cycles  
250[15]  
200  
200  
1.8  
1.8  
1.5  
2
2
2
To enable Echo clock outputs, tie CQEN HIGH. To disable  
Echo clock outputs, tie CQEN LOW.  
Input Clock  
Data Out  
Clocking  
Separate clocks synchronize the operations on each port.  
Each port has one clock input C. In this mode, all the transac-  
tions on the address, control, and data will be on the C rising  
edge. All transactions on the address, control, data input,  
output, and byte enables will occur on the C rising edge.  
Echo Clock  
Echo Clock  
Figure 2. SDR Echo Clock Delay  
Table 4. Data Pin Assignment  
Deterministic Access Control  
BE Pin Name  
BE[7]  
Data Pin Name  
DQ[71:63]  
DQ[62:54]  
DQ[53:45]  
DQ[44:36]  
DQ[35:27]  
DQ[26:18]  
DQ[17:9]  
Deterministic Access Control is provided for ease of design.  
The circuitry detects when both ports are accessing the same  
location and provides an external BUSY flag to the port on  
which data may be corrupted. The collision detection logic  
saves the address in conflict (Busy Address) to a readable  
register. In the case of multiple collisions, the first Busy  
address will be written to the Busy Address register.  
If both ports are accessing the same location at the same time  
and only one port is doing a write, if tCCS is met, then the data  
being written to and read from the address is valid data. For  
example, if the right port is reading and the left port is writing  
and the left ports clock meets tCCS, then the data being read  
from the address by the right port will be the old data. In the  
same case, if the right ports clock meets tCCS, then the data  
being read out of the address from the right port will be the new  
data. In the above case, if tCCS is violated by the either ports  
clock with respect to the other port and the right port gets the  
external BUSY flag, the data from the right port is corrupted.  
Table 5 shows the tCCS timing that must be met to guarantee  
the data.  
BE[6]  
BE[5]  
BE[4]  
BE[3]  
BE[2]  
BE[1]  
BE[0]  
DQ[8:0]  
Selectable Pipeline/Flow-Through Mode  
To meet data rate and throughput requirements, the FullFlex  
families offer selectable pipeline or flow-through mode. Echo  
clocks are not supported in flow-through mode and the DLL  
must be disabled.  
Flow-Through mode is selected by the FTSEL pin. Strapping  
this pin HIGH selects pipeline mode. Strapping this pin LOW  
selects flow-through mode.  
Table 6 shows that, in the case of the left port writing and the  
right port reading, when an external BUSY flag is asserted on  
the right port, the data read out of the device will not be  
guaranteed.  
DLL  
The FullFlex familes of devices have an on-chip DLL. Enabling  
the DLL reduces the clock to data valid time allowing more  
set-up time for the receiving device. For operation below  
100 MHz, the DLL must be disabled. This is selectable by  
strapping LowSPD low. For information on DLL lock and reset  
time, please see the Master Reset section below.  
The value in the busy address register can be read back to the  
address lines. The required input control signals for this  
function are shown in Table 9. The value in the busy address  
register will be read out to the address lines tCA after the same  
amount of latency as a data read operation. After an initial  
address match, the address under contention is saved in the  
busy address register. All following address matches cause  
the BUSY flag to be generated, however, none of the  
addresses are saved into the busy address register. Once a  
busy readback is performed, the address of the first match  
which happens at least two clocks cycles after the busy  
readback, is saved into the busy address register.  
Echo Clocking  
As the speed of data increases, on-board delays caused by  
parasitics make providing accurate clock trees extremely  
difficult. To counter this problem, the FullFlex families incor-  
porate Echo Clocks. Echo Clocks are enabled on a per port  
basis. The dual-port receives input clocks that are used to  
Table 5. tCCS Timing for All Operating Modes  
Port A—Early Arriving Port Port B—Late Arriving Port  
tCCS  
Mode  
Active Edge  
Mode  
Active Edge  
Unit  
C Rise to Opposite C Rise Set-up Time for Non-corrupt Data  
SDR  
C
SDR  
C
tCYC(min) – 1  
ns  
Document #: 38-06082 Rev. *C  
Page 10 of 48  
PRELIMINARY  
FullFlex  
Table 6. Deterministic Access Control Logic  
Left Port Right Port Left Clock  
Right Clock  
BUSYL  
BUSYR  
Description  
Read  
Write  
Read  
Read  
X
>tCCS  
0
X
0
>tCCS  
0
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
H
H
H
H
H
L
No Collision  
Read OLD Data  
Read NEW Data  
Read OLD Data  
Data Not Guaranteed  
Read NEW Data  
Data Not Guaranteed  
Read NEW Data  
Read OLD Data  
Read NEW Data  
Data Not Guaranteed  
Read OLD Data  
Data Not Guaranteed  
Array Data Corrupted  
Array Stores Right Port Data  
Array Stores Left Port Data  
<tCCS  
0
<tCCS  
H
L
Read  
Write  
Write  
Write  
>tCCS  
0
<tCCS  
0
>tCCS  
0
H
H
H
H
H
H
L
0
<tCCS  
0
0
>–tCCS & <tCCS  
>tCCS  
0
H
L
>tCCS  
Table 8. Variable Impedance Matching Operation  
RQ Connection Output Configuration  
Variable Impedance Matching (VIM)  
Each port contains a Variable Impedance Matching circuit to  
set the impedance of the I/O driver to match the impedance of  
the on-board traces. The impedance is set for all outputs  
except JTAG and is done on a per port basis. To take  
advantage of the VIM feature, connect a calibrating resistor  
(RQ) that is five times the value of the intended line impedance  
from the ZQ pin to VSS. The output impedance is then  
adjusted to account for drifts in supply voltage and temper-  
ature every 1024 clock cycles. If a port’s clock is suspended,  
the VIM circuit will retain its last setting until the clock is  
restarted where it will then resume periodic adjustment. In the  
case of a significant change in device temperature or supply  
voltage, the recalibration period is multiples of 1024 clock  
cycles. A Master Reset will initialize the VIM circuitry. Table 7  
shows the VIM parameters and Table 8 describes the VIM  
operation modes.  
100- 275to VSS Output Driver Impedance = RQ/5 ±  
15% at Vout = VDDIO/2  
ZQ to VDDIO  
VIM Disabled. Rout < 20at Vout =  
VDDIO/2  
Address Counter and Mask Register Operations[1]  
Each port of the FullFlex family contains a programmable burst  
address counter. The burst counter contains four registers: a  
counter register, a mask register, a mirror register, and a busy  
address register.  
The counter register contains the address used to access the  
RAM array. It is changed only by the master reset (MRST),  
Counter Reset, Counter Load, Retransmit, and Counter  
Increment operations.  
In order to disable VIM, the ZQ pin must be connected to  
VDDIO of the relative supply for the I/Os before a Master  
Reset.  
The mask register value affects the Counter Increment and  
Counter Reset operations by preventing the corresponding  
