MAX819LCPA+ [ROCHESTER]

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDIP8, 0.300 INCH, ROHS COMPLIANT, PLASTIC, DIP-8;
MAX819LCPA+
型号: MAX819LCPA+
厂家: Rochester Electronics    Rochester Electronics
描述:

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDIP8, 0.300 INCH, ROHS COMPLIANT, PLASTIC, DIP-8

光电二极管
文件: 总19页 (文件大小:1051K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0486; Rev 3; 12/05  
+5V Microprocessor Supervisory Circuits  
General Description  
____________________________Features  
Precision Supply-Voltage Monitor:  
4.65V (MAX81_L)  
The MAX817/MAX818/MAX819 microprocessor (µP)  
supervisory circuits simplify power-supply monitoring,  
battery control, and chip-enable gating in µP systems  
by reducing the number of components required.  
These devices are designed for use in +5V-powered  
systems. Low supply current (11µA typical) and small  
package size make these devices ideal for portable  
applications. The MAX817/MAX818/MAX819 are specif-  
4.40V (MAX81_M)  
11µA Quiescent Supply Current  
200ms Reset Time Delay  
Watchdog Timer with 1.6sec Timeout  
(MAX817/MAX818)  
ically designed to ignore fast transients on V . Other  
CC  
Battery-Backup Power Switching; Battery Voltage  
supervisory functions include active-low reset, backup-  
battery switchover, watchdog input, battery freshness  
seal, and chip-enable gating. The Selector Guide below  
lists the specific functions available from each device.  
Can Exceed V  
CC  
Battery Freshness Seal  
On-Board, 3ns Gating of Chip-Enable Signals  
These devices offer two pretrimmed reset threshold volt-  
ages for ±5ꢀ or ±1±ꢀ power suppliesꢁ :.45V for the L  
versions and :.:±V for the M versions. The MAX817/  
MAX818/MAX819 are available in space-saving µMAX  
packages, as well as 8-pin DIP/SO.  
(MAX818)  
Uncommitted Voltage Monitor for Power-Fail or  
Low-Battery Warning (MAX817/MAX819)  
Manual Reset Input (MAX819)  
______________Ordering Information  
_____________________Selector Guide  
PART  
TEMP. RANGE  
±°C to +7±°C  
±°C to +7±°C  
±°C to +7±°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX817 MAX818 MAX819  
FEATURE  
MAX817_CPA  
MAX817_CSA  
MAX817_CUA  
L/M  
L/M  
L/M  
Active-Low Reset  
8 µMAX  
Backup-Battery Switchover  
Power-Fail Comparator  
Watchdog Input  
Ordering Information continued on last page.  
These parts offer a choice of reset threshold voltage. From the  
table below, select the suffix corresponding to the desired  
threshold and insert it into the blank to complete the part number.  
Devices are available in both leaded and lead-free packaging.  
Specify lead free by adding the + symbol at the end of the part  
number when ordering.  
Battery Freshness Seal  
Manual Reset Input  
Chip-Enable Gating  
8-DIP/SO/ 8-DIP/SO/ 8-DIP/SO/  
Pin-Package  
µMAX  
µMAX  
µMAX  
SUFFIX  
RESET THRESHOLD (V)  
L
:.45  
:.:±  
Low-Power, Pin-  
Compatible Upgrades forꢁ MAX492A  
MAX49±A/  
MAX7±3/  
MAX7±:  
M
_________________Pin Configurations  
________________________Applications  
Battery-Powered Computers and Controllers  
Embedded Controllers  
TOP VIEW  
1
2
3
4
8
7
6
5
BATT  
RESET  
WDI  
OUT  
Intelligent Instruments  
V
CC  
Critical µP Monitoring  
MAX817  
GND  
PFI  
Portable Equipment  
PFO  
Typical Operating Circuit appears at end of data sheet.  
DIP/SO/µMAX  
Pin Configurations continued at end of data sheet.  
