MAX4040ESA [ROCHESTER]

OP-AMP, 3500uV OFFSET-MAX, 0.09MHz BAND WIDTH, PDSO8, SOP-8;
MAX4040ESA
型号: MAX4040ESA
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 3500uV OFFSET-MAX, 0.09MHz BAND WIDTH, PDSO8, SOP-8

放大器 光电二极管
文件: 总17页 (文件大小:1060K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1377; Rev 1; 9/05  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower Rail-to-Rail I/O Op Amps  
________________General Description  
____________________________Features  
The MAX4040–MAX4044 family of micropower op amps  
operates from a single +2.4V to +5.5V supply or dual  
±±.2V to ±2.ꢀ5V supplies and haꢁe railꢂtoꢂrail input and  
output capabilities. These amplifiers proꢁide a 90kHz  
gainꢂbandwidth product while using only ±0µA of supply  
current per amplifier. The MAX404±/MAX4043 haꢁe a  
lowꢂpower shutdown mode that reduces supply current  
to less than ±µA and forces the output into a highꢂimpedꢂ  
ance state. The combination of lowꢂꢁoltage operation,  
railꢂtoꢂrail inputs and outputs, and ultraꢂlow power conꢂ  
sumption makes these deꢁices ideal for any  
portable/batteryꢂpowered system.  
Single-Supply Operation Down to +2.4V  
Ultra-Low Power Consumption:  
10µA Supply Current per Amplifier  
1µA Shutdown Mode (MAX4041/MAX4043)  
Rail-to-Rail Input Common-Mode Range  
Outputs Swing Rail-to-Rail  
No Phase Reversal for Overdriven Inputs  
200µV Input Offset Voltage  
Unity-Gain Stable for Capacitive Loads up to 200pF  
90kHz Gain-Bandwidth Product  
These amplifiers haꢁe outputs that typically swing to  
within ±0mV of the rails with a ±00kload. Railꢂtoꢂrail  
input and output characteristics allow the full powerꢂ  
supply ꢁoltage to be used for signal range. The combiꢂ  
nation of low input offset ꢁoltage, low input bias current,  
and high openꢂloop gain makes them suitable for lowꢂ  
power/lowꢂꢁoltage precision applications.  
Available in Space-Saving 5-Pin SOT23 and  
®
8-Pin µMAX Packages  
Ordering Information  
The MAX4040 is offered in a spaceꢂsaꢁing 5ꢂpin SOT23  
package. All specifications are guaranteed oꢁer the  
ꢂ40°C to +85°C extended temperature range.  
PIN-  
SOT  
PART  
TEMP RANGE  
PACKAGE TOP MARK  
MAX4040EUKꢂT ꢂ40°C to +85°C 5 SOT23ꢂ5  
ACGF  
MAX4040EUA  
MAX4040ESA  
MAX4041ESA  
MAX404±EUA  
MAX4042EUA  
MAX4042ESA  
MAX4043EUB  
MAX4043ESD  
MAX4044ESD  
ꢂ40°C to +85°C 8 µMAX  
ꢂ40°C to +85°C 8 SO  
ꢂ40°C to +85°C 8 SO  
ꢂ40°C to +85°C 8 µMAX  
ꢂ40°C to +85°C 8 µMAX  
ꢂ40°C to +85°C 8 SO  
ꢂ40°C to +85°C ±0 µMAX  
ꢂ40°C to +85°C ±4 SO  
ꢂ40°C to +85°C ±4 SO  
________________________Applications  
BatteryꢂPowered  
Systems  
Strain Gauges  
Sensor Amplifiers  
Cellular Phones  
Notebook Computers  
PDAs  
Portable/BatteryꢂPowered  
Electronic Equipment  
Digital Scales  
Selector Guide  
Pin Configurations  
NO. OF  
AMPS  
TOP VIEW  
PART  
SHUTDOWN  
PIN-PACKAGE  
5ꢂpin SOT23,  
8ꢂpin µMAX/SO  
MAX4040  
±
OUT  
1
2
3
5
4
V
CC  
MAX404±  
MAX4042  
±
2
Yes  
8ꢂpin µMAX/SO  
8ꢂpin µMAX/SO  
MAX4040  
V
EE  
±0ꢂpin µMAX/  
±4ꢂpin SO  
MAX4043  
MAX4044  
2
4
Yes  
IN+  
IN-  
±4ꢂpin SO  
SOT23-5  
Pin Configurations continued at end of data sheet.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V  
to V )..................................................+6V  
±0ꢂPin µMAX (derate 5.6mW/°C aboꢁe +ꢀ0°C)...........444mW  
±4ꢂPin SO (derate 8.33mW/°C aboꢁe +ꢀ0°C)..............66ꢀmW  
Operating Temperature Range ...........................ꢂ40°C to +85°C  
Junction Temperature......................................................+±50°C  
Storage Temperature Range.............................ꢂ65°C to +±60°C  
Lead Temperature (soldering, ±0s) .................................+300°C  
CC  
EE  
All Other Pins ...................................(V  
+ 0.3V) to (V ꢂ 0.3V)  
CC  
EE  