bits of the counter register from changing. It also affects the  
counter interrupt output (CNTINT). The mask register is only  
changed by Mask Reset, Mask Load, and MRST. The Mask  
Load operation loads the value of the address bus into the  
mask register. The mask register defines the counting range  
of the counter register. It divides the counter register into two  
or three consecutive regions. Zero or more “0s” define the  
masked region and one or more “1s” define the unmasked  
portion of the counter register. The counter register may only  
be divided into up to three regions. The region containing the  
least significant bits must be no more than two bits. Bits one  
and zero may be “10” respectively, masking the least signif-  
icant counter bit and causing the counter to increment by two  
instead of one. If bits one and zero are “00”, the two least  
significant bits are masked and the counter will increment by  
four instead of one. For example, in the case of a 256Kx72  
Table 7. Variable Impedance Matching Parameters  
Parameter  
RQ Value  
Min. Max.  
Unit  
Tolerance  
± 2%  
100  
275  
Output Impedance  
Reset Time  
Update Time  
20  
55  
± 15%  
N/A  
N/A  
N/A 1024 Cycles  
N/A 1024 Cycles  
Document #: 38-06082 Rev. *C  
Page 11 of 48  
PRELIMINARY  
FullFlex  
configuration, a mask register value of 003FC divides the  
mask register into three regions. With bit 0 being the least  
significant bit and bit 17 being the most significant bit, the two  
least significant bits are masked, the next eight bits are  
unmasked, and the remaining bits are masked.  
The mirror register is used to reload the counter register on  
retransmit operations (see “retransmit” below) and wrap  
functions (see “counter increment” below). The last value  
loaded into the counter register is stored in the mirror register.  
The mirror register is only changed by master reset (MRST),  
Counter Reset, and Counter Load.  
Table 9 summarizes the operations of these registers and the  
required input control signals. All signals except MRST are  
synchronized to the ports clock.  
Counter Load Operation[1]  
The address counter and mirror registers are both loaded with  
the address value presented on the address lines. This value  
ranges from 0 to 1FFFFF.  
Mask Load Operation[1]  
The mask register is loaded with the address value presented  
on the address bus. This value ranges from 0 to 1FFFFF  
though not all values permit correct increment operations.  
Permitted values are in the form of 2n–1, 2n–2, or 2n–4. The  
counter register can only be segmented in up to three regions.  
From the most significant bit to the least significant bit,  
permitted values have zero or more “0s”, one or more “1s”, and  
the least significant two bits can be “11”, “10”, or “00”. Thus  
1FFFFE, 07FFFF, and 003FFC are permitted values but  
02FFFF, 003FFA, and 07FFE4 are not.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. The address will be valid tCA after the  
selected number of latency cycles configured by FTSEL. The  
data bus (DQ) is tri-stated on the cycle that the address is  
presented on the address lines. Figure 3 shows a block  
diagram of the operation.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. The address will be valid tCA after the selected  
number of latency cycles configured by FTSEL. The data bus  
(DQ) is tri-stated on the cycle that the address is presented on  
the address lines. Figure 3 shows a block diagram of the  
operation.  
Counter Reset Operation  
All unmasked bits of the counter and mirror registers are reset  
to “0”. All masked bits remain unchanged. A mask reset  
followed by a counter reset will reset the counter and mirror  
registers to 00000.  
Mask Reset Operation  
The mask register is reset to all “1s”, which unmasks every bit  
of the burst counter.  
Document #: 38-06082 Rev. *C  
Page 12 of 48  
PRELIMINARY  
FullFlex  
Table 9. Burst Counter and Mask Register Control Operation (Any Port) [18, 19]  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Description  
X
L
X
X
X
X
X
Master Reset Reset address counter to all 0s, mask register  
to all 1s, and BUSY address to all 0’s.  
H
L
H
X
X
X
Counter Reset Reset counter and mirror unmasked portion to  
all 0s.  
H
H
L
L
X
L
X
L
X
X
Mask Reset  
Reset mask register to all 1s.  
H
H
Counter Load Load burst counter and mirror with external  
address value presented on address lines.  
H
H
L
L
L
X
Mask Load  
Load mask register with value presented on the  
address lines.  
H
H
H
H
H
H
L
L
H
H
L
Retransmit  
Load counter with value in the mirror register  
H
Counter  
Internally increment address counter value.  
Increment  
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
H
H
H
L
Counter Hold Constantly hold the address value for multiple  
clock cycles.  
Counter  
Read out counter internal value on address  
lines.  
Readback  
L
Mask  
Read out mask register value on address lines.  
Readback  
L
H
Busy Address Read out last busy address  
Readback  
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
L
X
L
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
L
H
L
H
L
H
H
H
L
Notes:  
18. “X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
19. Counter operation and mask register operation is independent of chip enables.  
Document #: 38-06082 Rev. *C  
Page 13 of 48  
PRELIMINARY  
FullFlex  
Increment Operation[1]  
loaded. When the burst counter reaches its maximum value  
set by the mask register, it wraps back to the initial value stored  
in the mirror register as long as WRP is deasserted. The  
unmasked counter bits will be loaded with “0” If WRP is  
asserted. If the counter is configured to continuously be in  
increment mode, it increments once again to the maximum  
value and wraps back to the value initially stored in the mirror  
register as long as WRP is deasserted. While RET is asserted  
low, the counter will continue to wrap back to the value in the  
mirror register independent of the state of WRP.  
Once the address counter is initially loaded with an external  
address, the counter can internally increment the address  
value and address the entire memory array. Only the  
unmasked bits of the counter register are incremented. In  
order for a counter bit to change, the corresponding bit in the  
mask register must be “1”. If the two least significant bits of the  
mask register are “11”, the burst counter will increment by one.  
If the two least significant bits are “10”, the burst counter will  
increment by two, and if they are “00”, the burst counter will  
increment by four. If all unmasked counter bits are incre-  
mented to “1” and WRP is deasserted, the next increment will  
wrap the counter back to the initially loaded value. The cycle  
before an increment will result in the unmasked counter bits  
being “1s”, a counter interrupt flag (CNTINT) is asserted if the  
counter is continuously incrementing. The next increment will  
