LM146MD8 [ROCHESTER]

Operational Amplifier, 4 Func, 6000uV Offset-Max, BIPolar, DIE;
LM146MD8
型号: LM146MD8
厂家: Rochester Electronics    Rochester Electronics
描述:

Operational Amplifier, 4 Func, 6000uV Offset-Max, BIPolar, DIE

放大器
文件: 总19页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REI Datasheet  
LM146, LM346  
Programmable Quad Operational Amplifiers  
The LM146 series of quad op amps consists of four independent, high gain, internally compensated,  
low power, programmable amplifiers. Two external resistors (RSET) allow the user to program the gain  
bandwidth product, slew rate, supply current, input bias current, input offset current, and input noise.  
For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given  
source resistance. In a similar way, other amplifier characteristics can be tailored to the application.  
Except for the two programming pins at the end of the package, the LM146 pin-out is the same as  
the LM124 and the LM148.  
Quality Overview  
Rochester Electronics  
Manufactured Components  
ISO-9001  
AS9120 certification  
Qualified Manufacturers List (QML) MIL-PRF-38535  
Rochester branded components are  
manufactured using either die/wafers  
purchased from the original suppliers  
or Rochester wafers recreated from the  
original IP. All recreations are done with  
the approval of the OCM.  
Class Q Military  
Class V Space Level  
Qualified Suppliers List of Distributors (QSLD)  
Rochester is a critical supplier to DLA and  
meets all industry and DLA standards.  
Parts are tested using original factory  
test programs or Rochester developed  
test solutions to guarantee product  
meets or exceeds the OCM data sheet.  
RochesterElectronics, LLCiscommittedtosupplying  
products that satisfy customer expectations for  
quality and are equal to those originally supplied by  
industry manufacturers.  
The original manufacturer’s datasheet accompanying this document reflects the performance  
and specifications of the Rochester manufactured version of this device. Rochester Electronics  
guarantees the performance of its semiconductor products to the original OEM specifications.  
‘Typical’ values are for reference purposes only. Certain minimum or maximum ratings may be  
based on product characterization, design, simulation, or sample testing.  
© 2013 Rochester Electronics, LLC. All Rights Reserved 07112013  
To learn more, please visit www.rocelec.com  
August 2000  
LM146/LM346  
Programmable Quad Operational Amplifiers  
General Description  
Features  
The LM146 series of quad op amps consists of four inde-  
pendent, high gain, internally compensated, low power, pro-  
grammable amplifiers. Two external resistors (RSET) allow  
the user to program the gain bandwidth product, slew rate,  
supply current, input bias current, input offset current and  
input noise. For example, the user can trade-off supply  
current for bandwidth or optimize noise figure for a given  
source resistance. In a similar way, other amplifier charac-  
teristics can be tailored to the application. Except for the two  
programming pins at the end of the package, the LM146  
pin-out is the same as the LM124 and LM148.  
(ISET=10 µA)  
n Programmable electrical characteristics  
n Battery-powered operation  
n Low supply current: 350 µA/amplifier  
n Guaranteed gain bandwidth product: 0.8 MHz min  
n Large DC voltage gain: 120 dB  
n Low noise voltage: 28  
n Wide power supply range:  
n Class AB output stage–no crossover distortion  
n Ideal pin out for Biquad active filters  
1.5V to 22V  
n Input bias currents are temperature compensated  
PROGRAMMING EQUATIONS  
Connection Diagram  
Total Supply Current = 1.4 mA (ISET/10 µA)  
Gain Bandwidth Product = 1 MHz (ISET/10 µA)  
Slew Rate = 0.4V/µs (ISET/10 µA)  
Dual-In-Line Package  
Input Bias Current . 50 nA (ISET/10 µA)  
ISET = Current into pin 8, pin 9 (see schematic-diagram)  
00565401  
Top View  
Order Number LM146J, LM146J/883,  
LM346M,LM346MX or LM346N  
See NS Package Number  
J16A, M16A or N16A  
Capacitorless Active Filters (Basic Circuit)  
00565416  
© 2004 National Semiconductor Corporation  
DS005654  
www.national.com  
Absolute Maximum Ratings (Notes 1,  
5)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
LM146  
