DS3254N+ [ROCHESTER]

DATACOM, PCM TRANSCEIVER, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144;
DS3254N+
型号: DS3254N+
厂家: Rochester Electronics    Rochester Electronics
描述:

DATACOM, PCM TRANSCEIVER, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144

PC
文件: 总74页 (文件大小:1603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS3251/DS3252/DS3253/DS3254  
Single/Dual/Triple/Quad  
DS3/E3/STS-1 LIUs  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
The DS3251 (single), DS3252 (dual), DS3253  
(triple), and DS3254 (quad) line interface units (LIUs)  
perform the functions necessary for interfacing at the  
physical layer to DS3, E3, or STS-1 lines. Each LIU  
has independent receive and transmit paths and a  
built-in jitter attenuator. An on-chip clock adapter  
generates all line-rate clocks from a single input  
clock. Control interface options include 8-bit parallel,  
SPI, and hardware mode.  
Pin-Compatible Family of Products  
Each Port Independently Configurable  
Receive Clock and Data Recovery for Up to 380  
meters (DS3), 440 meters (E3), or 360 meters  
(STS-1) of 75Coaxial Cable  
Standards-Compliant Transmit Waveshaping  
Three Control Interface Options: 8-Bit Parallel,  
SPI, and Hardware Mode  
Built-In Jitter Attenuators can be Placed in Either  
the Receive or Transmit Paths  
APPLICATIONS  
SONET/SDH and PDH Multiplexers  
Digital Cross-Connects  
Access Concentrators  
ATM and Frame Relay Equipment  
Routers  
Jitter Attenuators Have Provisionable Buffer  
Depth: 16, 32, 64, or 128 Bits  
Built-In Clock Adapter Generates All Line-Rate  
Clocks from a Single Input Clock (DS3, E3,  
STS-1, OC-3, 19.44MHz, 38.88MHz,  
77.76MHz)  
PBXs  
B3ZS/HDB3 Encoding and Decoding  
Minimal External Components Required  
Local and Remote Loopbacks  
DSLAMs  
CSU/DSUs  
Low-Power 3.3V Operation (5V Tolerant I/O)  
Industrial Temperature Range: -40°C to +85°C  
Small Package: 144-Pin, 13mm x 13mm  
Thermally Enhanced CSBGA  
FUNCTIONAL DIAGRAM  
EACH LIU  
Drop-In Replacement for DS3151/52/53/54 LIUs  
IEEE 1149.1 JTAG Support  
LINE IN  
RECEIVE  
CLOCK  
RXP  
RXN  
CLK  
Features continued on page 5.  
DS3, E3,  
OR STS-1  
DATA  
AND DATA  
ORDERING INFORMATION  
Dallas  
CONTROL  
STATUS  
Semiconductor  
PART  
LIU  
TEMP RANGE PIN-PACKAGE  
DS325x  
DS3251  
1
1
2
2
3
3
4
4
0°C to +70°C  
-40°C to +85°C 144 TE-CSBGA  
0°C to +70°C 144 TE-CSBGA  
-40°C to +85°C 144 TE-CSBGA  
0°C to +70°C 144 TE-CSBGA  
-40°C to +85°C 144 TE-CSBGA  
0°C to +70°C 144 TE-CSBGA  
-40°C to +85°C 144 TE-CSBGA  
144 TE-CSBGA  
DS3251N  
DS3252  
LINE OUT  
DS3, E3,  
TRANSMIT  
CLOCK  
TXP  
TXN  
CLK  
DS3252N  
DS3253  
DATA  
OR STS-1  
AND DATA  
DS3253N  
DS3254  
DS3254N  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 71  
REV: 030106  
DS3251/DS3252/DS3253/DS3254  
TABLE OF CONTENTS  
1. STANDARDS COMPLIANCE............................................................................................................6  
2. DETAILED DESCRIPTION ................................................................................................................7  
3. APPLICATION EXAMPLE.................................................................................................................7  
4. BLOCK DIAGRAMS ..........................................................................................................................8  
5. CONTROL INTERFACE MODES ......................................................................................................9  
6. PIN DESCRIPTIONS........................................................................................................................10  
7. REGISTER DESCRIPTIONS ...........................................................................................................15  
8. RECEIVER .......................................................................................................................................24  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
INTERFACING TO THE LINE........................................................................................................................... 24  
OPTIONAL PREAMP..................................................................................................................................... 24  
AUTOMATIC GAIN CONTROL (AGC) AND ADAPTIVE EQUALIZER..................................................................... 24  
CLOCK AND DATA RECOVERY (CDR)........................................................................................................... 24  
LOSS-OF-SIGNAL (LOS) DETECTOR ............................................................................................................ 24  
FRAMER INTERFACE FORMAT AND THE B3ZS/HDB3 DECODER .................................................................... 25  
RECEIVE LINE-CODE VIOLATION COUNTER .................................................................................................. 26  
RECEIVER POWER-DOWN ........................................................................................................................... 26  
RECEIVER JITTER TOLERANCE .................................................................................................................... 26  
9. TRANSMITTER................................................................................................................................27  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
TRANSMIT CLOCK ....................................................................................................................................... 27  
FRAMER INTERFACE FORMAT AND THE B3ZS/HDB3 ENCODER .................................................................... 27  
PATTERN GENERATION ............................................................................................................................... 27  
WAVESHAPING, LINE BUILD-OUT, LINE DRIVER............................................................................................ 28  
INTERFACING TO THE LINE........................................................................................................................... 28  
TRANSMIT DRIVER MONITOR ....................................................................................................................... 28  
TRANSMITTER POWER-DOWN...................................................................................................................... 28  
TRANSMITTER JITTER GENERATION (INTRINSIC) ........................................................................................... 28  
TRANSMITTER JITTER TRANSFER................................................................................................................. 28  
JITTER ATTENUATOR................................................................................................................32  
10.  
11.  
11.1  
11.2  
12.  
DIAGNOSTICS.............................................................................................................................34  
PRBS GENERATOR AND DETECTOR............................................................................................................ 34  
LOOPBACKS ............................................................................................................................................... 34  
CLOCK ADAPTER.......................................................................................................................35  
13.  
14.  
15.  
RESET LOGIC .............................................................................................................................35  
TRANSFORMERS........................................................................................................................36  
CPU INTERFACES ......................................................................................................................37  
15.1  
15.2  
PARALLEL INTERFACE ................................................................................................................................. 37  
SPI INTERFACE .......................................................................................................................................... 37  
JTAG TEST ACCESS PORT AND BOUNDARY SCAN .............................................................40  
16.  
16.1  
16.2  
16.3  
16.4  
JTAG DESCRIPTION ................................................................................................................................... 40  
JTAG TAP CONTROLLER STATE MACHINE DESCRIPTION............................................................................. 40  
JTAG INSTRUCTION REGISTER AND INSTRUCTIONS...................................................................................... 42  
JTAG TEST REGISTERS.............................................................................................................................. 43  
ELECTRICAL CHARACTERISTICS............................................................................................44  
17.  
18.  
19.  
PIN ASSIGNMENTS.....................................................................................................................56  
PACKAGE INFORMATION..........................................................................................................70  
144-PIN TE-CSBGA (56-G6016-001)....................................................................................................... 70  
THERMAL INFORMATION..........................................................................................................71  
19.1  
20.  
21.  
REVISION HISTORY....................................................................................................................71  
2 of 71  
DS3251/DS3252/DS3253/DS3254  
LIST OF FIGURES  
Figure 2-1. External Connections ................................................................................................................................ 7  
Figure 3-1. 4-Port Unchannelized DS3/E3 Card ......................................................................................................... 7  
Figure 4-1. CPU Bus Mode Block Diagram................................................................................................................. 8  
Figure 4-2. Hardware Mode Block Diagram ................................................................................................................ 9  
Figure 7-1. Status Register Logic .............................................................................................................................. 16  
Figure 8-1. Receiver Jitter Tolerance ........................................................................................................................ 27  
Figure 9-1. E3 Waveform Template........................................................................................................................... 30  
Figure 9-2. DS3 AIS Structure................................................................................................................................... 31  
Figure 10-1. Jitter Attenuation/Jitter Transfer............................................................................................................ 33  
Figure 11-1. PRBS Output with Normal RCLK Operation ......................................................................................... 34  
Figure 11-2. PRBS Output with Inverted RCLK Operation........................................................................................ 34  
Figure 15-1. SPI Clock Polarity and Phase Options.................................................................................................. 38  
Figure 15-2. SPI Bus Transactions............................................................................................................................ 39  
Figure 16-1. JTAG Block Diagram............................................................................................................................. 41  
Figure 16-2. JTAG TAP Controller State Machine .................................................................................................... 42  
Figure 17-1. Transmitter Framer Interface Timing Diagram...................................................................................... 46  
Figure 17-2. Receiver Framer Interface Timing Diagram.......................................................................................... 46  
Figure 17-3. Parallel CPU Interface Timing Diagram (Nonmultiplexed).................................................................... 50  
Figure 17-4. Parallel CPU Interface Timing Diagram (Multiplexed) .......................................................................... 52  
Figure 17-5. SPI Interface Timing Diagram............................................................................................................... 54  
Figure 17-6. JTAG Timing Diagram........................................................................................................................... 55  
Figure 18-1. DS3251 Hardware Mode Pin Assignment............................................................................................. 58  
Figure 18-2. DS3251 Parallel Bus Mode Pin Assignment......................................................................................... 59  
Figure 18-3. DS3251 SPI Bus Mode Pin Assignment ............................................................................................... 60  
Figure 18-4. DS3252 Hardware Mode Pin Assignment............................................................................................. 61  
Figure 18-5. DS3252 Parallel Bus Mode Pin Assignment......................................................................................... 62  
Figure 18-6. DS3252 SPI Bus Mode Pin Assignment ............................................................................................... 63  
Figure 18-7. DS3253 Hardware Mode Pin Assignment............................................................................................. 64  
Figure 18-8. DS3253 Parallel Bus Mode Pin Assignment......................................................................................... 65  
Figure 18-9. DS3253 SPI Bus Mode Pin Assignment ............................................................................................... 66  
Figure 18-10. DS3254 Hardware Mode Pin Assignment........................................................................................... 67  
Figure 18-11. DS3254 Parallel Bus Mode Pin Assignment....................................................................................... 68  
Figure 18-12. DS3254 SPI Bus Mode Pin Assignment ............................................................................................. 69  
3 of 71  
DS3251/DS3252/DS3253/DS3254  
LIST OF TABLES  
Table 1-A. Applicable Telecommunications Standards............................................................................................... 6  
Table 6-A. Global Pin Descriptions............................................................................................................................ 10  
Table 6-B. Receiver Pin Descriptions........................................................................................................................ 11  
Table 6-C. Transmitter Pin Descriptions.................................................................................................................... 11  
Table 6-D. Hardware Mode Pin Descriptions ............................................................................................................ 12  
Table 6-E. Parallel Bus Mode Pin Descriptions......................................................................................................... 13  
Table 6-F. SPI Bus Mode Pin Descriptions ............................................................................................................... 13  
Table 6-G. Transmitter Data Select Options ............................................................................................................. 14  
Table 6-H. Receiver PRBS Pattern Select Options................................................................................................... 14  
Table 6-I. Hardware Mode Jitter Attenuator Configuration........................................................................................ 14  
Table 7-A. Register Map............................................................................................................................................ 15  
Table 9-A. DS3 Waveform Template......................................................................................................................... 29  
Table 9-B. DS3 Waveform Test Parameters and Limits............................................................................................ 29  
Table 9-C. STS-1 Waveform Template ..................................................................................................................... 29  
Table 9-D. STS-1 Waveform Test Parameters and Limits ........................................................................................ 29  
Table 9-E. E3 Waveform Test Parameters and Limits .............................................................................................. 30  
Table 14-A. Transformer Characteristics................................................................................................................... 36  
Table 14-B. Recommended Transformers ................................................................................................................ 36  
Table 16-A. JTAG Instruction Codes......................................................................................................................... 42  
Table 16-B. JTAG ID Code........................................................................................................................................ 43  
Table 17-A. Recommended DC Operating Conditions.............................................................................................. 44  
Table 17-B. DC Characteristics ................................................................................................................................. 44  
Table 17-C. Framer Interface Timing......................................................................................................................... 45  
Table 17-D. Receiver Input Characteristics—DS3 and STS-1 Modes...................................................................... 47  
Table 17-E. Receiver Input Characteristics—E3 Mode............................................................................................. 47  
Table 17-F. Transmitter Output Characteristics—DS3 and STS-1 Modes................................................................ 48  
Table 17-G. Transmitter Output Characteristics—E3 Mode...................................................................................... 48  
Table 17-H. Parallel CPU Interface Timing ............................................................................................................... 49  
Table 17-I. SPI Interface Timing................................................................................................................................ 54  
Table 17-J. JTAG Interface Timing............................................................................................................................ 55  
Table 18-A. Pin Assignments Sorted by Signal Name .............................................................................................. 56  
Table 20-A. Thermal Properties, Natural Convection................................................................................................ 71  
Table 20-B. Theta-JA (θJA) vs. Airflow....................................................................................................................... 71  
4 of 71  
DS3251/DS3252/DS3253/DS3254  
FEATURES (CONTINUED)  
Receiver  
AGC/equalizer block handles from 0 to 15dB of cable loss  
Loss-of-lock (LOL) PLL status indication  
Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp  
Digital and analog loss-of-signal (LOS) detectors (ANSI T1.231 and ITU G.775)  
Optional B3ZS/HDB3 decoder  
Line-code violation output pin and counter  
Binary or bipolar framer interface  
On-board 215 - 1 and 223 - 1 PRBS detector  
Clock inversion for glueless interfacing  
Tri-state clock and data outputs support protection switching applications  
Per-channel power-down control  
Transmitter  
Binary or bipolar framer interface  
Gapped clock capable up to 51.84MHz  
Wide 50 ± 20% transmit clock duty cycle  
Clock inversion for glueless interfacing  
Optional B3ZS/HDB3 encoder  
On-board 215 - 1 and 223 - 1 PRBS generator  
Complete DS3 AIS generator (ANSI T1.107)  
Unframed all-ones generator (E3 AIS)  
Line build-out (LBO) control  
Tri-state line driver outputs support protection switching applications  
Per-channel power-down control  
Output driver monitor  
Jitter Attenuator  
On-chip crystal-less jitter attenuator  
Meets all applicable ANSI, ITU, ETSI and Telcordia jitter transfer and output jitter requirements  
Can be placed in the transmit path, receive path or disabled  
Selectable FIFO depth: 16, 32, 64 or 128 bits  
Overflow and underflow status indications  
Clock Adapter  
Operates from a single DS3, E3, STS-1, 19.44 MHz, 38.88 MHz, or 77.76 MHz master clock  
Synthesizes clock rates that are not provided externally  
Use of common system timing frequencies such as 19.44 MHz eliminates the need for any local oscillators,  
reduces cost and board space  
Very small jitter gain and intrinsic jitter generation  
Optionally provides synthesized clocks on output pins for use by neighboring components, such as framers or  
mappers  
Parallel CPU Interface  
Multiplexed or nonmultiplexed 8-bit interface  
Configurable for Intel mode (CS, WR, RD) or Motorola mode (CS, DS, R/W)  
SPI CPU Interface  
Operation up to 10 Mbit/s  
Burst mode for multi-byte read and write accesses  
Programmable clock polarity and phase  
Half-duplex operation gives option to tie SDI and SDO together externally to reduce wire count  
5 of 71  
DS3251/DS3252/DS3253/DS3254  
1. STANDARDS COMPLIANCE  
Table 1-A. Applicable Telecommunications Standards  
SPECIFICATION  
SPECIFICATION TITLE  
ANSI  
Digital Hierarchy—Electrical Interfaces  
Digital Hierarchy—Formats Specification  
T1.102-1993  
T1.107-1995  
T1.231-1997  
T1.404-1994  
Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring  
Network-to-Customer Installation—DS3 Metallic Interface Specification  
ITU-T  
G.703  
G.751  
Physical/Electrical Characteristics of Hierarchical Digital Interfaces, 1991  
Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the  
Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, 1993  
Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance  
Criteria, November 1994  
G.775  
G.823  
G.824  
O.151  
The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps  
Hierarchy, 1993  
The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps  
Hierarchy, 1993  
Error Performance Measuring Equipment Operating at the Primary Rate and Above,  
October 1992  
ETSI  
Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U,  
D34S, D140U, and D140S); Network Interface Presentation, 1996  
Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S);  
Connection Characteristics, 1996  
ETS 300 686  
ETS 300 687  
ETS EN 300 689  
TBR 24  
Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal  
equipment interface, July 2001  
Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines;  
Attachment Requirements for Terminal Equipment Interface, 1997  
TELCORDIA  
GR-253-CORE  
GR-499-CORE  
SONET Transport Systems: Common Generic Criteria, Issue 2, December 1995  
Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 1,  
December 1998  
6 of 71  
 
