MAX5070AAUA+ [ROCHESTER]

2A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, MICRO MAX, MO-187CAA, MICRO SOP-8;
MAX5070AAUA+
型号: MAX5070AAUA+
厂家: Rochester Electronics    Rochester Electronics
描述:

2A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, MICRO MAX, MO-187CAA, MICRO SOP-8

信息通信管理 开关 光电二极管
文件: 总26页 (文件大小:1133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3283; Rev 3; 10/06  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
General Description  
Features  
Pin-for-Pin Replacement for UC2842 (MAX5070A)  
The MAX5070/MAX5071 BiCMOS, high-performance,  
current-mode PWM controllers have all the features  
required for wide input voltage range isolated/nonisolated  
power supplies. These controllers are used for low- and  
high-power universal input voltage and telecom power  
supplies.  
and UC2844 (MAX5070B)  
2A Drive Source and 1A Sink Capability  
Up to 1MHz Switching Frequency Operation  
Bidirectional Synchronization  
The MAX5070/MAX5071 contain a fast comparator with  
only 60ns typical delay from current sense to the output  
for overcurrent protection. The MAX5070A/MAX5070B  
have an integrated error amplifier with the output at  
COMP. Soft-start is achieved by controlling the COMP  
voltage rise using external components.  
(MAX5071A/MAX5071B)  
Advanced Output Drive for Secondary-Side  
Synchronous Rectification (MAX5071C)  
Fast 60ns Cycle-by-Cycle Current Limit  
Trimmed Oscillator Capacitor Discharge Current  
The frequency is adjustable from 20kHz to 1MHz with  
an external resistor and capacitor. The timing capacitor  
discharge current is trimmed allowing for programma-  
ble dead time and maximum duty cycle for a given fre-  
Sets Maximum Duty Cycle Accurately  
Accurate 5% Start and Stop Voltage with 6V  
Hysteresis  
quency. The available saw-toothed waveform at R C  
T
can be used for slope compensation when needed.  
T
Low 32µA Startup Current  
5V Regulator Output (VREF) with 20mA Capability  
Overtemperature Shutdown  
The MAX5071A/MAX5071B include a bidirectional syn-  
chronization circuit allowing for multiple controllers to  
run at the same frequency to avoid beat frequencies.  
Synchronization is accomplished by simply connecting  
the SYNC pins of all devices together. When synchro-  
nizing with other devices, the MAX5071A/MAX5071B  
with the highest frequency synchronizes the other  
devices. Alternatively, the MAX5071A/MAX5071B can  
be synchronized to an external clock with an open-  
drain output stage running at a higher frequency.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 SO  
MAX5070AASA  
MAX5070AAUA  
MAX5070BASA  
MAX5070BAUA  
8 µMAX  
8 SO  
8 µMAX  
The MAX5071C provides a clock output pulse  
(ADV_CLK) that leads the driver output (OUT) by  
110ns. The advanced clock signal is used to drive the  
secondary-side synchronous rectifiers.  
The MAX5070/MAX5071 are available in 8-pin µMAX®  
and SO packages and operate over the automotive tem-  
perature range of -40°C to +125°C.  
Specify lead-free by adding the + symbol at the end of the part  
number when ordering.  
Ordering Information continued at end of data sheet.  
Selector Guide appears at end of data sheet.  
Pin Configurations  
Applications  
TOP VIEW  
Universal Input AC/DC Power Supplies  
Isolated Telecom Power Supplies  
Isolated Power-Supply Modules  
Networking Systems  
COMP  
FB  
1
2
3
4
8
7
6
5
VREF  
V
CC  
MAX5070A  
MAX5070B  
CS  
OUT  
GND  
Computer Systems/Servers  
Industrial Power Conversion  
Isolated Keep-Alive Circuits  
R /C  
T
T
µMAX/SO  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
ABSOLUTE MAXIMUM RATINGS  
V
V
(Low-Impedance Source) to GND..................-0.3V to +30V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
(I  
< 30mA).....................................................Self Limiting  
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW  
8-Pin SO (derate 5.9mW/°C above +70°C)...............470.6mW  
Operating Temperature Range (Automotive)....-40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC CC  
OUT to GND ...............................................-0.3V to (V  
OUT Current.............................................................±1A for 10µs  
FB, SYNC, COMP, CS, R /C , VREF to GND...........-0.3V to +6V  
+ 0.3V)  
CC  
T
T
COMP Sink Current (MAX5070)..........................................10mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +15V, R = 10k, C = 3.3nF, V  
= OPEN, C = 0.1µF, COMP = OPEN, V = 2V, CS = GND, T = -40°C to +85°C,  
VREF FB A  
CC  
T
T
VREF  
unless otherwise noted.) (Note 1)  
PARAMETER  
REFERENCE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
V
T
= +25°C, I = 1mA  
VREF  
4.950  
5.000  
0.4  
6
5.050  
4
V
VREF  
A
Line Regulation  
V  
12V < V < 25V, I = 1mA  
VREF  
mV  
mV  
V
LINE  
LOAD  
REFT  
CC  
Load Regulation  
V  
1mA < I  
1mA < I  
< 20mA  
25  
VREF  
VREF  
Total Output Variation  
Reference Output-Noise Voltage  
Reference Output Short Circuit  
OSCILLATOR  
V
< 20mA, 12V < V < 25V  
4.9  
-30  
51  
5.1  
CC  
V
10Hz < f < 10kHz, T = +25°C  
50  
µV  
mA  
NOISE  
A
I
V
= 0V  
VREF  
-100  
-180  
S_SC  
Initial Accuracy  
T
= +25°C  
54  
0.2  
0.5  
1.7  
1.1  
8.3  
57  
kHz  
%
A
Voltage Stability  
12V < V  
< 25V  
0.5  
CC  
Temp Stability  
-40°C < T < +85°C  
%
A
R /C Voltage Ramp (  
)
V
V
T
T
P-P  
RAMP  
R /C Voltage Ramp Valley  
V
RAMP_VALLEY  
V
T
T
Discharge Current  
Frequency Range  
I
V
= 2V, T = +25°C  
7.9  
20  
8.7  
mA  
kHz  
DIS  
RT/CT  
A
f
1000  
OSC  
ERROR AMPLIFIER (MAX5070A/MAX5070B)  
FB Input Voltage  
V
FB shorted to COMP  
2.465  
2.5  
-0.01  
100  
1
2.535  
-0.1  
V