*Patents Pending  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+5V Microprocessor Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Continuous Power Dissipation (T = +7±°C)  
A
V
, BATT ..........................................................-±.3V to +4.±V  
Plastic DIP (derate 9.±9mW/°C above +7±°C) .............727mW  
SO (derate 5.88mW/°C above +7±°C)..........................:71mW  
µMAX (derate :.1±mW/°C above +7±°C) .....................33±mW  
Operating Temperature Ranges  
MAX81_ _C_A......................................................±°C to +7±°C  
MAX81_ _E_A ...................................................-:±°C to +85°C  
Storage Temperature Range.............................-45°C to +14±°C  
Lead Temperature (soldering, 1±sec) .............................+3±±°C  
CC  
All Other Pins (Note 1).............................-±.3V to (V  
Input Current  
V
V
BATT Peak .....................................................................25±mA  
BATT Continuous .............................................................5±mA  
GND .................................................................................25mA  
Output Current  
+ ±.3V)  
CC  
Peak ..............................................................................1A  
CC  
Continuous .............................................................25±mA  
CC  
OUT................................................................................25±mA  
All Other Outputs .............................................................25mA  
OUT Short-Circuit Duration.................................................1±sec  
Note 1: The input voltage limits on PFI and WDI may be exceeded (up to 12V V ) if the current into these pins is limited to less  
IN  
than 1±mA.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +:.75V to +5.5V for MAX81_L, V  
= +:.5V to +5.5V for MAX81_M, V  
= 2.8V, T = T  
A
to T  
, unless otherwise  
MAX  
CC  
CC  
BATT  
MIN  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Voltage Range, V  
,
CC  
±
5.5  
V
V
(Note 2)  
BATT  
MAX81_ _C  
MAX81_ _E  
11  
11  
:5  
4±  
As applicable; CE IN = ±V,  
WDI and MR unconnected  
Supply Current (excluding I  
)
I
µA  
µA  
OUT  
SUPPLY  
T
A
= +25°C  
±.±5  
1.±  
Supply Current in Battery-  
V
= ±V  
CC  
T
T
= T  
MAX  
to  
MIN  
A
Backup Mode (excluding I  
)
OUT  
5.±  
T
= +25°C  
-±.1±  
-1.±±  
±.±2  
±.±2  
A
BATT Standby Current (Note 3)  
5.5V > V > (V  
+ ±.2V)  
µA  
µA  
CC  
BATT  
T
T
= T  
to  
MIN  
A
MAX  
BATT Leakage Current,  
Freshness Seal Enabled  
V
= ±V, V  
= 5mA  
= ±V  
OUT  
1
CC  
OUT  
OUT  
V
±.±5  
-
V
-
CC  
CC  
I
I
±.±25  
V
V
Output  
V
OUT  
V
±.5  
-
V
CC  
-
CC  
= 5±mA  
±.25  
to OUT On-Resistance  
5
1±  
CC  
BATT to OUT On-Resistance  
1±±  
V
V
BATT -  
±.1  
BATT -  
±.±2  
V
in Battery-Backup Mode  
I
= 25±µA, V  
< (V - ±.2V)  
BATT  
V
OUT  
OUT  
CC  
Power-up  
Power-down  
2±  
-2±  
:±  
Battery Switch Threshold  
(V - V  
V
< V  
mV  
mV  
CC  
RST  
)
BATT  
CC  
Battery Switchover Hysteresis  
2
_______________________________________________________________________________________  
+5V Microprocessor Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +:.75V to +5.5V for MAX81_L, V  
= +:.5V to +5.5V for MAX81_M, V  
= 2.8V, T = T  
A
to T  
, unless otherwise  
MAX  
CC  
CC  
BATT  
MIN  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET AND WATCHDOG TIMER  
MAX81_L  
MAX81_M  
:.5±  
:.25  
:.45  
:.:±  
25  
:.75  
:.5±  
Reset Threshold  
V
V
RST  
Reset Threshold Hysteresis  
Reset Timeout Period  
mV  
ms  
t
1:±  
2±±  
28±  
RP  
V
V
V
> V  
< V  
I
= 8±±µA  
V
- 1.5  
CC  
OH  
CC  
CC  
RST(MAX), SOURCE  
I
= 3.2mA  
±.:  
±.3  
RST(MIN), SINK  
MAX81_ _C, V = 1V, V falling,  
CC  
CC  
V
RESET Output Voltage  
V
BATT  
= ±V, I  
= 5±µA  
SINK  
V
OL  
MAX81_ _E, V = 1.2V, V falling,  
CC  
CC  
±.3  
V
BATT  
= ±V, I  
= 1±±µA  
SINK  
From V  
, V  
falling at 1±V/ms  
1±±  
µs  
sec  
ns  
V
to RESET Delay  
RST CC  
CC  
Watchdog Timeout Period  
WDI Pulse Width  
t
1.±±  
5±  
1.4±  
2.25  
±.8  
WD  
t
V
V
= ±.:V, V = ±.8V  
IH CC  
WDI  
IL  
V
IL  
WDI Input Threshold (Note :)  
WDI Input Current (Note 5)  
= 5V  
V
CC  
V
3.5  
-2±  
IH  
WDI = V , time average  
CC  
12±  
-15  
14±  
µA  
WDI = GND, time average  
POWER-FAIL COMPARATOR (MAX817/MAX819 only)  
PFI Input Threshold  
PFI Input Hysteresis  
PFI Input Current  
V
1.2±  
-25  
1.25  
:
1.3±  
V
PFT  
mV  
nA  
I
±.±1  
25  
PFI  
V
V
V
V
< 1.2±V, I  
> 1.3±V, I  
= ±V  
= 3.2mA, V > :.5±V  
CC  
±.:  
OL  
PFI  
PFI  
SINK  
V
PFO Output Voltage  
V
= :±µA, V  
> :.5V  
V
- 1.5  
CC  
OH  
SOURCE  
CC  
25±  
5±±  
2.±  
µA  
PFO Short-Circuit Current  
PFO  
MANUAL RESET INPUT (MAX819 only)  
V
±.8  
IL  
V
MR Input Threshold  
MR Pulse Width  
V
IH  
1
µs  
ns  
MR Pulse that Would Not Cause  
a Reset  
1±±  
12±  
43  
ns  
MR to Reset Delay  
:5  
85  
kΩ  
MR Pull-Up Resistance  
_______________________________________________________________________________________  
3
+5V Microprocessor Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +:.75V to +5.5V for MAX81_L, V  
= +:.5V to +5.5V for MAX81_M, V  
= 2.8V, T = T  
A
to T  
, unless otherwise  
MAX  
CC  
CC  
BATT  
MIN  
noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHIP-ENABLE GATING (MAX818 only)  
Disable mode  
Enable mode  
±±.±±5  
:±  
±1  
µA  
CE IN Leakage Current  
CE IN to CE OUT Resistance  
(Note 4)  
15±  
CE OUT Short-Circuit Current  
(Reset Active)  
±.1  
±.75  
3
2.±  
8
mA  
ns  
V
Disable mode, CE OUT = ±V  
CE IN to CE OUT Propagation  
Delay (Note 7)  
source impedance driver, C  
= 5±pF  
LOAD  
I
I
= -1±±µA, V  
= ±V  
V
- 1V  
CC  
OUT  
CC  
V
CE OUT Output  
OH  
= -1µA, V  
= ±V, V  
= 2.8V  
BATT  
2.7  
OUT  
CC  
V
±.8  
IH  
V
= 5V  
V
CE OUT Input Threshold  
RESET to CE OUT Delay  
CC  
V
3.5  
IL  
Power-down  
15  
µs  
Note 2: Either V  
or V  
BATT  
can go to ±V if the other is greater than 2.±V.  
