HGTG30N60C3D [ROCHESTER]

63A, 600V, N-CHANNEL IGBT, TO-247;
HGTG30N60C3D
型号: HGTG30N60C3D
厂家: Rochester Electronics    Rochester Electronics
描述:

63A, 600V, N-CHANNEL IGBT, TO-247

局域网 电动机控制 栅 瞄准线 双极性晶体管
文件: 总8页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG30N60C3D  
Data Sheet  
January 2009  
File Number 4041.2  
63A, 600V, UFS Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diodes  
Features  
o
• 63A, 600V at T = 25 C  
C
The HGTG30N60C3D is a MOS gated high voltage  
switching device combining the best features of MOSFETs  
and bipolar transistors. The device has the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor. The much lower on-state voltage  
drop varies only moderately between 25 C and 150 C. The  
IGBT used is the development type TA49051. The diode  
used in anti-parallel with the IGBT is the development type  
TA49053.  
o
• Typical Fall Time . . . . . . . . . . . . . . . 230ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
o
o
Packaging  
JEDEC STYLE TO-247  
The IGBT is ideal for many high voltage switching applications  
operating at moderate frequencies where low conduction  
losses are essential.  
E
C
G
Formerly Developmental Type TA49014.  
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
G30N60C3D  
HGTG30N60C3D  
TO-247  
NOTE: When ordering, use the entire part number.  
Symbol  
C
G
E
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTG30N60C3D  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
63  
A
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
30  
25  
C110  
o
Average Diode Forward Current at 110 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
(AVG)  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
252  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
60A at 600V  
208  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.67  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
STG  
-40 to 150  
260  
C
J
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
4
µs  
µs  
GE  
GE  
15  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 25Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
-
MAX  
-
UNITS  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
600  
V
V
CES  
ECS  
C
C
GE  
= 10mA, V  
= 0V  
T
15  
25  
-
-
GE  
o
I
V
V
= BV  
= BV  
= 25 C  
-
250  
3.0  
1.8  
2.0  
6.0  
µA  
mA  
V
CES  
CE  
CE  
CES  
C
C
C
C
C
o
T
= 150 C  
-
-
-
CES  
,
o
Collector to Emitter Saturation Voltage  
Gate to Emitter Threshold Voltage  
V
I
V
= I  
C110  
T
= 25 C  
1.5  
1.7  
5.2  
CE(SAT)  
C
= 15V  
GE  
o
T
= 150 C  
-
V
o
V
I
= 250µA,  
C
T
= 25 C  
3.0  
V
GE(TH)  
V
= V  
CE  
GE  
Gate to Emitter Leakage Current  
Switching SOA  
I
V
= ±20V  
-
-
-
-
±100  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C,  
V
V
= 480V  
200  
60  
-
-
J
CE(PK)  
CE(PK)  
V
R
= 15V,  
= 3Ω,  
GE  
= 600V  
A
G
L = 100µH  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
8.1  
162  
216  
40  
-
180  
250  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
V
GEP  
C
Q
I
V
= I  
,
V
V
= 15V  
G(ON)  
C
C110  
GE  
GE  
= 0.5 BV  
CE  
CES  
= 20V  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C,  
J
I
V
V
d(ON)I  
= I  
CE  
C110,  
= 0.8 BV  
t
45  
-
rI  
CE(PK)  
CES,  
= 15V,  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
= 3Ω,  
320  
230  
1050  
2500  
1.75  
400  
275  
-
d(OFF)I  
R
G
t
fI  
L = 100µH  
Turn-On Energy  
E
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
E
-
OFF  
V
I
= 30A  
EC  
2.2  
EC  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
52  
42  
-
MAX  
60  
UNITS  
ns  
Diode Reverse Recovery Time  
t
I
I
= 30A, dI /dt = 100A/µs  
-
-
-
-
rr  
EC  
EC  
EC  
= 1.0A, dI /dt = 100A/µs  
50  
ns  
EC  
o
Thermal Resistance  
R
IGBT  
0.6  
1.3  
C/W  
θJC  
o
Diode  
-
C/W  
NOTE:  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). The HGTG30N60C3D was tested per JEDEC standard No. 24-1 Method for  