µA  
dB  
MHz  
dB  
mA  
mA  
V
FB  
FB Input Bias Current  
Open-Loop Voltage Gain  
Unity-Gain Bandwidth  
Power-Supply Rejection Ratio  
COMP Sink Current  
I
B(FB)  
A
2V V  
4V  
VOL  
COMP  
f
GBW  
PSRR  
12V V  
25V (Note 2)  
60  
2
80  
CC  
I
V
V
V
V
= 2.7V, V  
= 2.3V, V  
= 2.3V, R  
= 2.7V, R  
= 1.1V  
6
SINK  
FB  
FB  
FB  
FB  
COMP  
COMP  
COMP  
COMP  
COMP Source Current  
COMP Output High Voltage  
COMP Output Low Voltage  
CURRENT-SENSE AMPLIFIER  
Gain  
I
= 5V  
-0.5  
5
-1.2  
5.8  
0.1  
-1.8  
0.5  
SOURCE  
V
= 15kto GND  
= 15kto VREF  
COMPH  
V
V
COMPL  
A
(Notes 3, 4)  
MAX5070A/B (Note 3)  
= 5V, MAX5071_  
2.85  
0.95  
0.95  
3
1
1
3.26  
1.05  
1.05  
V/V  
V
CS  
V
CS_MAX  
Maximum Current-Sense Signal  
V
COMP  
2
_______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +15V, R = 10k, C = 3.3nF, V  
= OPEN, C = 0.1µF, COMP = OPEN, V = 2V, CS = GND, T = -40°C to +85°C,  
VREF FB A  
CC  
T
T
VREF  
unless otherwise noted.) (Note 1)  
PARAMETER  
Power-Supply Rejection Ratio  
Input Bias Current  
SYMBOL  
CONDITIONS  
25V  
MIN  
TYP  
MAX  
UNITS  
dB  
PSRR  
12V V  
70  
-1  
CC  
I
V
= 0V  
COMP  
-2.5  
µA  
CS  
Delay From CS to OUT  
t
50mV overdrive  
60  
ns  
CS_DELAY  
MOSFET DRIVER  
OUT Low-Side On-Resistance  
OUT High-Side On-Resistance  
V
I
I
= 200mA  
4.5  
3.5  
2
10  
7
RDS_ONL  
SINK  
V
= 100mA  
= 10nF  
RDS_ONH  
SOURCE  
I
I
(Peak)  
I
C
C
C
C
A
SOURCE  
SOURCE  
OUT  
OUT  
OUT  
OUT  
(Peak)  
I
= 10nF  
= 1nF  
= 1nF  
1
A
SINK  
SINK  
Rise Time  
Fall Time  
t
r
15  
22  
ns  
ns  
t
f
UNDERVOLTAGE LOCKOUT/STARTUP  
Startup Voltage Threshold  
V
15.2  
9.2  
16  
10  
6
16.8  
10.8  
V
V
V
CC_START  
Minimum Operating Voltage After  
Turn-On  
V
CC_MIN  
Undervoltage-Lockout Hysteresis  
UVLO  
HYST  
PWM  
MAX5070A/MAX5071A  
94.5  
48  
96  
97.5  
50  
0
Maximum Duty Cycle  
D
%
%
MAX  
MAX5070B/MAX5071B/MAX5071C  
49.8  
Minimum Duty Cycle  
SUPPLY CURRENT  
Startup Supply Current  
Operating Supply Current  
D
MIN  
I
32  
3
65  
5
µA  
mA  
V
START  
I
V
= V = 0V  
CS  
CC  
FB  
Zener Bias Voltage at V  
V
I
= 25mA  
24  
26.5  
CC  
Z
CC  
THERMAL SHUTDOWN  
Thermal Shutdown  
T
+150  
4
°C  
°C  
SHDN  
Thermal-Shutdown Hysteresis  
T
HYST  
SYNCHRONIZATION (MAX5071A/MAX5071B only) (Note 5)  
SYNC Frequency Range  
f
20  
1000  
0.8  
kHz  
V
SYNC  
SYNC Clock Input High  
Threshold  
V
3.5  
SYNCINH  
SYNC Clock Input Low Threshold  
V
V
SYNCINL  
SYNC Clock Input Minimum  
Pulse Width  
t
200  
4.0  
ns  
PW_SYNCIN  
SYNC Clock Output High Level  
SYNC Clock Output Low Level  
SYNC Leakage Current  
V
1mA external pulldown  
4.7  
0
V
V
SYNCOH  
V
R
SYNC  
SYNC  
= 5kΩ  
0.1  
0.1  
SYNCOL  
I
V
= 0V  
0.01  
µA  
SYNC  
_______________________________________________________________________________________  
3
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +15V, R = 10k, C = 3.3nF, V  
= OPEN, C = 0.1µF, COMP = OPEN, V = 2V, CS = GND, T = -40°C to +85°C,  
VREF FB A  
CC  
T
T
VREF  
unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADV_CLK (MAX5071C only)  
ADV_CLK High Voltage  
ADV_CLK Low Voltage  
V
I
I
= 10mA source  
= 10mA sink  
2.4  
3
V
V
ADV_CLKH  
ADV_CLK  
V
0.4  
ADV_CLKL  
ADV_CLK  
ADV_CLK Output Pulse Width  
t
85  
ns  
PULSE  
ADV_CLK Rising Edge to OUT  
Rising Edge  
t
I
110  
ns  
ADV_CLK  
ADV_CLK Source and Sink  
Current  
10  
mA  
ADV_CLK  
ELECTRICAL CHARACTERISTICS  
(V  
= +15V, R = 10k, C = 3.3nF, V  
= OPEN, C = 0.1µF, COMP = OPEN, V = 2V, CS = GND, T = -40°C to +125°C,  
VREF FB A  
CC  
T
T
VREF  
unless otherwise noted.) (Note 1)  
PARAMETER  
REFERENCE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
V
T
= +25°C, I = 1mA  
VREF  
4.950  
5.000  
0.4  
6
5.050  
4
V
VREF  
A
Line Regulation  
V  
12V < V < 25V, I = 1mA  
VREF  
mV  
mV  
V
LINE  
LOAD  
REFT  
CC  
Load Regulation  
V  
1mA < I  
1mA < I  
< 20mA  
25  
VREF  
VREF  
Total Output Variation  
Reference Output Noise Voltage  
Reference Output Short Circuit  
OSCILLATOR  
V
< 20mA, 12V < V < 25V  
4.9  
-30  
51  
5.1  
CC  
V
10Hz < f < 10kHz, T = +25°C  
50  
µV  
mA  
NOISE  
A
I
V
= 0V  
VREF  
-100  
-180  
S_SC  
Initial Accuracy  
T
= +25°C  
54  
0.2  
1
57  
kHz  
%
A
Voltage Stability  
12V < V  
< 25V  
0.5  
CC  
Temp Stability  
-40°C < T < +125°C  
%
A
R /C Voltage Ramp (  
)
V
1.7  
1.1  
8.3  
V
T
T
P-P  
RAMP  
R /C Voltage Ramp Valley  
V
RAMP_VALLEY  
V
T
T
Discharge Current  
Frequency Range  
I
V
= 2V, T = +25°C  
7.9  
20  
8.7  
mA  
kHz  
DIS  
RT/CT  
A
f
1000  
OSC  
ERROR AMPLIFIER (MAX5070A/MAX5070B)  
FB Input Voltage  
V
FB shorted to COMP  
2.465  
2.5  
-0.01  
100  
1
2.535  
-0.1  
V
µA  
dB  
MHz  
dB  
mA  
mA  
V
FB  
FB Input Bias Current  
Open-Loop Voltage Gain  
Unity-Gain Bandwidth  
Power-Supply Rejection Ratio  
COMP Sink Current  
I
B(FB)  
A
VOL  
2V V  
4V  
COMP  
f
GBW  
PSRR  
12V V  
25V (Note 2)  
60  
2
80  
CC  
I
V
V
V
V
= 2.7V, V  
= 2.3V, V  
= 2.3V, R  
= 2.7V, R  
= 1.1V  
6
SINK  
FB  
FB  
FB  
FB  
COMP  
COMP  
COMP  
COMP  
COMP Source Current  
COMP Output High Voltage  
COMP Output Low Voltage  
I
= 5V  
-0.5  
5
-1.2  
5.8  
0.1  
-1.8  
0.5  
SOURCE  
V
=15kto GND  
= 15kto VREF  
COMPH  
V
V
COMPL  
4
_______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +15V, R = 10k, C = 3.3nF, V  
= OPEN, C = 0.1µF, COMP = OPEN, V = 2V, CS = GND, T = -40°C to +125°C,  
VREF FB A  
CC  
T
T
VREF  
unless otherwise noted.) (Note 1)  
PARAMETER  
CURRENT-SENSE AMPLIFIER  
Gain  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
(Notes 3, 4)  
2.85  
0.95  
0.95  
3
1
3.26  
1.05  
1.05  
V/V  
V
CS  
MAX5070A/B (Note 3)  