CC  
Note 3: “-” = battery-charging current, “+” = battery-discharging current.  
Note 4: WDI is internally serviced within the watchdog timeout period if WDI is left unconnected.  
Note 5: WDI input is designed to be driven by a three-stated output device. To float WDI, the “high-impedance mode” of the output  
device must have a maximum leakage current of 1±µA and a maximum output capacitance of 2±±pF. The output device  
must also be able to source and sink at least 2±±µA when active.  
Note 6: The chip-enable resistance is tested with V  
= +:.75V for the MAX818L and V  
= +:.5V for the MAX818M.  
CC  
CC  
V
= V  
= V /2.  
CE OUT CC  
CE IN  
Note 7: The chip-enable propagation delay is measured from the 5±ꢀ point at CE IN to the 5±ꢀ point at CE OUT.  
4
_______________________________________________________________________________________  
+5V Microprocessor Supervisory Circuits  
__________________________________________Typical Operating Characteristics  
(V  
= +5V, V  
= 3.±V, T = +25°C, unless otherwise noted.)  
BATT A  
CC  
SUPPLY CURRENT  
vs. TEMPERATURE (NO LOAD)  
BATTERY SUPPLY CURRENT  
(BACKUP MODE) vs. TEMPERATURE  
CE IN TO CE OUT ON-RESISTANCE  
vs. TEMPERATURE  
16  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
V
= 0V  
CC  
V
= 4V  
V
= 5.0V  
CE IN  
BATT  
14  
12  
120  
100  
80  
60  
40  
20  
0
V
V
= 3V  
= 2V  
CE IN  
CE IN  
V
= 2.8V  
= 2.0V  
BATT  
BATT  
V
10  
8
20  
TEMPERATURE (°C)  
-40 -20  
0
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
BATT TO OUT ON-RESISTANCE  
vs. TEMPERATURE  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
V
CC  
TO OUT ON-RESISTANCE  
vs. TEMPERATURE  
300  
250  
200  
220  
210  
200  
7
6
5
4
3
V
= 0V  
CC  
V
= 2.0V  
BATT  
150  
100  
50  
V
V
= 2.8V  
= 5.0V  
BATT  
BATT  
190  
180  
0
-40 -20  
0
20  
40  
60 80 100  
-40 -20  
0
20  
40  
60 80 100  
-40 -20  
0
20  
40  
60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
CC  
TO RESET PROPAGATION DELAY  
vs. TEMPERATURE  
BATTERY FRESHNESS SEAL  
LEAKAGE CURRENT vs. TEMPERATURE  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
500  
400  
300  
20  
15  
1.70  
1.65  
V
FALLING AT:  
0.25V/ms  
CC  
1V/ms  
10  
5
1.60  
1.55  
200  
100  
0
10V/ms  
0
1.50  
-40 -20  
0
20  
40  
60 80 100  
-40 -20  
0
20  
40  
60 80 100  
-40 -20  
0
20  
40  
60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
+5V Microprocessor Supervisory Circuits  
____________________________Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= 3.±V, T = +25°C, unless otherwise noted.)  
BATT A  
CC  
BATTERY SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
RESET THRESHOLD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
8
7
4.7  
1600  
1400  
1200  
1000  
MAX81_L  
4.6  
6
5
4
800  
4.5  
4.4  
4.3  
RESET OCCURS  
ABOVE CURVE  
600  
400  
3
2
1
0
MAX81_M  
200  
0
1
10  
100  
1000  
10,000  
0
1
2
3
4
5
6
-40  
-20  
0
20  
40  
60  
80  
V
(V)  
TEMPERATURE (°C)  
RESET COMPARATOR OVERDRIVE, V -V (mV)  
TH CC  
CC  
CE IN TO CE OUT PROPAGATION DELAY  
vs. TEMPERATURE  
MAX817/MAX819 PFI TO PFO PROPAGATION  
DELAY vs. TEMPERATURE  
MAX817/MAX819 PFI THRESHOLD  
vs. TEMPERATURE  
33  
7
6
1.254  
1.252  
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
32  
31  
30  
29  
28  
5
4
3
t
-
PD  
t
+
PD  
2
1
0
-40 -20  
0
20  
40  
60 80 100  
-40 -20  
0
20  
40  
60 80 100  
-40 -20  
0
20  
40  
60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
+5V Microprocessor Supervisory Circuits  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
MAX817  
MAX818  
MAX819  
Supply Output for CMOS RAM. When V  
rises above the reset threshold  
CC  
1
1
1
OUT  
or above V  
MOSFET switch. When V  
, OUT is connected to V  
through an internal P-channel  
, BATT connects to OUT.  