Output ShortꢂCircuit Duration to V  
or V ..............Continuous  
CC  
EE  
Continuous Power Dissipation (T = +ꢀ0°C)  
A
5ꢂPin SOT23 (derate ꢀ.±mW/°C aboꢁe +ꢀ0°C).............5ꢀ±mW  
8ꢂPin µMAX (derate 4.±mW/°C aboꢁe +ꢀ0°C)..............330mW  
8ꢂPin SO (derate 5.88mW/°C aboꢁe +ꢀ0°C).................4ꢀ±mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—T = +25°C  
A
(V  
CC  
= +5.0V, V = 0V, V  
EE  
= 0V, V  
= V  
/ 2, SHDN = V , R = ±00ktied to V  
/ 2, unless otherwise noted.)  
CM  
OUT  
CC  
CC  
L
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
MIN  
TYP  
MAX  
UNITS  
SupplyꢂVoltage Range  
V
CC  
2.4  
5.5  
V
V
V
= 2.4V  
= 5.0V  
±0  
±4  
CC  
CC  
Supply Current  
per Amplifier  
I
µA  
µA  
mV  
CC  
20  
V
V
= 2.4V  
= 5.0V  
±.0  
CC  
Shutdown Supply  
Current per Amplifier  
SHDN = V , MAX404±  
and MAX4043 only  
EE  
I
CC(SHDN)  
2.0  
5.0  
±2.0  
±2.5  
±±.50  
±±0  
CC  
MAX4044ESD  
±0.20  
±0.25  
±0.20  
±2  
Input Offset Voltage  
V
V
EE  
V  
V  
CC  
MAX404_EU_  
OS  
CM  
All other packages  
mV  
nA  
Input Bias Current  
Input Offset Current  
I
(Note ±)  
(Note ±)  
B
I
±0.5  
45  
±3.0  
nA  
OS  
V  
V  
ꢂ V < ±.0V  
MΩ  
kΩ  
IN+  
IN+  
INꢂ  
Differential Input  
Resistance  
R
IN(DIFF)  
ꢂ V > 2.5V  
4.4  
INꢂ  
Input CommonꢂMode  
Voltage Range  
V
Inferred from the CMRR test  
V
V
CC  
V
CM  
EE  
MAX404_EU_  
65  
94  
94  
CommonꢂMode  
Rejection Ratio  
CMRR  
PSRR  
V
V  
V  
CC  
dB  
dB  
dB  
mV  
mV  
mA  
dB  
EE  
CM  
All other packages  
ꢀ0  
PowerꢂSupply  
Rejection Ratio  
2.4V V  
5.5V  
ꢀ5  
85  
CC  
R = ±00kΩ  
94  
85  
±0  
60  
±0  
40  
0.ꢀ  
2.5  
L
LargeꢂSignal  
Voltage Gain  
A
(V + 0.2V) V  
(V  
ꢂ 0.2V)  
CC  
VOL  
EE  
OUT  
R = 25kΩ  
L
ꢀ4  
R = ±00kΩ  
L
Output Voltage  
Swing High  
V
OH  
Specified as V  
ꢂ V  
OH  
CC  
R = 25kΩ  
L
90  
60  
R = ±00kΩ  
L
Output Voltage  
Swing Low  
V
OL  
Specified as V ꢂ V  
OL  
EE  
R = 25kΩ  
L
Sourcing  
Sinking  
Output ShortꢂCircuit  
Current  
I
OUT(SC)  
ChannelꢂtoꢂChannel  
Isolation  
Specified at DC, MAX4042/MAX4043/MAX4044 only  
80  
2
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
ELECTRICAL CHARACTERISTICS—T = +25°C (continued)  
A
(V  
= +5.0V, V = 0V, V  
EE  
= 0V, V  
= V  
/ 2, SHDN = V , R = ±00ktied to V  
/ 2, unless otherwise noted.)  
CC  
CM  
OUT  
CC  
CC  
L
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Leakage Current in  
Shutdown  
SHDN = V = 0, MAX404±/MAX4043 only  
(Note 2)  
EE  
I
20  
±00  
nA  
OUT(SHDN)  
V
MAX404±/MAX4043 only  
MAX404±/MAX4043 only  
MAX404±/MAX4043 only  
0.3 x V  
V
V
SHDN Logic Low  
IL  
CC  
V
IH  
0.ꢀ x V  
SHDN Logic High  
CC  
I
, I  
IH IL  
40  
90  
±20  
nA  
SHDN Input Bias Current  
Gain Bandwidth Product  
Phase Margin  
GBW  
kHz  
degrees  
dB  
Φ
68  
m
Gain Margin  
G
±8  
m
Slew Rate  
SR  
40  
V/ms  
nV/Hz  
pA/Hz  
pF  
Input Voltage Noise Density  
Input Current Noise Density  
CapacitiꢁeꢂLoad Stability  
PowerꢂUp Time  
e
n
f = ±kHz  
f = ±kHz  
ꢀ0  
i
n
0.05  
200  
200  
50  
A
= +±V/V, no sustained oscillations  
VCL  
t
µs  
ON  
Shutdown Time  
t
MAX404± and MAX4043 only  
MAX404± and MAX4043 only  
µs  
SHDN  
Enable Time from Shutdown  
Input Capacitance  
Total Harmonic Distortion  
Settling Time to 0.0±%  
t
±50  
3
µs  
EN  
C
IN  
pF  
THD  
f
IN  
= ±kHz, V  
= 2Vpꢂp, A = +±V/V  
0.05  
50  
%
OUT  
V
t
S
A = +±V/V, V  
V
= 2V  
STEP  
µs  
OUT  
ELECTRICAL CHARACTERISTICS—T = T  
T
MAX  
A
MIN  
to  
(V  
= +5.0V, V = 0V, V  
EE  
= 0V, V  
= V  
/ 2, SHDN = V , R = ±00ktied to V  
/ 2, unless otherwise noted.) (Note 3)  
CC  
CM  
OUT  
CC  
CC  
L
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SupplyꢂVoltage Range  
V
CC  
Inferred from PSRR test  
2.4  
5.5  
V
Supply Current  
per Amplifier  