= 5V, MAX5071_  
Maximum Current-Sense Signal  
V
CS_MAX  
PSRR  
V
1
COMP  
Power-Supply Rejection Ratio  
Input Bias Current  
12V V  
25V  
70  
-1  
dB  
µA  
CC  
I
-2.5  
CS  
Delay From CS to OUT  
t
50mV overdrive  
60  
ns  
CS_DELAY  
MOSFET DRIVER  
OUT Low-Side On-Resistance  
OUT High-Side On-Resistance  
V
I
I
= 200mA  
4.5  
3.5  
2
12  
9
RDS_ONL  
SINK  
V
= 100mA  
= 10nF  
RDS_ONH  
SOURCE  
I
I
(Peak)  
I
C
C
C
C
A
SOURCE  
SOURCE  
OUT  
OUT  
OUT  
OUT  
(Peak)  
I
= 10nF  
= 1nF  
= 1nF  
1
A
SINK  
SINK  
Rise Time  
Fall Time  
t
15  
22  
ns  
ns  
r
t
f
UNDERVOLTAGE LOCKOUT/STARTUP  
Startup Voltage Threshold  
V
15.2  
9.2  
16  
10  
6
16.8  
10.8  
V
V
V
CC_START  
Minimum Operating Voltage After  
Turn-On  
V
CC_MIN  
Undervoltage-Lockout Hysteresis  
UVLO  
HYST  
PWM  
MAX5070A/MAX5071A  
94.5  
48  
96  
97.5  
50  
0
Maximum Duty Cycle  
D
%
%
MAX  
MAX5070B/MAX5071B/MAX5071C  
49.8  
Minimum Duty Cycle  
SUPPLY CURRENT  
Startup Supply Current  
Operating Supply Current  
D
MIN  
I
32  
3
65  
5
µA  
mA  
V
START  
I
V
= V = 0V  
CS  
CC  
FB  
Zener Bias Voltage at V  
V
I
= 25mA  
24  
26.5  
CC  
Z
CC  
THERMAL SHUTDOWN  
Thermal Shutdown  
T
+150  
4
°C  
°C  
SHDN  
Thermal-Shutdown Hysteresis  
T
HYST  
SYNCHRONIZATION (MAX5071A/MAX5071B only, Note 5)  
SYNC Frequency Range  
f
20  
1000  
0.8  
kHz  
V
SYNC  
SYNC Clock Input High  
Threshold  
V
3.5  
SYNCINH  
SYNC Clock Input Low Threshold  
V
V
SYNCINL  
SYNC Clock Input Minimum  
Pulse Width  
t
200  
4.0  
ns  
PW_SYNCIN  
SYNC Clock Output High Level  
SYNC Clock Output Low Level  
V
1mA external pulldown  
= 5kΩ  
4.7  
0
V
V
SYNCOH  
V
R
0.1  
SYNCOL  
SYNC  
_______________________________________________________________________________________  
5
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +15V, R = 10k, C = 3.3nF, V  
= OPEN, C = 0.1µF, COMP = OPEN, V = 2V, CS = GND, T = -40°C to +125°C,  
VREF FB A  
CC  
T
T
VREF  
unless otherwise noted.) (Note 1)  
PARAMETER  
SYNC Leakage Current  
ADV_CLK (MAX5071C only)  
ADV_CLK High Voltage  
ADV_CLK Low Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
= 0V  
SYNC  
0.01  
0.1  
µA  
SYNC  
V
I
I
= 10mA source  
= 10mA sink  
2.4  
3
V
V
ADV_CLKH  
ADV_CLK  
V
0.4  
ADV_CLKL  
ADV_CLK  
ADV_CLK Output Pulse Width  
t
85  
ns  
PULSE  
ADV_CLK Rising Edge to OUT  
Rising Edge  
t
110  
ns  
ADV_CLK  
ADV_CLK Source and Sink  
Current  
I
10  
mA  
ADV_CLK  
Note 1: All devices are 100% tested at +25°C. All limits over temperature are guaranteed by design, not production tested.  
Note 2: Guaranteed by design, not production tested.  
Note 3: Parameter measured at trip point of latch with V = 0V (MAX5070A/MAX5070B only).  
FB  
Note 4: Gain is defined as A = V  
/V , 0 V 0.8V.  
COMP  
CS CS  
Note 5: Output Frequency equals oscillator frequency for MAX5070A/MAX5071A. Output frequency is one-half oscillator frequency  
for MAX5070B/MAX5071B/MAX5071C.  
Typical Operating Characteristics  
(V  
= 15V, T = +25°C, unless otherwise noted.)  
A
CC  
OPERATING SUPPLY CURRENT (I  
)
CC  
vs. TEMPERATURE AFTER STARTUP  
(f = f = 250kHz)  
BOOTSTRAP UVLO vs. TEMPERATURE  
STARTUP CURRENT vs. TEMPERATURE  
OSC  
SW  
17  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
C = 100pF  
T
16  
15  
14  
13  
12  
11  
10  
9
V
RISING  
CC  
V
FALLING  
CC  
8
7
HYSTERESIS  
6
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Typical Operating Characteristics (continued)  
(V  
= 15V, T = +25°C, unless otherwise noted.)  
A
CC  
REFERENCE VOLTAGE (VREF)  
vs. TEMPERATURE  
REFERENCE VOLTAGE (VREF)  
vs. REFERENCE LOAD CURRENT  
REFERENCE VOLTAGE (VREF)  
vs. V VOLTAGE  
CC  
5.5  
5.4  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
5.010  
5.005  
5.000  
4.995  
4.990  
I
= 1mA  
REF  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
I
= 1mA  
REF  
I
= 20mA  
REF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
15  
30  
(mA)  
45  
10 12 14 16 18 20 22 24 26  
(V)  
TEMPERATURE (°C)  
I
V
CC  
REF  
OSCILLATOR FREQUENCY (f  
vs. TEMPERATURE  
)
MAXIMUM DUTY CYCLE  
vs. TEMPERATURE  
OSCILLATOR R /C DISCHARGE CURRENT  
OSC  
T
T
vs. TEMPERATURE  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
450  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.60  
8.55  
8.50  
8.45  
8.40  
8.35  
8.30  
8.25  
8.20  
8.15  
8.10  
8.05  
8.00  
V
= 2V  
RT/CT  
R = 3.01k  
C = 1nF  
R = 3.01kΩ  
C = 1nF  
T
T
T
T
MAX5070A/MAX5071A  
MAX5070B/MAX5071B/MAX5071C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX5070A/MAX5071A  
MAXIMUM DUTY CYCLE vs. FREQUENCY  
CURRENT-SENSE (CS) TRIP THRESHOLD  
vs. TEMPERATURE  
100  
90  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
C = 100pF  
T
80  
70  
60  
C = 220pF  
T
50  
40  
C = 1nF  
T
C = 560pF  
T
30  
20  
10  
0
0
400  
800  
1200  
1600  
2000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
OSCILLATOR FREQUENCY (kHz)  
_______________________________________________________________________________________  
7
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Typical Operating Characteristics (continued)  
(V  
= 15V, T = +25°C, unless otherwise noted.)  
A
CC  
TIMING RESISTANCE (R )  
T
vs. OSCILLATOR FREQUENCY  
OUT IMPEDANCE vs. TEMPERATURE  
(R PMOS DRIVER)  
OUT IMPEDANCE vs. TEMPERATURE  
(R NMOS DRIVER)  
DS_ON  
= 100mA  
DS_ON  
1000  
100  
10  
5.0  
4.8  
4.6  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
I
SOURCE  
I
= 200mA  
SINK  
C = 1nF  
T
4.4  
C = 560pF  
T
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
C = 220pF  
T
C = 100pF  
T
C = 10nF  
C = 4.7nF  
C = 3.3nF  
C = 2.2nF  
1
T
T
T
T
0.1  
10k  
100k  
1M  
