MAX5048AAUT [ROCHESTER]

7.6 A BUF OR INV BASED MOSFET DRIVER, PDSO6, MO-178AB, SOT-23, 6 PIN;
MAX5048AAUT
型号: MAX5048AAUT
厂家: Rochester Electronics    Rochester Electronics
描述:

7.6 A BUF OR INV BASED MOSFET DRIVER, PDSO6, MO-178AB, SOT-23, 6 PIN

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总14页 (文件大小:1408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2419; Rev 4; 7/05  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
General Description  
Features  
Independent Source-and-Sink Outputs for  
The MAX5048A/MAX5048B are high-speed MOSFET  
drivers capable of sinking/sourcing 7.6A/1.3A peak cur-  
rents. These devices take logic input signals and drive  
a large external MOSFET. The MAX5048A/MAX5048B  
have inverting and noninverting inputs that give the  
user greater flexibility in controlling the MOSFET. They  
feature two separate outputs working in complementary  
mode, offering flexibility in controlling both turn-on and  
turn-off switching speeds.  
Controllable Rise and Fall Times  
+4V to +12.6V Single Power Supply  
7.6A/1.3A Peak Sink/Source Drive Current  
0.23Open-Drain n-Channel Sink Output  
2Open-Drain p-Channel Source Output  
12ns (typ) Propagation Delay  
The MAX5048A/MAX5048B have internal logic circuitry,  
which prevents shoot-through during output state  
changes. The logic inputs are protected against volt-  
age spikes up to +14V, regardless of V+ voltage.  
Propagation delay time is minimized and matched  
between the inverting and noninverting inputs. The  
MAX5048A/MAX5048B have very fast switching times  
combined with very short propagation delays (12ns  
typ), making them ideal for high-frequency circuits.  
Matching Delay Time Between Inverting and  
Noninverting Inputs  
V /2 CMOS (MAX5048A)/TTL (MAX5048B) Logic  
CC  
Inputs  
1.6V Input Hysteresis  
Up to +14V Logic Inputs (Regardless of V+  
Voltage)  
The MAX5048A/MAX5048B operate from a +4V to +12.6V  
single power supply and typically consume 0.95mA of  
supply current. The MAX5048A has CMOS input logic  
levels, while the MAX5048B has standard TTL input logic  
levels. These devices are available in space-saving  
6-pin SOT23 and TDFN packages.  
Low Input Capacitance: 2.5pF (typ)  
-40°C to +125°C Operating Temperature Range  
6-Pin SOT23 and TDFN Packages  
Ordering Information  
Applications  
PIN-  
LOGIC TOP  
PART  
TEMP RANGE  
PACKAGE INPUT MARK  
Power MOSFET Switching  
Switch-Mode Power Supplies  
DC-DC Converters  
V
/2  
CC  
MAX5048AAUT-T -40°C to +125°C 6 SOT23-6  
ABEC  
CMOS  
MAX5048BAUT-T -40°C to +125°C 6 SOT23-6 TTL ABED  
Motor Control  
V
/2  
CC  
MAX5048AATT-T -40°C to +125°C 6 TDFN-6  
MAX5048BATT-T -40°C to +125°C 6 TDFN-6  
AKV  
CMOS  
Power-Supply Modules  
TTL  
AKW  
Typical Operating Circuit  
Pin Configurations  
TOP VIEW  
V+  
V+  
P_OUT  
V+  
P_OUT  
N_OUT  
1
2
3
6
5
4
IN+  
IN-  
MAX5048A  
MAX5048B  
MAX5048A  
MAX5048B  
IN+  
IN-  
N_OUT  
N
GND  
GND  
SOT23  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
ABSOLUTE MAXIMUM RATINGS  
Voltages Referenced to GND  
Junction to Case Thermal Resistance, θ (SOT23)....75°C/W  
JC  
V+...........................................................................-0.3V to +13V  
IN+, IN-...................................................................-0.3V to +14V  
N_OUT, P_OUT ............................................-0.3V to (V+ + 0.3V)  
N_OUT Continuous Output Current (Note 1) ....................390mA  
P_OUT Continuous Output Current (Note 1).....................100mA  
6-Pin TDFN (derate 18.2mW/°C above +70°C) .........1454mW  
Junction to Case Thermal Resistance, θ (TDFN) ....8.5°C/W  
JC  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation* (T = +70°C)  
A
6-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW  
Note 1: Continuous output current is limited by the power dissipation of the package.  