I
28  
µA  
µA  
CC  
Shutdown Supply  
Current per Amplifier  
I
6.0  
SHDN = V , MAX404± and MAX4043 only  
CC(SHDN)  
EE  
MAX4044ESA  
±4.5  
±5.0  
±3.5  
Input Offset Voltage  
V
V
EE  
V  
V  
CC  
MAX404_EU_  
mV  
OS  
CM  
All other packages  
Input Offset Voltage Drift  
Input Bias Current  
TC  
2
µV/°C  
nA  
VOS  
I
(Note ±)  
(Note ±)  
±20  
±8  
B
Input Offset Current  
I
nA  
OS  
_______________________________________________________________________________________  
3
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
ELECTRICAL CHARACTERISTICS—T = T  
T
(continued)  
MAX  
A
MIN  
to  
(V  
= +5.0V, V = 0V, V  
EE  
= 0V, V  
= V  
/ 2, SHDN = V , R = ±00ktied to V  
/ 2, unless otherwise noted.) (Note 3)  
CC  
CM  
OUT  
CC  
CC  
L
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from the CMRR test  
MIN  
TYP  
MAX  
UNITS  
Input CommonꢂMode  
Voltage Range  
V
V
V
CC  
V
CM  
EE  
MAX404_EU_  
60  
CommonꢂMode  
Rejection Ratio  
CMRR  
PSRR  
V
V  
V  
CC  
dB  
dB  
dB  
mV  
mV  
EE  
CM  
All other packages  
65  
PowerꢂSupply  
Rejection Ratio  
2.4V V  
5.5V  
ꢀ0  
CC  
LargeꢂSignal Voltage  
Gain  
A
(V + 0.2V) V  
(V  
ꢂ 0.2V), R = 25kΩ  
68  
VOL  
EE  
OUT  
CC  
L
Output Voltage Swing  
High  
V
OH  
Specified as V  
ꢂ V , R = 25kΩ  
±25  
ꢀ5  
L
CC  
OH  
Output Voltage Swing  
Low  
V
OL  
Specified as V ꢂ V , R = 25kΩ  
L
EE OL  
Note 1: Input bias current and input offset current are tested with V  
= +5.0V and +0.5V V  
+4.5V.  
CM  
CC  
Note 2: Tested for V V  
V . Does not include current through external feedback network.  
CC  
EE  
OUT  
Note 3: All deꢁices are ±00% tested at T = +25°C. All temperature limits are guaranteed by design.  
A
__________________________________________Typical Operating Characteristics  
(V  
CC  
= +5.0V, V = 0, V  
= V / 2, SHDN = V , R = ±00kto V / 2, T = +25°C, unless otherwise noted.)  
CM CC CC L CC A  
EE  
MAX4041/MAX4043  
SHUTDOWN SUPPLY CURRENT  
PER AMPLIFIER vs. TEMPERATURE  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
20  
18  
5
SHDN = 0  
16  
14  
12  
10  
8
4
3
2
1
0
V
= +5.5V  
CC  
V
= +5.5V  
= +2.4V  
CC  
V
CC  
= +2.4V  
6
V
CC  
4
2
0
40  
0
TEMPERATURE (°C)  
0
-60 -40 -20  
20  
60 80 100  
-60 -40 -20  
20 40 60 80 100  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5.0V, V = 0, V  
= V / 2, SHDN = V , R = ±00kto V / 2, T = +25°C, unless otherwise noted.)  
EE  
CM  
CC  
CC  
L
CC  
A
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT vs.  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
COMMON-MODE VOLTAGE (V = 2.4V)  
CC  
400  
5.0  
2.5  
0
0
-1  
-2  
-3  
-4  
V
CC  
= +2.4V  
V
= 0  
CM  
V
= +2.4V  
= +5.5V  
CC  
300  
200  
100  
0
V
CC  
-2.5  
-5.0  
40  
TEMPERATURE (°C)  
0.6  
1.0  
V
1.4  
1.8  
-60 -40 -20  
0
20  
60 80 100  
0
0.2  
2.2  
40  
-60 -40 -20  
0
20  
60 80 100  
(V)  
TEMPERATURE (°C)  
CM  
INPUT BIAS CURRENT vs.  
COMMON-MODE VOLTAGE (V = 5.5V)  
OUTPUT SWING HIGH  
vs. TEMPERATURE  
CC  
5.0  
120  
100  
80  
V
= +5.5V  
CC  
R TO V  
L
EE  
2.5  
0
V
CC  
= +2.4V, R = 10kΩ  
L
60  
V
CC  
= +5.5V, R = 20kΩ  
L
40  
-2.5  
-5.0  
V
= +5.5V, R = 100kΩ  
L
CC  
20  
0
V
= +2.4V, R = 100kΩ  
L
CC  
1.5  
2.5  
V
3.5  
5.5  
0
0.5  
4.5  
40  
0
TEMPERATURE (°C)  
-60 -40 -20  
20  
60 80 100  
(V)  
CM  
COMMON-MODE REJECTION  
vs. TEMPERATURE  
OUTPUT SWING LOW  
vs. TEMPERATURE  
-80  
-85  
120  
100  
80  
R TO V  
L
CC  
V
= +2.4V  
= +5.5V  
CC  
-90  
60  
V
= +5.5V, R = 20kΩ  
L
CC  
40  
V
CC  
V
CC  
= +2.4V, R = 10kΩ  
L
-95  
V
= +5.5V, R = 100kΩ  
L
CC  
20  
0
V
CC  
= +2.4V, R = 100kΩ  
L
-100  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
_______________________________________________________________________________________  
5