DS3251/DS3252/DS3253/DS3254  
2. DETAILED DESCRIPTION  
The DS3251 (single), DS3252 (dual), DS3253 (triple), and DS3254 (quad) LIUs perform the functions necessary  
for interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit  
paths and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded  
alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs  
B3ZS/HDB3 decoding and outputs the recovered data in either binary or bipolar format. The transmitter accepts  
data in either binary or bipolar format, optionally performs B3ZS/HDB3 encoding, and drives standard pulse-shape  
waveforms onto 75coaxial cable. The jitter attenuator can be mapped into the receiver data path, mapped into  
the transmitter data path, or be disabled. An on-chip clock adapter generates all line-rate clocks from a single input  
clock. Control interface options include 8-bit parallel, SPITM, and hardware mode. The DS325x LIUs conform to the  
telecommunications standards listed in Table 1-A. Figure 2-1 shows the external components required for proper  
operation.  
Shorthand Notations. The notation “DS325x” throughout this data sheet refers to either the DS3251, DS3252,  
DS3253, or DS3254. This data sheet is the specification for all four devices. The LIUs on the DS325x devices are  
identical. For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n” stands in  
place of the LIU port number. For example, on the DS3254 quad LIU, TCLKn is shorthand notation for pins TCLK1,  
TCLK2, TCLK3, and TCLK4 on LIU ports 1, 2, 3, and 4, respectively. This document also uses generic pin and  
register names such as TCLK (without a number suffix) when describing LIU operation. When working with a  
specific LIU on the DS325x devices, generic names like TCLK should be converted to actual pin names, such as  
TCLK1.  
Figure 2-1. External Connections  
TRANSMIT  
EACH LIU  
TXP  
VDD  
0.1µF  
0.1µF  
0.01µF  
0.01µF  
1µF  
1µF  
3.3V  
POWER  
PLANE  
330Ω  
VDD  
(1%)  
0.05µF  
(optional)  
VDD  
TXN  
0.1µF  
0.01µF  
1µF  
1:2ct  
Dallas  
Semiconductor  
RECEIVE  
DS325x  
VSS  
RXP  
GROUND  
PLANE  
330Ω  
VSS  
VSS  
(1%)  
0.05µF  
(optional)  
RXN  
1:2ct  
3. APPLICATION EXAMPLE  
Figure 3-1. 4-Port Unchannelized DS3/E3 Card  
DS3254  
QUAD  
DS3144  
QUAD  
DS3/E3/STS-1  
LIU  
DS3/E3  
FRAMER  
SPI is a trademark of Motorola, Inc.  
7 of 71  
 
DS3251/DS3252/DS3253/DS3254  
4. BLOCK DIAGRAMS  
Figure 4-1. CPU Bus Mode Block Diagram  
RLOSn  
T3MCLK E3MCLK STMCLK  
VDD  
Digital LOS  
Detector  
PRBS  
Clock  
Power  
Supply  
TCLKn  
Detector  
PRBSn  
Adapter  
VSS  
master clock  
B3ZS/HDB3  
Decoder  
RTSn  
Automatic  
RXPn  
RXNn  
Gain  
Control  
+
RPOSn/RDATn  
Output  
Clock &  
Data  
RNEGn/RLCVn  
Drivers,  
RCLKn  
Clock  
Adaptive  
Equalizer  
Recovery  
Invert  
Remote  
ALOS  
Loopback  
squelch  
Digital  
Analog  
Local  
Local  
CPU Bus  
Loopback  
CPU Bus I/O  
(see detailed  
views below)  
Loopback  
Interface  
and  
Global  
Configuration  
TDMn  
Driver  
Monitor  
TPOSn/TDATn  
TNEGn  
TCLKn  
TXPn  
TXNn  
Clock  
Invert  
B3ZS/  
HDB3  
Encoder  
AIS, 100100…,  
PRBS Pattern  
Generation  
Loopback Control  
TTSn  
PARALLEL INTERFACE  
SPI INTERFACE  
HIZ  
HIZ  
RST  
RST  
HW = 0  
HW = 0  
CPU Bus  
Interface  
and  
CPU Bus  
Interface  
and  
MOT  
ALE  
CS  
SCLK  
CS  
Global  
Global  
SDI  
WR / R/W  
RD / DS  
A[5:0]  
D[7:0]  
INT  
Configuration  
Configuration  
SDO  
CPHA  
CPOL  
INT  
Dallas  
MOT = 0, WR = 0, RD = 0, ALE = 1  
Semiconductor  
DS325x  
8 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Figure 4-2. Hardware Mode Block Diagram  
RMONn T3MCLK E3MCLK STMCLK  
RJAn  
RLOSn  
RBIN  
VDD  
VSS  
Power  
Supply  
Clock  
Digital LOS  
Detector  
PRBS  
TCLKn  
Adapter  
Detector  
PRBSn  
master clock  
B3ZS/HDB3  
Decoder  
RTSn  
Automatic  
Gain  
Control  
+
RXPn  
RXNn  
RPOSn/RDATn  
RNEGn/RLCVn  
RCLKn  
Output  
Drivers,  
Clock  
Clock &  
Data  
Adaptive  
Equalizer  
Recovery  
Invert  
RCINV  
Remote  
ALOS  
Loopback  
squelch  
Digital  
Analog  
Local  
HIZ  
RST  
Local  
Loopback  
Loopback  
Global  
HW  
Configuration  
E3Mn  
STSn  
TDMn  
Driver  
Monitor  
TPOSn/TDATn  
TNEGn  
TXPn  
TXNn  
TCLKn  
Clock  
Invert  
B3ZS/  
HDB3  
TCINV  
Encoder  
AIS, 100100…,  
PRBS Pattern  
Generation  
Loopback Control  
LLBn RLBn  
TTSn  
TLBOn  
TJAn  
TBIN  
TDSAn,  
TDSBn  
Dallas  
Semiconductor  
DS325x  
5. CONTROL INTERFACE MODES  
The DS325x devices can operate in hardware mode or two different CPU bus modes: 8-bit parallel and SPI serial.  
In hardware mode, configuration input pins control device configuration, while status output pins indicate device  
status. Internal registers are not accessible in hardware mode. The device is configured for hardware mode when  
the HW pin is wired high (HW = 1).  
In the CPU bus modes, most of the configuration and status pins used in hardware mode are reassigned to the  
CPU bus interface. Through the bus interface an external processor can access a set of internal configuration and  
status registers. A few configuration and status pins are active in both hardware mode and the CPU bus modes to  
support specialized applications, such as protection switching. The device is configured for CPU bus mode when  
the HW pin is wired low (HW = 0). The default CPU interface is 8-bit parallel. When the MOT, RD and WR pins are  
all low and the ALE pin is high, the SPI interface is enabled. See Section 15 for more information on the CPU  
interfaces.  
With the exception of the HW pin, configuration and status pins available in hardware mode have corresponding  
register bits in the CPU bus mode. The hardware mode pins and the CPU bus mode register bits have identical  
names and functions, with the exception that all register bits are active high. For example, LOS is indicated by the  
receiver on the RLOS pin (active low) in hardware mode and the RLOS register bit (active high) in CPU bus mode.  
The few configuration input pins that are active in CPU bus mode also have corresponding register bits. In these  
cases, the actual configuration is the logical OR of pin assertion and register bit assertion. For example, the  
transmitter output driver is tri-stated if the TTS pin is asserted (i.e., low) or the TTS register bit is asserted (high).  
Figure 4-1 and Figure 4-2 show block diagrams of the DS325x in hardware mode and in CPU bus mode.  
9 of 71  
 
 
DS3251/DS3252/DS3253/DS3254  
6. PIN DESCRIPTIONS  
Table 6-A through Table 6-C list the pins that are always active. Table 6-D through Table 6-F list the additional pins  
that active in each of the three control interface modes. Section 18 shows pin assignments for all three control  
interface modes.  
Table 6-A. Global Pin Descriptions  
Note: These pins are always active.  
NAME  
TYPE  
FUNCTION  
T3 Master Clock. If a clock is applied to T3MCLK, it must be transmission-quality (±20ppm, low jitter).  
When present, the T3MCLK signal serves as the DS3 master clock for the CDRs and jitter attenuators  
of all LIUs configured for DS3 operation. If T3MCLK is held low, the clock adapter block synthesizes the  
DS3 master clock from the clock applied to E3MCLK (first choice) or the clock applied to STMCLK  
(second choice). If T3MCLK is held high, each LIU in DS3 mode uses its TCLK signal as its master  
clock. If T3MCLK is held low but E3MCLK and STMCLK are not toggling, then each LIU in DS3 mode  
uses its TCLK signal as its master clock. Pin is input-only in Hardware mode, input/output in CPU Bus  
mode. See Section 12 for more information.  
T3MCLK  
I/O  
E3 Master Clock. If a clock is applied to E3MCLK, it must be transmission-quality (±20ppm, low jitter).  
When present, the E3MCLK signal serves as the E3 master clock for the CDRs and jitter attenuators of  
all LIUs configured for E3 operation. If E3MCLK is held low, the clock adapter block synthesizes the E3  
master clock from the clock applied to T3MCLK (first choice) or the clock applied to STMCLK (second  
choice). If E3MCLK is held high, each LIU in E3 mode uses its TCLK signal as its master clock. If  
E3MCLK is held low but T3MCLK and STMCLK are not toggling, then each LIU in E3 mode uses its  
TCLK signal as its master clock. Pin is input-only in Hardware mode, input/output in CPU Bus mode.  
See Section 12 for more information.  
STS-1 Master Clock. If a clock is applied to STMCLK, it must be transmission-quality (±20ppm, low  
jitter). When present, the STMCLK signal serves as the STS-1 master clock for the CDRs and jitter  
attenuators of all LIUs configured for STS-1 operation. If STMCLK is held low, the clock adapter block  
synthesizes the STS-1 master clock from the clock applied to T3MCLK (first choice) or the clock  
applied to E3MCLK (second choice). If STMCLK is held high, each LIU in STS-1 mode uses its TCLK  
signal as its master clock. If STMCLK is held low but T3MCLK and E3MCLK are not toggling, then each  
LIU in STS-1 mode uses its TCLK signal as its master clock. Pin is input-only in Hardware mode,  
input/output in CPU Bus mode. See Section 12 for more information.  
E3MCLK  
STMCLK  
I/O  
I/O  
High-Z Enable Input (Active Low, Open Drain, Internal 10kPullup to VDD  
0 = tri-state all output pins (Note that the JTRST pin must be low.)  
1 = normal operation  
)
IPU  
HIZ  
Hardware Mode Select  
0 = CPU bus mode  
HW  
I
1 = Hardware mode  
See Section 5 for details.  
JTAG IEEE 1149.1 Test Serial Clock. JTCLK shifts data into JTDI on the rising edge and out of JTDO  
on the falling edge. If boundary scan is not used, JTCLK should be pulled high.  
JTAG IEEE 1149.1 Test Serial-Data Input (Internal 10kPullup). Test instructions and data are  
clocked in on this pin on the rising edge of JTCLK. If boundary scan is not used, JTDI should be left  
unconnected or pulled high.  
JTCLK  
JTDI  
I
IPU  
O
JTAG IEEE 1149.1 Test Serial-Data Output. Test instructions and data are clocked out on this pin on  
the falling edge of JTCLK.  
JTDO  
JTRST  
JTAG IEEE 1149.1 Test Reset (Internal 10kPullup to VDD). This pin is used to asynchronously  
reset the test access port (TAP) controller. If boundary scan is not used, JTRST can be held low or  
high.  
IPU  
JTAG IEEE 1149.1 Test Mode Select (Internal 10kPullup to VDD). This pin is sampled on the rising  
edge of JTCLK and is used to place the port into the various defined IEEE 1149.1 states. If boundary  
scan is not used, JTMS should be left unconnected or pulled high.  
JTMS  
IPU  
Reset Input (Active Low, Open Drain, Internal 10kPullup to VDD). When this global asynchronous  
reset is pulled low, the internal circuitry is reset and the internal registers (CPU bus mode) are forced to  
their default values. The device is held in reset as long as RST is low. RST should be held low for at  
least two master clock cycles. See Section 13 for more information.  
IPU  
RST  
IPU  
P
P
Factory Test Pin. Leave unconnected or wire high for normal operation.  
TEST  
VDD  
VSS  
Positive Supply. 3.3V ±5%. All VDD signals should be wired together.  
Ground Reference. All VSS signals should be wired together.  
10 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Table 6-B. Receiver Pin Descriptions  
Note: These pins are always active.  
NAME  
TYPE  
FUNCTION  
RXPn,  
Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75coaxial cable  
I
RXNn  
through a 1:2 step-up transformer (Figure 2-1).  
Receiver Clock. The recovered clock is output on the RCLK pin. Recovered data is output on the  
RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK (RCINV = 0) or the rising edge of  
RCLK (RCINV = 1). During a loss of signal (RLOS = 0), the RCLK output signal is derived from the  
LIU’s master clock.  
RCLKn  
O3  
O3  
Receiver Positive AMI/Receiver Data. When the receiver is configured to have a bipolar interface  
(RBIN = 0), RPOS pulses high for each positive AMI pulse received. When the receiver is configured  
to have a binary interface (RBIN = 1), RDAT outputs decoded binary data. RPOS/RDAT is updated  
either on the falling edge of RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1).  
RPOSn/  
RDATn  
Receiver Negative AMI/Line-Code Violation. When the receiver is configured to have a bipolar  
interface (RBIN = 0), RNEG pulses high for each negative AMI pulse received. When the receiver is  
configured to have a binary interface (RBIN = 1), RLCV pulses high to flag code violations. See  
Section 8.6 for further details on code violations. RNEG/RLCV is updated either on the falling edge of  
RCLK (RCINV = 0) or the rising edge of RCLK (RCINV = 1).  
RNEGn/  
RLCVn  
O3  
I
Receiver Tri-State Enable (Active Low). RTS tri-states the RPOS/RDAT, RNEG/RLCV, and RCLK  
receiver outputs. This feature supports applications requiring LIU redundancy. Receiver outputs from  
multiple LIUs can be wire-ORed together, eliminating the need for external switches or muxes. The  
receiver continues to operate internally when RTS is low.  
RTSn  
0 = tri-state the receiver outputs  
1 = enable the receiver outputs  
Receiver Loss of Signal (Active Low, Open Drain). RLOS is asserted upon detection of 175 ±75  
consecutive zeros in the receive data stream. RLOS is deasserted when there are no excessive zero  
occurrences over a span of 175 ±75 clock periods. An excessive zero occurrence is defined as three  
or more consecutive zeros in the DS3 and STS-1 modes or four or more zeros in the E3 mode. See  
Section 8.5 for more information.  
O
O
RLOSn  
PRBS Detector Output. This signal reports the status of the PRBS detector. See Section 11 for  
PRBSn  
further details.  
Table 6-C. Transmitter Pin Descriptions  
Note: These pins are always active.  
NAME  
TYPE  
FUNCTION  
Transmitter Clock. A DS3 (44.736MHz ±20ppm), E3 (34.368MHz ±20ppm), or STS-1 (51.840MHz  
±20ppm) clock should be applied at this signal. Data to be transmitted is clocked into the device at  
TPOS/TDAT and TNEG either on the rising edge of TCLK (TCINV = 0) or the falling edge of TCLK  
(TCINV = 1). See Section 9 for additional details.  
TCLKn  
I
Transmitter Positive AMI/Transmitter Data. When the transmitter is configured to have a bipolar  
interface (TBIN = 0), a positive pulse is transmitted on the line when TPOS is high. When the  
transmitter is configured to have a binary interface (TBIN = 1), the data on TDAT is transmitted after  
B3ZS or HDB3 encoding. TPOS/TDAT is sampled either on the rising edge of TCLK (TCINV = 0) or  
on the falling edge of TCLK (TCINV = 1).  
TPOSn/  
TDATn  
I
I
Transmitter Negative AMI. When the transmitter is configured to have a bipolar interface (TBIN = 0),  
a negative pulse is transmitted on the line when TNEG is high. When the transmitter is configured to  
have a binary interface (TBIN = 1), TNEG is ignored and should be wired either high or low. TNEG is  
sampled either on the rising edge of TCLK (TCINV = 0) or on the falling edge of TCLK (TCINV = 1).  
Transmitter Analog Outputs. These differential AMI outputs are coupled to the outbound 75Ω  
coaxial cable through a 2:1 step-down transformer (Figure 2-1). These outputs can be tri-stated using  
the TTS pin or the TTS or TPS configuration bits.  
Transmitter Driver Monitor (Active Low, Open Drain). TDM reports the status of the transmit driver  
monitor. When the monitor detects a faulty transmitter, TDM is driven low. TDM requires an external  
pullup to VDD. See Section 9.6 for more information.  
TNEGn  
TXPn,  
TXNn  
O3  
O
TDMn  
Transmitter Tri-State Enable (Active Low). TTS tri-states the transmitter outputs (TXP and TXN).  
This feature supports applications requiring LIU redundancy. Transmitter outputs from multiple LIUs  
can be wire-ORed together, eliminating external switches. The transmitter continues to operate  
internally when TTS is active.  
I
TTSn  
0 = tri-state the transmitter output driver  
1 = enable the transmitter output driver  
11 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 6-D. Hardware Mode Pin Descriptions  
Note: These pins are active in hardware mode.  
NAME  
TYPE  
FUNCTION  
E3 Mode Enable  
E3Mn  
I
0 = DS3 operation  
1 = E3 or STS-1 operation  
STS-1 Mode Enable  
When E3M = 1,  
STSn  
I
I
I
0 = E3 operation  
1 = STS-1 operation  
When E3M = 0, STS selects the DS3 AIS pattern. See Table 6-G.  
Local Loopback Select, Remote Loopback Select  
{LLB, RLB} =  
00 = no loopback  
LLBn,  
RLBn  
01 = remote loopback  
10 = analog local loopback  
11 = digital local loopback  
Receiver Binary Framer-Interface Enable  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is  
disabled.  
RBIN  
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code  
violations. The B3ZS/HDB3 encoder is enabled.  
Receiver Clock Invert  
RCINV  
RJAn  
I
I
0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK.  
1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK.  
Receiver Jitter Attenuator Enable  
0 = remove jitter attenuator from the receiver path  
1 = insert jitter attenuator into the receiver path  
See Table 6-I for more information.  
Receive Monitor-Preamp Enable. RMON determines whether or not the receiver’s preamp is enabled  
to provide flat gain to the incoming signal before the AGC/equalizer block processes it. This feature  
should be enabled when the device is being used to monitor signals that have been resistively  
attenuated by a monitor jack. See Section 8.2 for more information.  
0 = disable the monitor preamp  
RMONn  
I
I
1 = enable the monitor preamp  
Transmitter Binary Framer-Interface Enable  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is  
disabled.  
TBIN  
1 = Transmitter framer interface is binary on the TDAT pin. (TNEG is ignored and should be wired low.)  
The B3ZS/HDB3 encoder is enabled.  
Transmitter Clock Invert  
TCINV  
I
I
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
Transmitter Data Select. These inputs select the source of the transmit data. See Table 6-G for  
details.  
TDSAn,  
TDSBn  
Transmitter Jitter Attenuator Enable  
0 = remove jitter attenuator from the transmitter path  
1 = insert jitter attenuator into the transmitter path  
TJAn  
I
I
See Table 6-I for more information.  
Transmitter Line Build-Out Enable. TLBO indicates cable length for waveform shaping in DS3 and  
STS-1 modes. TLBO is ignored for E3 mode and should be wired high or low.  
0 = cable length 225ft  
TLBOn  
1 = cable length < 225ft  
12 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 6-E. Parallel Bus Mode Pin Descriptions  
Note: These pins are active in parallel bus mode.  
NAME  
TYPE  
FUNCTION  
Motorola-Style Parallel CPU Interface  
0 = Parallel CPU interface is Intel-style  
1 = Parallel CPU interface is Motorola-style  
MOT  
I
Address Latch Enable. This signal controls a latch on the A[3:0] inputs. For a nonmultiplexed parallel  
CPU interface, ALE is wired high to make the latch transparent. For a multiplexed parallel CPU  
interface, the falling edge of ALE latches the address.  
Chip Select (Active Low). CS must be asserted to read or write internal registers.  
ALE  
I
I
CS  
Write Enable (Active Low) or Read/Write Select. For the Intel-style parallel CPU interface (MOT =  
0), WR is asserted to write internal registers. For the Motorola-style parallel CPU interface (MOT = 1),  
R/W determines the type of bus transaction, with R/W = 1 indicating a read and R/W = 0 indicating a  
write.  
I
I
WR / R/W  
RD / DS  
Read Enable (Active Low) or Data Strobe (Active Low). For the Intel-style parallel CPU interface  
(MOT = 0), RD is asserted to read internal registers. For the Motorola-style parallel CPU interface  
(MOT = 1), the rising edge of DS writes data to internal registers.  
Address Bus. These inputs specify the address of the internal register to be accessed. A5 is not  
present on the DS3252. A5 and A4 are not present on the DS3251.  
A[5:0]  
D[7:0]  
I
Data Bus. These bidirectional lines are inputs during writes to internal registers and outputs during  
reads.  
I/O  
Interrupt Output (Active Low, Open Drain). This pin is forced low in response to one or more  
unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or  
masked.  
O
INT  
Table 6-F. SPI Bus Mode Pin Descriptions  
Note: These pins are active in SPI bus mode.  
NAME  
TYPE  
FUNCTION  
MOT,  
I
Wire these pins low to enable SPI bus mode.  
RD, WR  
ALE  
I
Wire this pin high when using SPI bus mode.  
I
I
I
Chip Select (Active Low). CS must be asserted to read or write internal registers.  
Serial Clock for SPI Interface. SCLK is always driven by the SPI bus master.  
Serial Data Input for SPI Interface. The SPI bus master transmits data to the device on this pin.  
CS  
SCLK  
SDI  
Serial Data Output for SPI Interface  
SDO  
O
The device transmits data to the SPI bus master on this pin.  
SPI Clock Phase  
CPHA  
I
0 = data is latched on the leading edge of the SCLK pulse  
1 = data is latched on the trailing edge of the SCLK pulse  
SPI Clock Polarity  
CPOL  
I
0 = SCLK is normally low and pulses high during bus transactions  
1 = SCLK is normally high and pulses low during bus transactions  
Interrupt Output (Active Low, Open Drain). This pin is forced low in response to one or more  
unmasked, active interrupt sources within the device. INT remains low until the interrupt is serviced or  
masked.  
O
INT  
Note 1: PIN TYPES  
I = input pin  
IPU = input pin with internal 10kpullup  
O = output pin  
O3 = output pin that can be tri-stated  
P = power-supply pin  
13 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Table 6-G. Transmitter Data Select Options  
Tx  
TDSA  
TDSB  
E3M  
STS  
TRANSMIT DATA SELECTED  
MODE  
Any  
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
1
1
1
X
0
1
1
0
X
1
0
1
X
0
0
1
1
X
0
X
1
Normal data as input at TPOS and TNEG  
DS3  
E3  
Unframed all ones  
STS-1  
DS3  
Any  
DS3 AIS per ANSI T1.107 (Figure 9-2)  
Unframed 100100… pattern  
E3  
223 - 1 PRBS pattern per ITU O.151  
DS3  
STS-1  
2
15 - 1 PRBS pattern per ITU O.151  
Note 1:  
This coding of the TDSA, TDSB, E3M, and STS bits allows AIS generation to be enabled by  
holding TDSA = 0 and changing TDSB from 0 to 1. The type of DS3 AIS signal is selected by the  
STS bit with E3M = 0.  
If E3M and/or STS are changed when {TDSA,TDSB} 00, TDSA and TDSB must both be cleared  
to 0. After they are cleared, TDSA and TDSB can be configured to transmit a pattern in the new  
operating mode.  
Note 2:  
Table 6-H. Receiver PRBS Pattern Select Options  
Rx  
RECEIVER PRBS PATTERN  
SELECTED  
E3M  
STS  
MODE  
1
0
1
0
X
1
E3  
223 - 1 PRBS pattern per ITU O.151  
DS3  
2
15 - 1 PRBS pattern per ITU O.151  
STS-1  
Table 6-I. Hardware Mode Jitter Attenuator Configuration  
TJA  
RJA  
JITTER ATTENUATOR CONFIGURATION  
Disabled  
Receive path, 16-bit buffer depth  
Transmit path, 16-bit buffer depth  
Transmit path, 32-bit buffer depth  
0
0
1
1
0
1
0
1
14 of 71  
 