cause the counter to reach its maximum value and the second  
increment will return the counter register to its initial value  
which was stored in the mirror register when WRP is  
deasserted. When WRP is asserted, the second increment  
after CNTINT is asserted will load the unmasked counter bits  
with “0”. The example shown in Figure 4 shows an example of  
the CYDD36S18V18 device with the mask register loaded with  
a mask value of 00007F unmasking the seven least significant  
bits. Setting the mask register to this value allows the counter  
to access the entire memory space. The address counter is  
then loaded with an initial value of 000005 assuming WRP is  
deasserted. The masked bits, the seventh address through the  
twenty-first address, do not increment in an increment  
operation. The counter address will start at address 000005  
and will increment its internal address value until it reaches the  
mask register value of 00007F. The counter wraps around the  
memory block to location 000005 at the next count. CNTINT  
is issued when the counter reaches the maximum –1 count.  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW one clock  
cycle before an increment operation that results in the  
unmasked portion of the counter register being all “1s”. It is  
deasserted by counter reset, counter load, mask reset, mask  
load, and MRST.  
Counting by Two  
When the two least significant bits of the mask register are  
“10,” the counter increments by two.  
Counting by Four  
When the two least significant bits of the mask register are  
“00”, the counter increments by four.  
Mailbox Interrupts  
The upper two memory locations can be used for message  
passing and permit communications between ports. Table 10  
shows the interrupt operation for both ports. The highest  
memory location is the mailbox for the right port and the  
maximum address – 1 is the mailbox for the left port.  
When one port Writes to the other port’s mailbox, the INT flag  
of the port that the mailbox belongs to is asserted LOW. The  
INT flag remains asserted until the mailbox location is read by  
the other port. When a port reads its mailbox, the INT flag is  
deasserted high after one cycle of latency with respect to the  
input clock of the port to which the mailbox belongs and is  
independent of OE.  
Table 10 shows that in order to set the INTR flag, a Write  
operation by the left port to address 1FFFFF will assert INTR  
LOW. A valid Read of the 1FFFFF location by the right port will  
reset INTR HIGH after one cycle of latency with respect to the  
right port’s clock. At least one byte enable has to be activated  
to set or reset the mailbox interrupt.  
Hold Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
Retransmit  
Retransmit allows repeated access to the same block of  
memory without the need to reload the initial address. An  
internal mirror register stores the address counter value last  
Document #: 38-06082 Rev. *C  
Page 14 of 48  
PRELIMINARY  
FullFlex  
CNT/MSK  
CNTEN  
A
Decode  
Logic  
CNTRST  
RET  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
C
Load/Increment  
21  
21  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
21  
Wrap  
Register  
21  
21  
21  
From  
Mask  
From  
Counter  
Bit 0  
and 1  
+1  
+2  
+4  
Wrap  
Wrap  
To  
1
0
Detect  
21  
1
0
Counter  
Figure 3. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06082 Rev. *C  
Page 15 of 48  
PRELIMINARY  
FullFlex  
CNTINT  
H
Example:  
Load  
Counter-Mask  
0
0
0s  
1
1
1
1
1
1
1
0
Register = 00007F  
220 219  
26 25 24 23 22 21 20  
Unmasked Address  
27  
Masked Address  
Mask  
Register  
LSB  
Load  
Address  
H
L
X
X
Xs  
Xs  
Xs  
0
0
0
0
1
0
1
X
Counter = 000005  
220 219  
26 25 24 23 22 21 20  
Address  
Counter  
LSB  
27  
27  
27  
Max  
Address  
Value  
X
X
1
1
1
1
1 1  
1
X
220 219  
26 25 24 23 22 21 20  
Max + 1  
Address  
Value  
H
X
X
0
0
0
0
1
0
1
X
220 219  
26 25 24 23 22 21 20  
Figure 4. Programmable Counter-Mask Register Operation[1, 23]  
Table 10.Interrupt Operation Example[1, 19, 20, 21, 22]  
Left Port  
A0L–21L  
Right Port  
A0R–21R  
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
R/WL  
CEL  
L
INTL  
X
R/WR  
CER  
X
INTR  
L
H
X
X
L
X
X
H
Max. Address  
X
H
L
X
X
X
L
X
X
X
L
H
L
L
X
Max. Address  
Max. Address–1  
X
Reset Left INTL Flag  
Max. Address–1  
X
Master Reset  
to four outputs may be connected together. For faster  
pull-down of the signal, connect a 250 Ohm resistor to VSS. If  
the DLL and VIM circuits are disabled for a port, the port will  
be operational within five clock cycles. However, the READY  
will be asserted within 160 clock cycles.  
The FullFlex family of Dual-Ports undergo a complete reset by  
asserting MRST. The MRST can be asserted asynchronously  
to the clocks and must remain asserted for at least tRS. Once  
asserted MRST deasserts READY, initializes the internal burst  
counters, internal mirror registers, and internal Busy  
Addresses to zero, and initializes the internal mask register to  
all “1s”. All mailbox interrupts (INT), Busy Address Outputs  
(BUSY), and burst counter interrupts (CNTINT) are  
deasserted upon master reset. Releasing MRST also signifies  
that the power supplies and all port clocks are stable. This  
begins calibration of the DLL and VIM circuits. READY will be  
asserted within 1024 clock cycles. READY is a wired OR  
capable output with a strong pull-up and weak pull-down. Up  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The FullFlex families incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP operates  
using JEDEC-standard 3.3V or 2.5V I/O logic levels depending  
on the VTTL power supply. It is composed of four input  
connections and one output connection required by the test  
logic defined by the standard.  
Notes:  
20. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and  
0
1
can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge.  
21. OE is “Don’t Care” for mailbox operation.  
22. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.  
23. The “X” in this diagram represents the counter upper bits.  
Document #: 38-06082 Rev. *C  
Page 16 of 48  
PRELIMINARY  
FullFlex  
Table 11.Identification Register Definitions  
Table 12.Scan Registers Sizes  
Register Name  
Instruction  
Bypass  
Identification  
Boundary Scan  
Part Number  
CYD36S72V18  
CYD36S36V18  
CYD36S18V18  
CYD18S72V18  
CYD18S36V18  
CYD18S18V18  
CYD09S72V18  
CYD09S36V18  
CYD09S18V18  
CYD04S72V18  
CYD04S36V18  
CYD04S18V18  
Configuration  
512Kx72  
1024Kx36  
2048Kx36  
256Kx72  
512Kx36  
1024Kx18  
128Kx72  
256Kx36  
1024Kx18  
64Kx72  
Value  
Bit Size  
0C022069h  
0C023069h  
0C024069h  
0C025069h  
0C026069h  
0C027069h  
0C028069h  
0C029069h  
0C02A069h  
0C02B069h  
0C02C069h  
0C02D069h  
4
1
32  
n[24]  
128Kx36  
256Kx18  
Table 13.Instruction Identification Codes  
Instruction Code  
EXTEST  
Description  
0000  
1111  
1011  