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
____________________________________Typical Operating Characteristics (continued)  
(V  
CC  
= +5.0V, V = 0, V  
= V / 2, SHDN = V , R = ±00kto V / 2, T = +25°C, unless otherwise noted.)  
CM CC L CC A  
EE  
CC  
OPEN-LOOP GAIN vs. OUTPUT SWING LOW  
OPEN-LOOP GAIN vs. OUTPUT SWING HIGH  
OPEN-LOOP GAIN vs. OUTPUT SWING LOW  
(V = +5.5V, R TIED TO V  
(V = +2.4V, R TIED TO V  
)
CC  
(V = +2.4V, R TIED TO V  
)
EE  
)
CC  
CC  
L
CC  
L
CC  
L
100  
100  
90  
110  
100  
90  
R = 100kΩ  
L
90  
80  
R = 100kΩ  
L
R = 100kΩ  
L
80  
R = 10kΩ  
R = 20kΩ  
L
L
R = 10kΩ  
L
80  
70  
60  
70  
60  
70  
60  
50  
40  
30  
50  
40  
30  
50  
40  
0
100  
200  
300  
(mV)  
400  
500  
0
100  
200  
V  
300  
400  
500  
0
100  
200  
(mV)  
300  
400  
V  
(mV)  
V  
OUT  
OUT  
OUT  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
OPEN-LOOP GAIN vs. OUTPUT SWING HIGH  
(V = +5.5V, R TIED TO V  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
)
EE  
CC  
L
110  
105  
100  
95  
110  
105  
100  
95  
110  
100  
R = 100kΩ  
L
V
= +5.5V, R TO V  
L
CC  
EE  
V
CC  
= +5.5V, R = 20kTO V  
EE  
L
90  
80  
V
= +5.5V, R TO V  
L CC  
CC  
R = 20kΩ  
L
90  
90  
V
= +5.5V, R = 20kTO V  
L CC  
CC  
V
CC  
= +2.4V, R TO V  
L
EE  
70  
60  
85  
85  
V
CC  
= +2.4V, R TO V  
CC  
L
V
= +2.4V, R = 10kTO V  
L EE  
CC  
80  
80  
50  
40  
75  
75  
V
= +2.4V, R = 10kTO V  
L CC  
CC  
70  
70  
40  
TEMPERATURE (°C)  
-60 -40 -20  
0
20  
60 80 100  
40  
TEMPERATURE (°C)  
0
100  
200  
300  
400  
-60 -40 -20  
0
20  
60 80 100  
V  
(mV)  
OUT  
GAIN AND PHASE vs. FREQUENCY  
GAIN AND PHASE vs. FREQUENCY  
(NO LOAD)  
(C = 100pF)  
L
MAX4040/44-16  
MAX4040/44-17  
60  
180  
60  
180  
A
= +1000V/V  
V
A
V
= +1000V/V  
50  
40  
30  
20  
144  
108  
50  
40  
144  
108  
72  
36  
30  
20  
72  
36  
10  
0
0
10  
0
0
-36  
-72  
-108  
-144  
-36  
-72  
-108  
-144  
-10  
-20  
-30  
-10  
-20  
-30  
-40  
-40  
-180  
-180  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
____________________________________Typical Operating Characteristics (continued)  
(V  
CC  
= +5.0V, V = 0, V  
= V / 2, SHDN = V , R = ±00kto V / 2, T = +25°C, unless otherwise noted.)  
CM CC CC L CC A  
EE  
MAX4042/MAX4043/MAX4044  
CROSSTALK vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
-60  
-70  
1
R = 10kΩ  
L
-80  
0.1  
-90  
-100  
-110  
R = 100kΩ  
L
R = 10kΩ  
L
0.01  
100  
10  
1k  
10k  
1
10  
100  
1000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SMALL-SIGNAL TRANSIENT RESPONSE  
LOAD RESISTOR vs.  
CAPACITIVE LOAD  
(NONINVERTING)  
MAX4040/44-21  
1000  
100  
10  
10%  
OVERSHOOT  
100mV  
0V  
IN  
REGION OF  
MARGINAL STABILITY  
50mV/div  
100mV  
0V  
OUT  
REGION OF  
STABLE OPERATION  
10µs/div  
0
250  
500  
(pF)  
750  
1000  
C
LOAD  
LARGE-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
LARGE-SIGNAL TRANSIENT RESPONSE  
(NONINVERTING)  
(INVERTING)  
(INVERTING)  
MAX4040/42/44-23  
MAX4040/44-22  
MAX4040/42/44-24  
4.5V  
0.5V  
4.5V  
100mV  
0V  
+2V  
-2V  
+2V  
-2V  
IN  
IN  
IN  
2V/div  
OUT  
50mV/div  
OUT  
2V/div  
100mV  
0V  
OUT  
0.5V  
100µs/div  
10µs/div  
100µs/div  
_______________________________________________________________________________________  
7
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
______________________________________________________________Pin Description  
PIN  
MAX4040  
MAX4043  
NAME  
FUNCTION  
MAX4041 MAX4042  
MAX4044  
SOT23-5 SO/µMAX  
µMAX  
SO  
Amplifier Output. High impedance  
when in shutdown mode.  
±
2
6
4
6
4
4
4
OUT  
Negatiꢁe Supply. Tie to ground for  
singleꢂsupply operation.  
4
±±  
V
EE  
3
4
5
3
2
3
2
8
±0  
±4  
4
IN+  
INꢂ  
Noninꢁerting Input  