22V  
LM346  
18V  
Supply Voltage  
Differential Input Voltage (Note 1)  
CM Input Voltage (Note 1)  
30V  
30V  
15V  
15V  
Power Dissipation (Note 2)  
900 mW  
Continuous  
−55˚C to +125˚C  
150˚C  
500 mW  
Continuous  
0˚C to +70˚C  
100˚C  
Output Short-Circuit Duration (Note 3)  
Operating Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10 seconds)  
Thermal Resistance (θjA), (Note 2)  
−65˚C to +150˚C  
260˚C  
−65˚C to +150˚C  
260˚C  
Cavity DIP (J)  
Pd  
900 mW  
100˚C/W  
900 mW  
100˚C/W  
115˚C/W  
500 mW  
90˚C/W  
θjA  
Small Outline (M) θjA  
Molded DIP (N) Pd  
θjA  
Soldering Information  
Dual-In-Line Package  
Soldering (10 seconds)  
Small Outline Package  
Vapor Phase (60 seconds)  
Infrared (15 seconds)  
+260˚C  
+260˚C  
+215˚C  
+220˚C  
+215˚C  
+220˚C  
See AN-450 “Surface Mounting Methods and Their Effect on  
Product Reliability” for other methods of soldering surface  
mount devices.  
ESD rating is to be determined.  
DC Electrical Characteristics  
(VS= 15V, ISET=10 µA), (Note 4)  
Parameter  
Conditions  
LM146  
LM346  
Typ  
0.5  
Units  
Min  
Typ  
0.5  
2
Max  
5
Min  
Max  
6
Input Offset Voltage  
V
V
V
CM=0V, RS50, TA=25˚C  
mV  
nA  
Input Offset Current  
CM=0V, TA=25˚C  
20  
2
100  
250  
2.5  
Input Bias Current  
CM=0V, TA=25˚C  
50  
100  
2.0  
50  
nA  
Supply Current (4 Op Amps)  
Large Signal Voltage Gain  
TA=25˚C  
1.4  
1000  
1.4  
mA  
RL=10 k, VOUT= 10V,  
TA=25˚C  
100  
50  
1000  
V/mV  
Input CM Range  
TA=25˚C  
13.5  
80  
14  
100  
100  
13.5  
70  
14  
100  
100  
V
CM Rejection Ratio  
RS10 k, TA=25˚C  
RS10 k, TA=25˚C,  
dB  
dB  
Power Supply Rejection Ratio  
80  
74  
VS  
=
5 to 15V  
Output Voltage Swing  
Short-Circuit  
RL10 k, TA=25˚C  
TA=25˚C  
12  
5
14  
20  
12  
5
14  
20  
V
35  
35  
mA  
Gain Bandwidth Product  
Phase Margin  
TA=25˚C  
0.8  
1.2  
60  
0.5  
1.2  
60  
MHz  
Deg  
V/µs  
TA=25˚C  
Slew Rate  
TA=25˚C  
0.4  
28  
0.4  
28  
Input Noise Voltage  
Channel Separation  
f=1 kHz, TA=25˚C  
RL=10 k, VOUT=0V to  
120  
120  
dB  
www.national.com  
2
DC Electrical Characteristics (Continued)  
(VS= 15V, ISET=10 µA), (Note 4)  
Parameter  
Conditions  
LM146  
Typ  
LM346  
Typ  
Units  
Min  
Max  
Min  
Max  
12V, TA=25˚C  
Input Resistance  
TA=25˚C  
TA=25˚C  
1.0  
2.0  
0.5  
2
1.0  
2.0  
0.5  
2
MΩ  
pF  
Input Capacitance  
Input Offset Voltage  
Input Offset Current  
V
V
V
CM=0V, RS50Ω  
CM=0V  
6
7.5  
100  
250  
2.5  
mV  
nA  
25  
Input Bias Current  
CM=0V  
50  
100  
2.2  
50  
nA  
Supply Current (4 Op Amps)  
Large Signal Voltage Gain  
Input CM Range  
1.7  
1000  
14  
1.7  
1000  
14  
mA  
V/mV  
V
RL=10 k, VOUT= 10V  
50  
25  
13.5  
70  
13.5  
70  
CM Rejection Ratio  
RS50Ω  
RS50,  
100  
100  
100  
100  
dB  
Power Supply Rejection Ratio  
76  
74  
dB  
VS  
=
5V to 15V  
Output Voltage Swing  
RL10 kΩ  
12  
14  
12  
14  
V
DC Electrical Characteristic  
(VS= 15V, ISET=10 µA)  
Parameter  
Conditions  
LM146  
LM346  
Typ  
Units  
Min  
Typ  
Max  
Min  
Max  
Input Offset Voltage  
V
CM=0V, RS50,  
TA=25˚C  
CM=0V, TA=25˚C  
0.5  
5
0.5  
7
mV  
Input Bias Current  
V
7.5  
140  
100  
20  
7.5  
140  
100  
100  
300  
nA  
µA  
Supply Current (4 Op Amps)  
Gain Bandwidth Product  
TA=25˚C  
TA=25˚C  
250  
80  
50  
kHz  
DC Electrical Characteristics  
(VS= 1.5V, ISET=10 µA)  
Parameter  
Conditions  
LM146  
LM346  
Typ  
Units  
Min  
Typ  
Max  
Min  
Max  
Input Offset Voltage  
VCM=0V, RS50,  
0.5  
5
0.5  
7
mV  
TA=25˚C  
Input CM Range  
TA=25˚C  
0.7  
0.6  
0.7  
0.6  
V
dB  
V
CM Rejection Ratio  
Output Voltage Swing  
RS50, TA=25˚C  
RL10 k, TA=25˚C  
80  
80  
Note 1: For supply voltages less than 15V, the absolute maximum input voltage is equal to the supply voltage.  
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T  
, θ , and the ambient temperature,  
jMAX jA  
T . The maximum available power dissipation at any temperature is P =(T  
- T )/θ or the 25˚C P  
, whichever is less.  
A
d
jMAX  
A
jA  
dMAX  
Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction  
temperature will be exceeded.  
Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.  
Note 5: Refer to RETS146X for LM146J military specifications.  
3
www.national.com  