BATT  
CC  
BATT  
falls below V  
CC  
2
3
2
3
2
3
V
Input Supply Voltage, +5V input.  
CC  
GND  
Ground. ±V reference for all signals.  
Power-Fail Comparator Input. When V is below V  
or when V is below  
CC  
PFI  
PFT  
:
:
:
PFI  
V
, PFO goes low; otherwise, PFO remains high (see Power-Fail Comparator  
BATT  
section). Connect to ground if unused.  
Chip-Enable Input. The input to the chip-enable gating circuit. Connect to  
ground if unused.  
CE IN  
Power-Fail Comparator Output. When PFI is less than V  
or when V  
is  
PFT  
CC  
below V  
, PFO goes low; otherwise PFO remains high. PFO is also used to  
BATT  
5
5
5
PFO  
enable the battery freshness seal (see Battery Freshness Seal and Power-Fail  
Comparator sections).  
Chip-Enable Output. CE OUT goes low only if CE IN is low while reset is not  
asserted. If CE IN is low when reset is asserted, CE OUT will remain low for  
15µs or until CE IN goes high, whichever occurs first. CE OUT is pulled up to  
OUT in battery-backup mode. CE OUT is also used to enable the battery  
freshness seal (see Battery Freshness Seal section).  
CE OUT  
Watchdog Input. If WDI remains either high or low for longer than the watch-  
dog timeout period, the internal watchdog timer runs out and a reset is trig-  
gered. If WDI is left unconnected or is connected to a high-impedance  
three-state buffer, the watchdog feature is disabled. The internal watchdog  
timer clears whenever reset is asserted, WDI is three-stated, or WDI sees a ris-  
ing or falling edge. The WDI input is designed to be driven by a three-stated-  
output device with a maximum high-impedance leakage current of 1±µA and a  
maximum output capacitance of 2±±pF. The output device must also be capa-  
ble of sinking and sourcing 2±±µA when active.  
4
4
WDI  
Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted  
for as long as MR is held low and for 2±±ms after MR returns high. The active-  
low input has an internal 43kpull-up resistor. It can be driven from a TTL- or  
CMOS-logic line or shorted to ground with a switch. Leave open, or connect to  
4
MR  
V
if unused.  
CC  
Active-Low Reset Output. Pulses low for 2±±ms when triggered and remains  
low whenever V is below the reset threshold or when MR is a logic low. It  
CC  
7
8
7
8
7
8
RESET  
remains low for 2±±ms after V  
rises above the reset threshold, the watchdog  
CC  
triggers a reset, or MR goes low to high.  
Backup-Battery Input. When V falls below V  
, OUT switches from V to  
CC  
CC  
BATT  
BATT  
BATT. When V  
rises above V  
, OUT reconnects to V  
.
CC  
BATT  
CC  
_______________________________________________________________________________________  
7
+5V Microprocessor Supervisory Circuits  
BATT  
OUT  
BATTERY SWITCHOVER  
CIRCUITRY  
V
CC  
MAX817  
MAX818  
MAX819  
RESET  
GENERATOR  
RESET  
1.25V  
THIS PIN  
FOR MAX819  
ONLY.  
MR  
BATTERY  
FRESHNESS  
SEAL CIRCUITRY  
WATCHDOG  
TIMER  
WDI  
THIS SECTION  
FOR MAX817/  
MAX818 ONLY.  
PFI  
THIS SECTION  
FOR MAX817/  
MAX819 ONLY.  
PFO  
CHIP-ENABLE  
OUTPUT  
CONTROL  
1.25V  
THIS SECTION  
FOR MAX818  
ONLY.  
CE IN  
CE OUT  
GND  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
8
+5V Microprocessor Supervisory Circuits  
During the reset timeout period (t ), MR’s state is  
RP  
_______________Detailed Description  
ignored if the battery freshness seal is enabled. MR has  
an internal 43kpull-up resistor, so it can be left open  
if not used. This input can be driven with TTL/CMOS-  
logic levels or with open-drain/collector outputs.  
Connect a normally open momentary switch from MR to  
GND to create a manual reset function; external  
debounce circuitry is not required. If MR is driven from  
long cables or the device is used in a noisy environ-  
ment, connect a ±.1µF capacitor from MR to GND to  
provide additional noise immunity.  
General Timing Characteristics  
Designed for 5V systems, the MAX817/MAX818/  
MAX819 provide a number of microprocessor (µP)  
supervisory functions (see the Selector Guide on the  
first page). Figure 2 shows the typical timing relation-  
ships of the various outputs during power-up and  
power-down with typical V  
rise and fall times.  