Inꢁerting Input  
V
CC  
Positiꢁe Supply  
5, ꢀ,  
8, ±0  
No Connection. Not internally conꢂ  
nected.  
±, 5, 8  
±, 5  
N.C.  
Shutdown Input. Driꢁe high, or tie to  
8
V for normal operation. Driꢁe to V  
CC EE  
SHDN  
to place deꢁice in shutdown mode.  
OUTA,  
OUTB  
Outputs for Amplifiers A and B. High  
impedance when in shutdown mode.  
±, ꢀ  
2, 6  
3, 5  
±, 9  
2, 8  
3, ꢀ  
±, ±3  
2, ±2  
3, ±±  
±, ꢀ  
2, 6  
3, 5  
INAꢂ,  
INBꢂ  
Inꢁerting Inputs to Amplifiers A and B  
INA+,  
INB+  
Noninꢁerting Inputs to Amplifiers A  
and B  
Shutdown Inputs for Amplifiers A  
SHDNA,  
SHDNB  
and B. Driꢁe high, or tie to V  
for  
CC  
5, 6  
6, 9  
normal operation. Driꢁe to V to  
EE  
place deꢁice in shutdown mode.  
Outputs for Amplifiers C and D  
OUTC,  
OUTD  
8, ±4  
9, ±3  
INCꢂ,  
INDꢂ  
Inꢁerting Inputs to Amplifiers C and D  
INC+,  
IND+  
Noninꢁerting Inputs to Amplifiers C  
and D  
±0, ±2  
an excellent choice for precision or generalꢂpurpose,  
lowꢂꢁoltage batteryꢂpowered systems.  
_______________Detailed Description  
Rail-to-Rail Input Stage  
The MAX4040–MAX4044 haꢁe railꢂtoꢂrail inputs and  
railꢂtoꢂrail output stages that are specifically designed  
for lowꢂꢁoltage, singleꢂsupply operation. The input  
stage consists of separate NPN and PNP differential  
stages, which operate together to proꢁide a commonꢂ  
mode range extending to both supply rails. The  
crossoꢁer region of these two pairs occurs halfway  
Since the input stage consists of NPN and PNP pairs,  
the input bias current changes polarity as the commonꢂ  
mode ꢁoltage passes through the crossoꢁer region.  
Match the effectiꢁe impedance seen by each input to  
reduce the offset error caused by input bias currents  
flowing through external source impedances (Figures  
±a and ±b). The combination of high source impedance  
plus input capacitance (amplifier input capacitance  
plus stray capacitance) creates a parasitic pole that  
produces an underdamped signal response. Reducing  
input capacitance or placing a small capacitor across  
the feedback resistor improꢁes response in this case.  
between V  
and V . The input offset ꢁoltage is typiꢂ  
EE  
CC  
cally 200µV. Low operating supply ꢁoltage, low supply  
current, railꢂtoꢂrail commonꢂmode input range, and railꢂ  
toꢂrail outputs make this family of operational amplifiers  
8
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
The MAX4040–MAX4044 family’s inputs are protected  
from large differential input ꢁoltages by internal 2.2kΩ  
series resistors and backꢂtoꢂback tripleꢂdiode stacks  
across the inputs (Figure 2). For differential input ꢁoltꢂ  
ages (much less than ±.8V), input resistance is typically  
45M. For differential input ꢁoltages greater than ±.8V,  
input resistance is around 4.4k, and the input bias  
current can be approximated by the following equation:  
MAX4040–  
MAX4044  
V
IN  
R3  
R1  
R3 = R1 R2  
I
= (V  
ꢂ ±.8V) / 4.4kΩ  
DIFF  
BIAS  
In the region where the differential input ꢁoltage  
approaches ±.8V, the input resistance decreases expoꢂ  
nentially from 45Mto 4.4kas the diode block begins  
conducting. Conꢁersely, the bias current increases with  
the same curꢁe.  
R2  
Rail-to-Rail Output Stage  
The MAX4040–MAX4044 output stage can driꢁe up to a  
25kload and still swing to within 60mV of the rails.  
Figure 3 shows the output ꢁoltage swing of a MAX4040  
configured as a unityꢂgain buffer, powered from a single  
+4.0V supply ꢁoltage. The output for this setup typically  
Figure 1a. Minimizing Offset Error Due to Input Bias Current  
(Noninverting)  
swings from (V + ±0mV) to (V  
EE  
ꢂ ±0mV) with a ±00kΩ  
CC  
MAX4040–  
MAX4044  
load.  
Applications Information  
R3  
Power-Supply Considerations  
The MAX4040–MAX4044 operate from a single +2.4V to  