*As per JEDEC51 standard.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = +12V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
V+ Operating Range  
V+  
4.0  
12.6  
4.00  
V
V
V+ Undervoltage Lockout  
UVLO  
V+ rising  
3.25  
3.6  
V+ Undervoltage Lockout  
Hysteresis  
400  
mV  
V+ Undervoltage Lockout to  
Output Delay Time  
V+ rising  
300  
ns  
V+ Supply Current  
I+  
IN+ = IN- = V+  
0.95  
1.5  
mA  
n-CHANNEL OUTPUT  
T
T
T
T
= +25°C  
0.23  
0.38  
0.24  
0.40  
0.31  
0.46  
0.32  
0.48  
3.3  
0.26  
0.43  
0.28  
0.47  
0.34  
0.51  
0.36  
0.55  
10  
A
A
A
A
A
V+ = +10V,  
Driver Output Resistance—  
Pulling Down (MAX5048AAUT/  
MAX5048BAUT)  
I
= -100mA  
N-OUT  
= +125°C  
= +25°C  
= +125°C  
= +25°C  
= +125°C  
= +25°C  
= +125°C  
R
R
ON-N  
V+ = +4.5V,  
= -100mA  
I
N-OUT  
T
T
T
T
V+ = +10V,  
= -100mA  
Driver Output Resistance—  
Pulling Down (MAX5048AATT/  
MAX5048BATT)  
I
N-OUT  
A
A
A
ON-N  
V+ = +4.5V,  
= -100mA  
I
N-OUT  
Power-Off Pulldown Resistance  
V+ = 0 or floating, I  
V+ = 0 or floating, I  
= -10mA, T = +25°C  
A
N-OUT  
N-OUT  
Power-Off Pulldown Clamp  
Voltage  
= -10mA,  
0.85  
1.0  
20  
V
T
A
= +25°C  
Output Leakage Current  
Peak Output Current (Sinking)  
p-CHANNEL OUTPUT  
I
I
N_OUT = V+  
6.85  
7.6  
µA  
A
LK-N  
PK-N  
C = 10,000pF  
L
T
A
T
A
T
A
T
A
= +25°C  
= +125°C  
= +25°C  
= +125°C  
2.00  
2.85  
2.20  
3.10  
3.00  
4.30  
3.30  
4.70  
V+ = +10V,  
Driver Output Resistance—  
Pulling Up (MAX5048AAUT/  
MAX5048BAUT)  
I
= 50mA  
P-OUT  
R
ON-P  
V+ = +4.5V,  
= 50mA  
I
P-OUT  
2
_______________________________________________________________________________________  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = +12V, T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
2.08  
2.93  
2.28  
3.18  
0.001  
1.3  
MAX  
3.08  
4.38  
3.38  
4.78  
10  
UNITS  
T
A
T
A
T
A
T
A
= +25°C  
V+ = +10V,  
= 50mA  
Driver Output Resistance—  
Pulling Up (MAX5048AATT/  
MAX5048BATT)  
I
P-OUT  
= +125°C  
= +25°C  
= +125°C  
R
ON-P  
V+ = +4.5V,  
= 50mA  
I
P-OUT  
Output Leakage Current  
Peak Output Current (Sourcing)  
LOGIC INPUT  
I
P_OUT = 0  
µA  
A
LK-P  
I
C = 10,000pF  
L
PK-P  
MAX5048A  
MAX5048B  
MAX5048A  
MAX5048B  
MAX5048A  
MAX5048B  
0.67 x V+  
2.4  
Logic 1 Input Voltage  
Logic 0 Input Voltage  
Logic-Input Hysteresis  
V
V
V
V
IH  
0.33 x V+  
0.8  
V
IL  
1.6  
0.68  
0.001  
2.5  
V
HYS  
Logic-Input Current  
Input Capacitance  
V
= V+ or 0  
10  
µA  
pF  
IN_  
C
IN  
SWITCHING CHARACTERISTICS FOR V+ = +10V  
C = 1000pF  
L
8
45  
Rise Time  
Fall Time  
t
ns  
ns  
C = 5000pF  
L
R
C = 10,000pF  
82  
L
C = 1000pF  
L
3.2  
7.5  
12.5  
12  
t
C = 5000pF  
L
F
C = 10,000pF  
L
Turn-On Propagation Delay Time  
Turn-Off Propagation Delay Time  
Break-Before-Make Time  
t
Figure 1, C = 1000pF (Note 3)  
7
7
25  
25  
ns  
ns  
ns  
D-ON  
L
t
Figure 1, C = 1000pF (Note 3)  
12  
D-OFF  
L
2.5  
SWITCHING CHARACTERISTICS FOR V+ = +4.5V  
C = 1000pF  
12  
41  
L
Rise Time  
t
C = 5000pF  
L
ns  
ns  
R
C = 10,000pF  
74  
L
C = 1000pF  
L
3.0  
7.0  
11.3  
14  
Fall Time  
t
C = 5000pF  
L
F
C = 10,000pF  
L
Turn-On Propagation Delay Time  
Turn-Off Propagation Delay Time  
Break-Before-Make Time  
t
Figure 1, C = 1000pF (Note 3)  
8
8
27  
27  
ns  
ns  
ns  
D-ON  
L
t
Figure 1, C = 1000pF (Note 3)  
14  
D-OFF  
L
4.2  
Note 2: All DC specifications are 100% tested at T = +25°C. Specifications over -40°C to +125°C are guaranteed by design.  
A
Note 3: Guaranteed by design, not production tested.  
_______________________________________________________________________________________  
3
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
Typical Operating Characteristics  
(C = 1000pF, T = +25°C, unless otherwise noted.)  
L
A
PROPAGATION DELAY TIME, LOW-TO-HIGH  
vs. SUPPLY VOLTAGE  
RISE TIME vs. SUPPLY VOLTAGE  
FALL TIME vs. SUPPLY VOLTAGE  
20  
17  
14  
11  
8
6.0  
20  