Typical Performance Characteristics  
Input Bias Current vs ISET  
Supply Current vs ISET  
00565444  
00565445  
Open Loop Voltage Gain  
vs ISET  
Slew Rate vs ISET  
00565447  
00565446  
Gain Bandwidth Product  
vs ISET  
Phase Margin vs ISET  
00565448  
00565449  
www.national.com  
4
Typical Performance Characteristics (Continued)  
Input Offset Voltage  
vs ISET  
Common-Mode Rejection  
Ratio vs ISET  
00565451  
00565450  
Power Supply Rejection  
Ratio vs ISET  
Open Voltage Swing vs  
Supply Voltage  
00565452  
00565453  
Input Bias Current vs  
Input Common-Mode  
Voltage  
Input Voltage Range vs  
Supply Voltage  
00565455  
00565454  
5
www.national.com  
Typical Performance Characteristics (Continued)  
Input Bias Current vs  
Temperature  
Input Offset Current vs  
Temperature  
00565457  
00565456  
Supply Current vs  
Temperature  
Open Loop Voltage Gain  
vs Temperature  
00565458  
00565420  
Gain Bandwidth Product  
vs Temperature  
Slew Rate vs  
Temperature  
00565422  
00565421  
www.national.com  
6
Typical Performance Characteristics (Continued)  
Input Noise Voltage vs  
Frequency  
Input Noise Current vs  
Frequency  
00565424  
00565423  
Power Supply Rejection  
Ratio vs Frequency  
Voltage Follower Pulse  
Response  
00565426  
00565425  
Voltage Follower Transient  
Response  
Transient Response Test Circuit  
00565406  
00565427  
7
www.national.com  
rent, ISET, of the device, the GBW product will decrease with  
increasing temperature. Compensation can be provided by  
creating an ISET current directly proportional to temperature  
(see typical applications).  
Application Hints  
Avoid reversing the power supply polarity; the device will fail.  
COMMON-MODE INPUT VOLTAGE  
The negative common-mode voltage limit is one diode drop  
above the negative supply voltage. Exceeding this limit on  
either input will result in an output phase reversal. The  
positive common-mode limit is typically 1V below the posi-  
tive supply voltage. No output phase reversal will occur if this  
limit is exceeded by either input.  
ISOLATION BETWEEN AMPLIFIERS  
The LM146 die is isothermally layed out such that crosstalk  
between all 4 amplifiers is in excess of −105 dB (DC).  
Optimum isolation (better than −110 dB) occurs between  
amplifiers A and D, B and C; that is, if amplifier A dissipates  
power on its output stage, amplifier D is the one which will be  
affected the least, and vice versa. Same argument holds for  
amplifiers B and C.  
OUTPUT VOLTAGE SWING VS ISET  
For a desired output voltage swing the value of the minimum  
load depends on the positive and negative output current  
capability of the op amp. The maximum available positive  
output current, (ICL+), of the device increases with ISET  
whereas the negative output current (ICL−) is independent of  
LM146 TYPICAL PERFORMANCE SUMMARY  
The LM146 typical behaviour is shown in Figure 3. The  
device is fully predictable. As the set current, ISET, increases,  
the speed, the bias current, and the supply current increase  
I
SET. Figure 1 illustrates the above.  
while the noise power decreases proportionally and the VOS  
-
remains constant. The usable GBW range of the op amp is  
10 kHz to 3.5−4 MHz.  
00565407  
FIGURE 1. Output Current Limit vs ISET  
INPUT CAPACITANCE  
The input capacitance, CIN, of the LM146 is approximately 2  
pF; any stray capacitance, CS, (due to external circuit circuit  
layout) will add to CIN. When resistive or active feedback is  
applied, an additional pole is added to the open loop fre-  
00565408  
quency response of the device. For instance with resistive  
1
feedback (Figure 2), this pole occurs at ⁄  
2π (R1||R2) (CIN  
+
FIGURE 3. LM146 Typical Characteristics  
CS). Make sure that this pole occurs at least 2 octaves  
beyond the expected −3 dB frequency corner of the closed  
loop gain of the amplifier; if not, place a lead capacitor in the  
feedback such that the time constant of this capacitor and  
the resistance it parallels is equal to the RI(CS + CIN), where  
RI is the input resistance of the circuit.  
Low Power Supply Operation: The quad op amp operates  
down to 1.3V supply. Also, since the internal circuitry is  
biased through programmable current sources, no degrada-  