+5.5V supply (or dual ±±.2V to ±2.ꢀ5V supplies) and  
consume only ±0µA of supply current per amplifier. A  
high powerꢂsupply rejection ratio of 85dB allows the  
amplifiers to be powered directly off a decaying battery  
ꢁoltage, simplifying design and extending battery life.  
R3 = R1 R2  
V
IN  
R1  
R2  
Power-Up Settling Time  
The MAX4040–MAX4044 typically require 200µs to  
power up after V  
the output is indeterminant. The application circuit  
should allow for this initial delay.  
is stable. During this startꢂup time,  
CC  
Figure 1b. Minimizing Offset Error Due to Input Bias Current  
(Inverting)  
IN+  
2.2kΩ  
IN-  
2.2kΩ  
Figure 2. Input Protection Circuit  
_______________________________________________________________________________________  
9
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
MAX4040-44 fig04  
MAX4040-44 fig03  
V
= 2V  
IN  
R = 100kTIED TO V  
IN  
L
V
EE  
R = 100kTIED TO V  
L
= 4.0V  
EE  
f
= 1kHz  
IN  
SHDN  
1V/div  
OUT  
5V/div  
1V/div  
OUT  
1V/div  
IN  
200µs/div  
200µs/div  
Figure 3. Rail-to-Rail Input/Output Voltage Range  
Figure 4. Shutdown Enable/Disable Output Voltage  
Shutdown Mode  
The MAX404± (single) and MAX4043 (dual) feature a  
lowꢂpower shutdown mode. When the shutdown pin  
(SHDN) is pulled low, the supply current drops to ±µA  
per amplifier, the amplifier is disabled, and the outputs  
enter a highꢂimpedance state. Pulling SHDN high or  
leaꢁing it floating enables the amplifier. Take care to  
ensure that parasitic leakage current at the SHDN pin  
does not inadꢁertently place the part into shutdown  
mode when SHDN is left floating. Figure 4 shows the  
output ꢁoltage response to a shutdown pulse. The logic  
1200  
V
= 5.5V, V = 200mV  
OH  
CC  
1000  
800  
600  
400  
200  
V
CC  
V
OH  
= 2.4V,  
= 200mV  
V
CC  
= 5.5V, V = 100mV  
OH  
V
CC  
V
OH  
= 2.4V,  
= 100mV  
V
CC  
= 5.5V, V = 50mV  
OH  
threshold for SHDN is always referred to V  
/ 2 (not to  
CC  
V
CC  
= 2.4V, V = 50mV  
OH  
GND). When using dual supplies, pull SHDN to V to  
EE  
0
enter shutdown mode.  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
Load-Driving Capability  
The MAX4040–MAX4044 are fully guaranteed oꢁer temꢂ  
perature and supply ꢁoltage to driꢁe a maximum resisꢂ  
Figure 5a. Output Source Current vs. Temperature  
tiꢁe load of 25kto V  
/ 2, although heaꢁier loads can  
CC  
be driꢁen in many applications. The railꢂtoꢂrail output  
3000  
stage of the amplifier can be modeled as a current  
source when driꢁing the load toward V , and as a curꢂ  
V
= 5.5V, V = 200mV  
CC OL  
CC  
2500  
2000  
1500  
1000  
500  
rent sink when driꢁing the load toward V . The magniꢂ  
EE  
V
= 2.4V, V = 200mV  
OL  
CC  
tude of this current source/sink ꢁaries with supply  
ꢁoltage, ambient temperature, and lotꢂtoꢂlot ꢁariations  
of the units.  
V
CC  
V
OL  
= 5.5V,  
= 100mV  
Figures 5a and 5b show the typical current source and  
sink capability of the MAX4040–MAX4044 family as a  
function of supply ꢁoltage and ambient temperature.  
The contours on the graph depict the output current  
ꢁalue, based on driꢁing the output ꢁoltage to within  
50mV, ±00mV, and 200mV of either powerꢂsupply rail.  
V
CC  
= 2.4V, V = 100mV  
OL  
V
CC  
= 5.5V, V = 50mV  
OL  
V
CC  
= 2.4V, V = 50mV  
OL  
0
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
Figure 5b. Output Sink Current vs. Temperature  
10 ______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
For example, a MAX4040 running from a single +2.4V  
supply, operating at T = +25°C, can source 240µA to  
A
within ±00mV of V  
and is capable of driꢁing a 9.6kΩ  
CC  
:
load resistor to V  
EE  
R
ISO  
2.4V ꢂ 0.±V  
R
=
= 9.6kto V  
EE  
L
240µA  
R
L
C
L
The same application can driꢁe a 4.6kload resistor  