 
 
DS3251/DS3252/DS3253/DS3254  
7. REGISTER DESCRIPTIONS  
When the DS325x is configured in either of the two CPU bus modes (HW = 0), the registers shown in Table 7-A  
are accessible through the CPU bus interfaces. All registers for the LIU ports are forced to their default values  
during an internal power-on reset or when the RST pin is driven low. Setting an LIU’s RST bit high forces all  
registers for that LIU to their default values. All register bits marked “—” must be written 0 and ignored when read.  
The TEST registers must be left at their reset value of 00h for normal operation.  
On the DS3253, only registers for LIUs 1, 2, and 3 are available. Writes into LIU 4 address space are ignored.  
Reads from LIU 4 address space return all zeros. On the DS3252, address line A5 is not present, limiting the  
address space to the LIU 1 and LIU 2 registers. On the DS3251, address lines A5 and A4 are not present, limiting  
the address space to the LIU 1 registers.  
Table 7-A. Register Map  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LIU 1  
00h  
01h  
GCR1  
TCR1  
E3M  
JAL[1]  
ITU  
STS  
TBIN  
LLB  
RLB  
TJA  
TDSA  
TPD  
TDSB  
TTS  
RST  
TCINV  
RCINV  
TDM  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
STMOE  
LIU 2  
LLB  
TCINV  
RCINV  
TDM  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
LIU 3  
LLB  
TCINV  
RCINV  
TDM  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
LIU 4  
LLB  
TCINV  
RCINV  
TDM  
TLBO  
JAL[0]  
02h  
RCR1  
RBIN  
RJA  
RPD  
RTS  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
03h  
SR1  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
04h  
SRL1  
JAFL  
JAFIE  
RCV[7]  
RCV[15]  
T3MOE  
JAEL  
JAEIE  
RCV[6]  
RCV[14]  
E3MOE  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
05h  
SRIE1  
06h  
RCVL1  
RCVH1  
CACR  
07h  
08h  
AMCSEL[1] AMCSEL[0] AMCEN  
09h–0Fh  
Test Registers  
10h  
11h  
GCR2  
TCR2  
E3M  
JAL[1]  
ITU  
STS  
TBIN  
RBIN  
RLB  
TJA  
RJA  
TDSA  
TPD  
TDSB  
TTS  
RST  
JAL[0]  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
12h  
RCR2  
RPD  
RTS  
13h  
SR2  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
14h  
SRL2  
JAFL  
JAFIE  
RCV[7]  
RCV[15]  
JAEL  
JAEIE  
RCV[6]  
RCV[14]  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
15h  
SRIE2  
16h  
RCVL2  
RCVH2  
unused  
Test Registers  
17h  
18h  
19h–1Fh  
20h  
21h  
GCR3  
TCR3  
E3M  
JAL[1]  
ITU  
STS  
TBIN  
RBIN  
RLB  
TJA  
RJA  
TDSA  
TPD  
TDSB  
TTS  
RST  
JAL[0]  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
22h  
RCR3  
RPD  
RTS  
23h  
SR3  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
24h  
SRL3  
JAFL  
JAFIE  
RCV[7]  
RCV[15]  
JAEL  
JAEIE  
RCV[6]  
RCV[14]  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
25h  
SRIE3  
26h  
RCVL3  
RCVH3  
unused  
Test Registers  
27h  
28h  
29h–2Fh  
30h  
31h  
GCR4  
TCR4  
E3M  
JAL[1]  
ITU  
STS  
TBIN  
RBIN  
RLB  
TJA  
RJA  
TDSA  
TPD  
TDSB  
TTS  
RST  
JAL[0]  
RCVUD  
RLOS  
RLOSL  
RLOSIE  
RCV[0]  
RCV[8]  
TLBO  
RMON  
RLOL  
RLOLL  
RLOLIE  
RCV[1]  
RCV[9]  
32h  
RCR4  
RPD  
RTS  
33h  
SR4  
PRBS  
PRBSL  
PRBSIE  
RCV[4]  
RCV[12]  
34h  
SRL4  
JAFL  
JAFIE  
RCV[7]  
RCV[15]  
JAEL  
JAEIE  
RCV[6]  
RCV[14]  
TDML  
TDMIE  
RCV[5]  
RCV[13]  
PBERL  
PBERIE  
RCV[3]  
RCV[11]  
RCVL  
RCVIE  
RCV[2]  
RCV[10]  
35h  
SRIE4  
36h  
RCVL4  
RCVH4  
unused  
Test Registers  
37h  
38h  
39h–3Fh  
Note 1: Underlined bits are read-only; all other bits are read-write.  
Note 2: The registers are named REGn, where n = the LIU number (1, 2, 3, or 4). The register names are hyperlinks to the register descriptions.  
Note 3: The bit names are the same for each LIU register set.  
15 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Status Register Description  
The status registers have two types of status bits. Real-time status bits—located in the SR registers—indicate the  
state of a signal at the time it was read. Latched status bits—located in the SRL registers—are set when a signal  
changes state (low-to-high, high-to-low, or both, depending on the bit) and cleared when written with a logic 1  
value. After clearing, latched status bits remain cleared until the signal changes state again. Interrupt-enable bits—  
located in the SRIE registers—control whether or not the INT pin is driven low when latched register bits are set.  
Figure 7-1. Status Register Logic  
REAL-TIME STATUS  
EVENT  
SR  
LATCHED STATUS  
LATCHED STATUS REGISTER  
SET ON EVENT DETECT  
SRL  
CLEAR ON WRITE LOGIC 1  
WR  
INT  
INT ENABLE  
REGISTER  
WR  
OTHER INT  
SOURCE  
Register Name:  
GCRn  
Register Description:  
Register Address:  
Global Configuration Register  
00h, 10h, 20h, 30h  
Bit  
7
E3M  
0
6
STS  
0
5
LLB  
0
4
RLB  
0
3
TDSA  
0
2
TDSB  
0
1
0
Name  
Default  
RST  
0
Bit 7: E3 Mode Enable (E3M)  
0 = DS3 operation  
1 = E3 or STS-1 operation  
Bit 6: STS-1 Mode Enable (STS)  
When E3M = 1,  
0 = E3 operation  
1 = STS-1 operation  
When E3M = 0, STS selects the DS3 AIS pattern (Table 6-G).  
Bits 5, 4: Local Loopback, Remote Loopback Select (LLB, RLB)  
00 = no loopback  
01 = remote loopback  
10 = analog local loopback  
11 = digital local loopback  
Bits 3, 2: Transmitter Data Select (TDSA, TDSB). See Table 6-G for details.  
Bit 0: Reset (RST). When this bit is high, the digital logic of the LIU is held in reset and all registers for that LIU  
(except the RST bit) are forced to their default values. RST is cleared to 0 at power-up and when the RST pin is  
activated.  
0 = normal operation  
1 = reset LIU  
16 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
TCRn  
Register Description:  
Register Address:  
Transmitter Configuration Register  
01h, 11h, 21h, 31h  
Bit  
7
6
5
4
3
2
1
0
Name  
Default  
JAL[1]  
0
TBIN  
0
TCINV  
0
TJA  
0
TPD  
0
TTS  
1
TLBO  
0
JAL[0]  
0
Bits 7 and 0: Jitter Attenuator Buffer Length (JAL[1:0])  
00 = 16 bits  
01 = 32 bits  
10 = 64 bits  
11 = 128 bits  
These lengths are the total size of the buffer. The jitter attenuator control logic seeks to keep the read and write  
pointers half a buffer apart. Therefore typical latency through the jitter attenuator is half the buffer length.  
Bit 6: Transmitter Binary Interface Enable (TBIN)  
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder is  
disabled.  
1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled.  
Bit 5: Transmitter Clock Invert (TCINV)  
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.  
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.  
Bit 4: Transmitter Jitter Attenuator Enable (TJA)  
0 = Remove jitter attenuator from the transmitter path.  
1 = Insert jitter attenuator into the transmitter path.  
Bit 3: Transmitter Power-Down Enable (TPD)  
0 = enable the transmitter  
1 = power-down the transmitter (output driver tri-stated)  
Bit 2: Transmitter Tri-State Enable (TTS). This bit is set to 1 on reset, which tri-states the transmitter TXP and  
TXN pins. The transmitter circuitry is left powered up in this mode. The TTS input pin is inverted and logically ORed  
with this bit.  
0 = enable the transmitter output driver  
1 = tri-state the transmitter output driver  
Bit 1: Transmitter Line Build-Out (TLBO). TLBO indicates cable length for waveform shaping in DS3 and STS-1  
modes. TLBO is ignored in E3 mode.  
0 = cable length 225ft  
1 = cable length < 225ft  
17 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
RCRn  
Register Description:  
Register Address:  
Receiver Configuration Register  
02h, 12h, 22h, 32h  
Bit  
7
ITU  
0
6
RBIN  
0
5
RCINV  
0
4
RJA  
0
3
RPD  
0
2
RTS  
1
1
RMON  
0
0
RCVUD  
0
Name  
Default  
Bit 7: ITU CV Mode (ITU). This bit controls what types of bipolar violations (BPVs) are flagged as code violations  
on the RLCV pin and counted in the RCV register. It also controls whether or not excessive zero (EXZ) events are  
flagged and counted. An EXZ event is the occurrence of a third consecutive zero (DS3 or STS-1 modes) or fourth  
consecutive zero (E3 mode) in a sequence of zeros.  
0 = In all three modes (DS3, E3, and STS-1) BPVs that are not part of a valid codeword are flagged and  
counted. EXZ events are also flagged and counted.  
1 = In DS3 and STS-1 modes, BPVs that are not part of valid codewords are flagged and counted. In E3  
mode, BPVs that are the same polarity as the last BPV are flagged and counted. EXZ events are not  
flagged and counted in any mode.  
Bit 6: Receiver Binary Interface Enable (RBIN)  
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is  
disabled.  
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code violations.  
The B3ZS/HDB3 encoder is enabled.  
Bit 5: Receiver Clock Invert (RCINV)  
0 = RPOS/RDAT and RNEG/RLCV are sampled on the falling edge of RCLK.  
1 = RPOS/RDAT and RNEG/RLCV are sampled on the rising edge of RCLK.  
Bit 4: Receiver Jitter Attenuator Enable (RJA). (Note that TCR:TJA = 1 takes precedence over RJA = 1.)  
0 = remove jitter attenuator from the receiver path  
1 = insert jitter attenuator into the receiver path  
Bit 3: Receiver Power-Down Enable (RPD)  
0 = enable the receiver  
1 = power-down the receiver (RPOS/RDAT, RNEG/RLCV, and RCLK tri-stated)  
Bit 2: Receiver Tri-State Enable (RTS). This signal is set to 1 on reset, which tri-states the receiver RPOS/RDAT,  
RNEG/RLCV, and RCLK pins. The receiver is left powered up in this mode. The RTS pin is inverted and logically  
ORed with this bit.  
0 = enable the receiver outputs  
1 = tri-state the receiver outputs (RPOS/RDAT, RNEG/RLCV, and RCLK)  
Bit 1: Receiver Monitor Preamp Enable (RMON)  
0 = disable the monitor preamp  
1 = enable the monitor preamp  
Bit 0: Receive Code-Violation Counter Update (RCVUD). When this control bit transitions from low to high, the  
RCVL and RCVH registers are loaded with the current code-violation count, and the internal code-violation counter  
is cleared.  
01 = Update RCV registers and clear internal code-violation counter  
18 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
SRn  
Register Description:  
Register Address:  
Status Register  
03h, 13h, 23h, 33h  
Bit  
7
6
5
TDM  
0
4
PRBS  
0
3
2
1
RLOL  
1
0
RLOS  
1
Name  
Default  
Bit 5: Transmitter Driver Monitor (TDM). This read-only status bit indicates the current state of the transmit driver  
monitor. See Section 9.6 for more information.  
0 = the transmitter is operating normally  
1 = the transmitter amplitude is out of range  
Bit 4: PRBS Detector Output (PRBS). This read-only status bit indicates the current state of the receiver’s PRBS  
detector. See Table 6-H for the expected PRBS pattern.  
0 = in sync with expected pattern  
1 = out of sync, expected pattern not detected  
Bit 1: Receiver Loss of Lock (RLOL). This read-only status bit indicates the current state of the receiver clock  
recovery PLL.  
0 = the receiver PLL is locked onto the incoming signal  
1 = the receiver PLL is not locked onto the incoming signal  
Bit 0: Receiver Loss of Signal (RLOS). This read-only status bit indicates the current state of the receiver loss-of-  
signal detector.  
0 = signal present  
1 = loss of signal  
19 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
SRLn  
Register Description:  
Register Address:  
Status Register Latched  
04h, 14h, 24h, 34h  
Bit  
7
JAFL  
0
6
JAEL  
0
5
TDML  
0
4
PRBSL  
0
3
PBERL  
0
2
RCVL  
0
1
RLOLL  
0
0
RLOSL  
0
Name  
Default  
Bit 7: Jitter Attenuator Full Latched (JAFL). This latched status bit is set to one when the jitter attenuator buffer  
is full. JAFL is cleared when the host processor writes a one to it and is not set again until the full condition clears  
and the buffer becomes full again. When JAFL is set, it can cause a hardware interrupt to occur if the JAFIE  
interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when JAFL is cleared or JAFIE is set  
to zero.  
Bit 6: Jitter Attenuator Empty Latched (JAEL). This latched status bit is set to one when the jitter attenuator  
buffer is empty. JAEL is cleared when the host processor writes a one to it and is not set again until the empty  
condition clears and the buffer becomes empty again. When JAEL is set, it can cause a hardware interrupt to occur  
if the JAEIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when JAEL is cleared or  
JAEIE is set to zero.  
Bit 5: Transmitter Driver Monitor Latched (TDML). This latched status bit is set to one when the TDM status bit  
changes state (low to high or high to low). TDML is cleared when the host processor writes a one to it and is not set  
again until TDM changes state again. When TDML is set, it can cause a hardware interrupt to occur if the TDMIE  
interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when TDML is cleared or TDMIE is  
set to zero.  
Bit 4: PRBS Detector Output Latched (PRBSL). This latched status bit is set to one when the PRBS status bit  
changes state (low to high or high to low). PRBSL is cleared when the host processor writes a one to it and is not  
set again until PRBS changes state again. When PRBSL is set, it can cause a hardware interrupt to occur if the  
PRBSIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when PRBSL is cleared or  
PRBSIE is set to zero.  
Bit 3: PRBS Detector Bit Error Latched (PBERL). This latched status bit is set to one when the PRBS detector is  
in sync and a bit error has been detected. PBERL is cleared when the host processor writes a one to it and is not  
set again until another bit error is detected. When PBERL is set, it can cause a hardware interrupt to occur if the  
PBERIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when PBERL is cleared or  
PBERIE is set to zero.  
Bit 2: Receiver Code Violation Latched (RCVL). This latched status bit is set to one when the RCV status bit in  
the SR register goes high. RCVL is cleared when the host processor writes a one to it and is not set again until  
RCV goes high again. When RCVL is set, it can cause a hardware interrupt to occur if the RCVIE interrupt-enable  
bit in the SRIE register is set to one. The interrupt is cleared when RCVL is cleared or RCVIE is set to zero.  
Bit 1: Receiver Loss-of-Clock Lock Latched (RLOLL). This latched status bit is set to one when the RLOL status  
bit in the SR register changes state (low to high or high to low). RLOLL is cleared when the host processor writes a  
one to it and is not set again until RLOL changes state again. When RLOLL is set, it can cause a hardware  
interrupt to occur if the RLOLIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when  
RLOLL is cleared or RLOLIE is set to zero.  
Bit 0: Receiver Loss-of-Signal Latched (RLOSL). This latched status bit is set to one when the RLOS status bit  
in the SR register changes state (low to high or high to low). RLOSL is cleared when the host processor writes a  
one to it and is not set again until RLOS changes state again. When RLOSL is set, it can cause a hardware  
interrupt to occur if the RLOSIE interrupt-enable bit in the SRIE register is set to one. The interrupt is cleared when  
RLOSL is cleared or RLOSIE is set to zero.  
20 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
SRIEn  
Register Description:  
Register Address:  
Status Register Interrupt Enable  
05h, 15h, 25h, 35h  
Bit  
7
JAFIE  
0
6
JAEIE  
0
5
TDMIE  
0
4
PRBSIE  
0
3
PBERIE  
0
2
RCVIE  
0
1
RLOLIE  
0
0
RLOSIE  
0
Name  
Default  
Bit 7: Jitter Attenuator Full Interrupt Enable (JAFIE)  
0 = mask JAFL interrupt  
1 = enable JAFL interrupt  
Bit 6: Jitter Attenuator Empty Interrupt Enable (JAEIE)  
0 = mask JAEL interrupt  
1 = enable JAEL interrupt  
Bit 5: Transmitter Driver Monitor Interrupt Enable (TDMIE)  
0 = mask TDML interrupt  
1 = enable TDML interrupt  
Bit 4: PRBS Detector Interrupt Enable (PRBSIE)  
0 = mask PRBSL interrupt  
1 = enable PRBSL interrupt  
Bit 3: PRBS Detector Bit-Error Interrupt Enable (PBERIE)  
0 = mask PBERL interrupt  
1 = enable PBERL interrupt  
Bit 2: Receiver Line-Code Violation Interrupt Enable (RCVIE)  
0 = mask RCVL interrupt  
1 = enable RCVL interrupt  
Bit 1: Receiver Loss-of-Clock Lock Interrupt Enable (RLOLIE)  
0 = mask RLOLL interrupt  
1 = enable RLOLL interrupt  
Bit 0: Receiver Loss-of-Signal Interrupt Enable (RLOSIE)  
0 = mask RLOSL interrupt  
1 = enable RLOSL interrupt  
21 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
RCVLn  
Register Description:  
Register Address:  
Receiver Code-Violation Count Register (Low Byte)  
06h, 16h, 26h, 36h  
Bit  
7
RCV[7]  
0
6
RCV[6]  
0
5
RCV[5]  
0
4
RCV[4]  
0
3
RCV[3]  
0
2
RCV[2]  
0
1
RCV[1]  
0
0
RCV[0]  
0
Name  
Default  
Bits 7 to 0: Receiver Code-Violation Counter Register (RCV[7:0]). The full 16-bit RCV[15:0] field spans this  
register and RCVHn. RCV is an unsigned integer that indicates the line-code violation counter value. RCV is  
updated with the line-code violation counter value when the RCVUD control bit in the RCR register is toggled low to  
high. After the RCV register is updated, the line-code violation counter is cleared. The counter operates in two  
modes, depending on the setting of the ITU bit in the RCR register. See the RCR register description for details  
about the ITU control bit.  
Register Name:  
RCVHn  
Register Description:  
Register Address:  
Receiver Code-Violation Count Register (High Byte)  
07h, 17h, 27h, 37h  
Bit  
7
RCV[15]  
0
6
RCV[14]  
0
5
RCV[13]  
0
4
RCV[12]  
0
3
RCV[11]  
0
2
RCV[10]  
0
1
RCV[9]  
0
0
RCV[8]  
0
Name  
Default  
Bits 7 to 0: Receiver Code-Violation Counter Register (RCV[15:8]). See the RCVLn register description.  
22 of 71  
 