10M  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PROPAGATION DELAY FROM CURRENT-LIMIT  
COMPARATOR TO OUT vs. TEMPERATURE  
100  
COMP VOLTAGE LEVEL TO TURN OFF DEVICE  
vs. TEMPERATURE  
ERROR-AMPLIFIER OPEN-LOOP GAIN  
AND PHASE vs. FREQUENCY  
MAX5070 toc16  
2.5  
10V < V < 18V  
CC  
10  
140  
120  
100  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
-15  
-40  
GAIN  
-65  
PHASE  
-90  
60  
-115  
-140  
-165  
-190  
40  
20  
0
-20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0.01  
1
10 100 1k 10k 100k 1M  
FREQUENCY (Hz)  
10M 100M  
TEMPERATURE (°C)  
ADV_CLK RISING EDGE TO OUT RISING EDGE  
PROPAGATION DELAY vs. TEMPERATURE  
ADV_CLK AND OUT WAVEFORMS  
MAX5070 toc19  
114  
V
= 15V  
CC  
MAX5071C  
MAX5071C  
112  
110  
108  
106  
104  
102  
100  
98  
ADV_CLK  
5V/div  
10kLOAD  
96  
OUT  
94  
10V/div  
92  
90  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
20ns/div  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Typical Operating Characteristics (continued)  
(V  
= 15V, T = +25°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT (I  
vs. OSCILLATOR FREQUENCY (C = 100pF)  
)
T
MAX5070A/MAX5071A  
MAXIMUM DUTY CYCLE vs. R  
CC  
OUT SOURCE AND SINK CURRENTS  
T
MAX5070 toc20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
9
V
= 15V  
CC  
C
= 10nF  
OUT  
V
OUT  
8
10V/div  
T
= +125°C  
A
C = 1nF  
T
T
T
T
7
C = 560pF  
C = 220pF  
C = 100pF  
6
T
= +85°C  
A
T
= +25°C  
A
5
I
OUT  
2A/div  
4
T
= -40°C  
A
3
2
20 120 220 320 420 520 620 720 820 920 1020  
FREQUENCY (kHz)  
100  
1k  
10k  
100k  
20Ons/div  
R ()  
T
Pin Descriptions  
MAX5070A/MAX5070B  
PIN  
1
NAME  
COMP  
FB  
FUNCTION  
Error-Amplifier Output. COMP can be used for soft-start.  
Error-Amplifier Inverting Input  
2
Input to the PWM Comparator and Overcurrent Protection Comparator. The current-sense signal is  
compared to a signal proportional to the error-amplifier output voltage.  
3
4
CS  
Timing Resistor and Capacitor Connection. A resistor R from R /C to VREF and capacitor C from  
T
T
T
T
R /C  
T
T
R /C to GND set the oscillator frequency.  
T
T
Power-Supply Ground. Place the V  
ground loops.  
and VREF bypass capacitors close to the IC to minimize  
CC  
5
6
7
GND  
OUT  
MOSFET Driver Output. OUT connects to the gate of the external n-channel MOSFET.  
Power-Supply Input for MAX5070. Bypass V to GND with a 0.1µF ceramic capacitor or a parallel  
combination of a 0.1µF and a higher value ceramic capacitor.  
CC  
V
CC  
5V Reference Output. Bypass VREF to GND with a 0.1µF ceramic capacitor or a parallel combination  
of a 0.1µF and a higher value ceramic capacitor.  
8
VREF  
_______________________________________________________________________________________  
9
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Pin Descriptions (continued)  
MAX5071A/MAX5071B/MAX5071C  
PIN  
NAME  
FUNCTION  
MAX5071A/  
MAX5071B  
MAX5071C  
COMP is level-shifted and connected to the inverting input of the PWM comparator. Pull  
up COMP to VREF through a resistor and connect an optocoupler from COMP to GND for  
proper operation.  
1
2
1
COMP  
SYNC  
Bidirectional Synchronization Input. When synchronizing with other  
MAX5071A/MAX5071Bs, the higher frequency part synchronizes all other devices.  
ADV_CLK is an 85ns clock output pulse preceding the rising edge of OUT (see Figure 4).  
Use the pulse to drive the secondary-side synchronous rectifiers through a pulse  
transformer or an optocoupler (see Figure 8).  
2
ADV_CLK  
CS  
Input to the PWM Comparator and Overcurrent Protection Comparator. The current-  
sense signal is compared to the voltage at COMP.  
3
4
3
4
Timing Resistor and Capacitor Connection. A resistor R from R /C to VREF and  
T
T
T
R /C  
T
T
capacitor C from R /C to GND set the oscillator frequency.  
T
T
T
Power-Supply Ground. Place the V  
minimize ground loops.  
and VREF bypass capacitors close to the IC to  
CC  
5
6
7
5
6
7
GND  
OUT  
MOSFET Driver Output. OUT connects to the gate of the external n-channel MOSFET.  
Power-Supply Input for MAX5071. Bypass V to GND with a 0.1µF ceramic capacitor or  
a parallel combination of a 0.1µF and a higher value ceramic capacitor.  
CC  
V
CC  
5V Reference Output. Bypass VREF to GND with a 0.1µF ceramic capacitor or a parallel  
combination of a 0.1µF and a higher value ceramic capacitor.  
8
8
V
REF  
10 ______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
VP  
MAX5070A/MAX5070B  
UVLO  
16V/10V  
2.5V  
VOLTAGE-  
DIVIDER  
REFERENCE  
2.5V  
PREREGULATOR  
5V  
2.5V  
V
CC  
7
THERMAL  
SHUTDOWN  
26.5V  
V
DD  
EN-REF  
VREF  
BG  
8
5V REGULATOR  
SNS  
VP  
REG_OK  
EN-DRV-BAR  
DELAY  
VOLTAGE-  
DIVIDER  
1V  
ILIM  
OUT  
6
4
S
R
Q
CLK  
CS  
3
5
CPWM  
OSC Q  
GND  
R /C  
T T  
2R  
VEA  
FB  
2
1
100% MAX DUTY CYCLE (MAX5070A)  
50% MAX DUTY CYCLE (MAX5070B)  
R
COMP  
Figure 1. MAX5070A/MAX5070B Functional Diagram  
versions with a feedback input (FB) and internal error  
amplifier. The MAX5071A/MAX5071B include bidirection-  
al synchronization (SYNC). This enables multiple  
MAX5071A/MAX5071Bs to be connected and synchro-  
nized to the device with the highest frequency. The  
MAX5071C includes an ADV_CLK output, which pre-  
cedes the MAX5071C’s drive output (OUT) by 110ns.  
Figures 1, 2, and 3 show the internal functional diagrams  
of the MAX5070A/MAX5070B, MAX5071A/MAX5071B,  
and MAX5071C, respectively. The MAX5070A/  
MAX5071A are capable of 100% maximum duty cycle.  
The MAX5070B/MAX5071B/MAX5071C are designed to  
limit the maximum duty cycle to 50%.  
Detailed Description  
The MAX5070/MAX5071 current-mode PWM controllers  