CC  
RESET Output  
A µP’s reset input starts the µP in a known state. The  
MAX817/MAX818/MAX819 µP supervisory circuits  
assert a reset to prevent code-execution errors during  
power-up, power-down, and brownout conditions.  
Note that MR must be high or open to enable the bat-  
tery freshness seal. Once the battery freshness seal is  
enabled its operation is unaffected by MR.  
RESET is guaranteed to be a logic low for ±V < V  
<
CC  
Battery Freshness Seal  
The MAX817/MAX818/MAX819 battery freshness seal  
disconnects the backup battery from internal circuitry  
and OUT until it is needed. This allows an OEM to  
ensure that the backup battery connected to BATT will  
be fresh when the final product is put to use. To enable  
the freshness seal on the MAX817 and MAX819ꢁ  
V
if V  
is greater than 1V. Without a backup bat-  
RST  
tery (V  
CC  
BATT  
= GND) RESET is guaranteed valid for  
BATT  
V
1V. Once V  
exceeds the reset threshold an  
CC  
internal timer keeps RESET low for the reset timeout  
period, t . After this interval RESET returns high  
RP  
(Figure 2).  
If a brownout condition occurs (V  
drops below the  
CC  
1) Connect a battery to BATT.  
reset threshold), RESET goes low. Each time RESET is  
2) Ground PFO.  
asserted it stays low for at least the reset timeout peri-  
od. Any time V  
goes below the reset threshold the  
CC  
3) Bring V  
above the reset threshold and hold it  
CC  
internal timer clears. The reset timer starts when V  
CC  
there until reset is deasserted following the reset  
timeout period.  
returns above the reset threshold. RESET both sources  
and sinks current.  
:) Bring V  
down again (Figure 3).  
CC  
Manual Reset Input (MAX819)  
Many µP-based products require manual reset capabil-  
ity, allowing the operator, a test technician, or external  
logic circuitry to initiate a reset. On the MAX819, a logic  
low on MR asserts reset. Reset remains asserted while  
Use the same procedure for the MAX818, but ground  
CE OUT instead of PFO. Once the battery freshness  
seal is enabled (disconnecting the backup battery from  
internal circuitry and anything connected to OUT), it  
remains enabled until V  
is brought above V  
.
CC  
RST  
MR is low, and for t  
(2±±ms) after it returns high.  
RP  
V
BATT  
V
RST  
V
RST  
V
RST  
V
RST  
V
CC  
V
BATT  
V
OUT  
V
CC  
V
BATT  
t
RP  
RESET TO  
CE OUT  
V
RESET  
PFO FOLLOWS PFI  
t
RP  
RESET  
DELAY**  
CE OUT STATE LATCHED  
AT 1/2 t AND 3/4 t  
V
PFO*  
,
RP  
CE OUT (MAX818)  
RP  
V
CE OUT**  
FRESHNESS SEAL ENABLED  
(EXTERNALLY HELD AT 0V)  
V
BATT  
PFO STATE LATCHED  
CE OUT FOLLOWS CE IN  
AT 1/2 t AND 3/4 t  
,
PFO (MAX817/MAX819)  
RP  
RP  
FRESHNESS SEAL ENABLED  
(EXTERNALLY HELD AT 0V)  
*MAX817/MAX819 ONLY.  
** MAX818 ONLY.  
Figure 3. Battery Freshness Seal Timing  
Figure 2. Power-Up and Power-Down Timing  
_______________________________________________________________________________________  
9
+5V Microprocessor Supervisory Circuits  
On the MAX819, MR must be high or open to enable  
the battery freshness seal. Once the battery freshness  
seal is enabled its operation is unaffected by MR.  
V
CC  
Watchdog Input (MAX817/MAX818)  
In the MAX817/MAX818, the watchdog circuit monitors  
the µP’s activity. If the µP does not toggle the watchdog  
t
RP  
t
WD  
RESET  
WDI  
input (WDI) within t  
(1.4sec), reset asserts. The inter-  
WD  
nal 1.4sec timer is cleared by either a reset pulse or by  
toggling WDI, which can detect pulses as short as  
5±ns. The timer remains cleared and does not count for  
as long as reset is asserted. As soon as reset is  
released, the timer starts counting (Figure :).  
Figure 4. Watchdog Timing  
To disable the watchdog function, leave WDI uncon-  
nected or three-state the driver connected to WDI. The  
watchdog input is internally driven low during the first  
7/8 of the watchdog timeout period, then momentarily  
pulses high, resetting the watchdog counter. When  
WDI is left open-circuited, this internal driver clears the  
1.4sec timer every 1.:sec. When WDI is three-stated or  
left unconnected, the maximum allowable leakage cur-  
rent is 1±µA and the maximum allowable load capaci-  
tance is 2±±pF.  
BATTERY  
SWITCHOVER  
CIRCUITRY  
MAX817  
MAX818  
BATTERY  
RESET  
GENERATOR  
FRESHNESS  
SEAL CIRCUITRY  
OUT  
Chip-Enable Gating (MAX818)  
Internal gating of the chip-enable (CE) signal prevents  
erroneous data from corrupting CMOS RAM in the  
event of an undervoltage condition. The MAX818 uses  
a series transmission gate from CE IN to CE OUT  
(Figure 5). During normal operation (reset not assert-  
ed), the CE transmission gate is enabled and passes  
all CE transitions. When reset is asserted, this path  
becomes disabled, preventing erroneous data from  
corrupting the CMOS RAM. The short CE propagation  
delay from CE IN to CE OUT enables the MAX818 to be  
used with most µPs. If CE IN is low when reset asserts,  
CE OUT remains low for typically 15µs to permit the  
current write cycle to complete.  