0111  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Places the BYR between TDI and TDO.  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers  
to a High-Z state.  
CLAMP  
0100  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Note:  
24. Details of the boundary scan length can be found in the BSDL file for the device.  
Document #: 38-06082 Rev. *C  
Page 17 of 48  
PRELIMINARY  
FullFlex  
Maximum Ratings  
Operating Range  
(Above which the useful life may be impaired. For user guide-  
Range  
Commercial  
Ambient Temperature  
VCORE  
lines, not tested.)  
0°C to +70°C  
1.8V ± 100 mV  
Storage Temperature ................................ –65°C to + 150°C  
1.5V ± 80 mV  
Ambient Temperature with  
Industrial  
–40°C to +85°C  
1.8V ± 100 mV  
1.5V ± 80 mV  
Power Applied............................................55°C to + 125°C  
Supply Voltage to Ground Potential.............. –0.5V to + 4.1V  
Power Supply Requirements  
DC Voltage Applied to  
Outputs in High-Z State......................–0.5V to VCORE + 0.5V  
Min.  
Typ.  
Max.  
3.6V  
2.7V  
1.9V  
1.9V  
3.6V  
2.7V  
0.95V  
DC Input Voltage............................... –0.5V to VCORE + 0.5V  
Output Current into Outputs (LOW) ............................ 20 mA  
Static Discharge Voltage...........................................> 2200V  
(JEDEC JESD8-6, JESD8-B)  
LVTTL VDDIO  
2.5V LVCMOS VDDIO  
HSTL VDDIO  
1.8V LVCMOS VDDIO  
3.3V VTTL  
3.0V  
2.3V  
1.4V  
1.7V  
3.0V  
2.3V  
0.68V  
3.3V  
2.5V  
1.5V  
1.8V  
3.3V  
2.5V  
0.75V  
Latch-up Current.....................................................> 200 mA  
2.5V VTTL  
HSTL VREF  
Electrical Characteristics Over the Operating Range  
-250[15]  
-200  
Parameter  
VOH  
Description  
Configuration  
Min.  
Typ. Max.  
Min.  
2.4 [25]  
Typ. Max. Unit  
Output HIGH Voltage  
LVTTL  
2.4[25]  
V
(VCORE=Min., IOH=-8 mA)  
(VCORE=Min., IOH=-4 mA)  
(VCORE=Min., IOH=-4 mA)  
(VCORE=Min., IOH=-6 mA)  
(VCORE=Min., IOH=-4 mA)  
HSTL (DC)[26] VDDIO – 0.4[25]  
HSTL (AC)[26] VDDIO – 0.5[25]  
2.5V LVCMOS  
1.8V LVCMOS VDDIO – 0.45[25]  
LVTTL  
VDDIO – 0.4[25]  
VDDIO – 0.5[25]  
1.7[25]  
V
V
V
V
1.7[25]  
VDDIO – 0.45[25]  
VOL  
Output HIGH Voltage  
0.4[25]  
0.4[25]  
V
(VCORE=Min., IOL= 8 mA)  
(VCORE=Min., IOL= 4 mA)  
(VCORE=Min., IOL= 4 mA)  
(VCORE=Min., IOL= 6 mA)  
(VCORE=Min., IOL= 4 mA)  
Input HIGH Voltage  
HSTL (DC)[26]  
HSTL (AC)[26]  
2.5V LVCMOS  
1.8V LVCMOS  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
VDDI  
O +  
0.3  
V
V
V
V
V
VIH  
LVTTL  
2
VDDIO  
+ 0.3  
2
HSTL (DC)[26]  
VREF + 0.1  
VDDIO  
+ 0.3  
VREF + 0.1  
VDDI  
O +  
0.3  
V
HSTL (AC)[26]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VREF + 0.2  
1.7  
VREF + 0.2  
1.7  
V
V
V
V
V
1.26  
–0.3  
–0.3  
1.26  
–0.3  
–0.3  
VIL  
Input LOW Voltage  
0.8  
VREF  
– 0.1  
VREF  
– 0.2  
0.8  
VREF  
– 0.1  
VREF  
– 0.2  
HSTL (DC)[26]  
HSTL (AC)[26]  
V
2.5V LVCMOS  
1.8V LVCMOS  
0.7  
0.36  
0.7  
0.36  
V
V
Document #: 38-06082 Rev. *C  
Page 18 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-250[15]  
-200  
Parameter  
Description  
Configuration  
Min.  
Typ. Max.  
Min.  
Typ. Max. Unit  
READY  
Output HIGH Voltage  
LVTTL  
2.7[25]  
2.7[25]  
V
VOH  
(VCORE = Min., IOH = –24 mA)  
(VCORE = Min., IOH = –12 mA) HSTL (DC)[26] VDDIO – 0.4[25]  
(VCORE = Min., IOH = –12 mA) HSTL (AC)[26] VDDIO – 0.5[25]  
VDDIO – 0.4[25]  
VDDIO – 0.5[25]  
2.0[25]  
V
V
V
V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS  
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[25]  
2.0[25]  
VDDIO – 0.45[25]  
READY  
VOL  
Output HIGH Voltage  
LVTTL  
0.4[25]  
0.4[25]  
V
(VCORE = Min., IO = 0.12 mA)  
(VCORE = Min., IOL = 0.12 mA)  
(VCORE = Min., IOL = 0.12 mA)  
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS  
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS  
Output Leakage Current  
HSTL (DC)  
HSTL (AC)  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
10  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
10  
V
V
V
V
µA  
µA  
IOZ  
IIX1  
–10  
–10  
–10  
–10  
Input Leakage Current Except  
TDI, TMS, MRST  
10  
10  
IIX2  
IIX3  
Input Leakage Current TDI,  
TMS, MRST  
Input Leakage Current  
PORTSTD, DDRON,  
VC_SEL  
–300  
–10  
10  
–300  
–10  
10  
µA  
300  
300 µA  
ICC  
Operating Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
(VCORE = Max.,IOUT = 0 mA)  
Outputs Disabled  
64Kx72  
128Kx36  
256x18  
Notes:  
25. These parameters are met with VIM disabled.  
26. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed.  
Document #: 38-06082 Rev. *C  
Page 19 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-250[15]  
Typ. Max.  
-200  
Parameter  
Description  
Configuration  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max. Unit  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
ISB1  
Standby Current  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
(Both Ports TTL Level)  
CEL and CER VIH, f = fMAX  
64Kx72  
128Kx36  
256x18  
ISB2  
Standby Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
64Kx72  
128Kx36  
256x18  
ISB3  
Standby Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
(Both Ports CMOS Level)  
CEL and CER VCORE – 0.2V,  
f = 0  
64Kx72  
128Kx36  
256x18  
Document #: 38-06082 Rev. *C  
Page 20 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-250[15]  
Typ. Max.  
-200  
Parameter  
Description  
Configuration  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max. Unit  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
ISB4  
Standby Current  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
64Kx72  
128Kx36  
256x18  
Electrical Characteristics Over the Operating Range  
-167  
-133  
Parameter  
VOH  
Description  
Configuration  
Min.  
2.4[25]  
Typ. Max.  
Min.  
Typ. Max. Unit  
Output HIGH Voltage  
LVTTL  
2.4 [25]  
V
(VCORE = Min., IOH = –8 mA)  
(VCORE = Min., IOH = –4 mA) HSTL (DC) VDDIO – 0.4[25]  
(VCORE = Min., IOH = –4 mA) HSTL (AC) VDDIO – 0.5[25]  
VDDIO – 0.4[25]  
VDDIO – 0.5[25]  
1.7[25]  
V
V
V
V
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS  
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS VDDIO – 0.45[25]  
1.7[25]  
VDDIO – 0.45[25]  
VOL  
Output HIGH Voltage  
LVTTL  
0.4[25]  
0.4[25]  
V
(VCORE = Min., IOH = –8 mA)  
(VCORE = Min., IOH = –4 mA) HSTL (DC)  
(VCORE = Min., IOH = –4 mA) HSTL (AC)  
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS  
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
VDDIO  
+ 0.3  
VDDIO  
+ 0.3  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
VDDIO  
+ 0.3  
VDDIO  
+ 0.3  
V
V
V
V
V
VIH  
Input HIGH Voltage  
Input LOW Voltage  
LVTTL  
2
2
HSTL (DC)  
VREF + 0.1  
VREF + 0.1  
V
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VREF + 0.2  
1.7  
VREF + 0.2  
1.7  
V
V
V
V
V
1.26  
–0.3  
–0.3  
1.26  
–0.3  
–0.3  
VIL  
0.8  
VREF–  
0.1  
0.8  
VREF–  
0.1  
HSTL (DC)  
HSTL (AC)  
VREF–  
0.2  
VREF–  
0.2  
V
2.5V LVCMOS  