18  
16  
14  
12  
10  
T
= +85°C  
T
= +125°C  
A
A
T = +125°C  
A
5.5  
5.0  
4.5  
4.0  
3.5  
T
= +125°C  
A
T = +85°C  
A
T
= +85°C  
T
= +25°C  
A
T
= -40°C  
A
A
T
= 0°C  
A
T
= 0°C  
A
T
= +25°C  
A
T
= -40°C  
A
T = -40°C  
A
T
= 0°C  
T
= +25°C  
A
A
3.0  
2.5  
2.0  
5
4
6
8
10  
12  
4
6
8
10  
12  
4
6
8
10  
12  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
PROPAGATION DELAY TIME, HIGH-TO-LOW  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. LOAD CAPACITANCE  
20  
18  
16  
14  
12  
10  
12  
10  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V+ = +10V  
f = 100kHz  
DUTY CYCLE = 50%  
DUTY CYCLE = 50%  
V+ = +10V, C = 0  
L
T
= +125°C  
A
T
= +85°C  
A
1MHz  
T
= 0°C  
T
= -40°C  
T
= +25°C  
A
A
A
6
500kHz  
4
100kHz  
75kHz  
2
0
4
6
8
10  
12  
4
6
8
10  
12  
0
400  
800  
1200  
1600  
2000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD CAPACITANCE (pF)  
MAX5048A  
INPUT THRESHOLD VOLTAGE  
vs. SUPPLY VOLTAGE  
MAX5048A  
SUPPLY CURRENT vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
8
7
6
5
4
3
2
1
0
V+ = +10V  
f = 100kHz, C = 0  
L
INPUT  
HIGH-TO-LOW  
INPUT  
LOW-TO-HIGH  
DUTY CYCLE = 50%  
RISING  
FALLING  
0
2
4
6
8
10  
12  
-50 -25  
0
25  
50  
75 100 125  
4
6
8
10  
12  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
Typical Operating Characteristics (continued)  
(C = 1000pF, T = +25°C, unless otherwise noted.)  
L
A
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 5000pF)  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 10,000pF)  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 5000pF)  
MAX5048 toc12  
L
L
L
MAX5048 toc10  
MAX5048 toc11  
IN+  
IN+  
2V/div  
2V/div  
IN+  
2V/div  
OUTPUT  
2V/div  
OUTPUT  
2V/div  
OUTPUT  
2V/div  
20ns/div  
20ns/div  
20ns/div  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 10,000pF)  
(V+ = +12V, C = 5000pF)  
(V+ = +12V, C = 10,000pF)  
L
MAX5048 toc15  
L
L
MAX5048 toc13  
MAX5048 toc14  
IN+  
IN+  
5V/div  
5V/div  
IN+  
2V/div  
OUTPUT  
2V/div  
OUTPUT  
5V/div  
OUTPUT  
5V/div  
20ns/div  
20ns/div  
20ns/div  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +12V, C = 5000pF)  
(V+ = +12V, C = 10,000pF)  
L
MAX5048 toc17  
L
MAX5048 toc16  
IN+  
IN+  
5V/div  
5V/div  
OUTPUT  
5V/div  
OUTPUT  
5V/div  
20ns/div  
20ns/div  
_______________________________________________________________________________________  
5
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
Undervoltage Lockout (UVLO)  
Pin Description  
When V+ is below the UVLO threshold, the N-channel  
is ON and the P-channel is OFF, independent of the  
state of the inputs. The UVLO is typically 3.6V with  
400mV typical hysteresis to avoid chattering.  
PIN  
NAME  
FUNCTION  
Power Supply. Bypass to GND with a  
0.1µF ceramic capacitor.  
1
V+  
p-Channel Open-Drain Output. Sources  
current for MOSFET turn-on.  
Driver Outputs  
The MAX5048A/MAX5048B provide two separate out-  
puts. One is an open-drain P-channel, the other an  
open-drain N-channel. They have distinct current sourc-  
ing/sinking capabilities to independently control the rise  
and fall times of the MOSFET gate. Add a resistor in  
series with P_OUT/N_OUT to slow the corresponding  
rise/fall time of the MOSFET gate.  
2
P_OUT  
n-Channel Open-Drain Output. Sinks  
current for MOSFET turn-off.  
3
4
5
N_OUT  
GND  
IN-  
Ground  
Inverting Logic Input Terminal. Connect  
to GND when not used.  
Noninverting Logic Input Terminal.  
Connect to V+ when not used.  
Applications Information  
Supply Bypassing, Device Grounding,  
and Placement  
6
IN+  
EP  
Exposed paddle. Connect to GND.  
Solder EP to the GND plane for  
improved thermal performance.  
Ample supply bypassing and device grounding are  
extremely important because when large external  
capacitive loads are driven, the peak current at the V+  
pin can approach 1.3A, while at the GND pin the peak  