when terminated in V / 2 (+±.2V in this case).  
MAX4040–  
MAX4044  
CC  
Driving Capacitive Loads  
The MAX4040–MAX4044 are unityꢂgain stable for loads  
up to 200pF (see Load Resistor ꢁs. Capacitiꢁe Load  
graph in Typical Operating Characteristics).  
Applications that require greater capacitiꢁe driꢁe capaꢂ  
bility should use an isolation resistor between the output  
and the capacitiꢁe load (Figures 6a–6c). Note that this  
alternatiꢁe results in a loss of gain accuracy because  
R
L
A =  
V
1  
R + R  
L
ISO  
Figure 6a. Using a Resistor to Isolate a Capacitive Load from  
the Op Amp  
MAX4040/42/44 fig06b  
R
forms a ꢁoltage diꢁider with the load resistor.  
ISO  
Power-Supply Bypassing and Layout  
50mV/div  
50mV/div  
IN  
The MAX4040–MAX4044 family operates from either a  
single +2.4V to +5.5V supply or dual ±±.2V to ±2.ꢀ5V  
supplies. For singleꢂsupply operation, bypass the  
power supply with a ±00nF capacitor to V  
(in this  
EE  
case GND). For dualꢂsupply operation, both the V  
CC  
and V supplies should be bypassed to ground with  
EE  
OUT  
separate ±00nF capacitors.  
Good PC board layout techniques optimize perforꢂ  
mance by decreasing the amount of stray capacitance  
at the op amp’s inputs and output. To decrease stray  
capacitance, minimize trace lengths by placing exterꢂ  
nal components as close as possible to the op amp.  
Surfaceꢂmount components are an excellent choice.  
100µs/div  
R
ISO  
= NONE, R = 100k, C = 700pF  
L
L
Figure 6b. Pulse Response without Isolating Resistor  
Using the MAX4040–MAX4044  
as Comparators  
MAX4040/42/44 fig06c  
Although optimized for use as operational amplifiers,  
the MAX4040–MAX4044 can also be used as railꢂtoꢂrail  
I/O comparators. Typical propagation delay depends  
on the input oꢁerdriꢁe ꢁoltage, as shown in Figure ꢀ.  
External hysteresis can be used to minimize the risk of  
output oscillation. The positiꢁe feedback circuit, shown  
in Figure 8, causes the input threshold to change when  
the output ꢁoltage changes state. The two thresholds  
create a hysteresis band that can be calculated by the  
following equations:  
50mV/div  
50mV/div  
IN  
OUT  
V
V
V
= V ꢂ V  
HI LO  
HYST  
100µs/div  
= V x R2 / (R± + (R± x R2 / R ) + R2)  
HYST  
LO  
HI  
IN  
R
ISO  
= 1k, R = 100k, C = 700pF  
L
L
= [(R2 / R± x V ) + (R2 / R  
) x V ] /  
CC  
IN  
HYST  
(± + R± / R2 + R2 / R  
)
HYST  
Figure 6c. Pulse Response with Isolating Resistor  
______________________________________________________________________________________ 11  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
10,000  
HYSTERESIS  
V
V
HI  
INPUT  
V
OH  
LO  
t
+; V = +5V  
CC  
PD  
1000  
100  
10  
V
OH  
t
-; V = +5V  
CC  
PD  
OUTPUT  
V
V
OL  
t
+; V = +2.4V  
CC  
PD  
IN  
R
HYST  
t
-; V = +2.4V  
CC  
PD  
R1  
R2  
V
CC  
0
10 20 30 40 50 60 70 80 90 100  
(mV)  
V
OUT  
V
OD  
MAX4040–  
MAX4044  
V
EE  
Figure 7. Propagation Delay vs. Input Overdrive  
V
The MAX4040–MAX4044 contain special circuitry to  
boost internal driꢁe currents to the amplifier output  
stage. This maximizes the output ꢁoltage range oꢁer  
which the amplifiers are linear. In an openꢂloop comꢂ  
parator application, the excursion of the output ꢁoltage  
is so close to the supply rails that the output stage tranꢂ  
sistors will saturate, causing the quiescent current to  
increase from the normal ±0µA. Typical quiescent curꢂ  
EE  
Figure 8. Hysteresis Comparator Circuit  
I
LOAD  
rents increase to 35µA for the output saturating at V  
CC  
R1  
and 28µA for the output at V  
.
EE  
V
CC  
Using the MAX4040–MAX4044  
as Ultra-Low-Power Current Monitors  
The MAX4040–MAX4044 are ideal for applications powꢂ  
ered from a battery stack. Figure 9 shows an application  