1.8V LVCMOS  
0.7  
0.36  
0.7  
0.36  
V
V
Document #: 38-06082 Rev. *C  
Page 21 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-167  
-133  
Parameter  
Description  
Configuration  
Min.  
Typ. Max.  
Min.  
Typ. Max. Unit  
READY  
Output HIGH Voltage  
LVTTL  
2.7[25]  
2.7[25]  
V
VOH  
(VCORE = Min., IOH = –24 mA)  
(VCORE = Min., IOH = –12 mA) HSTL (DC)[26] VDDIO – 0.4[25]  
(VCORE = Min., IOH = –12 mA) HSTL (AC)[26] VDDIO – 0.5[25]  
VDDIO – 0.4[25]  
VDDIO – 0.5[25]  
2.0[25]  
V
V
V
V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS  
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[25]  
2.0[25]  
VDDIO – 0.45[25]  
READY  
VOL  
Output HIGH Voltage  
LVTTL  
0.4[25]  
0.4[25]  
V
(VCORE = Min., IOL = 0.12 mA)  
(VCORE = Min., IOL = 0.12 mA) HSTL (DC)  
(VCORE = Min., IOL = 0.12 mA) HSTL (AC)  
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS  
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS  
Output Leakage Current  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
10  
0.4[25]  
0.5[25]  
0.7[25]  
0.2[25]  
10  
V
V
V
V
µA  
µA  
IOZ  
IIX1  
–10  
–10  
–10  
–10  
Input Leakage Current  
Except TDI,  
10  
10  
TMS, MRST  
IIX2  
IIX3  
Input Leakage Current TDI,  
TMS, MRST  
Input Leakage Current  
PORTSTD, DDRON,  
VC_SEL  
–300  
–10  
10  
–300  
–10  
10  
µA  
µA  
300  
300  
ICC  
Operating Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
(VCORE = Max., IOUT = 0 mA)  
Outputs Disabled  
64Kx72  
128Kx36  
256x18  
Document #: 38-06082 Rev. *C  
Page 22 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-167  
-133  
Parameter  
ISB1  
Description  
Configuration  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max.  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max. Unit  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
Standby Current  
(Both Ports TTL Level)  
CEL and CER VIH, f = fMAX  
64Kx72  
128Kx36  
256x18  
ISB2  
Standby Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
64Kx72  
128Kx36  
256x18  
ISB3  
Standby Current  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
(Both Ports CMOS Level)  
CEL andCER VCORE0.2V,  
f = 0  
64Kx72  
128Kx36  
256x18  
Document #: 38-06082 Rev. *C  
Page 23 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-167  
-133  
Parameter  
ISB4  
Description  
Configuration  
512Kx72  
1024Kx36  
2048Kx18  
256Kx72  
512Kx36  
1024x18  
128Kx72  
256Kx36  
512x18  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max.  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max. Unit  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
Standby Current  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
64Kx72  
128Kx36  
256x18  
Table 14.Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
10  
12  
Unit  
pF  
pF  
[27]  
CIN  
TA = °C, f = MHz,  
VCORE = 3 dV[28]  
[27, 29]  
COUT  
AC Test Load and Waveforms  
V T H = 1 .5 V fo r L V T T L  
V T H = 5 0 % V D D IO fo r 2 .5 V C M O S  
V T H = 5 0 % V D D IO fo r 1 .8 V C M O S  
= 0 V  
V
R E F  
V
R E F  
5 0 O h m  
5 0 O h m  
O u tp u t  
R E A D Y Z Q  
T e s t P o in t  
R = 2 5 0 O h m  
V T H  
D e v ic e u n d e r  
te s t  
C
= 1 0 p F  
R Q = 2 5 0 O h m  
Figure 5. Output Test Load for LVTTL/CMOS  
V T H  
=
5 0 % V D D I O  
5 0 O h m  
V
=
E F  
0 . 7 5 V  
R
V
R
E F  
5 0 O h m  
O u t p u t  
R E A D Y Z Q  
R = 2 5 0 O h m  
T e s t P o i n t  
V T H  
C = 1 0 p F f o r S D R  
D e v i c e u n d e r  
t e s t  
R Q = 2 5 0 O h m  
Figure 6. Output Test Load for HSTL  
Notes:  
27. Capacitance for the 36M x18 device is 20 pF, capacitance for all other 36M or x18 devices is 12 pF.  
28. Input and Output switch from 0V to 3V or from 3V to 0V.  
29. C also references to C  
.
out  
I/O  
Document #: 38-06082 Rev. *C  
Page 24 of 48  
PRELIMINARY  
FullFlex  
Switching Characteristics Over the Operating Range  
Table 15.SDR Mode with DLL Enabled (LOWSPD-HIGH)[32]  
-250[15}  
-200  
Max.  
-167  
Max.  
-133  
Min.  
Parameter  
Description  
Min.  
100  
Max.  
250  
Min.  
100  
Min.  
100  
Max. Unit  
133 MHz  
f
MAX (PIPELINED) Maximum Operating Frequency  
200  
167  
100  
for Pipelined mode  
Maximum Operating Frequency  
[33]  
fMAX  
100  
77  
66.7  
55.6 MHz  
10.00 ns  
ns  
(FLOW-THROUGH) for Flow-through mode  
tCYC (PIPELINED) C Clock Cycle Time for Pipelined 4.00  
10.00  
5.00  
10.00  
6.00  
10.00  
7.00  
mode  
tCYC  
C Clock Cycle Time for  
10.00  
45  
13.00  
15.00  
18.00  
(FLOW-THROUGH) Flow-through mode  
tCKD C Clock Duty Time  
tSD  
tHD  
55  
45  
55  
45  
55  
45  
55  
%
ns  
ns  
ns  
Data Input Set-up Time to C Rise 1.20[31]  
Data Input Hold Time after C Rise 0.50[31]  
1.50[31]  
0.50[31]  
1.50  
1.70[31]  
0.50[31]  
1.70  
1.80[31]  
0.50[31]  
1.80  
tSAC  
Address & Control Input Setup  
1.20  
Time to C Rise  
tHAC  
tOE  
Address & Control Input Hold  
Time after C Rise  
Output Enable to Data Valid  
OE to Low Z  
0.50  
0.50  
0.60  
0.70  
ns  
3.40[31]  
4.40[31]  
5.00[31]  
5.50[31] ns  
ns  
[30]  
tOLZ  
tOHZ  
tCD1  
1.00  
1.00  
1.00  
1.00  
[30]  
OE to High Z  
1.00[31] 3.40[31] 1.00[31] 4.40[31] 1.00[31] 5.00[31] 1.00[31] 5.50[31] ns  
C Rise to DQ Valid for  
Flow-through Mode  
(LowSPD = 1)  
7.20  
9.00  
11.00  
13.00 ns  
4.50[31] ns  
13.00 ns  
tCD2  
C Rise to DQ Valid for Pipelined  
2.64[31]  
3.30[31]  
4.00[31]  
mode  
(LowSPD = 1)  
tCA1  
tCA2  
tDC  
tCCQ  
tCQHQV  
C Rise to Address Readback  
7.20  
4.00  
9.00  
5.00  
11.00  
6.00  
Valid for flow-through mode  
C Rise to Address Readback  
Valid for pipelined mode  
DQ Output Hold after C Rise  
C Rise to CQ Rise  
7.50  
ns  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
2.64  
0.70[31]  
3.30  
0.76[31]  
4.00  
0.80[31]  
4.50  
Echo Clock (CQ) High to Output  
0.90[31] ns  
Valid  
tCQHQX  
Echo Clock (CQ) High to Output –0.66  
Hold  
–0.72  
1.00  
1.00  
–0.76  
1.00  
1.00  
–0.90  
1.00  
1.00  
ns  
13.00 ns  
ns  
[30]  
tCKHZ1  
C Rise to DQ Output High Z in  
1.00  
7.20  
9.00  
11.00  
Flow-Through Mode  
[30]  
tCKLZ1  
C Rise to DQ Output Low Z in  
Flow-Through Mode  
1.00  
[30]  
tCKHZ2  
C Rise to DQ Output High Z in  
1.00[31] 2.64[31] 1.00[31] 3.30[31] 1.00[31] 4.00[31] 1.00[31] 4.50[31] ns  
Pipelined Mode  
[30]  
tCKLZ2  
C Rise to DQ Output Low Z in  
Pipelined Mode  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
tAC  
Address Output Hold after C Rise 1.00  
Notes:  
30. Parameters specified with the load capacitance in Figure 5 and Figure 6.  
31. For the x18 devices, add 200 ps to this parameter in the table above.  
32. Test conditions assume a signal transition time of 2 V/ns.  
33. Flow-Through Mode operates at this frequency regardless of DLL being enabled or disabled  
Document #: 38-06082 Rev. *C  
Page 25 of 48  
PRELIMINARY  
Table 15.SDR Mode with DLL Enabled (LOWSPD-HIGH)[32] (continued)  
FullFlex  
-250[15}  
-200  
Max.  
-167  
Max.  
-133  
Min.  
Parameter  
tCKHZA1  
Description  
Min.  