Detailed Description  
current can approach 7.6A. V  
drops and ground  
CC  
Logic Inputs  
shifts are forms of negative feedback for inverters and, if  
excessive, can cause multiple switching when the IN-  
input is used and the input slew rate is low. The device  
driving the input should be referenced to the  
MAX5048A/MAX5048B GND pin especially when the IN-  
input is used. Ground shifts due to insufficient device  
grounding may disturb other circuits sharing the same  
AC ground return path. Any series inductance in the V+,  
P_OUT, N_OUT and/or GND paths can cause oscilla-  
tions due to the very high di/dt that results when the  
MAX5048A/MAX5048B are switched with any capacitive  
load. A 0.1µF or larger value ceramic capacitor is rec-  
ommended bypassing V+ to GND and placed as close  
to the pins as possible. When driving very large loads  
(e.g., 10nF) at minimum rise time, 10µF or more of paral-  
lel storage capacitance is recommended. A ground  
plane is highly recommended to minimize ground return  
resistance and series inductance. Care should be taken  
to place the MAX5048A/MAX5048B as close as possi-  
ble to the external MOSFET being driven to further mini-  
mize board inductance and AC path resistance.  
The MAX5048A/MAX5048Bs’ logic inputs are protected  
against voltage spikes up to +14V, regardless of the V+  
voltage. The low 2.5pF input capacitance of the inputs  
reduces loading and increases switching speed. These  
devices have two inputs that give the user greater flexi-  
bility in controlling the MOSFET. Table 1 shows all pos-  
sible input combinations.  
The difference between the MAX5048A and the  
MAX5048B is the input threshold voltage. The  
MAX5048A has V /2 CMOS logic-level thresholds,  
CC  
while the MAX5048B has TTL logic-level thresholds (see  
the Electrical Characteristics). For V+ above 5.5V, V  
IH  
(typ) = 0.5x(V+) + 0.8V and V (typ) = 0.5x(V+) - 0.8V.  
IL  
As V+ is reduced from 5.5V to 4V, V and V gradually  
IH  
IL  
approach V (typ) = 0.5x(V+) + 0.65V and V (typ) =  
IH  
IL  
0.5x(V+) - 0.65V. Connect IN+ to V+ or IN- to GND  
when not used. Alternatively, the unused input can be  
used as an ON/OFF pin (see Table 1).  
Table 1. Truth Table  
IN+  
L
IN-  
L
p-CHANNEL  
OFF  
n-CHANNEL  
Power Dissipation  
Power dissipation of the MAX5048A/MAX5048B con-  
sists of three components, caused by the quiescent  
current, capacitive charge and discharge of internal  
nodes, and the output current (either capacitive or  
resistive load). The sum of these components must be  
kept below the maximum power-dissipation limit.  
ON  
ON  
OFF  
ON  
L
H
L
OFF  
H
ON  
H
H
OFF  
L = Logic low  
H = Logic high  
6
_______________________________________________________________________________________  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
IN+  
V
IH  
V
IL  
P_OUT AND  
N_OUT  
TIED  
TOGETHER  
90%  
10%  
t
t
t
t
R
D–OFF  
F
D–ON  
TIMING DIAGRAM  
V+  
V+  
MAX5048A  
MAX5048B  
P_OUT  
IN+  
IN-  
INPUT  
OUTPUT  
N_OUT  
C
L
GND  
TEST CIRCUIT  
Figure 1. Timing Diagram and Test Circuit  
The quiescent current is 0.95mA typical. The current  
required to charge and discharge the internal nodes is  
frequency dependent (see the Typical Operating  
Characteristics). The MAX5048A/MAX5048B power dis-  
sipation when driving a ground referenced resistive  
load is:  
following PC board layout guidelines are recommended  
when designing with the MAX5048A/MAX5048B:  
• Place one or more 0.1µF decoupling ceramic capaci-  
tor(s) from V+ to GND as close to the device as possi-  
ble. At least one storage capacitor of 10µF (min)  
should be located on the PC board with a low resis-  
tance path to the V+ pin of the MAX5048A/MAX5048B.  
2
P = D x R  
x I  
LOAD  
ON(MAX)  
where D is the fraction of the period the MAX5048A/  
MAX5048Bs’ output pulls high, R is the maxi-  