circuit in which the MAX4040 is used for monitoring the  
current of a battery stack. In this circuit, a current load is  
applied, and the ꢁoltage drop at the battery terminal is  
sensed.  
R2  
Q1  
V
OUT  
The ꢁoltage on the load side of the battery stack is  
equal to the ꢁoltage at the emitter of Q±, due to the  
feedback loop containing the op amp. As the load curꢂ  
rent increases, the ꢁoltage drop across R± and R2  
increases. Thus, R2 proꢁides a fraction of the load curꢂ  
rent (set by the ratio of R± and R2) that flows into the  
emitter of the PNP transistor. Neglecting PNP base curꢂ  
rent, this current flows into R3, producing a groundꢂrefꢂ  
erenced ꢁoltage proportional to the load current. Scale  
R± to giꢁe a ꢁoltage drop large enough in comparison  
R3  
MAX4040  
V
EE  
Figure 9. Current Monitor for a Battery Stack  
to V of the op amp, in order to minimize errors.  
OS  
For a ±V output and a current load of 50mA, the choice  
of resistors can be R± = 2, R2 = ±00k, R3 = ±M.  
The circuit consumes less power (but is more susceptiꢂ  
ble to noise) with higher ꢁalues of R±, R2, and R3.  
The output ꢁoltage of the application can be calculated  
using the following equation:  
V
= [I  
x (R± / R2)] x R3  
LOAD  
OUT  
12 ______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
_____________________________________________Pin Configurations (continued)  
TOP VIEW  
N.C.  
IN-  
1
2
3
4
8
7
6
5
N.C.  
OUTA  
INA-  
1
2
3
4
8
7
6
5
V
CC  
N.C.  
IN-  
1
2
3
4
8
7
6
5
SHDN  
VCC  
OUT  
V
OUTB  
INB-  
CC  
MAX4040  
MAX4042  
MAX4041  
IN+  
OUT  
N.C.  
INA+  
IN+  
V
EE  
V
INB+  
V
N.C.  
EE  
EE  
SO/µMAX  
SO/µMAX  
SO/µMAX  
OUTA  
INA-  
1
14  
V
OUTA  
INA-  
1
2
3
4
5
6
7
14 OUTD  
13 IND-  
12 IND+  
CC  
OUTA  
INA-  
1
10  
9
V
CC  
2
3
4
5
6
7
13 OUTB  
12 INB-  
11 INB+  
10 N.C.  
2
3
4
5
OUTB  
MAX4043  
INA+  
INA+  
INA+  
8
INB-  
V
MAX4043  
V
CC  
11  
V
EE  
MAX4044  
V
7
INB+  
EE  
EE  
N.C.  
SHDNA  
N.C.  
INB+  
INB-  
10 INC+  
SHDNA  
6
SHDNB  
9
8
SHDNB  
N.C.  
9
8
INC-  
µMAX  
OUTB  
OUTC  
SO  
SO  
___________________Chip Information  
MAX4040/MAX404± TRANSISTOR COUNT: 234  
MAX4042/MAX4043 TRANSISTOR COUNT: 466  
MAX4044 TRANSISTOR COUNT: 932  
SUBSTRATE CONNECTED TO V  
EE  
______________________________________________________________________________________ 13  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, SOT-23, 5L  
1
21-0057  
E
1
14 ______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6 0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
______________________________________________________________________________________ 15  
Single/Dual/Quad, Low-Cost, SOT23,  
Micropower, Rail-to-Rail I/O Op Amps  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
Ø0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0°  
6°  
0°  
6°  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4040ESA-T

Operational Amplifier, 1 Func, 3500uV Offset-Max, PDSO8, SOP-8
MAXIM

MAX4040EUA

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4040EUA+

Operational Amplifier, 1 Func, 5000uV Offset-Max, BIPolar, PDSO8, MO-187C-AA, MICRO MAX PACKAGE-8
MAXIM

MAX4040EUK-T

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4041

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4041ESA

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4041ESA+T

Operational Amplifier, 1 Func, 3500uV Offset-Max, BIPolar, PDSO8, SO-8
MAXIM

MAX4041ESA-T

Operational Amplifier, 1 Func, 3500uV Offset-Max, BIPolar, PDSO8, SOP-8
MAXIM

MAX4041EUA

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4042

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4042ESA

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM

MAX4042EUA

Single/Dual/Quad, Low-Cost, SOT23, Micropower Rail-to-Rail I/O Op Amps
MAXIM