Max.  
Min.  
Min.  
Max. Unit  
13.00 ns  
[30]  
C Rise to Address Output High Z 1.00  
7.20  
1.00  
9.00  
1.00  
11.00  
1.00  
for Flow-Through Mode  
[30]  
tCKHZA2  
C Rise to Address Output High Z 1.00  
for Pipelined Mode  
C Rise to Address Output Low Z 1.00  
C Rise to CNTINT Low  
C Rise to CNTINT High  
C Rise to INT Low  
4.00  
1.00  
5.00  
1.00  
6.00  
1.00  
7.50  
ns  
[30]  
tCKLZA  
tSCINT  
tRCINT  
tSINT  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
ns  
ns  
ns  
ns  
ns  
ns  
1.00  
1.00  
0.50  
0.50  
1.00  
2.64  
2.64  
6.00  
6.00  
2.64  
3.30  
3.30  
7.00  
7.00  
3.30  
4.00  
4.00  
8.00  
8.00  
4.00  
4.50  
4.50  
8.50  
8.50  
4.50  
tRINT  
tBSY  
C Rise to INT High  
C Rise to BUSY Valid  
Table 16. SDR Mode with DLL Disabled (LOWSPD-LOW)[32]  
-100  
Parameter  
Description  
Min.  
Max.  
Unit  
f
MAX (PIPELINED)  
Maximum Operating Frequency for Pipelined mode  
100  
55.6  
10.00  
MHz  
MHz  
ns  
ns  
%
fMAX (FLOW-THROUGH)[33] Maximum Operating Frequency for Flow-through mode  
tCYC (PIPELINED)  
C Clock Cycle Time for Pipelined mode  
C Clock Cycle Time for Flow-through mode  
C Clock Duty Time  
Data Input Set-up Time to C Rise  
Data Input Hold Time after C Rise  
Address & Control Input Setup Time to C Rise  
Address & Control Input Hold Time after C Rise  
Output Enable to Data Valid  
OE to Low Z  
OE to High Z  
C Rise to DQ Valid for Flow-through Mode (LowSPD = 0)  
C Rise to DQ Valid for Pipelined mode (LowSPD = 0)  
C Rise to Address Readback Valid for flow-through mode  
C Rise to Address Readback Valid for pipelined mode  
DQ Output Hold after C Rise  
7.00  
18.00  
45  
tCYC (FLOW-THROUGH)  
tCKD  
tSD  
tHD  
55  
1.80[31]  
0.50[31]  
1.80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSAC  
tHAC  
tOE  
tOLZ  
tOHZ  
tCD1  
tCD2  
tCA1  
tCA2  
tDC  
tCCQ  
tCQHQV  
tCQHQX  
tCKHZ1  
tCKLZ1  
0.70  
5.50[31]  
[30]  
1.00  
[30]  
1.00[31] 5.50[31]  
13.00  
6.00[31]  
13.00  
7.50  
1.00  
1.00  
C Rise to CQ Rise  
6.00  
Echo Clock (CQ) High to Output Valid  
Echo Clock (CQ) High to Output Hold  
C Rise to DQ Output High Z in Flow-through Mode  
C Rise to DQ Output Low Z in Flow-Through Mode  
C Rise to DQ Output High Z in Pipelined Mode  
C Rise to DQ Output Low Z in Pipelined Mode  
Address Output Hold after C Rise  
C Rise to Address Output High Z for Flow-Through mode  
C Rise to Address Output High Z for Pipelined mode  
C Rise to Address Output Low Z  
0.90[31]  
–0.90  
1.00  
1.00  
[30]  
13.00  
[30]  
tCKHZ2  
1.00[31] 6.00[31]  
[30]  
[30]  
tCKLZ2  
tAC  
tCKHZA1  
tCKHZA2  
tCKLZA  
tSCINT  
tRCINT  
1.00  
1.00  
[30]  
[30]  
1.00  
1.00  
1.00  
1.00  
1.00  
13.00  
7.50  
[30]  
C Rise to CNTINT Low  
C Rise to CNTINT High  
4.50  
4.50  
Document #: 38-06082 Rev. *C  
Page 26 of 48  
PRELIMINARY  
Table 16. SDR Mode with DLL Disabled (LOWSPD-LOW)[32]  
FullFlex  
-100  
Parameter  
Description  
Min.  
0.50  
0.50  
1.00  
Max.  
Unit  
ns  
ns  
tSINT  
tRINT  
tBSY  
C Rise to INT Low  
C Rise to INT High  
C Rise to BUSY Valid  
8.50  
8.50  
4.50  
ns  
Master Reset Timing  
-250[15]  
-200  
-167  
-133  
Parameter  
tPUP  
tRS  
Description  
Power-Up Time  
Master Reset Pulse Width  
Master Reset Recovery Time  
Master Reset to Outputs Inactive/Hi Z  
Master Reset Release to Port Ready  
C Rise to Port Ready  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ms  
cycles  
cycles  
ns  
1
5
5
1
5
5
1
5
5
1
5
5
tRSR  
tRSF  
tRDY  
10  
1024  
8
10  
1024  
9.5  
10  
1024  
11  
10  
[34]  
[35]  
1024 cycles  
13  
tCORDY  
ns  
Table 17.JTAG Timing  
-250[15]  
-200  
-167  
-133  
Parameter  
Description  
JTAG TAP Controller Frequency  
TCK Cycle Time  
TCK High Time  
Min.  
Max.  
20  
Min.  
Max.  
20  
Min.  
Max.  
20  
Min.  
Max.  
20  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fJTAG  
tTCYC  
tTH  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
tTL  
TCK Low Time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
tJXZ  
TMS Set-up to TCK Rise  
TMS Hold to TCK Rise  
TDI Set-up to TCK Rise  
TDI Hold to TCK Rise  
TCK Low to TDO Valid  
TCK Low to TDO Invalid  
TCK Low to TDO High Z  
TCK Low to TDO Active  
10  
10  
10  
10  
0
0
0
0
15  
15  
15  
15  
15  
15  
15  
15  
tJZX  
Notes:  
34. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250-Ohm resistor to VSS.  
35. Add this propagation delay after t  
for all Master Reset Operations.  
RDY  
Document #: 38-06082 Rev. *C  
Page 27 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms  
JTAG Timing  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Master Reset[34]  
~
V
CORE  
t
t
RS  
PUP  
~
~
MRST  
C
t
t
RDY  
CORDY  
~
~
READY  
t
RSF  
All Address  
& Data  
t
RSR  
All Other  
Inputs  
~
Document #: 38-06082 Rev. *C  
Page 28 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
READ Cycle for Pipelined Mode  
t
CYC  
C
CE  
OE  
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
A
n
n+1  
x
n+2  
n
n+3  
n+4  
n+5  
n+6  
2 pipeline stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
x-1  
n+1  
n+2  
n+3  
DQ  
t
DC  
t
CD2  
WRITE Cycle for Pipelined and Flow-Through Modes  
t
CYC  
C
CE  
R/W  
A
A
A
A
A
A
A
n+6  
A
n
n+1  
n+2  
n+3  
n+4  
n+5  
2 pipeline stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
tSD tHD  
Document #: 38-06082 Rev. *C  
Page 29 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
READ with Address Counter Advance for Pipelined Mode  
t
CYC  
C
A
A
n
Internal  
A
A
n+1  
A
A
n
n+2  
n+3  
Address  
ADS  
CNTEN  
DQ  
DQ  
DQ  
DQ  
DQ  
n+1  
x-1  
x
n
DQ  
DQ  
n+3  
n+2  
READ with Address Counter Advance for Flow-Through Mode  
tCYC  
C
tSAC tHAC  
A
An  
ADS  
CNTEN  
DQ  
tSAC tHAC  
tCD1  
DQx  
DQn  
DQn + 1  
DQn + 2  
DQn + 3  
DQn + 4  
tDC  
READ EXTERNAL ADDRESS  
READ WITH COUNTER  
COUNTER HOLD  
READ W ITH COUNTER  
Document #: 38-06082 Rev. *C  
Page 30 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Port-to-Port WRITE–READ for Pipelined Mode  
t
CYC  
Left Port  
C
L
A
AL  
n
R/WL  
DQL  
DQ  
n
Right Port  
t
CCS  
C
R
t
CYC  
AR  
A
n
R/WR  
DQR  
t
t
SAC HAC  
DQ  
n
t
t
DC  
CD2  
Chip Enable READ for Pipelined Mode  
t
CYC  
C
CE0  
CE1  
R/W  
A
t
t
SAC HAC  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
DQ  
DQ  
n+3  
n
t
t
DC  
t
CD2  
CKLZ2  
Document #: 38-06082 Rev. *C  
Page 31 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
OE Controlled WRITE for Pipelined Mode  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+1  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x-1  
x
n
n+1  
n+2  
OE Controlled WRITE for Flow-Through Mode  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x
x+1  
n
n+1  
n+2  
Document #: 38-06082 Rev. *C  
Page 32 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Byte-Enable READ for Pipelined Mode  
tCYC  
C
A
A
A
A
n
n+1  
n+2  
n+3  
A
R/W  
BE7  
BE6  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
tCKLZ2  
tCKHZ2  