 
DS3251/DS3252/DS3253/DS3254  
Register Name:  
CACR  
Register Description:  
Register Address:  
Clock Adapter Control Register  
08h  
Bit  
7
T3MOE  
0
6
E3MOE  
0
5
STMOE  
0
4
0
3
0
2
1
0
Name  
Default  
AMCSEL[1] AMCSEL[0] AMCEN  
0
0
0
Bit 7: T3MCLK Output Enable (T3MOE). When the clock adapter block is configured to synthesize the DS3  
master clock, the DS3 master clock can be output on the T3MCLK pin by setting T3MOE=1. This clock can then be  
used as the transmit clock for neighboring DS3 framers and other components requiring a DS3 clock. This bit  
should only be set to 1 if the T3MCLK pin is not driven externally.  
0 = T3MCLK output driver disabled  
1 = T3MCLK output driver enabled  
Bit 6: E3MCLK Output Enable (E3MOE). When the clock adapter block is configured to synthesize the E3 master  
clock, the E3 master clock can be output on the E3MCLK pin by setting E3MOE=1. This clock can then be used as  
the transmit clock for neighboring E3 framers and other components requiring an E3 clock. This bit should only be  
set to 1 if the E3MCLK pin is not driven externally.  
0 = E3MCLK output driver disabled  
1 = E3MCLK output driver enabled  
Bit 5: STMCLK Output Enable (STMOE). When the clock adapter block is configured to synthesize the STS-1  
master clock, the STS-1 master clock can be output on the of the STMCLK pin by setting STMOE=1. This clock  
can then be used as the transmit clock for neighboring SONET framers, mappers and other components requiring  
an STS-1 clock. This bit should only be set to 1 if the STMCLK pin is not driven externally.  
0 = STMCLK output driver disabled  
1 = STMCLK output driver enabled  
Bits 2 to 1: Alternate Master Clock Select (AMCSEL[1:0]). See Section 12 for details.  
00 = 19.44 MHz  
01 = 38.88 MHz  
10 = 77.76 MHz  
11 = {unused value}  
Bit 0: Alternate Master Clock Enable (AMCEN). See Section 12 for details.  
0 = alternate master clock mode disabled  
1 = alternate master clock mode enabled  
23 of 71  
 
DS3251/DS3252/DS3253/DS3254  
8. RECEIVER  
8.1 Interfacing to the Line  
The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the receiver interfaces to the  
incoming coaxial cable (75) through a 1:2 step-up transformer. Figure 2-1 shows the arrangement of the  
transformer and other recommended interface components. Table 14-A specifies the required characteristics of the  
transformer. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI format.  
8.2 Optional Preamp  
The receiver can be used in monitoring applications, which typically have series resistors with a resistive loss of  
approximately 20dB. When the RMON input pin is high (hardware mode) or RCR:RMON=1 (CPU bus mode), the  
receiver compensates for this resistive loss by applying approximately 14dB of flat gain to the incoming signal  
before sending the signal to the AGC/equalizer block, where additional flat gain is applied as need.  
8.3 Automatic Gain Control (AGC) and Adaptive Equalizer  
The AGC circuitry applies flat (frequency independent) gain to the incoming signal to compensate for flat losses in  
the transmission channel and variations in transmission power. Since the incoming signal also experiences  
frequency-dependent losses as it passes through the coaxial cable, the adaptive equalizer circuitry applies  
frequency-dependent gain to offset line losses and restore the signal. The AGC/equalizer circuitry automatically  
adapts to coaxial cable losses from 0 to 15dB, which translates into 0 to 380 meters (DS3), 0 to 440 meters (E3), or  
0 to 360 meters (STS-1) of coaxial cable (AT&T 734A or equivalent). The AGC and the equalizer work  
simultaneously but independently to supply a signal of nominal amplitude and pulse shape to the clock and data  
recovery block. The AGC/equalizer block automatically handles direct (0 meters) monitoring of the transmitter  
output signal.  
8.4 Clock and Data Recovery (CDR)  
The CDR block takes the amplified, equalized signal from the AGC/equalizer block and produces separate clock,  
positive data, and negative data signals. The CDR operates from the LIU’s master clock. See Section 12 for more  
information about master clocks and clock selection.  
The receiver locks onto the incoming signal using a clock recovery PLL. The status of the PLL lock is indicated in  
the RLOL status bit in the SR register. The RLOL bit is set when the difference between recovered clock frequency  
and MCLK frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of  
state of the RLOL status bit can cause an interrupt on the INT pin if enabled to do so by the RLOLIE interrupt-  
enable bit in the SRIE register. Note that if the master clock is not present, RLOL is not set.  
8.5 Loss-of-Signal (LOS) Detector  
The receiver contains analog and digital LOS detectors. The analog LOS detector resides in the AGC/equalizer  
block. If the incoming signal level is less than a signal level approximately 24dB below nominal, analog LOS  
(ALOS) is declared. The ALOS signal cannot be directly examined, but when ALOS occurs the AGC/equalizer  
mutes the recovered data, forcing all zeros out of the data recovery circuitry and causing digital LOS (DLOS),  
which is indicated by the RLOS pin and the RLOS status bit in the SR register. ALOS clears when the incoming  
signal level is greater than or equal to a signal level approximately 18 dB below nominal.  
The digital LOS detector declares DLOS when it detects 175 ± 75 consecutive zeros in the recovered data stream.  
When DLOS occurs, the receiver asserts the RLOS pin (hardware mode) or the RLOS status bit (CPU bus mode).  
DLOS is cleared when there are no EXZ occurrences over a span of 175 ±75 clock periods. An EXZ occurrence is  
defined as three or more consecutive zeros in the DS3 and STS-1 modes and four or more consecutive zeros in  
the E3 mode. The RLOS pin and the RLOS status bit are deasserted when the DLOS condition is cleared. In CPU  
bus mode, a change of the RLOS status bit can cause an interrupt on the INT pin if enabled to do so by the  
RLOSIE interrupt-enable bit in the SRIE register.  
The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which  
asserts RLOS when it counts 175 ±75 consecutive zeros coming out of the CDR block and clears RLOS when it  
counts 175 ±75 consecutive pulse intervals without excessive zero occurrences.  
24 of 71  
DS3251/DS3252/DS3253/DS3254  
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the  
DLOS detector, as follows:  
For E3 RLOS Assertion:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or equal to a signal  
level approximately 24 dB below nominal, and mutes the data coming out of the clock and data recovery block.  
(24 dB below nominal is in the “tolerance range” of G.775, where LOS may or may not be declared.)  
2) The DLOS detector counts 175 ±75 consecutive zeros coming out of the CDR block and asserts RLOS. (175  
±75 meets the 10 N 255 pulse-interval duration requirement of G.775.)  
For E3 RLOS Clear:  
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than or equal to a  
signal level approximately 18dB below nominal, and enables data to come out of the CDR block. (18dB is in  
the “tolerance range” of G.775, where LOS may or may not be declared.)  
2) The DLOS detector counts 175 ± 75 consecutive pulse intervals without EXZ occurrences and deasserts  
RLOS. (175 ± 75 meets the 10 N 255 pulse-interval duration requirement of G.775.)  
The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At STS-1 rates, the time  
required for the DLOS detector to count 175 ± 75 consecutive zeros falls in the range of 2.3 T 100µs required  
by ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 175 ± 75  
consecutive pulse intervals with no excessive zeros is less than the 125µs–250µs period required by ANSI T1.231  
for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software.  
During LOS, the RCLK output pin is derived from the LIU’s master clock. The ALOS detector has a longer time  
constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first  
(asserting the RLOS pin or bit), followed by the ALOS detector. When a signal is restored, the DLOS detector does  
not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the signal rise  
above a signal level approximately 18dB below nominal.  
8.6 Framer Interface Format and the B3ZS/HDB3 Decoder  
The recovered data can be output in either binary or bipolar format. To select the bipolar interface format, pull the  
RBIN pin low (hardware mode) or clear the RBIN configuration bit in the RCR register (CPU bus mode). In bipolar  
format, the B3ZS/HDB3 decoder is disabled and the recovered data is buffered and output on the RPOS and  
RNEG outputs. Received positive-polarity pulses are indicated by RPOS = 1, while negative-polarity pulses are  
indicated by RNEG = 1. In bipolar interface format, the receiver simply passes on the received data and does not  
check it for BPV or EXZ occurrences.  
To select the binary interface format, pull the RBIN pin high (hardware mode) or set the RBIN configuration bit in  
the RCR register (CPU bus mode). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is  
decoded and output as a binary value on the RDAT pin. Code violations are flagged on the RLCV pin. In the  
discussion that follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates the  
AMI rule is denoted as V.  
In DS3 and STS-1 modes, B3ZS decoding is performed. RLCV is asserted during any RCLK cycle where the data  
on RDAT causes ones of the following code violations:  
Hardware mode or ITU bit set to 0  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
The third zero in an EXZ occurrence.  
ITU bit set to 1  
A BPV immediately preceded by a valid pulse (B, V).  
A BPV with the same polarity as the last BPV.  
25 of 71  
 