are designed for use as the control and regulation core of  
flyback or forward topology switching power supplies.  
These devices incorporate an integrated low-side driver,  
adjustable oscillator, error amplifier (MAX5070A/  
MAX5070B only), current-sense amplifier, 5V reference,  
and external synchronization capability (MAX5071A/  
MAX5071B only). An internal +26.5V current-limited V  
clamp prevents overvoltage during startup.  
CC  
Five different versions of the MAX5070/MAX5071 are  
available. The MAX5070A/MAX5070B are the standard  
______________________________________________________________________________________ 11  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
VP  
MAX5071A/MAX5071B  
UVLO  
16V/10V  
2.5V  
VOLTAGE-  
DIVIDER  
1V  
REFERENCE  
2.5V  
PREREGULATOR  
5V  
2.5V  
V
7
CC  
THERMAL  
SHUTDOWN  
26.5V  
V
DD  
EN-REF  
VREF  
BG  
8
5V REGULATOR  
SNS  
VP  
REG_OK  
EN-DRV-BAR  
DELAY  
VOLTAGE-  
DIVIDER  
1V  
ILIM  
OUT  
6
4
S
R
Q
CLK  
CS  
3
5
CPWM  
OSC Q  
GND  
100% MAX DUTY CYCLE (MAX5071A)  
50% MAX DUTY CYCLE (MAX5071B)  
2R  
R /C  
T T  
COMP  
1
R
BIDIRECTIONAL  
SYNC  
SYNC  
2
Figure 2. MAX5071A/MAX5071B Functional Diagram  
The MAX5070/MAX5071 use a current-mode control loop  
where the output of the error amplifier is compared to the  
Current-Mode Control Loop  
The advantages of current-mode control over voltage-  
mode control are twofold. First, there is the feed-forward  
characteristic brought on by the controller’s ability to  
adjust for variations in the input voltage on a cycle-by-  
cycle basis. Secondly, the stability requirements of the  
current-mode controller are reduced to that of a single-  
pole system unlike the double pole in the voltage-mode  
control scheme.  
current-sense voltage (V ). When the current-sense sig-  
CS  
nal is lower than the noninverting input of the PWM com-  
parator, the output of the CPWM comparator is low and  
the switch is turned on at each clock pulse. When the  
current-sense signal is higher than the inverting input of  
the CPWM, the output of the CPWM comparator is high  
and the switch is turned off.  
12 ______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
VP  
MAX5071C  
UVLO  
16V/10V  
2.5V  
VOLTAGE-  
DIVIDER  
1V  
REFERENCE  
2.5V  
PREREGULATOR  
5V  
2.5V  
V
7
CC  
THERMAL  
SHUTDOWN  
26.5V  
V
DD  
EN-REF  
VREF  
8
BG  
5V REGULATOR  
SNS  
VP  
REG_OK  
EN-DRV-BAR  
DELAY  
VOLTAGE-  
DIVIDER  
1V  
ILIM  
OUT  
6
S
R
Q
CLK  
CS  
3
5
50% MAX DUTY CYCLE  
CPWM  
OSC Q  
GND  
2R  
R /C  
T T  
4
COMP  
1
R
ADV_CLK  
2
Figure 3. MAX5071C Functional Diagram  
Size the startup resistor, R , to supply both the maxi-  
V
and Startup  
ST  
CC  
mum startup bias (I  
) of the device (65µA max)  
In normal operation, V  
is derived from a tertiary wind-  
START  
CC  
and the charging current for C . The startup capacitor  
ing of the transformer. However, at startup there is no  
energy delivered through the transformer, thus a resistor  
ST  
C
t
must charge to 16V within the desired time period  
(for example, 500ms). The size of the startup  
ST  
ST  
must be connected from V  
to the input power source  
CC  
capacitor depends on:  
(see R and C in Figures 5 to 8). During startup, C  
ST  
ST  
ST  
charges up through R . The 5V reference generator,  
ST  
1) IC operating supply current at a programmed oscilla-  
comparator, error amplifier, oscillator, and drive circuit  
remain off during UVLO to reduce startup current below  
tor frequency (f ).  
OSC  
2) The time required for the bias voltage, derived from  
a bias winding, to go from 0 to 11V.  
65µA. When V  
reaches the undervoltage-lockout  
threshold of 16V, the output driver begins to switch and  
the tertiary winding will supply power to V . V has an  
CC  
3) The MOSFET total gate charge.  
CC CC  
internal 26.5V current-limited clamp at its input to protect  
the device from overvoltage during startup.  
4) The operating frequency of the converter (f ).  
SW  
______________________________________________________________________________________ 13  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
To calculate the capacitance required, use the following  
formula:  
Undervoltage Lockout (UVLO)  
The minimum turn-on supply voltage for the  
MAX5070/MAX5071 is 16V. Once V  
reaches 16V, the  
CC  
V
13V  
reference powers up. There is 6V of hysteresis from the  
minimum turn-on voltage to the UVLO threshold. Once  
INMIN  
I
+I  
t
SS  
(
)
CC  
G
R
ST  
HYST  
C
=
V
CC  
reaches 16V, the MAX5070/MAX5071 will operate  
ST  
V
with V  
down to 10V. Once V  
goes below 10V the  
CC  
CC  
device is in UVLO. When in UVLO, the quiescent sup-  
ply current into V falls back to 37µA (typ), and OUT  
where:  
is the MAX5070/MAX5071s’ maximum internal sup-  
CC  
I
G
= Q f  
G SW  
and VREF are pulled low.  
I
CC  
MOSFET Driver  
OUT drives an external n-channel MOSFET and swings  
from GND to V . Ensure that V remains below the  
ply current after startup (see the Typical Operating  
Characteristics to find the I at a given f ). Q is the  
IN  
OSC  
is the converter  
G
CC  
CC  
total gate charge for the MOSFET, f  
SW  
absolute maximum V  
rating of the external MOSFET.  
GS  
switching frequency, V  
is the bootstrap UVLO hys-  
HYST  
OUT is a push-pull output with the on-resistance of the  
PMOS typically 3.5and the on-resistance of the NMOS  
typically 4.5. The driver can source 2A typically and  
sink 1A typically. This allows for the MAX5070/MAX5071  
to quickly turn on and off high gate-charge MOSFETs.  
teresis (6V), and t is the soft-start time, which is set  
SS  
by external circuitry.  