CE  
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include  
diode losses.  
Typical Performance Curves  
o
150  
125  
100  
75  
PULSE DURATION = 250µs, DUTY CYCLE <0.5%, T = 25 C  
C
150  
125  
100  
75  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V = 10V  
10.0V  
CE  
V
= 15.0V  
12.0V  
GE  
9.5V  
o
T
= 150 C  
C
9.0V  
8.5V  
o
T
= 25 C  
C
50  
o
50  
T
= -40 C  
C
7.0V  
8.0V  
7.5V  
25  
25  
0
0
4
6
8
10  
12  
0
2
4
6
8
10  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
150  
125  
100  
75  
150  
125  
100  
75  
PULSE DURATION = 250µs  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%  
o
T
= -40 C  
C
DUTY CYCLE <0.5%, V  
= 10V  
GE  
V
= 15V  
GE  
o
T
= 150 C  
C
T
o
T
= -40 C  
o
C
= 25 C  
o
C
T
= 25 C  
C
o
T
= 150 C  
C
50  
50  
25  
25  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
Typical Performance Curves (Continued)  
70  
25  
500  
o
V
= 15V  
V
= 360V, R = 25, T = 125 C  
G J  
GE  
CE  
450  
400  
350  
300  
250  
200  
150  
100  
60  
50  
40  
30  
20  
10  
0
20  
15  
10  
5
I
SC  
t
SC  
25  
50  
75  
100  
125  
150  
10  
11  
12  
13  
15  
14  
o
T
, CASE TEMPERATURE ( C)  
C
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 5. MAX. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME  
200  
500  
400  
o
= 150 C, R = 3, L = 100µH, V = 480V  
CE(PK)  
o
T
T
= 150 C, R = 3, L = 100µH, V  
= 480V  
V
J
G
J
G
CE(PK)  
100  
V
= 10V  
= 15V  
GE  
= 15V  
= 10V  
300  
200  
GE  
50  
40  
V
GE  
V
GE  
30  
20  
100  
10  
10  
20  
30  
40  
50  
60  
50  
60  
20  
30  
40  
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
500  
500  
o
= 150 C, R = 3, L = 100µH, V  
CE(PK)  
o
= 150 C, R = 3, L = 100µH, V = 480V  
CE(PK)  
T
= 480V  
= 10V  
T
J
G
J
G
400  
300  
V
GE  
100  
V
= 10V  
= 15V  
GE  
200  
V
GE  
V
= 15V  
GE  
100  
10  
10  
20  
30  
40  
50  
60  
50  
, COLLECTOR TO EMITTER CURRENT (A)  
60  
10  
20  
30  
40  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
CE  
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
Typical Performance Curves (Continued)  
8.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
o
= 150 C, R = 3, L = 100µH, V = 480V  
CE(PK)  
o
T
T
= 150 C, R = 3, L = 100µH, V = 480V  
CE(PK)  
J
G
J
G
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
V
= 10V  
GE  
V
= 10V or 15V  
GE  
V
= 15V  
GE  
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
500  
250  
200  
o
T
= 150 C, V  
= 15V, L = 100µH  
GE  
J
o
o
T
= 150 C, T = 75 C  
C
J
R
= 3, L = 100µH  
G
100  
150  
100  
V
= 15V  
GE  
LIMITED BY  
CIRCUIT  
f
f
= 0.05/(t  
+ t )  
D(ON)I  
+ E )  
OFF  
MAX1  
MAX2  
D(OFF)I  
= (P - P )/(E  
ON  
10  
D
C
V
= 10V  
GE  
P
P
= ALLOWABLE DISSIPATION  
D
C
= CONDUCTION DISSIPATION  
50  
0
(DUTY FACTOR = 50%)  
o
R
= 0.6 C/W  
θJC  
1
0
100  
200  
300  
400  
500  
600  
5
10  
20  
30  
40  
60  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 14. SWITCHING SAFE OPERATING AREA  
o
8000  
I
= 3.54mA, R = 20, T = 25 C  
G (REF)  
L
C
FREQUENCY = 400kHz  
600  
480  
360  
240  
120  
0
15  
12  
9
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
C
IES  
V
= 600V  
CE  
V
= 400V  
CE  
6
V
= 200V  
CE  
C
3
OES  
C
RES  
0
0
5
10  
15  
20  
25  
0
40  
80  
120  
160  
200  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
Q
, GATE CHARGE (nC)  
G
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. GATE CHARGE WAVEFORMS  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
Typical Performance Curves (continued)  
500  
100  
10µs  
100µs  
1ms  
10ms  
10  
1
DC  
*Notes:  
1. TC = 25oC  
2. TJ = 150oC  
0.1  
0.01  
3. Single Pulse  
1
10  
100  
1000  
Collector-Emitter Voltage, VCE [V]  
Figure 17. SOA Characteristics  
0
10  
0.5  
0.2  
0.1  
t
1
-1  
10  
P
D
0.05  
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
SINGLE PULSE  
PEAK T = (P X Z  