DS3251/DS3252/DS3253/DS3254  
In E3 mode, HDB3 decoding is performed. RLCV is asserted during any RCLK cycle where the data on RDAT  
causes one of the following code violations:  
Hardware mode or ITU bit set to 0  
A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V).  
A BPV with the same polarity as the last BPV.  
The fourth zero in an EXZ occurrence (only in hardware mode or when ITU = 0).  
ITU bit set to 1  
A BPV with the same polarity as the last BPV.  
When RLCV is asserted to flag a BPV, the RDAT pin outputs a one. The state bit that tracks the polarity of the last  
BPV is toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not.  
To support a glueless interface to a variety of neighboring components, the polarity of RCLK can be inverted.  
Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on  
these pins on the rising edge of RCLK, pull the RCINV pin high (hardware mode) or set the RCINV configuration bit  
in the RCR register (CPU bus mode).  
The RCLK, RPOS/RDAT, and RNEG/RLCV pins can be tri-stated to support protection switching and redundant-  
LIU applications. This tri-stating capability supports system configurations where two or more LIUs are wire-ORed  
together and a system processor selects one to be active. To tri-state RCLK, RPOS/RDAT, and RNEG/RLCV,  
assert the RTS pin or the RTS configuration bit in the RCR register.  
8.7 Receive Line-Code Violation Counter  
The line-code violation counter is always enabled regardless of the settings of the RBIN pin or the RBIN  
configuration bit. The receiver has an internal 16-bit saturating counter and a 16-bit latch, which the CPU can read  
as registers RCVH and RCVL. The value of the internal counter is latched into the RCVH/RCVL register and  
cleared when the receive code-violation counter update bit, RCR:RCVUD, is changed from a zero to a one. The  
RCVUD bit must be cleared back to a zero before a new update can occur. If there is an LCV increment pulse and  
an update pulse in the same clock period, the counter is preset to a one rather than cleared so that the LCV is not  
missed. The counter is incremented when the RLCV pin flags a code violation as described in Section 8.6. The  
counter saturates at 65,535 (0FFFFh) and does not roll over.  
8.8 Receiver Power-Down  
To minimize power consumption when the receiver is not being used, assert the RPD configuration bit in the RCR  
register (CPU bus mode). When the receiver is powered down, the RCLK, RPOS/RDAT, and RNEG/RLCV pins are  
tri-stated. In addition, the RXP and RXN pins become high impedance.  
8.9 Receiver Jitter Tolerance  
The receiver exceeds the input jitter tolerance requirements of all applicable telecommunication standards in Table  
1-A. See Figure 8-1.  
26 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 8-1. Receiver Jitter Tolerance  
15  
STS-1 GR253  
DS3 GR-499 Cat II  
DS3 GR-499 Cat I  
10  
5
10  
DS325x JITTER TOLERANCE  
1.5  
E3 G.823  
1.0  
0.1  
0.3  
0.15  
0.1  
30  
300  
669  
2.3k  
22.3k  
60k  
300k 800k  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
9. TRANSMITTER  
9.1 Transmit Clock  
The clock applied at the TCLK input clocks in data on the TPOS/TDAT and TNEG pins. If the jitter attenuator is not  
enabled in the transmit path, the signal on TCLK is the transmit line clock and must be transmission quality (i.e.,  
±20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the transmit path, the signal on  
TCLK can be jittery and/or periodically gapped, but must still have an average frequency within ±20ppm of the  
nominal line rate. When enabled in the transmit path, the jitter attenuator generates the transmit line clock from the  
appropriate master clock.  
The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components.  
Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample data on the  
falling edge of TCLK, pull the TCINV pin high (hardware mode) or set the TCINV configuration bit in the TCR  
register (CPU bus mode).  
9.2 Framer Interface Format and the B3ZS/HDB3 Encoder  
Data to be transmitted can be input in either binary or bipolar format. To select the binary interface format, pull the  
TBIN pin high (hardware mode) or set the TBIN configuration bit in the TCR register (CPU bus mode). In binary  
format, the B3ZS/HBD3 encoder is enabled, and the data to be transmitted is sampled on the TDAT pin. The  
TNEG pin is ignored in binary interface mode and should be wired low. In DS3 and STS-1 modes, the B3ZS/HDB3  
encoder operates in the B3ZS mode. In E3 mode the encoder operates in HDB3 mode.  
To select the bipolar interface format, pull the TBIN pin low (hardware mode) or clear the TBIN configuration bit in  
the TCR register (CPU bus mode). In bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be  
transmitted is sampled on the TPOS and TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while  
negative-polarity pulses are indicated by TNEG = 1.  
9.3 Pattern Generation  
The transmitter can generate several patterns internally, including unframed all ones (E3 AIS), 100100…, and DS3  
AIS. See Figure 9-2 for the structure of the DS3 AIS signal. The TDSA and TDSB input pins (hardware mode) or  
the TDSA and TDSB control bits in the GCR register (CPU bus mode) are used to select these patterns. Table 6-G  
indicates the possible selections.  
27 of 71  
DS3251/DS3252/DS3253/DS3254  
9.4 Waveshaping, Line Build-Out, Line Driver  
The waveshaping block converts the transmit clock, positive data, and negative data signals into a single AMI  
signal with the waveshape required for interfacing to DS3/E3/STS-1 lines. Table 9-A through Table 9-E and Figure  
9-1 show the waveform template specifications and test parameters.  
Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length  
from 0 to 450ft, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225ft or greater,  
the TLBO pin (hardware mode) or the TLBO configuration bit in the TCR register (CPU bus mode) should be low.  
When TLBO is low, output pulses are driven onto the coaxial cable without any preattenuation. For cable lengths  
less than 225ft, TLBO should be high to enable the LBO circuitry. When TLBO is high, pulses are preattenuated by  
the LBO circuitry before being driven onto the coaxial cable. The LBO circuitry provides attenuation that mimics the  
attenuation of 225ft of coaxial cable.  
The transmitter line driver can be disabled and the TXP and TXN outputs tri-stated by asserting the TTS input or  
the TTS configuration bit in the TCR register. Powering down the transmitter through the TPD configuration bit in  
the TCR register (CPU bus mode) also tri-states the TXP and TXN outputs.  
9.5 Interfacing to the Line  
The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75) through a 2:1 step-down transformer  
connected to the TXP and TXN pins. Figure 2-1 shows the arrangement of the transformer and other  
recommended interface components. Table 14-A specifies the required characteristics of the transformer.  
9.6 Transmit Driver Monitor  
The transmit driver monitor compares the amplitude of the transmit waveform to thresholds VTXMIN and VTXMAX. If  
the amplitude is less than VTXMIN or greater than VTXMAX for approximately 32 MCLK cycles, then the monitor  
activates the TDM output pin (hardware mode or CPU bus mode) or sets the TDM status bit in the SR register and  
optionally activates the INT output (CPU bus mode). When the transmitter is tri-stated, the transmit driver monitor is  
also disabled.  
Note that the transmit driver monitor can be affected by reflections caused by shorts and opens on the line. A short  
at a distance less than a few inches (~11 inches for FR4 material) can introduce inverted reflections that reduce the  
outgoing pulse amplitude below the VTXMIN threshold and thereby activate the TDM pin and/or TDM status bit.  
Similarly an open circuit a similar distance away can introduce noninverted reflections that increase the outgoing  
amplitude above the VTXMAX threshold and thereby activate TDM and/or TDM. Shorts and opens at larger distances  
away from TXP/TXN can also activate TDM and/or TDM, but this effect is data-pattern dependent.  
9.7 Transmitter Power-Down  
To minimize power consumption when the transmitter is not being used, assert the TPD configuration bit in the  
TCR register (CPU bus mode only). When the transmitter is powered down, the TXP and TXN pins are put in a  
high-impedance state and the transmit amplifiers are powered down.  
9.8 Transmitter Jitter Generation (Intrinsic)  
The transmitter meets the jitter generation requirements of all applicable standards, with or without the jitter  
attenuator enabled.  
9.9 Transmitter Jitter Transfer  
Without the jitter attenuator enabled in the transmit side, the transmitter passes jitter through unchanged. With the  
jitter attenuator enabled in the transmit side, the transmitter meets the jitter transfer requirements of all applicable  
telecommunication standards in Table 1-A. See Figure 10-1.  
28 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 9-A. DS3 Waveform Template  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATION  
UPPER CURVE  
0.03  
-0.85 T -0.68  
-0.68 T +0.36  
0.36 T 1.4  
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03  
0.08 + 0.407e-1.84(T - 0.36)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 T -0.36  
-0.36 T +0.36  
0.36 T 1.4  
Governing Specifications: ANSI T1.102 and Bellcore GR-499.  
Table 9-B. DS3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
44.736Mbps (±20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75(±1%) resistive  
Pulse Amplitude  
Between 0.36V and 0.85V  
An isolated pulse (preceded by two zeros and  
followed by one or more zeros) falls within the  
curves listed in Table 9-A.  
Pulse Shape  
Unframed All-Ones Power Level at 22.368MHz  
Unframed All-Ones Power Level at 44.736MHz  
Between -1.8dBm and +5.7dBm  
At least 20dB less than the power measured at  
22.368MHz  
Ratio of positive and negative pulses must be  
between 0.90 and 1.10.  
Pulse Imbalance of Isolated Pulses  
Table 9-C. STS-1 Waveform Template  
TIME (IN UNIT INTERVALS)  
NORMALIZED AMPLITUDE EQUATIONS  
UPPER CURVE  
0.03  
-0.85 T -0.68  
-0.68 T +0.26  
0.26 T 1.4  
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03  
0.1 + 0.61e-2.4(T - 0.26)  
LOWER CURVE  
-0.03  
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03  
-0.03  
-0.85 T -0.36  
-0.36 T +0.36  
0.36 T 1.4  
Governing Specifications: Bellcore GR-253 and Bellcore GR-499 and ANSI T1.102.  
Table 9-D. STS-1 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
51.840Mbps (±20ppm)  
Line Code  
B3ZS  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the end of 0 to 450ft of coaxial cable  
75(±1%) resistive  
Pulse Amplitude  
0.800V nominal (not covered in specs)  
An isolated pulse (preceded by two zeros and  
followed by one or more zeros) falls within the  
curved listed in Table 9-C.  
Pulse Shape  
Unframed All-Ones Power Level at 25.92MHz  
Unframed All-Ones Power Level at 51.84MHz  
Between -1.8dBm and +5.7dBm  
At least 20dB less than the power measured at  
25.92MHz.  
29 of 71  
 
 
DS3251/DS3252/DS3253/DS3254  
Table 9-E. E3 Waveform Test Parameters and Limits  
PARAMETER  
SPECIFICATION  
Rate  
34.368Mbps (±20ppm)  
Line Code  
HDB3  
Transmission Medium  
Test Measurement Point  
Test Termination  
Coaxial cable (AT&T 734A or equivalent)  
At the transmitter  
75(±1%) resistive  
Pulse Amplitude  
1.0V (nominal)  
An isolated pulse (preceded by two zeros and  
followed by one or more zeros) falls within the  
template shown in Figure 9-1.  
Pulse Shape  
Ratio of the Amplitudes of Positive and Negative  
Pulses at the Center of the Pulse Interval  
Ratio of the Widths of Positive and Negative Pulses  
at the Nominal Half Amplitude  
0.95 to 1.05  
0.95 to 1.05  
Figure 9-1. E3 Waveform Template  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
17  
8.65  
G.703  
E3  
TEMPLATE  
12.1  
24.5  
29.1  
-0.1  
-0.2  
TIME (ns)  
30 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Figure 9-2. DS3 AIS Structure  
M1 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
X1  
(1)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
M2 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
X2  
(1)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
M3 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
P1  
(0)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
M4 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
P2  
(0)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
M5 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
M1  
(0)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
M6 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
M2  
(1)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
M7 Subframe  
84  
84  
84  
84  
84  
C2 Info  
(0) Bits  
84  
84  
84  
M3  
(0)  
Info F1  
Info C1 Info F2  
Info  
F3  
Info C3 Info F4  
Info  
Bits (1) Bits (0) Bits (0) Bits  
(0) Bits (0) Bits (1) Bits  
Note 1: X1 is transmitted first.  
Note 2: The 84 info bits contain the repetitive sequence 1010…, where the first 1 in the sequence immediately follows each X, P, F, C, or M bit.  
31 of 71  
DS3251/DS3252/DS3253/DS3254  
10. JITTER ATTENUATOR  
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can  
be disabled. The TJA and RJA pins (hardware mode) or the TCR:TJA and RCR:RJA control bits (CPU bus mode)  
specify how the jitter attenuator is used. Setting TJA = RJA = 0 disables the jitter attenuator. To use the jitter  
attenuator in the receive path, set RJA = 1 (with TJA = 0). To use it in the transmit path, set TJA = 1. Figure 10-1  
shows the minimum jitter attenuation for the device when the jitter attenuator is enabled. Figure 10-1 also shows  
the receive jitter transfer when the jitter attenuator is disabled.  
The jitter attenuator consists of a narrowband PLL to retime the selected clock, a FIFO to buffer the associated  
data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very large jitter  
amplitudes. In hardware mode, only 16-bit and 32-bit FIFO depths are available. See Table 6-I. In CPU bus mode,  
control bits TCR:JAL[1:0] set the FIFO depth to 16, 32, 64, or 128 bits.  
The jitter attenuator requires a transmission-quality master clock (i.e., ±20ppm frequency accuracy and low jitter).  
When enabled in the receive path, the JA can obtain its master clock from the appropriate MCLK pin, from the  
clock adapter block, or from the TCLK pin. When enabled in the transmit path, the JA can take its master clock  
from the MCLK pin or from the clock adapter block, but not from the TCLK pin. The CDR block also uses the  
selected master clock. See Section 12 for more information about master clocks and clock selection.  
The JA has a loop bandwidth of master_clock ÷ 2,058,874 (see corner frequencies in Figure 10-1). The JA  
attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower  
frequencies to pass through relatively unaffected.  
In CPU bus mode the jitter attenuator indicates the fill status of its FIFO buffer in the JAFL (JA full) and JAEL (JA  
empty) status bits in the SRL register. The JA sets the JAFL bit to indicate that its buffer is full. When the buffer  
becomes full, the JA momentarily increases the frequency of the read clock by 6250 ppm to avoid buffer overflow  
and consequent data loss. In a similar manner, the JA sets the JAEL bit to indicate that its buffer is empty. When  
the buffer becomes empty, the JA momentarily decreases the frequency of the read clock by 6250 ppm to avoid  
buffer underflow and consequent data errors. During these momentary frequency adjustments, jitter is passed  
through the JA to avoid over/underflow. If the phase noise or frequency offset of the write clock is large enough to  
cause the buffer to overflow or underflow, the JA sets both the JAFL bit and the JAEL bit to indicate that data errors  
have occurred.  
32 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 10-1. Jitter Attenuation/Jitter Transfer  
21.7 Hz (DS3)  
16.7 Hz (E3)  
27Hz  
40Hz  
25.2 Hz (STS-1)  
1k  
>150k  
40k 59.6k  
0
DS3 [GR-499 (1995)]  
CATEGORY I  
DS3 [GR-253 (1999)]  
CATEGORY I  
DS325x TYPICAL RECEIVER  
JITTER TRANSFER WITH  
JITTER ATTENUATOR  
DISABLED  
STS-1 [GR-253  
(1999)] CATEGORY II  
-10  
-20  
E3 [TBR24 (1997)]  
DS325x  
DS3/E3/STS-1  
MINIMUM  
DS3 [GR-499 (1999)]  
CATEGORY II  
JITTER  
ATTENUATION  
WITH JITTER  
ATTENUATOR  
ENABLED  
-30  
10k  
FREQUENCY (Hz)  
10  
100  
1k  
100k  
1M  
33 of 71  
DS3251/DS3252/DS3253/DS3254  
11. DIAGNOSTICS  
11.1 PRBS Generator and Detector  
Each LIU has built-in pseudorandom bit sequence (PRBS) generator and detector circuitry for physical layer  
testing. The device generates and detects unframed 215 - 1 (DS3 or STS-1) or 223 - 1 PRBS, according to the ITU  
O.151 specification. To transmit a PRBS pattern, pull the TDSA and TDSB pins high (hardware mode) or set  
configuration bits TDSA and TDSB in the GCR register (CPU bus mode). As Table 6-G shows, the PRBS  
generator automatically generates 215 - 1 for DS3 and STS-1 modes and 223 - 1 for E3 mode.  
The PRBS detector, which is always enabled (Table 6-H), reports its status through the PRBS output pin (hardware  
and CPU bus modes) or through the PRBS and PBER status bits (CPU bus mode). When the PRBS detector is out  
of synchronization, the PRBS pin is forced high. When the detector syncs to an incoming PRBS pattern, the PRBS  
pin is driven low, then pulses high, synchronous with RCLK, for each bit error detected. See Figure 11-1 and Figure  
11-2 for details. In CPU bus mode, the PRBS status bit is set to one when the detector is out of synchronization  
and set to zero when the detector syncs to an incoming PRBS pattern. A change of state of the PRBS bit sets the  
PRBSL bit in the SRL register and can also cause an interrupt on the INT pin if the PRBSIE bit in the SRIE register  
is set to one. A pattern bit error set the PBERL bit in the SRL register and can also cause an interrupt if the  
PBERIE bit in the SRIE register is set to one.  
Figure 11-1. PRBS Output with Normal RCLK Operation  
RCINV = 0  
RCLK  
PRBS  
PRBS DETECTOR IS IN SYNC; THE  
PRBS PIN PULSES HIGH FOR EACH BIT  
ERROR DETECTED  
PRBS DETECTOR  
IS NOT IN SYNC  
Figure 11-2. PRBS Output with Inverted RCLK Operation  
RCINV = 1  
RCLK  
PRBS  
PRBS DETECTOR  
IS NOT IN SYNC  
PRBS DETECTOR IS IN SYNC; THE  
PRBS PIN PULSES HIGH FOR EACH BIT  
ERROR DETECTED  
11.2 Loopbacks  
Each LIU has three internal loopbacks. See Figure 4-1 and Figure 4-2. The LLB and RLB pins (hardware mode) or  
LLB and RLB control bits in the GCR register (CPU bus mode) enable these loopbacks. When LLB = RLB = 0,  
loopbacks are disabled. Setting RLB = 1 with LLB = 0 enables remote loopback, which loops recovered clock and  
data back through the LIU transmitter. During remote loopback, recovered clock and data are output on RCLK,  
RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored. Setting LLB = 1 with RLB = 0  
enables analog local loopback, which loops the outgoing transmit signal back to the receiver’s analog front end.  
Setting LLB = RLB = 1 enables digital local loopback, which loops digital transmit clock and data back to the  
receiver’s digital circuitry, including the LOS detector, the B3ZS/HDB3 decoder, and the PRBS detector. When  
either of the local loopbacks is enabled, the transmit signal is output normally on TXP/TXN, but the received signal  
on RXP/RXN is ignored.  
34 of 71  
 