Size the resistor R according to the desired startup  
ST  
time period, t , for the calculated C . Use the follow-  
ST  
ST  
ing equations to calculate the average charging current  
(I ) and the startup resistor (R ).  
Bypass V  
with one or more 0.1µF ceramic capacitors  
CC  
CST  
ST  
to GND, placed close to the MAX5070/MAX5071. The  
average current sourced to drive the external MOSFET  
V
× C  
ST  
SUVR  
depends on the total gate charge (Q ) and operating  
G
frequency of the converter. The power dissipation in the  
MAX5070/MAX5071 is a function of the average output  
I
=
CST  
t
ST  
drive current (I  
). Use the following equation to cal-  
DRIVE  
culate the power dissipation in the device due to I  
:
DRIVE  
V
SUVR  
2
V
I = Q x f  
DRIVE G SW  
INMIN  
R
PD = (I  
+ I ) x V  
CC CC  
DRIVE  
ST  
I
+ I  
START  
CST  
where I  
is the operating supply current. See the  
CC  
Typical Operating Characteristics for the operating  
Where V  
is the minimum input supply voltage for  
INMIN  
supply current at a given frequency.  
the application (36V for telecom), V  
is the boot-  
SUVR  
START  
strap UVLO wake-up level (16V), and I  
is the V  
IN  
Error Amplifier (MAX5070A/MAX5070B)  
The MAX5070 includes an internal error amplifier. The  
inverting input is at FB and the noninverting input is inter-  
nally connected to a 2.5V reference. The internal error  
amplifier is useful for nonisolated converter design (see  
Figure 6) and isolated design with primary-side regulation  
through a bias winding (see Figure 5). In the case of a  
nonisolated power supply, the output voltage will be:  
supply current at startup (65µA, max). Choose a higher  
value for R than the one calculated above if longer  
ST  
startup times can be tolerated in order to minimize  
power loss in R  
.
ST  
The above startup method is applicable to circuits where  
the tertiary winding has the same phase as the output  
windings. Thus, the voltage on the tertiary winding at any  
given time is proportional to the output voltage and goes  
through the same soft-start period as the output voltage.  
R1  
R2  
V
= 1+  
× 2.5V  
OUT  
The minimum discharge time of C from 16V to 10V  
ST  
must be greater than the soft-start time (t ).  
SS  
where R1 and R2 are from Figure 6.  
14 ______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
MAX5071A/MAX5071B/MAX5071C  
Feedback  
Reference Output  
VREF is a 5V reference output that can source 20mA.  
Bypass VREF to GND with a 0.1µF capacitor.  
The MAX5071A/MAX5071B/MAX5071C are designed to  
be used with either an external error amplifier when  
designed into a nonisolated converter or an error ampli-  
fier and optocoupler when designed into an isolated  
power supply. The COMP input is level-shifted and  
connected to the inverting terminal of the PWM com-  
parator (CPWM). Connect the COMP pin to the output  
of the external error amplifier for nonisolated design.  
Pull COMP high externally to at least 5V (or VREF) and  
connect the optocoupler transistor as shown in Figures  
7 and 8. COMP can be used for soft-start and also as a  
shutdown. See the Typical Operating Characteristics to  
find the turn-off COMP voltage at different tempera-  
tures. If the maximum external COMP voltage is below  
4.9V, it may reduce the PWM current-limit threshold  
below 1V. Use the following equation to calculate mini-  
Current Limit  
The MAX5070/MAX5071 include a fast current-limit com-  
parator to terminate the ON cycle during an overload or a  
fault condition. The current-sense resistor (R ), connect-  
CS  
ed between the source of the MOSFET and GND, sets  
the current limit. The CS input has a voltage trip level  
(V ) of 1V. Use the following equation to calculate R  
:
CS  
CS  
V
CS  
R
=
CS  
I
PP  
I
is the peak current in the primary that flows through  
P-P  
the MOSFET. When the voltage produced by this current  
(through the current-sense resistor) exceeds the current-  
limit comparator threshold, the MOSFET driver (OUT) will  
turn the switch off within 60ns. In most cases, a small RC  
filter is required to filter out the leading-edge spike on the  
sense waveform. Set the time constant of the RC filter at  
50ns. Use a current transformer to limit the losses in the  
current-sense resistor and achieve higher efficiency  
especially at low input-voltage operation.  
mum COMP voltage (V  
) required for a guaranteed  
COMP  
peak primary current (I ):  
P-P  
V
= (3 x I x R ) + 1.95V  
P-P CS  
COMP  
where R is a current-sense resistor.  
CS  
Oscillator  
The oscillator frequency is adjusted by adding an  
external capacitor and resistor at R /C (see R and C  
T
Synchronization (MAX5071A/MAX5071B)  
T
T
T
in the Typical Application Circuits). R is connected  
T
SYNC  
SYNC is a bidirectional input/output that outputs a syn-  
chronizing pulse and accepts a synchronizing pulse  
from other MAX5071A/MAX5071Bs (see Figures 7 and  
9). As an output, SYNC is an open-drain p-channel  
MOSFET driven from the internal oscillator and requires  
from R /C to the 5V reference (VREF) and C is con-  
T
T
T
nected from R /C to GND. VREF charges C through  
T
T
T
R until its voltage reaches 2.8V. C then discharges  
T
T
through an 8.3mA internal current sink until C ’s voltage  
T
reaches 1.1V, at which time C is allowed to charge  
T
through R again. The oscillator’s period will be the  
T
an external pulldown resistor (R  
) from between  
SYNC  
sum of the charge and discharge times of C . Calculate  
T
500and 5k. As an input, SYNC accepts the output  
the charge time as:  
pulses from other MAX5071A/MAX5071Bs.  
t = 0.57 x R x C  
C
T
T