• There are two AC current loops formed between the  
device and the gate of the MOSFET being driven.  
The MOSFET looks like a large capacitance from  
gate to source when the gate is being pulled low.  
The active current loop is from N_OUT of the  
MAX5048A/MAX5048B to the MOSFET gate to the  
MOSFET source and to GND of the MAX5048A/  
MAX5048B. When the gate of the MOSFET is being  
pulled high, the active current loop is from P_OUT of  
the MAX5048A/MAX5048B to the MOSFET gate to  
the MOSFET source to the GND terminal of the  
decoupling capacitor to the V+ terminal of the  
decoupling capacitor and to the V+ terminal of the  
MAX5048A/MAX5048B. While the charging current  
loop is important, the discharging current loop is crit-  
ical. It is important to minimize the physical distance  
and the impedance in these AC current paths.  
ON (MAX)  
mum on-resistance of the device with the output high  
(P-channel), and I is the output load current of the  
LOAD  
MAX5048A/MAX5048B.  
For capacitive loads, the power dissipation is:  
2
P = C  
x (V+) x FREQ  
LOAD  
where C  
is the capacitive load, V+ is the supply  
LOAD  
voltage, and FREQ is the switching frequency.  
Layout Information  
The MOSFET drivers MAX5048A/MAX5048B source-  
and-sink large currents to create very fast rise and fall  
edges at the gate of the switching MOSFET. The high  
di/dt can cause unacceptable ringing if the trace  
lengths and impedances are not well controlled. The  
_______________________________________________________________________________________  
7
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
• In a multilayer PC board, the component surface  
Chip Information  
layer surrounding the MAX5048A/MAX5048B should  
consist of a GND plane containing the discharging  
and charging current loops.  
TRANSISTOR COUNT: 676  
PROCESS: BiCMOS  
V
S
V+  
MAX5048A  
MAX5048B  
V+  
(4V TO 12.6V)  
P
V+  
P_OUT  
BREAK-  
BEFORE-  
MAKE  
P_OUT  
N_OUT  
IN-  
IN+  
MAX5048A  
MAX5048B  
CONTROL  
IN+  
IN-  
N_OUT  
N
GND  
GND  
Figure 2. MAX5048A/MAX5048B Functional Diagram  
Figure 3. Noninverting Application  
4V TO 12V  
V
S
V+  
IN+  
P_OUT  
P
MAX5048A/  
MAX5048B  
N_OUT  
V+  
(4V TO 12.6V)  
IN-  
IN+  
V
OUT  
V+  
P_OUT  
GND  
V+  
FROM PWM  
CONTROLLER  
(BUCK)  
MAX5048A  
MAX5048B  
V
OUT  
FROM PWM  
CONTROLLER  
(BOOST)  
IN+  
IN-  
N_OUT  
P_OUT  
MAX5048A  
MAX5048B  
GND  
N_OUT  
N
IN-  
GND  
Figure 4. Boost Converter  
Figure 5. MAX5048A/MAX5048B in High-Power Synchronous  
Buck Converter  
8
_______________________________________________________________________________________  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
Pin Configurations (continued)  
TOP VIEW  
V+  
P_OUT  
N_OUT  
1
2
3
6
5
4
IN+  
IN-  
MAX5048A  
MAX5048B  
GND  
EXPOSED PAD  
TDFN  
3mm x 3mm  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, SOT 6L BODY  
1
21-0058  
G
1
_______________________________________________________________________________________  
9
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
D
A2  
PIN 1 ID  
N
0.35x0.35  
b
[(N/2)-1] x e  
REF.  
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
e
A1  
k
C
C
L
L
A
L
L
e
e
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0137  
G
2
10 ______________________________________________________________________________________  
7.6A, 12ns, SOT23/TDFN, MOSFET Driver  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
DOWNBONDS  
ALLOWED  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.90 REF  
1.95 REF  
1.95 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.95 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
1.50±0.10 2.30±0.10 0.65 BSC  
0.40±0.05  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.30±0.05  
NO  
NO  
T633-2  
6
T833-1  
8
NO  
T833-2  
8
NO  
T833-3  
8
YES  
NO  
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50±0.10 2.30±0.10 0.50 BSC MO229 / WEED-3 0.25±0.05  