 
DS3251/DS3252/DS3253/DS3254  
12. CLOCK ADAPTER  
The clock adapter block generates all required clock rates from a single input clock. If a transmission-quality clock  
of one line rate (DS3, E3 or STS-1) is present, the clock adapter can synthesize transmission-quality clocks at the  
other two line rates. Both input clocks and synthesized clocks are then available to be used as master clocks by the  
CDRs and jitter attenuators. In hardware mode the clock adapter is entirely controlled by the T3MCLK, E3MCLK  
and STMCLK pins. See the pins descriptions for those pins in Table 6-A.  
In CPU bus mode additional clock adapter control options are available in the CACR register. When control bit  
AMCEN is set to 1, the clock adapter block is configured for alternate master clock mode. In this mode, the clock  
adapter expects to receive a clock whose frequency is specified by the AMCSEL[1:0] control bits rather than a  
DS3, E3 or STS-1 clock. Valid input frequencies are 19.44 MHz, 38.88 MHz and 77.76 MHz. In alternate master  
clock mode the clock adapter can synthesize up to two clock rates (DS3, E3 or STS-1). To synthesize DS3 and E3  
clocks, the alternate master clock should be applied to the STMCLK pin. To synthesize DS3 and STS-1 clocks, the  
clock should be applied to the E3MCLK pin. To synthesize E3 and STS-1 clocks, the clock should be applied to the  
T3MCLK pin. The device can be powered up with an alternate clock applied to one of the MCLK pins, even though  
the power-on default values of AMCEN and AMCSEL[1:0] may not match the applied clock. Once these control bits  
are properly set after power-up, the clock adapter begins to synthesize the proper master clocks, and the device as  
a whole functions normally.  
CPU bus mode also provides the ability to output synthesized master clocks on the T3MCLK, E3MCLK and  
STMCLK pins for use by neighboring framers, mappers and other components. To output the synthesized DS3  
master clock on T3MCLK, set CACR:T3MOE=1. To output the synthesized E3 master clock on E3MCLK, set  
CACR:E3MOE=1. To output the synthesized STS-1 master clock on STMCLK, set CACR:STMOE=1.  
13. RESET LOGIC  
There are four sources for reset: an internal power-on reset (POR) circuit, the reset pin RST, the JTAG reset pin  
JTRST, and the RST bit in each LIU’s global configuration register (GCR). The chip is divided into three zones for  
reset: the digital logic, the analog circuits, and the JTAG logic. The digital logic includes the status and control  
registers, the B3ZS/HDB3 encoder and decoder, the PRBS generator and detector, and the LOS detect logic. The  
analog circuits include clock and data recovery, jitter attenuator, and transmit waveform generation. The JTAG  
logic consists of the common boundary scan controller and the boundary scan cells at each pin.  
The POR circuit resets the digital logic, analog circuits, and JTAG logic zones. The RST pin resets the digital logic  
and the analog circuits but not the JTAG logic. The JTRST pin resets only the JTAG logic. Each LIU’s RST register  
bit resets the digital logic for that LIU, including resetting the LIU’s registers to the default state (except for the RST  
bit itself).  
The POR signal and RST pin require an active master clock source for the LIU to properly reset.  
35 of 71  
DS3251/DS3252/DS3253/DS3254  
14. TRANSFORMERS  
Table 14-A. Transformer Characteristics  
PARAMETER  
VALUE  
Turns Ratio  
1:2ct ±2%  
0.250MHz to 500MHz  
(typ)  
Bandwidth 75Ω  
Primary Inductance  
Leakage Inductance  
19µH (min)  
0.150µH (max)  
Interwinding  
10pF (max)  
Capacitance  
Isolation Voltage  
1500VRMS (min)  
Table 14-B. Recommended Transformers  
NO. OF  
PIN-PACKAGE/  
SCHEMATIC  
6 SMT  
MANUFACTURER  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
TRANSFORMERS  
1
PE-65968  
PE-65969  
LS-1/C  
6 Thru-Hole  
LC-1/C  
Pulse Engineering  
1
8
1
1
32 SMT  
YB/1  
T3049  
6 SMT  
TG07-0206NS  
TD07-0206NE  
SMD/B  
Halo Electronics  
6 DIP  
DIP/B  
Note: Table subject to change. Industrial temperature range and multiport transformers are also available. Contact the manufacturers  
for details at www.pulseeng.com and www.haloelectronics.com.  
36 of 71  
DS3251/DS3252/DS3253/DS3254  
15. CPU INTERFACES  
When the HW pin is logic 0 the device is in CPU bus mode. The default CPU interface is 8-bit parallel.  
15.1 Parallel Interface  
When the device is in CPU bus mode, by default it presents a generic 8-bit parallel microprocessor interface. When  
the MOT pin is logic 1, the interface is Motorola-style with CS, R/W, and DS control lines. When MOT = 0, the  
interface is Intel-style with CS, RD, and WR control lines. In both styles, the interface supports both multiplexed and  
nonmultiplexed operation. For multiplexed operation, wire A[5:0] to D[5:0], wire D[7:0] to the CPU’s multiplexed  
address/data bus, and connect the ALE pin to the appropriate pin on the micro. For nonmultiplexed operation, wire  
ALE high and wire A[5:0] and D[7:0] to the appropriate pins on the micro. See Table 17-H, Figure 17-3 and Figure  
17-4 for parallel interface timing diagrams and parameters.  
15.2 SPI Interface  
When the MOT, RD, and WR pins are all low and the ALE pin is high, the device presents an SPI interface on the  
CS, SCLK, SDI, and SDO pins. SPI is a widely-used master/slave bus protocol that allows a master device and one  
or more slave devices to communicate over a serial bus. The DS325x is always a slave device. Masters are  
typically microprocessors, ASICs or FPGAs. Data transfers are always initiated by the master device, which also  
generates the SCLK signal. The DS325x receives serial data on the SDI pin and transmits serial data on the SDO  
pin. SDO is high-impedance except when the DS325x is transmitting data to the bus master.  
Clock Polarity and Phase. The CPOL pin defines the polarity of SCLK. When CPOL = 0, SCLK is normally low  
and pulses high during bus transactions. When CPOL = 1, SCLK is normally high and pulses low during bus  
transactions. the CPHA pin sets the phase (active edge) of SCLK. When CPHA = 0, data is latched in on SDI on  
the leading edge of the SCLK pulse and updated on SDO on the trailing edge. When CPHA = 1, data is latched in  
on SDI on the trailing edge of the SCLK pulse and updated on SDO on the following leading edge.  
See Figure 15-1.  
Bit Order. The control byte and all data bytes are transmitted MSB first on both SDI and SDO.  
Device Selection. Each SPI device has its own chip-select line. To select the DS325x, pull its CS pin low.  
Control Byte. After CS is pulled low, the bus master transmits the control byte during the first eight SCLK cycles.  
The control byte has the form R/W A5 A4 A3 A2 A1 A0 BURST, where A[5:0] is the register address, R/W is the  
data direction bit (1 = read, 0 = write), and BURST is the burst bit (1 = burst access, 0 = single-byte access). In the  
discussion that follows, a control byte with R/W = 1 is a read control byte, while a control byte with R/W = 0 is a  
write control byte.  
Single-Byte Writes. See Figure 15-2. After CS goes low, the bus master transmits a write control byte with  
BURST = 0 followed by the data byte to be written. The bus master then terminates the transaction by pulling CS  
high.  
Single-Byte Reads. See Figure 15-2. After CS goes low, the bus master transmits a read control byte with  
BURST = 0. The DS325x then responds with the requested data byte. The bus master then terminates the  
transaction by pulling CS high.  
Burst Writes. See Figure 15-2. After CS goes low, the bus master transmits a write control byte with BURST = 1  
followed by the first data byte to be written. The DS325x receives the first data byte on SDI, writes it to the  
specified register, increments its internal address register, and prepares to receive the next data byte. If the master  
continues to transmit, the DS325x continues to write the data received and increment its address counter. After the  
address counter reaches FFh it rolls over to address 00h and continues to increment.  
Burst Reads. See Figure 15-2. After CS goes low, the bus master transmits a read control byte with BURST = 1.  
The DS325x then responds with the requested data byte on SDO, increments its address counter, and pre-fetches  
the next data byte. If the bus master continues to demand data, the DS325x continues to provide the data on SDO,  
increment its address counter, and pre-fetch the following byte. After the address counter reaches FFh it rolls over  
to address 00h and continues to increment.  
37 of 71  
DS3251/DS3252/DS3253/DS3254  
Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by  
pulling CS high. In response to early terminations, the DS325x resets its SPI interface logic and waits for the start  
of the next transaction. If a write transaction is terminated prior to the SCLK edge that latches the LSB of a data  
byte, the current data byte is not written.  
Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the  
DS325x is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support  
this option, the bus master must not drive the SDI/SDO line when the DS325x is transmitting.  
AC Timing. See Table 17-I and Figure 17-5 for AC timing specifications for the SPI interface.  
Figure 15-1. SPI Clock Polarity and Phase Options  
CS  
SCK  
CPOL = 0, CPHA = 0  
SCK  
CPOL = 0, CPHA = 1  
SCK  
CPOL = 1, CPHA = 0  
SCK  
CPOL = 1, CPHA = 1  
SDI/SDO  
MSB  
6
5
4
3
2
1
LSB  
CLOCK EDGE USED FOR DATA CAPTURE (ALL MODES)  
38 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 15-2. SPI Bus Transactions  
Single-Byte Write  
CS  
R/W Register Address Burst Data Byte  
SDI  
0 (Write)  
0 (single-byte)  
SDO  
Single-Byte Read  
CS  
R/W Register Address Burst  
SDI  
1 (Read)  
0 (single-byte)  
SDO  
Data Byte  
Burst Write  
CS  
R/W Register Address Burst Data Byte 1  
Data Byte N  
SDI  
0 (Write)  
1 (burst)  
SDO  
Burst Read  
CS  
R/W Register Address Burst  
SDI  
1 (Read)  
1 (burst)  
Data Byte 1  
Data Byte N  
SDO  
39 of 71  
DS3251/DS3252/DS3253/DS3254  
16. JTAG TEST ACCESS PORT AND BOUNDARY SCAN  
16.1 JTAG Description  
The DS325x LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional  
public instructions included are HIGHZ, CLAMP, and IDCODE. Figure 16-1 features a block diagram. The LIUs  
contain the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port and  
Boundary Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
Instruction Register  
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins  
can be found in Table 6-A. Details about the boundary scan architecture and the TAP can be found in IEEE  
1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
16.2 JTAG TAP Controller State Machine Description  
This section discusses the operation of the TAP controller state machine. The TAP controller is a finite state  
machine that responds to the logic level at JTMS on the rising edge of JTCLK. Each of the states denoted in Figure  
16-2 are described in the following pages.  
Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The instruction  
register contains the IDCODE instruction. All system logic on the device operates normally.  
Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The instruction and test  
registers remain idle.  
Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the  
controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the Select-  
IR-SCAN state.  
Capture-DR. Data can be parallel loaded into the test data registers selected by the current instruction. If the  
instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register  
remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or  
to the Exit1-DR state if JTMS is high.  
Shift-DR. The test data register selected by the current instruction is connected between JTDI and JTDO and shifts  
data one stage toward its serial output on each rising edge of JTCLK. If a test register selected by the current  
instruction is not placed in the serial path, it maintains its previous state.  
Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state,  
which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR  
state.  
Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current  
instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on  
JTCLK with JTMS high puts the controller in the Exit2-DR state.  
Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state  
and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR  
state.  
Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of  
the test registers into the data output latches. This prevents changes at the parallel output because of changes in  
the shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS  
high, the controller enters the Select-DR-Scan state.  
Select-IR-Scan. All test registers retain their previous state. The instruction register remains unchanged during this  
state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan  
40 of 71  
DS3251/DS3252/DS3253/DS3254  
sequence for the instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the  
Test-Logic-Reset state.  
Capture-IR. The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This  
value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the  
Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state.  
Shift-IR. In this state, the instruction register’s shift register is connected between JTDI and JTDO and shifts data  
one stage for every rising edge of JTCLK toward the serial output. The parallel register and the test registers  
remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1-IR state.  
A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state, while moving data one stage  
through the instruction shift register.  
Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the  
rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.  
Pause-IR. Shifting of the instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts  
the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge  
on JTCLK.  
Exit2-IR. A rising edge on JTCLK with JTMS high puts the controller in the Update-IR state. The controller loops  
back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state.  
Update-IR. The instruction shifted into the instruction shift register is latched into the parallel output on the falling  
edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A  
rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller  
enters the Select-DR-Scan state.  
Figure 16-1. JTAG Block Diagram  
BOUNDARY  
SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
SELECT  
TEST ACCESS PORT  
TRI-STATE  
CONTROLLER  
10k  
10k  
10k  
JTDI  
JTMS  
JTCLK  
JTDO  
JTRST  
41 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 16-2. JTAG TAP Controller State Machine  
Test-Logic-Reset  
1
0
1
1
Select  
Select  
1
Run-Test/Idle  
DR-Scan  
IR-Scan  
0
0
0
1
1
Capture-DR  
0
Capture-IR  
0
Shift-DR  
1
Shift-IR  
1
0
1
0
1
Exit1- DR  
0
Exit1-IR  
0
Pause-DR  
1
Pause-IR  
1
0
0
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
16.3 JTAG Instruction Register and Instructions  
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the  
TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in  
the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage toward the serial output at JTDO. A  
rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to the Update-  
IR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the instruction  
parallel output. Table 16-A shows the instructions supported by the DS325x and their respective operational binary  
codes.  
Table 16-A. JTAG Instruction Codes  
INSTRUCTIONS  
SELECTED REGISTER INSTRUCTION CODES  
SAMPLE/PRELOAD  
Boundary Scan  
010  
111  
000  
011  
100  
001  
BYPASS  
Bypass  
EXTEST  
Boundary Scan  
Bypass  
CLAMP  
HIGHZ  
Bypass  
IDCODE  
Device Identification  
42 of 71  
 