CHIP-ENABLE  
OUTPUT  
CONTROL  
P
CE IN  
CE OUT  
N
Figure 5. Chip-Enable Transmission Gate  
Chip-Enable Input (MAX818)  
The CE transmission gate is disabled and CE IN is high  
impedance (disabled mode) while reset is asserted.  
V
RST  
V
RST  
V
RST  
V
RST  
V
CC  
During a power-down sequence when V  
passes the  
CC  
reset threshold, the CE transmission gate disables and  
CE IN immediately becomes high impedance if the volt-  
age at CE IN is high. If CE IN is low when reset asserts,  
the CE transmission gate will disable 15µs after reset  
asserts (Figure 4). This permits the current write cycle  
to complete during power-down.  
V
CE OUT  
V
BATT  
V
BATT  
t
RP  
t
RP  
15µs  
V
RESET  
V
CE IN  
Figure 6. Chip-Enable Timing  
10 ______________________________________________________________________________________  
+5V Microprocessor Supervisory Circuits  
Any time a reset is generated, the CE transmission gate  
Power-Fail Comparator  
(MAX817/MAX819)  
remains disabled and CE IN remains high impedance  
(regardless of CE IN activity) for the reset timeout peri-  
od. When the CE transmission gate is enabled, the  
impedance of CE IN appears as a :±resistor in series  
with the load at CE OUT. The propagation delay  
The MAX817/MAX819 PFI input is compared to an inter-  
nal reference. If PFI is less than the power-fail threshold  
PFT  
(V  
), PFO goes low. The power-fail comparator is  
intended for use as an undervoltage detector to signal a  
failing power supply (Figure 8). However, the comparator  
does not need to be dedicated to this function because it  
is completely separate from the rest of the circuitry.  
through the CE transmission gate depends on V , the  
CC  
source impedance of the drive connected to CE IN,  
and the loading on CE OUT (see Typical Operating  
Characteristics). The CE propagation delay is produc-  
tion tested from the 5±ꢀ point on CE IN to the 5±ꢀ  
point on CE OUT using a 5±driver and a 5±pF load  
capacitance (Figure 7). For minimum propagation  
delay, minimize the capacitive load at CE OUT and use  
a low-output-impedance driver.  
The power-fail comparator turns off and PFO goes low  
when V  
falls below V  
. During the reset timeout  
BATT  
CC  
period (t ), PFO is forced high, regardless of the state  
RP  
of V  
(see Battery Freshness Seal section). If the com-  
PFI  
parator is unused, connect PFI to ground and leave PFO  
unconnected. PFO can be connected to MR on the  
MAX819 so that a low voltage on PFI will generate a  
reset (Figure 9). In this configuration, when the monitored  
Chip-Enable Output (MAX818)  
When the CE transmission gate is enabled, the imped-  
ance of CE OUT is equivalent to a :±resistor in series  
with the source driving CE IN. In the disabled mode,  
the transmission gate is off and an active pull-up con-  
nects CE OUT to OUT (Figure 5). This pull-up turns off  
when the transmission gate is enabled.  
voltage causes PFI to fall below V , PFO pulls MR low,  
PFT  
causing a reset to be asserted. Reset remains asserted  
as long as PFO holds MR low, and for t (2±±ms) after  
RP  
PFO pulls MR high when the monitored supply is above  
the programmed threshold. When PFO is connected to  
MR, it is not possible to enable the battery freshness  
seal. Enabling the battery freshness seal requires MR to  
be high or open. Once the battery freshness seal is  
enabled, it is no longer affected by PFO’s connection to  
MR.  
+5V  
V
IN  
+5V  
POWER-FAIL-WARNING TRIP VOLTAGE  
R1 + R2  
REGULATOR  
V
CC  
V
WARN  
= 1.25  
( )  
BATT  
CE IN  
R2  
V
MAX818  
CC  
MAX817  
MAX819  
R1  
R2  
CE OUT  
RESET  
PFO  
RESET  
NMI  
50Ω  
PFI  
GND  
50Ω  
50pF  
C *  
µP  
L
1.25V  
* C INCLUDES LOAD CAPACITANCE, STRAY CAPACITANCE,  
L
AND SCOPE-PROBE CAPACITANCE.  
Figure 7. CE Propagation Delay Test Circuit  
Figure 8. Using the Power-Fail Comparator to Generate a  
Power-Fail Warning  
______________________________________________________________________________________ 11  
+5V Microprocessor Supervisory Circuits  
When V exceeds the reset threshold, it is connected to  
Backup-Battery Switchover  
In a brownout or power failure, it may be necessary to  
preserve the contents of RAM. With a backup battery  
installed at BATT, the MAX817/MAX818/MAX819 auto-  
CC  
the substrate, regardless of the voltage applied to BATT  
(Figure 1±). During this time, the diode (D1) between  
BATT and the substrate will conduct current from BATT  
to V  
if V is ±.4V greater than V . When BATT  
BATT CC  
matically switch RAM to backup power when V  
falls.  