X R  
) + T  
JC C  
J
D
θ
JC  
θ
-2  
10  
-5  
-4  
10  
-3  
-2  
-1  
1
0
10  
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
Figure 18. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
Typical Performance Curves (continued)  
200  
60  
50  
40  
30  
20  
10  
o
T
= 25 C, dI /dt = 100A/µs  
C
EC  
t
rr  
o
100 C  
t
10  
a
t
b
o
o
25 C  
150 C  
1
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1
5
10  
30  
V
, FORWARD VOLTAGE (V)  
EC  
I
, FORWARD CURRENT (A)  
EC  
Figure 19. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
Figure 20. RECOVERY TIME vs FORWARD CURRENT  
Test Circuit and Waveforms  
L = 100µH  
90%  
RHRP3060  
10%  
V
GE  
E
E
OFF  
ON  
R
= 3Ω  
G
V
CE  
CE  
90%  
+
V
= 480V  
DD  
10%  
d(OFF)I  
I
-
t
t
rI  
t
fI  
t
d(ON)I  
Figure 22. SWITCHING TEST WAVEFORMS  
Figure 21. INDUCTIVE SWITCHING TEST CIRCUIT  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  
HGTG30N60C3D  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through the  
device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no damage  
problems due to electrostatic discharge. IGBTs can be  
handled safely if the following basic precautions are taken:  
Operating frequency information for a typical device (Figure 13)  
is presented as a guide for estimating device performance  
for a specific application. Other typical frequency vs collector  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 4, 7, 8, 11 and 12. The operating  
frequency plot (Figure 13) of a typical device shows f  
or  
MAX1  
whichever is smaller at each point. The information is  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t  
+ t ).  
D(ON)I  
MAX1  
D(OFF)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBDLD26” or equivalent.  
are possible. t  
D(OFF)I  
and t  
are defined in Figure 21.  
D(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM D(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
3. Tips of soldering irons should be grounded.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
The sum of device switching and conduction losses must  
.
4. Devices should never be inserted into or removed from  
circuits with power on.  
D
D
JM  
C
θJC  
not exceed P . A 50% duty factor was used (Figure 13)  
5. Gate Voltage Rating - Never exceed the gate-voltage  
D
and the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
P
= (V  
x I )/2.  
C
CE  
CE  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to voltage  
buildup on the input capacitor due to leakage currents or  
pickup.  
E
and E  
are defined in the switching waveforms  
OFF  
ON  
shown in Figure 21. E  
power loss (I  
integral of the instantaneous power loss during turn-off. All  
tail losses are included in the calculation for E ; i.e. the  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
OFF  
collector current equals zero (I  
CE  
= 0).  
7. Gate Protection - These devices do not have an internal  
monolithic zener diode from gate to emitter. If gate  
protection is required an external zener is recommended.  
©2009 Fairchild Semiconductor Corporation  
HGTG30N60C3D Rev. B  

相关型号:

HGTG30N60C3D_NL

63A, 600V, N-CHANNEL IGBT, TO-247
ROCHESTER

HGTG30N60C3D_NL

Insulated Gate Bipolar Transistor, 63A I(C), 600V V(BR)CES, N-Channel, TO-247
FAIRCHILD

HGTG32N60E2

32A, 600V N-Channel IGBT
INTERSIL

HGTG34N100E2

34A, 1000V N-Channel IGBT
INTERSIL

HGTG40N6

70A, 600V, UFS Series N-Channel IGBT
HARRIS

HGTG40N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTG40N60A4

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTG40N60A4

600V,SMPS IGBT
ONSEMI

HGTG40N60A4_NL

Insulated Gate Bipolar Transistor, 75A I(C), 600V V(BR)CES, N-Channel, TO-247, TO-247. 3 PIN
FAIRCHILD

HGTG40N60B3

70A, 600V, UFS Series N-Channel IGBT
HARRIS

HGTG40N60B3

70A, 600V, UFS Series N-Channel IGBT
INTERSIL

HGTG40N60B3

70A, 600V, UFS Series N-Channel IGBT
FAIRCHILD