Synchronize multiple MAX5071A/MAX5071Bs by con-  
necting their SYNC pins together. All devices connected  
together will synchronize to the one operating at the  
highest frequency. The rising edge of SYNC will precede  
the rising edge of OUT by approximately the discharge  
The discharge time is then:  
3
R ×C ×10  
T
T
t
=
D
3
4.88×R 1.8×10  
T
time (t ) of the oscillator (see the Oscillator section). The  
D
pulse width of the SYNC output is equal to the time  
required to discharge the stray capacitance at SYNC  
The oscillator frequency will then be:  
through R  
plus the C discharge time t . Adjust  
1
SYNC  
T D  
f
=
OSC  
R /C such that the minimum discharge time t is 200ns.  
T
T
D
t
+ t  
D
C
For the MAX5070A/MAX5071A, the converter output  
switching frequency (f ) is the same as the oscillator  
SW  
frequency (f  
). For the MAX5070B/MAX5071B/  
OSC  
MAX5071C, the output switching frequency is 1/2 the  
oscillator frequency.  
______________________________________________________________________________________ 15  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Advance Clock Output (ADV_CLK) (MAX5071C)  
ADV_CLK is an advanced pulse output provided to  
facilitate the easy implementation of secondary-side  
synchronous rectification using the MAX5071C. The  
R /C  
T
T
ADV_CLK pulse width is 85ns (typically) with its rising  
edge leading the rising edge of OUT by 110ns. Use  
this leading pulse to turn off the secondary-side syn-  
chronous-rectifier MOSFET (QS) before the voltage  
appears on the secondary (see Figure 8). Turning off  
the secondary-side synchronous MOSFET earlier  
avoids the shorting of the secondary in the forward  
converter. The ADV_CLK pulse can be propagated to  
the secondary side using a pulse transformer or high-  
speed optocoupler. The 85ns pulse, with 3V drive volt-  
age (10mA source), significantly reduces the  
volt-second requirement of the pulse transformer and  
the advanced pulse alleviates the need for a high-  
speed optocoupler.  
OUT  
t
= 110ns  
ADV_CLK  
ADV_CLK  
t
= 85ns  
PULSE  
Thermal Shutdown  
When the MAX5070/MAX5071s’ die temperature goes  
above +150°C, the thermal-shutdown circuitry will shut  
down the 5V reference and pull OUT low.  
Figure 4. ADV_CLK  
Typical Application Circuits  
V
IN  
R
ST  
V
OUT  
C
ST  
1
2
3
4
8
7
6
5
COMP  
VREF  
R1  
R2  
FB  
V
CC  
MAX5070A  
MAX5070B  
N
CS  
OUT  
GND  
R
T
R /C  
T
T
C
T
R
CS  
Figure 5. MAX5070A/MAX5070B Typical Application Circuit (Isolated Flyback with Primary-Side Regulation)  
16 ______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Typical Application Circuits (continued)  
V
IN  
R
ST  
V
C
OUT  
ST  
1
2
3
4
8
7
6
5
COMP  
VREF  
R1  
R2  
FB  
V
CC  
MAX5070A  
MAX5070B  
N
CS  
OUT  
GND  
R
T
R /C  
T
T
C
T
R
CS  
Figure 6. MAX5070A/MAX5070B Typical Application Circuit (Non-Isolated Flyback)  
V
IN  
R
ST  
SYNC  
INPUT/OUTPUT  
V
OUT  
C
ST  
R
SYNC  
1
2
3
4
8
7
6
5
COMP  
SYNC  
CS  
VREF  
MAX5071A  
MAX5071B  
V
CC  
N
OUT  
GND  
R
T
R /C  
T
T
C
T
R
CS  
Figure 7. MAX5071A/MAX5071B Typical Application Circuit (Isolated Flyback)  
______________________________________________________________________________________ 17  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Typical Application Circuits (continued)  
V
D
V
V
IN  
OUT  
R
ST  
N
QS  
C
ST  
N
V
D
QR  
V
CC  
N
VREF  
R /C  
OUT  
CS  
R
T
MAX5071C  
T
T
C
T
R
CS  
COMP  
ADV_CLK  
MAX5078  
GND  
0.5V/µs PULSE TRANSFORMER  
Figure 8. MAX5071C Typical Application Circuit (Isolated Forward with Secondary-Side Synchronous Rectification)  
18 ______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
V
V
V
IN  
IN  
IN  
V
V
V
CC  
CC  
CC  
N
N
N
VREF  
R /C  
OUT  
CS  
VREF  
R /C  
OUT  
CS  
VREF  
R /C  
OUT  
CS  
R
R
R
T
T
T
MAX5071A  
MAX5071B  
MAX5071A  
MAX5071B  
MAX5071A  
MAX5071B  
T
T
T
T
T
T
C
C
C
T
T
T
SYNC  
SYNC  
SYNC  
GND  
GND  
GND  
TO OTHER  
MAX5071A/Bs  
R
SYNC  
Figure 9. Synchronization of MAX5071s  
______________________________________________________________________________________ 19  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Selector Guide  
FEEDBACK/  
ADVANCED CLOCK  
MAXIMUM DUTY  
CYCLE (%)  
PART  
PIN-PACKAGE  
PIN COMPATIBLE  
MAX5070AASA  
MAX5070AAUA  
MAX5070BASA  
MAX5070BAUA  
MAX5071AASA  
MAX5071AAUA  
MAX5071BASA  
MAX5071BAUA  
MAX5071CASA  
MAX5071CAUA  
Feedback  
Feedback  
Feedback  
Feedback  
Sync.  
100  
100  
50  
8 SO  
8 µMAX  
8 SO  
UC2842/UCC2842  
UC2842/UCC2842  
UC2844/UCC2844  
50  
8 µMAX  
8 SO  
UC2844/UCC2844  
100  
100  
50  
Sync.  
8 µMAX  
8 SO  
Sync.  
Sync.  
50  
8 µMAX  
8 SO  
ADV_CLK  
ADV_CLK  
50  
50  
8 µMAX  
Pin Configurations (continued)  
TOP VIEW  
COMP  
SYNC  
CS  
1
2
3
4
8
7
6
5
VREF  
COMP  
ADV_CLK  
CS  
1
2
3
4
8
7
6
5
VREF  
V
V
CC  
CC  
MAX5071A  
MAX5071B  
MAX5071C  
OUT  
GND  
OUT  
GND  
R /C  
R /C  
T T  
T
T
µMAX/SO  
µMAX/SO  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNT: 1987  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
8 SO  
PROCESS: BiCMOS  
MAX5071AASA  
MAX5071AAUA  
MAX5071BASA  
MAX5071BAUA  
MAX5071CASA  
MAX5071CAUA  
8 µMAX  
8 SO  
8 µMAX  
8 SO  
8 µMAX  
Specify lead-free by adding the + symbol at the end of the part  
number when ordering.  
20 ______________________________________________________________________________________  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
______________________________________________________________________________________ 21  
High-Performance, Single-Ended, Current-Mode  
PWM Controllers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0°  
0.120  
2.95  
4.78  
0.41  
0°  