CC  
CC  
connects to OUT, backup mode is activated and the  
internal circuitry is powered from the battery (Table 1).  
These devices require two conditions before switching  
to battery-backup modeꢁ 1) V  
must be below the  
CC  
When V  
is just below V  
, the current draw from  
drops to more than 1V  
reset threshold, and 2) V  
CC  
must be below V  
.
BATT  
CC  
BATT  
BATT is typically 4µA. When V  
Table 1 lists the status of the inputs and outputs in bat-  
tery-backup mode.  
CC  
below V  
, the internal switchover comparator shuts  
BATT  
off and the supply current falls to less than 1µA.  
As long as V  
exceeds the reset threshold, OUT con-  
CC  
nects to V  
through a 5PMOS power switch. Once  
CC  
__________Applications Information  
The MAX817/MAX818/MAX819 are protected for typical  
short-circuit conditions of 1±sec or less. Shorting OUT  
to ground for longer than 1±sec destroys the device.  
Decouple V , OUT, and BATT to ground by placing  
CC  
±.1µF capacitors as close to the device as possible.  
V
falls below the reset threshold, V  
or V  
CC BATT  
CC  
(whichever is higher) switches to OUT. When V  
falls  
CC  
below V  
and V  
, BATT switches to OUT through  
RST  
BATT  
an 8±switch.  
Table 1. Input and Output Status in  
Battery-Backup Mode  
SIGNAL  
STATUS  
Disconnected from V  
BATT  
V
CC  
V
CC  
.
OUT  
Connected to V  
PMOS switch.  
through an internal 8±Ω  
BATT  
V
OUT  
Connected to V  
. Current drawn from  
OUT  
V
the battery is less than 1µA, as long as  
< V - ±.2V.  
BATT  
SW1  
SW2  
SW3  
SW4  
D1 D2  
V
CC  
BATT  
SUBSTRATE  
V
Logic low  
RESET  
V
Watchdog timer is disabled.  
WDI  
D3  
Logic high. The open-circuit voltage is equal  
MAX817  
MAX818  
MAX819  
V
CE OUT  
to V  
.
OUT  
V
High impedance  
CE IN  
OUT  
V1  
ADDITIONAL SUPPLY RESET VOLTAGE  
R1 + R2  
V2  
= 1.25  
CONDITION  
SW1/SW2 SW3/SW4  
(RESET)  
( )  
R2  
V
CC  
V2  
V
> Reset Threshold  
Open  
Open  
Closed  
Closed  
Open  
CC  
R1  
R2  
MAX819  
V
CC  
V
CC  
< Reset Threshold and  
RESET  
MR  
RESET  
> V  
BATT  
PFI  
V
CC  
V
CC  
< Reset Threshold and  
Closed  
< V  
BATT  
µP  
PFO  
RESET THRESHOLD = 4.65V IN MAX81_L  
RESET THRESHOLD = 4.4V IN MAX81_M  
Figure 9. Monitoring an Additional Supply by Connecting  
PFO to MR.  
Figure 10. Backup-Battery-Switchover Block Diagram  
12 ______________________________________________________________________________________  
+5V Microprocessor Supervisory Circuits  
V
, the SuperCap on BATT discharges through V  
BATT  
Watchdog Input Current  
The MAX817/MAX818 WDI inputs are internally driven  
through a buffer and series resistor from the watchdog  
counter (Figure 1). When WDI is left unconnected, the  
watchdog timer is serviced within the watchdog timeout  
period by a low-high-low pulse from the counter chain.  
For minimum watchdog input current (minimum overall  
power consumption), leave WDI low for the majority of the  
watchdog timeout period, pulsing it low-high-low once  
CC  
until V  
CC  
reaches the reset threshold. Battery-backup  
mode is then initiated and the current through V  
goes to zero.  
CC  
Operation Without a  
Backup Power Source  
The MAX817/MAX818/MAX819 were designed for bat-  
tery-backed applications. If a backup battery is not  
used, connect V  
ground.  
to OUT, and connect BATT to  
7
CC  
within /8 of the watchdog timeout period to reset the  
watchdog timer. If instead WDI is externally driven high for  
the majority of the timeout period, up to 15±µA can flow  
into WDI.  
Replacing the Backup Battery  
The backup power source can be removed while V  
CC  
remains valid, without danger of triggering a reset  
pulse, if BATT is decoupled with a ±.1µF capacitor to  
Using a SuperCap™ as a  
Backup Power Source  
ground. As long as V  
stays above the reset thresh-  
CC  
SuperCaps are capacitors with extremely high capaci-  
tance values (on the order of ±.:7F) for their size. Since  
old, battery-backup mode cannot be entered.  
BATT has the same operating voltage range as V , and  
CC  
Adding Hysteresis to the Power-Fail  
Comparator (MAX817/MAX819)  
The power-fail comparator has a typical input hystere-  
sis of :mV. This is sufficient for most applications where  
a power-supply line is being monitored through an  
external voltage divider (see Monitoring an Additional  
Supply).  
the battery switchover threshold voltages are typically  
±3±mV centered at V  
, a SuperCap and simple  
BATT  
charging circuit can be used as a backup power source.  