DS3251/DS3252/DS3253/DS3254  
SAMPLE/PRELOAD. SAMPLE/RELOAD is a mandatory instruction for the IEEE 1149.1 specification. This  
instruction supports two functions. The digital I/Os of the device can be sampled at the boundary scan register  
without interfering with the device’s normal operation by using the Capture-DR state. SAMPLE/PRELOAD also  
allows the DS325x to shift data into the boundary scan register through JTDI using the Shift-DR state.  
EXTEST. EXTEST allows testing of the interconnections to the device. When the EXTEST instruction is latched in  
the instruction register, the following actions occur. Once enabled through the Update-IR state, the parallel outputs  
of the digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The  
Capture-DR samples all digital inputs into the boundary scan register.  
BYPASS. When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO  
through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device’s  
normal operation.  
IDCODE. When the IDCODE instruction is latched into the parallel instruction register, the identification test  
register is selected. The device identification code is loaded into the identification register on the rising edge of  
JTCLK, following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially  
through JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel  
output.  
HIGHZ. All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI  
and JTDO.  
CLAMP. All digital output pins output data from the boundary scan parallel output while connecting the bypass  
register between JTDI and JTDO. The outputs do not change during the CLAMP instruction.  
Table 16-B. JTAG ID Code  
MANUFACTURER  
PART  
REVISION  
DEVICE CODE  
REQUIRED  
CODE  
DS3251  
DS3252  
DS3253  
DS3254  
Consult factory  
Consult factory  
Consult factory  
Consult factory  
0000000000101100  
0000000000101101  
0000000000101110  
0000000000101111  
00010100001  
00010100001  
00010100001  
00010100001  
1
1
1
1
16.4 JTAG Test Registers  
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. An  
optional test register, the identification register, has been included in the device design. It is used with the IDCODE  
instruction and the Test-Logic-Reset state of the TAP controller.  
Bypass Register. This is a single 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions,  
which provide a short path between JTDI and JTDO.  
Boundary Scan Register. This register contains a shift register path and a latched parallel output for control cells  
and digital I/O cells. DS325x BSDL files are available at www.maxim-ic.com/TechSupport/telecom/bsdl.htm.  
Identification Register. This register contains a 32-bit shift register and a 32-bit latched parallel output. It is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.  
43 of 71  
DS3251/DS3252/DS3253/DS3254  
17. ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Lead with Respect to VSS (except VDD)…………………………………………….-0.3V to +5.5V  
Supply Voltage Range (VDD) with Respect to VSS…………………………………………………………..-0.3V to +3.63V  
Ambient Operating Temperature Range……………………………………………………………………..-40°C to +85°C  
Junction Operating Temperature Range……………………………………………………………………-40°C to +125°C  
Storage Temperature Range………………………………………………………………………………...-55°C to +125°C  
Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 Specification  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device. Ambient operating temperature range  
when device is mounted on a four-layer JEDEC test board with no airflow.  
Note: The typical values listed in Tables 17-A through 17-J are not production tested.  
Table 17-A. Recommended DC Operating Conditions  
(TA = -40°C to +85°C)  
PARAMETER  
Supply Voltage  
Logic 1, All Other Input Pins  
Logic 0, All Other Input Pins  
SYMBOL  
CONDITIONS  
MIN  
3.135  
2.0  
TYP  
3.3  
MAX  
3.465  
5.5  
UNITS  
VDD  
VIH  
VIL  
V
V
V
-0.3  
+0.8  
Table 17-B. DC Characteristics  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DS3251  
DS3252  
DS3253  
DS3254  
DS3251  
DS3252  
DS3253  
DS3254  
DS325x  
(Note 2)  
80  
120  
200  
280  
360  
100  
160  
150  
220  
290  
60  
Supply Current (Note 1)  
IDD  
mA  
110  
160  
210  
Supply Current, Transmitters Tri-Stated  
IDDTTS  
mA  
mA  
(All TTSn Low) (Note 2)  
220  
280  
Power-Down Current (All TPD, RPD  
Control Bits High)  
IDDPD  
35  
7
50  
Lead Capacitance  
CIO  
IIL  
10  
pF  
µA  
µA  
V
Input Leakage, All Other Input Pins  
Output Leakage (when High-Z)  
Output Voltage (IO = -4.0mA)  
Output Voltage (IO = +4.0mA)  
(Note 3)  
(Note 3)  
-50  
-10  
2.4  
0
+10  
+10  
VDD  
0.4  
ILO  
VOH  
VOL  
V
Note 1:  
TCLKn = STMCLK = 51.84MHz; TXPn/TXNn driving all ones into 75resistive loads; analog loopback enabled; all other inputs  
at VDD or grounded; all other outputs open.  
Note 2:  
Note 3:  
TCLKn = STMCLK = 51.84MHz; other inputs at VDD or grounded; digital outputs left open circuited.  
0V < VIN < VDD for all other digital inputs.  
44 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 17-C. Framer Interface Timing  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 17-1 and Figure 17-2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
(Note 1)  
(Note 2)  
(Note 3)  
22.4  
29.1  
19.3  
RCLK/TCLK Clock Period  
t1  
ns  
RCLK Duty Cycle  
TCLK Duty Cycle  
MCLK Duty Cycle  
t2/t1, t3/t1  
t2/t1, t3/t1  
t2/t1, t3/t1  
(Notes 4, 5)  
45  
30  
30  
50  
55  
70  
70  
%
%
%
(Note 5)  
(Note 5)  
TPOS/TDAT, TNEG to TCLK Setup  
Time  
t4  
t5  
t6  
(Notes 5, 6)  
(Notes 5, 6)  
(Notes 4, 5, 7)  
2
2
2
ns  
ns  
ns  
TPOS/TDAT, TNEG Hold Time  
RCLK to RPOS/RDAT, RNEG/RLCV,  
and PRBS Value Change  
6
RCLK Rise and Fall Time  
TCLK Rise and Fall Time  
t7  
t8  
(Notes 5, 8)  
(Notes 5, 9)  
3
5
5
ns  
ns  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
DS3 mode.  
E3 mode.  
STS-1 mode.  
Outputs loaded with 25pF, measured at 50% threshold.  
Not tested during production test.  
When TCINV = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCINV = 1, TPOS/TDAT and TNEG  
are sampled on the falling edge of TCLK.  
Note 7:  
When RCINV = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCINV = 1, RPOS/RDAT and  
RNEG/RLCV are updated on the rising edge of RCLK.  
Note 8:  
Note 9:  
Outputs loaded with 25pF, measured between VOL (max) and VOH (min).  
Measured between VIL (max) and VIH (min).  
45 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 17-1. Transmitter Framer Interface Timing Diagram  
t1  
t2  
t3  
TCLK (NORMAL)  
TCLK (INVERTED)  
t8  
t4  
t5  
TPOS/TDAT,  
TNEG  
Figure 17-2. Receiver Framer Interface Timing Diagram  
t1  
t2  
t3  
RCLK (NORMAL)  
RCLK (INVERTED)  
t6  
t7  
RPOS/RDAT,  
RNEG/RLCV  
46 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 17-D. Receiver Input Characteristics—DS3 and STS-1 Modes  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
Receive Sensitivity (Length of Cable)  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)  
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)  
Input Pulse Amplitude, RMON = 1 (Note 2, 3)  
Analog LOS Declare, RMON = 0 (Note 4)  
Analog LOS Clear, RMON = 0 (Note 4)  
MIN  
900  
TYP  
1200  
10  
MAX  
UNITS  
ft  
1000  
200  
mVpk  
mVpk  
dB  
-24  
-21  
dB  
Analog LOS Declare, RMON = 1 (Note 4)  
Analog LOS Clear, RMON = 1 (Note 4)  
Intrinsic Jitter Generation (Note 2)  
-38  
-35  
0.03  
dB  
dB  
UIP-P  
Note 1:  
An interfering signal (215 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The  
combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325x receiver. This spec indicates the  
lowest signal-to-noise ratio that results in a bit error ratio 10-9.  
Note 2:  
Note 3:  
Not tested during production test.  
Measured on the line side (i.e., the BNC connector side) of the 1:2 receive transformer (Figure 2-1). During measurement,  
incoming data traffic is unframed 215 - 1 PRBS.  
Note 4:  
With respect to nominal 800mVpk signal.  
Table 17-E. Receiver Input Characteristics—E3 Mode  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
Receive Sensitivity (Length of Cable)  
MIN  
900  
TYP  
1200  
12  
MAX  
UNITS  
ft  
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)  
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)  
Input Pulse Amplitude, RMON = 1 (Notes 2, 3)  
Analog LOS Declare, RMON = 0 (Note 4)  
Analog LOS Clear, RMON = 0 (Note 4)  
Analog LOS Declare, RMON = 1 (Note 4)  
Analog LOS Clear, RMON = 1 (Note 4)  
Intrinsic Jitter Generation (Note 2)  
1300  
260  
mVpk  
mVpk  
dB  
dB  
dB  
dB  
UIP-P  
-24  
-21  
-38  
-35  
0.03  
Note 1:  
An interfering signal (223 - 1 PRBS, HDB3 encoded, compliant waveshape, nominal bit rate) is added to the input signal. The  
combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325x receiver. This spec indicates the  
lowest signal-to-noise ratio that results in a bit error ratio 10-9.  
Note 2:  
Note 3:  
Not tested during production test.  
Measured on the line side (i.e., the BNC connector side) of the 1:2 receive transformer (Figure 2-1). During measurement,  
incoming data traffic is unframed 223 - 1 PRBS.  
Note 4:  
With respect to nominal 1000mVpk signal.  
47 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 17-F. Transmitter Output Characteristics—DS3 and STS-1 Modes  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
DS3 Output Pulse Amplitude, TLBO = 0 (Note 1)  
DS3 Output Pulse Amplitude, TLBO = 1 (Note 1)  
700  
520  
700  
520  
0.9  
800  
700  
800  
700  
900  
800  
1100  
850  
1.1  
+5.7  
-20  
mVpk  
mVpk  
mVpk  
mVpk  
STS-1 Output Pulse Amplitude, TLBO = 0 (Note 1)  
STS-1 Output Pulse Amplitude, TLBO = 1 (Note 1)  
Ratio of Positive and Negative Pulse-Peak Amplitudes  
DS3 Power Level at 22.368MHz (Note 2)  
DS3 Power Level at 44.736MHz vs. Power Level at 22.368MHz (Note 2)  
Intrinsic Jitter Generation (Note 3)  
Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 0  
Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 1  
Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 0  
Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 1  
-1.8  
dBm  
dB  
UIP-P  
mVpk  
mVpk  
mVpk  
mVpk  
0.02  
550  
500  
1050  
800  
0.05  
Note 1:  
Note 2:  
Note 3:  
Measured on the line side (i.e., the BNC connector side) of the 2:1 transmit transformer (Figure 2-1).  
Unframed all ones output signal, 3 kHz bandwidth, cable length 225 feet to 450 feet.  
Measured with jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies. Not tested  
during production test.  
Table 17-G. Transmitter Output Characteristics—E3 Mode  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
Output Pulse Amplitude (Note 1)  
Pulse Width  
MIN  
900  
TYP  
1000 1100  
14.55  
MAX  
UNITS  
mVpk  
ns  
Ratio of Positive and Negative Pulse Amplitudes (at Centers of Pulses)  
Ratio of Positive and Negative Pulse Widths (at Nominal Half Amplitude)  
Intrinsic Jitter Generation (Note 2)  
0.95  
0.95  
1.05  
1.05  
0.05  
0.02  
750  
1250  
UIP-P  
mVpk  
mVpk  
Transmit Driver Monitor Minimum Threshold (VTXMIN  
)
Transmit Driver Monitor Maximum Threshold (VTXMAX  
)
Note 1:  
Note 2:  
Measured on the line side (i.e., the BNC connector side) of the 2:1 transmit transformer (Figure 2-1).  
Measured with jitter-free clock applied to TCLK and a bandpass jitter filter with 10Hz and 800kHz cutoff frequencies. Not tested  
during production test.  
48 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 17-H. Parallel CPU Interface Timing  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 17-3 and Figure 17-4)  
PARAMETER  
SYMBOL  
MIN  
0
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
Setup Time for A[5:0] Valid to CS Active (Notes 1, 2)  
Setup Time for CS Active to RD, WR, or DS Active  
Delay Time from RD or DS Active to D[7:0] Valid  
Hold Time from RD or WR or DS Inactive to CS Inactive  
65  
20  
0
2
Delay from CS or RD or DS Inactive to D[7:0] Invalid or Tri-  
t5  
ns  
State (Note 3)  
t6  
t7  
t8  
65  
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wait Time from WR or DS Active to Latch D[7:0]  
D[7:0] Setup Time to WR or DS Inactive  
D[7:0] Hold Time from WR or DS Inactive  
A[5:0] Hold Time from WR or RD or DS Inactive  
RD, WR, or DS Inactive Time  
Muxed Address Valid to ALE Falling (Note 4)  
Muxed Address Hold Time (Note 4)  
ALE Pulse Width (Note 4)  
t9  
5
t10  
t11  
t12  
t13  
75  
10  
10  
30  
Setup Time for ALE High or Muxed Address Valid to CS  
t14  
0
ns  
Active (Note 4)  
Note 1:  
Note 2:  
D[7:0] loaded with 50pF when tested as outputs.  
If a gapped clock is applied on TCLK and local loopback is enabled, read cycle time must be extended by the length of the largest  
TCLK gap.  
Note 3:  
Note 4:  
Not tested during production test.  
In nonmultiplexed bus applications (Figure 17-3), ALE should be wired high. In multiplexed bus applications (Figure 17-4), A[5:0]  
should be wired to D[5:0] and the falling edge of ALE latches the address.  
49 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 17-3. Parallel CPU Interface Timing Diagram (Nonmultiplexed)  
INTEL READ CYCLE  
t9  
ADDRESS VALID  
A[5:0]  
D[7:0]  
WR  
DATA VALID  
t5  
t1  
CS  
RD  
t2  
t3  
t4  
t10  
INTEL WRITE CYCLE  
t9  
ADDRESS VALID  
A[5:0]  
D[7:0]  
t7  
t8  
RD  
t1  
CS  
t2  
t6  
t4  
t10  
WR  
50 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Figure 17-3. Parallel CPU Interface Timing Diagram (Nonmultiplexed)(continued)  
MOTOROLA READ CYCLE  
t9  
A[5:0]  
D[7:0]  
ADDRESS VALID  
DATA VALID  
t5  
R/W  
t1  
CS  
DS  
t2  
t3  
t4  
t10  
MOTOROLA WRITE CYCLE  
t9  
ADDRESS VALID  
A[5:0]  
D[7:0]  
t7  
t8  
R/W  
t1  
CS  
DS  
t2  
t6  
t4  
t10  
51 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 17-4. Parallel CPU Interface Timing Diagram (Multiplexed)  
INTEL READ CYCLE  
t13  
t12  
ALE  
t11  
ADDRESS  
VALID  
A[5:0]  
D[7:0]  
t14  
t14  
DATA VALID  
t5  
WR  
CS  
RD  
t2  
t3  
t4  
t10  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
NOTE: TO AVOID BUS CONTENTION, STOP DRIVING A[5:0] BEFORE RD GOES LOW.  
INTEL WRITE CYCLE  
t13  
t12  
ALE  
A[5:0]  
D[7:0]  
t11  
ADDRESS  
VALID  
t14  
t14  
t7  
t8  
RD  
CS  
t6  
t4  
t2  
t10  
WR  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
52 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Figure 17-4. Parallel CPU Interface Timing Diagram (Multiplexed) (continued)  
MOTOROLA READ CYCLE  
t13  
t12  
ALE  
t11  
ADDRESS  
A[5:0]  
VALID  
t14  
D[7:0]  
DATA VALID  
t14  
t5  
R/W  
CS  
DS  
t4  
t2  
t3  
t10  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
NOTE: TO AVOID BUS CONTENTION, STOP DRIVING A[5:0] BEFORE RD GOES LOW.  
MOTOROLA WRITE CYCLE  
t13  
ALE  
t12  
t11  
ADDRESS  
VALID  
A[5:0]  
t14  
t14  
D[7:0]  
t7  
t8  
R/W  
CS  
DS  
t6  
t2  
t4  
t10  
NOTE: t14 STARTS ON THE OCCURRENCE OF EITHER THE RISING EDGE OF ALE OR A VALID ADDRESS, WHICHEVER OCCURS LAST.  
53 of 71  
DS3251/DS3252/DS3253/DS3254  
Table 17-I. SPI Interface Timing  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 17-5)  
PARAMETER (Note 1)  
SCLK Frequency  
SCLK Cycle Time  
CS Setup to First SCLK Edge  
CS Hold time After Last SCLK Edge  
SCLK High Time  
SYMBOL  
fBUS  
tCYC  
tSUC  
tHDC  
tCLKH  
tCLKL  
tSUI  
MIN  
TYP  
MAX  
10  
UNITS  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
100  
15  
15  
50  
50  
5
SCLK Low Time  
SDI Data Setup Time  
SDI Data Hold Time  
tHDI  
tEN  
tDIS  
tDV  
15  
0
ns  
ns  
ns  
ns  
SDO Enable Time (High-Impedance to Output Active)  
SDO Disable Time (Output Active to High-Impedance)  
SDO Data Valid Time  
25  
40  
SDO Data Hold Time After Update SCLK Edge  
tHDO  
5
ns  
Note 1:  
All timing is specified with 100pF load on all SPI pins.  
Figure 17-5. SPI Interface Timing Diagram  
CPHA = 0  
CS  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK,  
CPOL=0  
tCLKH  
tCLKL  
SCLK,  
CPOL=1  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
CPHA = 1  
CS  
tHDC  
tSUC  
tCYC  
tCLKL  
SCLK,  
CPOL=0  
tCLKH  
tCLKL  
SCLK,  
CPOL=1  
tCLKH  
tSUI tHDI  
SDI  
tDV  
tDIS  
SDO  
tEN  
tHDO  
54 of 71  
 
DS3251/DS3252/DS3253/DS3254  
Table 17-J. JTAG Interface Timing  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 17-6)  
PARAMETER  
JTCLK Clock Period  
JTCLK Clock High/Low Time (Note 1)  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
SYMBOL  
MIN  
TYP  
1000  
500  
MAX  
UNITS  
t1  
t2/t3  
t4  
t5  
t6  
t7  
t8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
50  
2
2
100  
50  
50  
JTCLK to JTDO High-Z Delay (Note 2)  
JTRST Width Low Time  
Note 1:  
Note 2:  
Clock can be stopped high or low.  
Not tested during production test.  
Figure 17-6. JTAG Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI, JTMS, JTRST  
t6  
t7  
JTDO  
t8  
JTRST  
55 of 71  
 
DS3251/DS3252/DS3253/DS3254  
18. PIN ASSIGNMENTS  
Table 18-A lists pin assignments sorted by signal name. DS3254 has all four LIUs. DS3253 has only LIUs 1, 2, and  
3. DS3252 has only LIUs 1 and 2. DS3251 has only LIU 1. Figure 18-1 through Figure 18-11 show pinouts for the  
four devices in both hardware and CPU bus modes.  
Table 18-A. Pin Assignments Sorted by Signal Name  
PIN  
HARDWARE  
MODE  
PARALLEL  
BUS MODE  
SPI BUS  
MODE  
NAME  
LIU 1  
LIU 2  
LIU 3  
LIU 4  
A0  
A1  
A2  
A3  
A4  
A5  
ALE  
CPHA  
CPOL  
CS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
N
N
Y
Y
N
N
Y
N
N
N
N
N
N
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
N
N
Y
Y
N
N
Y
K6  
L6  
K7  
L7  
K8  
L8  
C7  
H3  
J3  
B7  
E3  
F2  
F3  
G2  
G3  
H2  
H3  
J3  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
E3MCLK  
E3Mn  
HIZ  
E12  
F3  
G10  
C7  
K6  
J8  
E9  
C5  
E4  
H4  
J4  
HW  
INT  
JTCLK  
JTDI  
JTDO  
JTMS  
JTRST  
LLBn  
MOT  
PRBSn  
RBIN  
RCINV  
RCLKn  
RD / DS  
RJAn  
RLBn  
RLOSn  
D5  
D4  
B5  
B1  
L8  
E11  
A11  
H2  
M2  
C6  
L12  
D9  
J9  
C1  
K12  
A10  
M3  
B6  
B4  
C5  
A1  
L9  
K8  
M12  
D11  
E10  
A12  
J2  
H3  
M1  
56 of 71  
 