DQn+1(63:71)  
DQ  
63:71  
DQn+1(54:62)  
DQ  
DQ  
DQ  
54:62  
DQn+2(45:53)  
DQn+2(36:44)  
45:53  
36:44  
DQn+1(27:35)  
DQ  
DQ  
27:35  
DQn+2(18:26)  
18:26  
DQn+3(9:17)  
DQ  
9:17  
0:8  
DQn+3(0:8)  
DQ  
Document #: 38-06082 Rev. *C  
Page 33 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Port-to-Port WRITE-to-READ for Flow-Through Mode  
CL  
R/WL  
tSAC  
tHAC  
tHD  
NO MATCH  
AL  
MATCH  
tSD  
VALID  
DQL  
tCCS  
CR  
tCD1  
R/W R  
tHAC  
tSAC  
NO MATCH  
AR  
MATCH  
tCD1  
DQR  
VALID  
VALID  
tDC  
tDC  
Busy Address Readback for Pipelined and Flow-Through Modes[36]  
t
CYC  
~
~
C
Internal  
Address  
Amatch+2  
Amatch+3  
Amatch+4  
BUSY  
~
~
CNTEN  
ADS  
~
~
External  
Address  
Amatch  
tAC  
tCA  
Note:  
36. A  
is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy  
match  
Address Readback.”  
Document #: 38-06082 Rev. *C  
Page 34 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read Cycle for Flow-Through Mode  
tCYC  
C
CE0  
CE1  
tSAC tHAC  
BEn  
R/W  
tSAC  
tHAC  
A
An  
An + 1  
An + 2  
An + 3  
tCKHZ1  
tCD1  
tDC  
DQ  
DQn  
DQn + 1  
tOHZ  
DQn + 2  
tCKLZ1  
tDC  
tOLZ  
OE  
tOE  
READ-to-WRITE for Pipelined Mode (OE = VIL)[37,38,39]  
tCYC  
tCL  
C
tCH  
A
A
x
A
A
n+2  
n
A
R/W  
DQ  
n+1  
tSAC tHAC  
tSAC tHAC  
t
CKLZ2  
DQ  
DQ  
DQ  
x
DQ  
x-2  
tCD2  
x-1  
DQ  
n+2  
DQ  
n+1  
n
tDC  
tCKHZ2  
tSD tHD  
Notes:  
37. When OE = V , the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data.  
IL  
38. Two dummy writes should be issued to accomplish bus turnaround. The 3rd instruction is the first valid write.  
39. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption.  
Document #: 38-06082 Rev. *C  
Page 35 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
READ-to-WRITE for Pipelined Mode (OE Controlled)[40,41]  
tCYC  
C
A
A
A
A
A
A
A
n+3  
x
x+1  
x+2  
n
n+1  
n+2  
A
tSAC tHAC  
R/W  
OE  
DQ  
tOHZ  
tSD tHD  
DQ  
DQ  
x
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
x-2  
x-1  
n
n+1  
n+2  
Notes:  
40. OE should be deasserted and t  
allowed to elapse before the first write operation is issued.  
OHZ  
41. Any write scheduled to complete after OE is deasserted will be preempted.  
Document #: 38-06082 Rev. *C  
Page 36 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read-to-Write-to-Read for Flow-Through Mode (OE = LOW)  
tCYC  
C
tSAC tHAC  
CE0  
CE1  
BEn  
R/W  
tSAC  
tHAC  
A
An  
An + 1  
An + 2  
An + 2  
An + 3  
An + 4  
tSD  
tHD  
DQIN  
DQn + 2  
tCD1  
tCD1  
tCD1  
tCD1  
DQn  
tDC  
DQOUT  
DQn + 1  
DQn + 3  
tCKHZ1  
tCKLZ1  
tDC  
READ  
NOP  
WRITE  
READ  
Document #: 38-06082 Rev. *C  
Page 37 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read-to-Write-to-Read for Flow-Through Mode (OE Controlled)  
tCYC  
C
tHAC  
tSAC  
CE0  
CE1  
BEn  
tHAC  
tSAC  
R/W  
A
An  
An + 1  
An + 2  
tHD  
An + 3  
An + 4  
An + 5  
tSD  
DQIN  
DQn + 2  
DQn + 3  
tOE  
tCD1  
tCD1  
tDC  
tCD1  
DQOUT  
DQn  
DQn + 4  
tDC  
tCKLZ1  
tOHZ  
OE  
READ  
WRITE  
READ  
Document #: 38-06082 Rev. *C  
Page 38 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Violates tCCS. (Flag Both  
Ports)  
Port A  
C
A
R/W  
BUSY  
C
tBSY  
tBSY  
< tCCS  
Port B  
A
R/W  
tBSY  
tBSY  
BUSY  
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Meets tCCS. (Flag Losing  
Port)  
Losing Port  
C
A
R/W  
tccs  
tBSY  
BUSY  
tBSY  
Winning Port  
C
A
Match  
R/W  
BUSY  
Document #: 38-06082 Rev. *C  
Page 39 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read with Echo Clock for Pipelined and Flow-Through Modes (CQEN = HIGH)  
C
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
A
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
CQ0  
CQ0  
CQ1  
t
CCQ  
CQ1  
DQ  
t
CQHQX  
t
CQHQV  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
DQ  
DQ  
x
n
n+1  
n+2  
n+3  
x-1  
Document #: 38-06082 Rev. *C  
Page 40 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Mailbox Interrupt Output  
tCYC  
C
L
AMAX  
AL  
R/WL  
DQL  
INTR  
tSINT  
tRINT  
C
R
AMAX  
AR  
R/WR  
DQMAX  
DQR  
Document #: 38-06082 Rev. *C  
Page 41 of 48  
PRELIMINARY  
FullFlex  
Ordering Information  
512K  
×
72 (36 Mbit) 1.8V Synchronous CYD36S72V18 Dual-Port SRAM  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
BY484  
Package Type  
200 CYD36S72V18-200BBC  
167 CYD36S72V18-167BBC  
CYD36S72V18-167BBI  
133 CYD36S72V18-133BBC  
CYD36S72V18-133BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
256K  
×
72 (18 Mbit) 1.8V Synchronous CYD18S72V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
BY484  
Package Type  
250 CYD18S72V18-250BBC  
200 CYD18S72V18-200BBC  
CYD18S72V18-200BBI  
167 CYD18S72V18-167BBC  
CYD18S72V18-167BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
128K  
×
72 (9 Mbit) 1.8V Synchronous CYD09S72V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
BY484  
Package Type  
250 CYD09S72V18-250BBC  
200 CYD09S72V18-200BBC  
CYD09S72V18-200BBI  
167 CYD09S72V18-167BBC  
CYD09S72V18-167BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
64K  
× 72 (4 Mbit) 1.8V Synchronous CYD04S72V18 Dual-Port SRAM  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
250 CYD04S72V18-250BBC  
200 CYD04S72V18-200BBC  
CYD04S72V18-200BBI  
167 CYD04S72V18-167BBC  
CYD04S72V18-167BBI  
BY484  
BY484  
BY484  
BY484  
BY484  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
1024K  
×
36 (36 Mbit) 1.8V Synchronous CYD36S36V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
BY484  
Package Type  
200 CYD36S36V18-200BBC  
167 CYD36S36V18-167BBC  
CYD36S36V18-167BBI  
133 CYD36S36V18-133BBC  
CYD36S36V18-133BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
Document #: 38-06082 Rev. *C  
Page 42 of 48  
PRELIMINARY  
FullFlex  
Ordering Information (continued)  
512K  
×
36 (18 Mbit) 1.8V Synchronous CYD18S36V18 Dual-Port SRAM  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
250 CYD18S36V18-250BBC  
200 CYD18S36V18-200BBC  
CYD18S36V18-200BBI  
167 CYD18S36V18-167BBC  
CYD18S36V18-167BBI  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Industrial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Industrial  
256K  
×
36 (9 Mbit) 1.8V Synchronous CYD09S36V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
250 CYD09S36V18-250BBC  
200 CYD09S36V18-200BBC  
CYD09S36V18-200BBI  
167 CYD09S36V18-167BBC  
CYD09S36V18-167BBI  
BB256  
BB256  
BB256  
BB256  
BB256  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
128K  
× 36 (4 Mbit) 1.8V Synchronous CYD04S36V18 Dual-Port SRAM  
Speed  
Package  
Operating  
(MHz)  
Ordering Code  
Name  
Package Type  
Range  
250 CYD04S36V18-250BBC  
200 CYD04S36V18-200BBC  
CYD04S36V18-200BBI  
167 CYD04S36V18-167BBC  
CYD04S36V18-167BBI  
BB256  
BB256  
BB256  
BB256  
BB256  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
2048K  
×
18 (36 Mbit) 1.8V Synchronous CYD36S18V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
BY484  
Package Type  
200 CYD36S18V18-200BBC  
167 CYD36S18V18-167BBC  