1.70±0.10 2.30±0.10 0.40 BSC  
1.70±0.10 2.30±0.10 0.40 BSC  
- - - -  
- - - -  
0.20±0.05  
0.20±0.05  
YES  
NO  
PACKAGE OUTLINE, 6,8,10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
-DRAWING NOT TO SCALE-  
21-0137  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
ENG LISH ? ? ? ? ? ? ? •  
WH AT' S N EW  
PRO DU CT S  
S OL UT IO NS  
D ESIGN  
A PPNOTES  
SU PPORT  
B U Y  
CO MPA N Y  
M EMB ER  
M a x i m > P r o d u c t s > P o w e r a n d B a t t e r y M a n a g e m e n t A u t o m o t i v e  
M A X 5 0 4 8  
7 . 6 A , 1 2 n s , S O T 2 3 / T D F N M O S F E T D r i v e r  
Q
u
i
c
k
V
i
e
w
T
e
c
h
n
i
c
a
l
D
o
c
u
m
e
n
t
s
O
r
d
e
r
i
n
g
I
n
f
o
M
o
r
e
I
n
f
o
r
m
a
t
i
o
n
A
l
l
O
r
d
e
r
i
n
g
I
n
f
o
r
m
a
t
i
o
n
N
o
t
e
s
:
1 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
2 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e b u s i n e  
d a y .  
3 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e F u l l D a t a  
S h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
4 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t u s e s .  
D
e
v
i
c
e
s
:
1
-
1
6
o
f
1
6
M
A
X
5
0
4
8
F
r
e
e
B
u
y
T
e
m
p
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P
a
c
k
a
g
e
:
T
Y
P
E
P
I
N
S
F
O
O
T
P
R
I
N
T
S
a
m
p
l
e
D
R
A
W
I
N
G
C
O
D
E
/
V
A
R
*
M
A
X
5
0
4
8
B
A
U
T
#
G
1
6
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
H
-
6
*
M A X 5 0 4 8 A A U T # G 1 6  
M A X 5 0 4 8 A A U T # T G 1 6  
M A X 5 0 4 8 B A U T # T G 1 6  
M A X 5 0 4 8 B A U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F H - 6 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : R o H S Q u a l i f  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
-
6
*
M A X 5 0 4 8 A A U T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
6
F
-
6
*
M A X 5 0 4 8 A A U T - T  
M A X 5 0 4 8 B A U T - T  
M A X 5 0 4 8 A A T T +  
M A X 5 0 4 8 B A T T  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O T - 2 3 ; 6 p i n ; 9 m m  
D w g : 2 1 - 0 0 5 8 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 6 F - 6 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 + 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
T
6
3
3
-
2
*
M A X 5 0 4 8 B A T T +  
M A X 5 0 4 8 A A T T  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 + 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
T
6
3
3
-
2
*
M
A
X
5
0
4
8
B
A
T
T
+
T
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 + 2 *  
M A X 5 0 4 8 B A T T - T  
M A X 5 0 4 8 A A T T - T  
M A X 5 0 4 8 A A T T + T  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 - 2 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T H I N Q F N ( D u a l ) ; 6 p i n ; 1 0 m m  
D w g : 2 1 - 0 1 3 7 I ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : T 6 3 3 + 2 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
N e x t D a y P r o d u c t S e l e c t i o n A s s i s t a n c e f r o m A p p l i c a t i o n s E n g i n e e r s  
P a r a m e t r i c S e a r c h  
A p p l i c a t i o n s H e l p  
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
D e s c r i p t i o n  
D a t a S h e e t  
A p p l i c a t i o n N o t e s  
D e s i g n G u i d e s  
E n g i n e e r i n g J o u r n a l s  
R e l i a b i l i t y R e p o r t s  
S o f t w a r e / M o d e l s  
E v a l u a t i o n K i t s  
P r i c e a n d A v a i l a b i l i t y  
S a m p l e s  
B u y O n l i n e  
P a c k a g e I n f o r m a t i o n  
L e a d - F r e e I n f o r m a t i o n  
R e l a t e d P r o d u c t s  
N o t e s a n d C o m m e n t s  
E v a l u a t i o n K i t s  
K e y F e a t u r e s  
A p p l i c a t i o n s / U s e s  
K e y S p e c i f i c a t i o n s  
D i a g r a m  
D o c u m e n t R e f . : 1 9 - 2 4 1 9 ; R e v 4 ; 2 0 0 5 - 0 9 - 2 7  
T h i s p a g e l a s t m o d i f i e d : 2 0 0 7 - 0 7 - 2 7  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX5048AAUT#TG16