DS3251/DS3252/DS3253/DS3254  
PIN  
HARDWARE  
MODE  
PARALLEL  
BUS MODE  
SPI BUS  
MODE  
NAME  
LIU 1  
C3  
LIU 2  
K10  
LIU 3  
C10  
LIU 4  
K3  
RNEGn / RLCVn  
RPOSn / RDATn  
RST  
Y
Y
Y
Y
Y
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
Y
N
N
Y
Y
N
N
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
N
N
Y
Y
N
N
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
C2  
K11  
B10  
L3  
H1  
B2  
A2  
A3  
L11  
M11  
M10  
B11  
B12  
C12  
L2  
L1  
K1  
RTSn  
RXNn  
RXPn  
SCLK  
F3  
F2  
E3  
M8  
SDI  
SDO  
STMCLK  
STSn  
F2  
G11  
B7  
L6  
T3MCLK  
TBIN  
A5  
D8  
H9  
TCINV  
TCLKn  
TDMn  
E1  
D3  
G2  
G3  
H12  
J10  
F11  
F10  
A8  
C9  
B6  
C6  
M5  
K4  
L7  
TDSAn  
TDSBn  
TEST  
K7  
J5  
TJAn  
C4  
E3  
D2  
D1  
E2  
G1  
F1  
K9  
D10  
C8  
B9  
A9  
B8  
A6  
A7  
J3  
K5  
L4  
TLBOn  
TNEGn  
TPOSn / TDATn  
TTSn  
H10  
J11  
J12  
H11  
F12  
G12  
M4  
L5  
TXNn  
M7  
M6  
TXPn  
VDD  
D6, E5, E6, F4, F5, F6, G7, G8, G9, H7, H8, J7  
D7, E7, E8, F7, F8, F9, G4, G5, G6, H5, H6, J6  
B5  
VSS  
WR / R/W  
57 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-1. DS3251 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
N.C.  
C6  
N.C.  
C7  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
N.C.  
D6  
N.C.  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
N.C.  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
N.C.  
H12  
N.C.  
J2  
N.C.  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
N.C.  
J10  
N.C.  
J11  
N.C.  
J12  
RST  
J1  
N.C.  
K1  
N.C.  
K2  
N.C.  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
N.C.  
K10  
N.C.  
K11  
N.C.  
K12  
TEST  
K5  
HIZ  
K8  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
N.C.  
L8  
N.C.  
L9  
N.C.  
L10  
N.C.  
L11  
N.C.  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
N.C.  
M11  
N.C.  
M12  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
58 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-2. DS3251 Parallel Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
INT  
D5  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
D0  
F3  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
N.C.  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
N.C.  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
N.C.  
J11  
N.C.  
J12  
RST  
J1  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
N.C.  
K10  
N.C.  
K11  
N.C.  
K12  
TEST  
K5  
HIZ  
K8  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
A0  
L6  
A2  
L7  
N.C.  
L8  
N.C.  
L9  
N.C.  
L10  
N.C.  
L11  
N.C.  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
A1  
M6  
A3  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
N.C.  
M11  
N.C.  
M12  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
59 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-3. DS3251 SPI Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
INT  
D5  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
SDO  
F3  
TXP1  
G1  
SDI  
G2  
SCLK  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
N.C.  
G12  
TXN1  
H1  
N.C.  
H2  
N.C.  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
N.C.  
H12  
N.C.  
J2  
CPHA  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
N.C.  
J11  
N.C.  
J12  
RST  
J1  
N.C.  
K1  
N.C.  
K2  
CPOL  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
N.C.  
K10  
N.C.  
K11  
N.C.  
K12  
TEST  
K5  
HIZ  
K8  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
N.C.  
L8  
N.C.  
L9  
N.C.  
L10  
N.C.  
L11  
N.C.  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
N.C.  
M11  
N.C.  
M12  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
N.C.  
N.C.  
N.C.  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
60 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-4. DS3252 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
N.C.  
C6  
N.C.  
C7  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
N.C.  
D6  
N.C.  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
TDSB2  
G10  
TDSA2  
G11  
TXN2  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
E3M2  
H10  
STS2  
H11  
TXP2  
H12  
N.C.  
J2  
N.C.  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
TLBO2  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
N.C.  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
RLB2  
L8  
TJA2  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
LLB2  
M8  
RJA2  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK RMON2  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
61 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-5. DS3252 Parallel Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
RCLK1  
D1  
RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
INT  
D5  
D2  
D3  
TPOS1  
E1  
TNEG1  
E2  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
D0  
F3  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2  
K11  
TPOS2  
K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
A0  
L6  
A2  
L7  
A4  
L8  
N.C.  
L9  
RNEG2 RPOS2  
RCLK2  
L12  
L10  
L11  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
A1  
M6  
A3  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
62 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-6. DS3252 SPI Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
N.C.  
B6  
N.C.  
B7  
N.C.  
B8  
N.C.  
B9  
N.C.  
B10  
N.C.  
B11  
N.C.  
B12  
RLOS1  
B1  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
N.C.  
C8  
N.C.  
C9  
N.C.  
C10  
N.C.  
C11  
N.C.  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
RCLK1  
D1  
RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
N.C.  
D9  
N.C.  
D10  
N.C.  
D11  
N.C.  
D12  
INT  
D5  
D2  
D3  
TPOS1  
E1  
TNEG1  
E2  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
SDO  
F3  
TXP1  
G1  
SDI  
G2  
SCLK  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
N.C.  
H2  
N.C.  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
N.C.  
J2  
CPHA  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
CPOL  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2  
K11  
TPOS2  
K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
N.C.  
L8  
N.C.  
L9  
RNEG2 RPOS2  
RCLK2  
L12  
L10  
L11  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
63 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-7. DS3253 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
TDSA3  
C6  
STS3  
C7  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
TDSB3  
D6  
E3M3  
D7  
TLBO3  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
TJA3  
E10  
RJA3  
E11  
RMON3  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
RLB3  
F10  
LLB3  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
TDSB2  
G10  
TDSA2  
G11  
TXN2  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
E3M2  
H10  
STS2  
H11  
TXP2  
H12  
N.C.  
J2  
N.C.  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
TLBO2  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
N.C.  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
RLB2  
L8  
TJA2  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
LLB2  
M8  
RJA2  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK RMON2  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
64 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-8. DS3253 Parallel Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
INT  
D5  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
D0  
F3  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
A0  
L6  
A2  
L7  
A4  
L8  
N.C.  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
A1  
M6  
A3  
M7  
A5  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
65 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-9. DS3253 SPI Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
INT  
D5  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
SDO  
F3  
TXP1  
G1  
SDI  
G2  
SCLK  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
N.C.  
H2  
N.C.  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
N.C.  
J2  
CPHA  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
CPOL  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
N.C.  
L1  
N.C.  
L2  
N.C.  
L3  
N.C.  
L4  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
N.C.  
L8  
N.C.  
L9  
RNEG2 RPOS2 RCLK2  
L10  
L11  
L12  
N.C.  
M1  
N.C.  
M2  
N.C.  
M3  
N.C.  
M4  
N.C.  
M5  
N.C.  
M6  
N.C.  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS2  
M11  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
STMCLK  
N.C.  
RXP2  
RXN2  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
66 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-10. DS3254 Hardware Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
RMON1 T3MCLK  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
B4  
B5  
PRBS1  
C1  
N.C.  
C3  
RJA1  
C4  
LLB1  
C5  
TDSA3  
C6  
STS3  
C7  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
TJA1  
D4  
RLB1  
D5  
TDSB3  
D6  
E3M3  
D7  
TLBO3  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
TBIN  
E8  
RBIN  
E9  
TJA3  
E10  
RJA3  
E11  
RMON3  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
TLBO1  
F3  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
RLB3  
F10  
LLB3  
F11  
E3MCLK  
F12  
TTS1  
F2  
TXP1  
G1  
STS1  
G2  
E3M1  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
TDSB2  
G10  
TDSA2  
G11  
TXN2  
G12  
TXN1  
H1  
TDSA1  
H2  
TDSB1  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
E3M2  
H10  
STS2  
H11  
TXP2  
H12  
LLB4  
J2  
RLB4  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
TCINV  
J9  
TLBO2  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
RMON4  
K1  
RJA4  
K2  
TJA4  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
RCINV  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
RXP4  
L1  
N.C.  
L2  
RNEG4  
L3  
TLBO4  
L5  
E3M4  
L6  
TDSB4  
L7  
RLB2  
L8  
TJA2  
L9  
RNEG2 RPOS2 RCLK2  
TDM4  
L4  
L10  
L11  
L12  
RXN4  
M1  
RPOS4 TNEG4  
STS4  
M6  
TDSA4  
M7  
LLB2  
M8  
RJA2  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS4  
M2  
TTS4  
M5  
RTS2  
M11  
M3  
M4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
TXN4 STMCLK RMON2  
RXP2  
RXN2  
RLOS4  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
67 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-11. DS3254 Parallel Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
INT  
D5  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
D0  
F3  
TXP1  
G1  
D1  
G2  
D2  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
D3  
H2  
D4  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
D5  
J2  
D6  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
D7  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
RXP4  
L1  
N.C.  
L2  
RNEG4  
L3  
N.C.  
L5  
A0  
L6  
A2  
L7  
A4  
L8  
N.C.  
L9  
RNEG2 RPOS2 RCLK2  
TDM4  
L4  
L10  
L11  
L12  
RXN4  
M1  
RPOS4 TNEG4  
A1  
M6  
A3  
M7  
A5  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS4  
M2  
TTS4  
M5  
RTS2  
M11  
M3  
M4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
TXN4 STMCLK  
N.C.  
RXP2  
RXN2  
RLOS4  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
68 of 71  
DS3251/DS3252/DS3253/DS3254  
Figure 18-12. DS3254 SPI Bus Mode Pin Assignment  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
RXN1  
B2  
RXP1  
B3  
N.C.  
B4  
T3MCLK  
B5  
TXN3  
B6  
TXP3  
B7  
TCLK3  
B8  
TPOS3  
B9  
RCLK3  
B10  
PRBS3  
B11  
RLOS1  
B1  
RLOS3  
B12  
PRBS1  
C1  
N.C.  
C3  
N.C.  
C4  
TNEG3 RPOS3  
RXN3  
C12  
RTS1  
C2  
WR  
C5  
RD  
C6  
CS  
C7  
TTS3  
C8  
RTS3  
C11  
C9  
C10  
RCLK1 RPOS1 RNEG1  
N.C.  
D4  
MOT  
D6  
ALE  
D7  
N.C.  
D8  
RNEG3  
D10  
N.C.  
D11  
RXP3  
D12  
INT  
D5  
TDM3  
D9  
D1  
D2  
D3  
TPOS1 TNEG1  
JTMS  
E5  
VDD  
E6  
VSS  
E7  
N.C.  
E8  
N.C.  
E9  
N.C.  
E10  
N.C.  
E11  
N.C.  
E12  
TDM1  
E3  
JTRST  
E4  
E1  
E2  
TCLK1  
F1  
JTCLK  
F4  
VDD  
F5  
VDD  
F6  
VSS  
F7  
VSS  
F8  
HW  
F9  
N.C.  
F10  
N.C.  
F11  
E3MCLK  
F12  
TTS1  
F2  
SDO  
F3  
TXP1  
G1  
SDI  
G2  
SCLK  
G3  
VDD  
G4  
VDD  
G5  
VDD  
G6  
VSS  
G7  
VSS  
G8  
VSS  
G9  
N.C.  
G10  
N.C.  
G11  
TXN2  
G12  
TXN1  
H1  
N.C.  
H2  
N.C.  
H3  
VSS  
H4  
VSS  
H5  
VSS  
H6  
VDD  
H7  
VDD  
H8  
VDD  
H9  
N.C.  
H10  
N.C.  
H11  
TXP2  
H12  
N.C.  
J2  
CPHA  
J3  
JTDI  
J4  
VSS  
J5  
VSS  
J6  
VDD  
J7  
VDD  
J8  
N.C.  
J9  
N.C.  
J10  
TCLK2  
J12  
RST  
J1  
TTS2  
J11  
N.C.  
K1  
N.C.  
K2  
CPOL  
K3  
JTDO  
K4  
VSS  
K6  
VDD  
K7  
N.C.  
K9  
TNEG2 TPOS2  
K11 K12  
TEST  
K5  
HIZ  
K8  
TDM2  
K10  
RXP4  
L1  
N.C.  
L2  
RNEG4  
L3  
N.C.  
L5  
N.C.  
L6  
N.C.  
L7  
N.C.  
L8  
N.C.  
L9  
RNEG2 RPOS2 RCLK2  
TDM4  
L4  
L10  
L11  
L12  
RXN4  
M1  
RPOS4 TNEG4  
N.C.  
M6  
N.C.  
M7  
N.C.  
M8  
N.C.  
M9  
N.C.  
M10  
PRBS2  
M12  
RTS4  
M2  
TTS4  
M5  
RTS2  
M11  
M3  
M4  
PRBS4  
RCLK4  
TPOS4  
TCLK4  
TXP4  
TXN4 STMCLK  
N.C.  
RXP2  
RXN2  
RLOS4  
RLOS2  
High-Speed Analog  
High-Speed Digital  
Low-Speed Digital  
VDD  
VSS  
69 of 71  
DS3251/DS3252/DS3253/DS3254  
19. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for  
each package is a link to the latest package outline information.)  
19.1 144-Pin TE-CSBGA (56-G6016-001)  
70 of 71  
DS3251/DS3252/DS3253/DS3254  
20. THERMAL INFORMATION  
Table 20-A. Thermal Properties, Natural Convection  
PARAMETER  
Ambient Temperature (Note 1)  
Junction Temperature  
Theta-JA (θJA), Still Air (Note 2)  
Psi-JB  
MIN  
TYP  
MAX  
+85°C  
+125°C  
-40°C  
-40°C  
22.4°C/W  
9.2°C/W  
1.6°C/W  
Psi-JT  
Note 1: The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.  
Note 2: Theta-JA (θJA) is the junction to ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test board  
with no airflow and dissipating maximum power.  
Table 20-B. Theta-JA (θ ) vs. Airflow  
JA  
FORCED AIR (METERS PER  
THETA-JA (θJA)  
SECOND)  
0
1
2.5  
22.4°C/W  
19.0°C/W  
17.2°C/W  
21. REVISION HISTORY  
REVISION  
DESCRIPTION  
031805  
061705  
New Product Release (DS3254)  
New Product Release (DS3251/DS3252/DS3253)  
Added requirement that ALE pin must be high when using the SPI interface: Figure 4-1 (at the  
bottom), the second paragraph of Section 5, Table 6-F, the first paragraph of Section 15.2,  
Table 18-A, Figure 18-3, Figure 18-6, Figure 18-9, and Figure 18-12.  
030106  
71 of 71  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products Printed USA  
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW PR OD U CTS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
D S 3 2 5 3  
Pa rt Nu m ber T abl e  
N o t e s :  
1 . S e e t h e D S 3 2 5 3 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
D S 3 2 5 3 f u l l d a t a s h e e t ( P D F , 9 0 8 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y  
w i t h i n o n e b u s i n e s s d a y .  
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e :  
S e e f u l l d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e  
p r o d u c t u s e s .  
P a r t  
N u m b e r  
F r e e  
S a m p l e  
B u y  
D i r e c t  
T e m p  
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
D S 3 2 5 3 N A 3  
D S 3 2 5 3  
C S B G A ; 1 4 4 p i n ; 5 1 2  
D w g : 5 6 - G 6 0 1 6 - 0 0 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : X 1 4 4 T - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
C S B G A ; 1 4 4 p i n ; 5 1 2  
D w g : 5 6 - G 6 0 1 6 - 0 0 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : X 1 4 4 T - 1 *  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
D S 3 2 5 3 +  
D S 3 2 5 3 N  
D S 3 2 5 3 N +  
D S 3 2 5 3 D K  
C S B G A ; 1 4 4 p i n ; 5 1 2  
D w g : 5 6 - G 6 0 1 6 - 0 0 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : X 1 4 4 + 1 *  
R
o
H
S
/
L
e
a
d
-
F
r
e
e
:
Y
e
s
C S B G A ; 1 4 4 p i n ; 5 1 2  
D w g : 5 6 - G 6 0 1 6 - 0 0 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : X 1 4 4 T - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
C S B G A ; 1 4 4 p i n ; 5 1 2  
D w g : 5 6 - G 6 0 1 6 - 0 0 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : X 1 4 4 + 1 *  
-
4
0
C
t
o
+
8
5
C
R
o
H
S
/
L
e
a
d
-
F
r
e
e
:
Y
e
s
0
C
t
o
+
7
0
C
R
o
H
S
/
L
e
a
d
-
F
r
e
e
:
N
o
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

DS3254NA3

PCM Transceiver, 1-Func, PBGA144, 13 X 13 MM, 1 MM PITCH, CSBGA-144
MAXIM

DS327PIN

Industrial Control IC
ETC

DS328PIN

Analog IC
ETC

DS32B35

Accurate I2C RTC with Integrated TCXO/Crystal/FRAM
MAXIM

DS32B35-33

Accurate I2C RTC with Integrated TCXO/Crystal/FRAM
MAXIM

DS32B35-33#

Real Time Clock, Non-Volatile, 1 Timer(s), CMOS, PDSO20, 0.300 INCH, ROHS COMPLIANT, SOIC-20
MAXIM

DS32B35-33IND

Accurate I2C RTC with Integrated TCXO/Crystal/FRAM
MAXIM

DS32B35-33IND#

Real Time Clock, Non-Volatile, 1 Timer(s), CMOS, PDSO20, 0.300 INCH, ROHS COMPLIANT, SOIC-20
MAXIM

DS32B35_10

Accurate I2C RTC with Integrated TCXO/Crystal/FRAM
MAXIM

DS32C35

Accurate I2C RTC with Integrated TCXO/Crystal/FRAM
MAXIM

DS32C35-33

Accurate I2C RTC with Integrated TCXO/Crystal/FRAM
MAXIM

DS32C35-33#

Real Time Clock, Non-Volatile, 1 Timer(s), CMOS, PDSO20, 0.300 INCH, ROHS COMPLIANT, SOIC-20
MAXIM