tion of the device speed will occur.  
SPEED VS POWER CONSUMPTION  
LM146 vs LM4250 (single programmable). Through Figure  
4, we observe that the LM146’s power consumption has  
been optimized for GBW products above 200 kHz, whereas  
the LM4250 will reach a GBW of no more than 300 kHz. For  
GBW products below 200 kHz, the LM4250 will consume  
less power.  
00565409  
FIGURE 2.  
TEMPERATURE EFFECT ON THE GBW  
The GBW (gain bandwidth product), of the LM146 is directly  
proportional to ISET and inversely proportional to the abso-  
lute temperature. When using resistors to set the bias cur-  
www.national.com  
8
Application Hints (Continued)  
Single (Positive) Supply Blasing  
00565410  
FIGURE 4. LM146 vs LM4250  
00565411  
Typical Applications  
Dual Supply or Negative Supply Blasing  
Current Source Blasing  
with Temperature Compensation  
00565439  
00565440  
The LM334 provides an I  
directly proportional to absolute  
SET  
temperature. This cancels the slight GBW product Temperature coefficient  
of the LM346.  
9
www.national.com  
Typical Applications (Continued)  
Blasing all 4 Amplifiers  
with Single Current Source  
00565441  
For I  
.I  
resistors R1 and R2 are not required if a slight error between the 2 set currents can be tolerated. If not, then use R1 = R2 to create a 100  
mV drop across these resistors.  
SET1 SET2  
Active Filters Applications  
Basic (Non-Inverting “State Variable”) Active Filter Building Block  
00565412  
www.national.com  
10  
Active Filters Applications (Continued)  
00565433  
Note. All resistor values are given in ohms.  
00565434  
00565413  
00565435  
11  
www.national.com  
Active Filters Applications (Continued)  
A Simple-to-Design BP, LP Filter Building Block  
00565414  
If resistive biasing is used to set the LM346 performance, the Q of this filter building block is nearly insensitive to the op amp’s GBW product temperature  
o
drift; it has also better noise performance than the state variable filter.  
Circuit Synthesis Equations  
00565436  
For the eventual use of amplifier C, see comments on the previous page.  
A 3-Amplifier Notch Filter (or Elliptic Filter Building Block)  
00565415  
Circuit Synthesis Equations  
00565437  
For nothing but a notch output: R =R, C'=C.  
IN  
www.national.com  
12  
Active Filters Applications (Continued)  
Capacitorless Active Filters (Basic Circuit)  
00565416  
00565438  
<
1. Pick up a convenient value for b; (b 1)  
2. Adjust Q through R5  
o
3. Adjust H  
through R4  
o(BP)  
4. Adjust f through R  
. This adjusts the unity gain frequency (f ) of the op amp.  
SET u  
o
13  
www.national.com  
Active Filters Applications (Continued)  
A 4th Order Butterworth Low Pass Capacitorless Filter  
00565417  
Ex: f = 20 kHz, H (gain of the filter) = 1, Q = 0.541, Q = 1.306.  
c
o
01  
o2  
Since for this filter the GBW product of all 4 amplifiers has been designed to be the same (1 MHz) only one current source can be used to bias the circuit.  
Fine tuning can be further accomplished through R .  
b
Miscellaneous Applications  
A Unity Gain Follower  
with Bias Current Reduction  
00565418  
For better performance, use a matched NPN pair.  
www.national.com  
14  
Miscellaneous Applications (Continued)  
Circuit Shutdown  
00565442  
By pulling the SET pin(s) to V the op amp(s) shuts down and its output goes to a high impedance state. According to this property, the LM346 can be used  
as a very low speed analog switch.  
Voice Activated Switch and Amplifier  
00565443  
15  
www.national.com  
Miscellaneous Applications (Continued)  
X10 Micropower Instrumentation Amplifier with Buffered Input Guarding  
00565419  
CMRR: 100 dB (typ)  
Power dissipation: 0.4 mW  
Schematic Diagram  
00565402  
www.national.com  
16  
Physical Dimensions inches (millimeters)  
unless otherwise noted  
Cavity Dual-In-Line Package (J)  
Order Number LM146J, LM146J/883  
NS Package Number J16A  
S.O. Package (M)  
Order Number LM346M  
NS Package Number M16A  
17  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
Molded Dual-In-Line Package (N)  
Order Number LM346N  
NS Package Number N16A  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification  
(CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