Buffer/Inverter Based MOSFET Driver, 7.6A, BICMOS, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
MAXIM

MAX5048AAUT#TWG16

Buffer/Inverter Based MOSFET Driver
MAXIM

MAX5048AAUT+T

Buffer/Inverter Based MOSFET Driver, BICMOS, PDSO6,
MAXIM

MAX5048AAUT+TW

Buffer/Inverter Based MOSFET Driver,
MAXIM

MAX5048AAUT-T

7.6A, 12ns, SOT23 MOSFET Driver
MAXIM

MAX5048BATT

7.6A BUF OR INV BASED MOSFET DRIVER, DSO6, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEA, TDFN-6
ROCHESTER

MAX5048BATT+

Buffer/Inverter Based MOSFET Driver, 7.6A, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEA, TDFN-6
MAXIM

MAX5048BATT+T

Buffer/Inverter Based MOSFET Driver, 7.6A, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-229WEEA, TDFN-6
MAXIM

MAX5048BATT-T

Buffer/Inverter Based MOSFET Driver, 7.6A, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEA, TDFN-6
MAXIM

MAX5048BAUT

7.6 A BUF OR INV BASED MOSFET DRIVER, PDSO6, MO-178AB, SOT-23, 6 PIN
ROCHESTER

MAX5048BAUT#TDCAC

Buffer/Inverter Based MOSFET Driver
MAXIM

MAX5048BAUT#TDG16

Buffer/Inverter Based MOSFET Driver
MAXIM