3.05  
5.03  
0.66  
6°  
0.198  
0.026  
6°  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
ENG LIS H ? ? ? ? ? ? ? ? ? ?  
WH AT' S N EW  
PRO DU CT S  
S OL UT IO NS  
D ESIGN  
A PPNOTES  
SU PPORT  
B U Y  
CO MPA N Y  
M EMB ERS  
M a x i m > P r o d u c t s > P o w e r a n d B a t t e r y M a n a g e m e n t  
M A X 5 0 7 0 , M A X 5 0 7 1  
H i g h - P e r f o r m a n c e , S i n g l e - E n d e d , C u r r e n t - M o d e P W M C o n t r o l l e r s  
1M H z , S in g le - E nd ed , C ur r en t -M o de P W M Co n tro l l er s P in Co mpa ti ble w ith U C28 4 2/ UC 2 844 Se ri es  
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
A l l  
O r d e r i n g I n f o r m a t i o n  
N o t e s :  
1 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
2 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n o n e  
b u s i n e s s d a y .  
3 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e F u l l D a t a  
S h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
4 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e p r o d u c t  
u s e s .  
D e v i c e s : 1 - 3 8 o f 3 8  
M A X 5 0 7 0  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P
a
c
k
a
g
e
:
T
Y
P
E
P
I
N
S
F
O
O
T
P
R
I
N
T
S
a
m
p
l
e
D
R
A
W
I
N
G
C
O
D
E
/
V
A
R
*
M
A
X
5
0
7
0
A
A
S
A
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 5 0 7 0 A A S A - T  
M A X 5 0 7 0 B A S A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 5 0 7 0 B A S A - T  
M A X 5 0 7 0 B A S A + T  
M A X 5 0 7 0 B A S A +  
M A X 5 0 7 0 A A S A + T  
M A X 5 0 7 0 A A S A +  
M A X 5 0 7 0 B A U A - T  
M A X 5 0 7 0 A A U A +  
M A X 5 0 7 0 A A U A + T  
M A X 5 0 7 0 B A U A +  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
U
8
+
1
*
M A X 5 0 7 0 B A U A + T  
M A X 5 0 7 0 A A U A  
M A X 5 0 7 0 A A U A - T  
M A X 5 0 7 0 B A U A  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
- 4 0 C t o + 1 2 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
M A X 5 0 7 1  
F r e e  
B uy  
T e m p  
R o H S/ L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : TY PE PI NS F O OTPRI NT  
Sa m p l e  
D RA WI NG C OD E/ VA R *  
M A X 5 0 7 1 C A S A - T  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
- 4 0 C t o + 8 5 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 5 0 7 1 C A S A + T  
M A X 5 0 7 1 C A S A +  
M A X 5 0 7 1 C A S A  
M A X 5 0 7 1 B A S A - T  
M A X 5 0 7 1 B A S A + T  
M A X 5 0 7 1 A A S A + T  
M A X 5 0 7 1 A A S A +  
M A X 5 0 7 1 A A S A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 5 0 7 1 A A S A - T  
M A X 5 0 7 1 B A S A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 4 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 5 0 7 1 B A S A +  
M A X 5 0 7 1 B A U A +  
M A X 5 0 7 1 A A U A + T  
M A X 5 0 7 1 B A U A + T  
M A X 5 0 7 1 A A U A +  
M A X 5 0 7 1 C A U A  
M A X 5 0 7 1 A A U A  
S O I C ; 8 p i n ; 3 1 m m  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 4 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
R o H S / L e a d - F r e e : L e a d F r e e  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
M A X 5 0 7 1 A A U A - T  
M A X 5 0 7 1 B A U A - T  
M A X 5 0 7 1 B A U A  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
- 4 0 C t o + 8 5 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 5 0 7 1 C A U A - T  
u M A X ; 8 p i n ; 1 6 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
N e x t D a y P r o d u c t S e l e c t i o n A s s i s t a n c e f r o m A p p l i c a t i o n s E n g i n e e r s  
P a r a m e t r i c S e a r c h  
A p p l i c a t i o n s H e l p  
Q u i c k V i e w  
T e c h n i c a l D o c u m e n t s  
O r d e r i n g I n f o  
M o r e I n f o r m a t i o n  
D e s c r i p t i o n  
D a t a S h e e t  
A p p l i c a t i o n N o t e s  
D e s i g n G u i d e s  
E n g i n e e r i n g J o u r n a l s  
R e l i a b i l i t y R e p o r t s  
S o f t w a r e / M o d e l s  
E v a l u a t i o n K i t s  
P r i c e a n d A v a i l a b i l i t y  
S a m p l e s  
B u y O n l i n e  
P a c k a g e I n f o r m a t i o n  
L e a d - F r e e I n f o r m a t i o n  
R e l a t e d P r o d u c t s  
N o t e s a n d C o m m e n t s  
E v a l u a t i o n K i t s  
K e y F e a t u r e s  
A p p l i c a t i o n s / U s e s  
K e y S p e c i f i c a t i o n s  
D i a g r a m  
D o c u m e n t R e f . : 1 9 - 3 2 8 3 ; R e v 3 ; 2 0 0 6 - 1 0 - 2 3  
T h i s p a g e l a s t m o d i f i e d : 2 0 0 7 - 0 8 - 3 0  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX5070AAUA+T

暂无描述
MAXIM

MAX5070AAUA-T

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, MICRO MAX, MO-187CAA, MICRO SOP-8
MAXIM

MAX5070BASA

High-Performance, Single-Ended, Current-Mode PWM Controllers
MAXIM

MAX5070BASA+

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, LEAD FREE, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX5070BASA-T

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX5070BAUA

High-Performance, Single-Ended, Current-Mode PWM Controllers
MAXIM

MAX5070BAUA+

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, LEAD FREE, MICRO MAX, MO-187CAA, MICRO SOP-8
MAXIM

MAX5070BAUA+T

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, LEAD FREE, MICRO MAX, MO-187CAA, MICRO SOP-8
MAXIM

MAX5070BAUA-T

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, MICRO MAX, MO-187CAA, MICRO SOP-8
MAXIM

MAX5071

High-Performance, Single-Ended, Current-Mode PWM Controllers
MAXIM

MAX5071AASA

High-Performance, Single-Ended, Current-Mode PWM Controllers
MAXIM

MAX5071AASA+

Switching Controller, Current-mode, 2A, 1000kHz Switching Freq-Max, BICMOS, PDSO8, LEAD FREE, 0.150 INCH, MS-012AA, SOIC-8
MAXIM