CYD36S18V18-167BBI  
133 CYD36S18V18-133BBC  
CYD36S18V18-133BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
1024K  
×
18 (18 Mbit) 1.8V Synchronous CYD18S18V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
MHz)  
Ordering Code  
Name  
Package Type  
250 CYD18S18V18-250BBC  
200 CYD18S18V18-200BBC  
CYD18S18V18-200BBI  
167 CYD18S18V18-167BBC  
CYD18S18V18-167BBI  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Industrial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Industrial  
Document #: 38-06082 Rev. *C  
Page 43 of 48  
PRELIMINARY  
FullFlex  
Ordering Information (continued)  
512K  
×
18 (9 Mbit) 1.8V Synchronous CYD09S18V18 Dual-Port SRAM  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB256  
BB256  
BB256  
BB256  
BB256  
Package Type  
250 CYD09S18V18-250BBC  
200 CYD09S18V18-200BBC  
CYD09S18V18-200BBI  
167 CYD09S18V18-167BBC  
CYD09S18V18-167BBI  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
256K  
×
18 (4 Mbit) 1.8V Synchronous CYD04S18V18 Dual-Port SRAM  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB256  
BB256  
BB256  
BB256  
BB256  
Package Type  
250 CYD04S18V18-250BBC  
200 CYD04S18V18-200BBC  
CYD04S18V18-200BBI  
167 CYD04S18V18-167BBC  
CYD04S18V18-167BBI  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
Document #: 38-06082 Rev. *C  
Page 44 of 48  
PRELIMINARY  
FullFlex  
Package Diagrams  
256-Ball FBGA (17 x 17 mm) BB256  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
Ø0.45 0.05(256X)ꢀCPꢁD DEVICES (37K & 39K)  
PIN 1 CORNER  
+0.10  
Ø0.50 (256X)ꢀAꢁꢁ OTHER DEVICES  
ꢀ0.05  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00  
B
7.50  
15.00  
A
17.00 0.10  
A
SEATING PꢁANE  
0.20(4X)  
A1  
51-85108-*F  
C
REFERENCE JEDEC MOꢀ192  
A1 0.36 0.56  
1.40 MAX. 1.70 MAX.  
A
Document #: 38-06082 Rev. *C  
Page 45 of 48  
PRELIMINARY  
FullFlex  
Package Diagrams (continued)  
256 FBGA (19 x 19 x 1.7 mm) BW256C  
BOTTOM VIEW  
TOP VIEW  
A1 CORNER  
Ø0.05 M C  
Ø0.25 M C A B  
Ø0.50 (256 X)  
1
3
PIN A1 CORNER  
13  
13  
1
9
11  
15  
15  
11  
9
8
5
5
3
7
7
12  
14  
16  
16  
14  
12  
2
6
10  
10  
6
2
4
8
4
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
1.00 (REF)  
-B-  
15.00 (REF)  
19.00 +/- 0.10  
-A-  
0.15(4X)  
Package Weight - 1.1 grams  
Jedec Outline - Design Guide 4.14  
-C-  
SEATING PLANE  
001-00915-*A  
Document #: 38-06082 Rev. *C  
Page 46 of 48  
PRELIMINARY  
FullFlex  
Package Diagrams (continued)  
484-ball PBGA (23 mm x 23 mm x 2.03 mm) BY484  
Ø0.50~Ø0.70(484X)  
PIN #1 CORNER  
9
1
11  
7
3
1
3
5
7
9
21  
20 22  
13  
5
11  
13 15 17 19  
10 12 14 16 18  
21  
17 15  
19  
2
4
6
8
22 20 18 16 14 12 10  
8
6
4
2
Ø1.00(3X) REF.  
A
B
A
B
C
C
D
E
D
E
F
F
G
H
J
G
H
J
K
K
L
L
M
N
P
M
N
P
R
R
T
T
U
V
U
V
W
Y
W
Y
AA  
AB  
AA  
AB  
1.00  
-B-  
21.00  
3.20*45°(4x)  
20.00 REF.  
-A-  
23.00 0.20  
0.20(4X)  
30° TYP.  
Package Weight - 2.0 grams  
Jedec Outline - Design Guide 4.14  
-C-  
SEATING PLANE  
51-85218-**  
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are  
trademarks of their respective holders.  
Document #: 38-06082 Rev. *C  
Page 47 of 48  
PRELIMINARY  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous SDR Dual-Port SRAM  
Document Number: 38-06082  
Issue  
Date  
302411 See ECN  
Orig. of  
Change  
YDT  
REV.  
**  
ECN NO.  
Description of Change  
New data sheet  
*A  
334036 See ECN  
YDT  
Corrected typo on page 1  
Reproduced PDF file to fix formatting errors  
*B  
395800 See ECN  
SPN  
Added statement about no echo clocks for flow-through mode  
Updated electrical characteristics  
Added note 16 and 17 (1.5V timing)  
Added note 33 (timing for x18 devices)  
Updated input edge rate (note 34)  
Updated table 5 on deterministic access control logic  
Added description of busy readback in deterministic access control section  
Changed dummy write descriptions  
Updated ZQ pins connection details  
Updated note 24, B0 to BE0  
Added power supply requirements to MRST and VC_SEL  
Added note 4 (VIM disable)  
Updated supply voltage to ground potential to 4.1V  
Updated parameters on table 15  
Updated and added parameters to table 16  
Updated x72 pinout to SDR only pinout  
Updated 484 PBGA pin diagram  
Updated the pin definition of MRST  
Updated the pin definition of VC_SEL  
Updated READY description to include Wired OR note  
Updated master reset to include wired OR note for READY  
Updated minimum VOH value for the 1.8V LVCMOS configuration  
Updated electrical characteristics to include IOH and IOL values  
Updated electrical characteristics to include READY  
Added IIX3  
Updated maximum input capacitance  
Added Note 33  
Added Note 34  
Removed Notes 15 and 17  
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1  
Removed -100 Speed bin from Table.1 Selection Guide  
Changed voltage name from VDDQ to VDDIO  
Changed voltage name from VDD to VCORE  
Moved the Mailbox Interrupt Timing Diagram to be the final timing diagram  
Updated the Package Type for the CYD36S18V18 parts  
Updated the Package Type for the CYD36S18V18 parts  
Updated the Package Type for the CYD18S18V18 parts  
Updated the Package Type for the CYD18S36V18 parts  
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256  
Included an OE Controlled Write for Flow-Through Mode Switching Waveform  
Included a Read with Echo Clock Switching Waveform  
Updated Figure 5 and Figure 6  
Updated Electrical Characteristics for READY VOH and READY V  
Updated Electrical Characteristics for VOH and VOL for the -167 and -133 speeds  
Included a Unit column for Table 5  
Removed Switching Characteristic tCA from chart  
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode  
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-Through Mode  
*C  
402238 SEE ECN  
KGH  
Updated AC Test Load and Waveforms  
Included FullFlex36 SDR 484-ball BGA Pinout (Top View)  
Included FullFlex18 SDR 484-ball BGA Pinout (Top View)  
Included Timing Parameter tCORDY  
Document #: 38-06082 Rev. *C  
Page 48 of 48  

相关型号:

CYD18S72V18-167BGC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGC

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGI

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGI

256KX72 DUAL-PORT SRAM, 4ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-167BGXC

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-167BGXI

Dual-Port SRAM, 256KX72, 11ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-200BBC

Dual-Port SRAM, 256KX72, 3.3ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
CYPRESS
CYPRESS

CYD18S72V18-200BBXI

Dual-Port SRAM, 256KX72, 3.3ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS

CYD18S72V18-200BGI

FullFlex Synchronous SDR Dual Port SRAM Commercial and Industrial temperature
CYPRESS

CYD18S72V18-200BGI

256KX72 DUAL-PORT SRAM, 3.3ns, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-484
ROCHESTER

CYD18S72V18-200BGXC

Dual-Port SRAM, 256KX72, 9ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484
CYPRESS