LM146N

PROGRAMMABLE QUAD BIPOLAR OPERATIONAL AMPLIFIERS
STMICROELECTR

LM146_03

PROGRAMMABLE QUAD BIPOLAR OPERATIONAL AMPLIFIERS
STMICROELECTR

LM147J-SMD

QUAD OP-AMP, 8000uV OFFSET-MAX, 4MHz BAND WIDTH, CDIP14, CERAMIC, DIP-14
TI

LM148

QUADRUPLE OPERATIONAL AMPLIFIERS
TI

LM148

Quad 741 Op Amps LM149 Wide Band Decompensated (AV MIN = 5)
NSC

LM148

FOUR UA741 QUAD BIPOLAR OPERATIONAL AMPLIFIERS
STMICROELECTR

LM148 MD8

军用级、四路、36V、900kHz 运算放大器 | Y | 0 | -55 to 125
TI

LM148 MW8

获得 QML 认证的军用级、四路、36V、1MHz 运算放大器 | YS | 0 | -55 to 125
TI

LM148-N

LM148/LM248/LM348 Quad 741 Op Amps
TI

LM148D

FOUR UA741 QUAD BIPOLAR OPERATIONAL AMPLIFIERS
STMICROELECTR

LM148D/883B

Voltage-Feedback Operational Amplifier
ETC

LM148DT

OP-AMP|QUAD|BIPOLAR|SOP|14PIN|PLASTIC
ETC