Figure 11 shows a SuperCap used as a backup source.  
If V  
is above the reset threshold and V  
is ±.5V  
BATT  
CC  
above V , current flows to OUT and V  
from BATT  
CC  
CC  
until the voltage at BATT is less than ±.5V above V  
.
CC  
For additional noise margin, connect a resistor between  
For example, if a SuperCap is connected to BATT  
through a diode to V , and V quickly changes from  
PFO and PFI, as shown in Figure 12. Select the ratio of  
CC  
CC  
R1 and R2 such that PFI sees V  
when V falls to the  
IN  
PFT  
5.:V to :.9V, the capacitor discharges through OUT  
and V until V reaches 5.1V typical. Leakage cur-  
CC  
BATT  
+5V  
V
IN  
rent through the SuperCap charging diode and the  
internal power diode eventually discharges the  
V
CC  
R1  
R2  
SuperCap to V . Also, if V  
and V  
start from  
BATT  
CC  
CC  
±.1V above the reset threshold and power is lost at  
PFI  
MAX817  
MAX819  
R3  
+5V  
C1*  
PFO  
OUT  
GND  
V
CC  
TO STATIC RAM  
TO µP  
*OPTIONAL  
MAX817  
MAX818  
MAX819  
+5V  
RESET  
BATT  
TO µP  
PFO  
0V  
0V  
V
V
H
L
V
TRIP  
0.1F  
100k  
V
IN  
R2  
R1 + R2  
GND  
(
)
V
= 1.25V  
TRIP  
||  
R2 R3  
V
= 1.25V  
H
(
)
+
||  
R1 R2 R3  
V - 1.25  
L
5 - 1.25  
R3  
1.25  
R2  
+
=
Figure 11. Using a SuperCap™ as a Backup Power Source  
with a +5V 10ꢀ Supply  
R1  
Figure 12. Adding Hysteresis to the Power-Fail Comparator  
SuperCap is a trademark of Baknor Industries.  
______________________________________________________________________________________ 13  
+5V Microprocessor Supervisory Circuits  
desired trip point (V  
). Resistor R3 adds hysteresis.  
TRIP  
It will typically be an order of magnitude greater than R1  
or R2. The current through R1 and R2 should be at least  
1µA to ensure that the 25nA (max) PFI input leakage  
current does not shift the trip point. R3 should be larger  
than 2±±kto prevent it from loading down the PFO pin.  
Capacitor C1 adds additional noise rejection.  
+5V  
V
CC  
R1  
R2  
MAX817  
MAX819  
PFI  
PFO  
Monitoring an Additional Supply  
(MAX817/MAX819)  
The MAX817/MAX819 µP supervisors can monitor either  
positive or negative supplies using a resistor voltage  
divider to PFI. PFO can be used to generate an interrupt  
to the µP or to trigger a reset (Figures 9 and 13).  
GND  
V-  
+5V  
Interfacing to µPs with  
Bidirectional Reset Pins  
PFO  
0V  
µPs with bidirectional reset pins, such as the Motorola  
48HC11 series, can contend with the MAX817/MAX818/  
MAX819 RESET output. If, for example, the RESET out-  
put is driven high and the µP wants to pull it low, inde-  
terminate logic levels may result. To correct this,  
connect a :.7kresistor between the RESET output  
and the µP reset I/O, as in Figure 1:. Buffer the RESET  
output to other system components.  
V
TRIP  
V-  
0V  
5 - 1.25  
R1  
1.25 - V  
R2  
TRIP  
=
NOTE: V  
IS NEGATIVE  
TRIP  
Figure 13. Monitoring a Negative Voltage  
Negative-Going V  
Transients  
CC  
These supervisors are relatively immune to short-dura-  
tion, negative-going V transients (glitches) while  
CC  
issuing a reset to the µP during power-up, power-down,  
and brownout conditions. Therefore, resetting the µP  
when V  
experiences only small glitches is usually not  
BUFFERED RESET TO OTHER SYSTEM COMPONENTS  
CC  
desirable.  
The Typical Operating Characteristics show a graph of  
Maximum Transient Duration vs. Reset Threshold  
Overdrive for which reset pulses are not generated. The  
V
CC  
V
CC  
graph was produced using negative-going V  
pulses,  
CC  
MAX817  
MAX818  
MAX819  
starting at 3.3V and ending below the reset threshold by  
the magnitude indicated (reset threshold overdrive). The  
graph shows the maximum pulse width that a negative-  
4.7k  
RESET  
RESET  
going V  
transient can typically have without triggering  
CC  
a reset pulse. As the amplitude of the transient increases  
(i.e., goes farther below the reset threshold), the maxi-  
GND  
GND  
mum allowable pulse width decreases. Typically, a V  
CC  
transient that goes 1±±mV below the reset threshold and  
lasts for 135µs will not trigger a reset pulse.  
A ±.1µF bypass capacitor mounted close to the V  
pin provides additional transient immunity.  
CC  
Figure 14. Interfacing to µPs with Bidirectional Reset I/O  
14 ______________________________________________________________________________________  
+5V Microprocessor Supervisory Circuits  
Watchdog Software Considerations  
(MAX817/MAX818)  
To help the watchdog timer monitor software execution  
START  
more closely, set and reset the watchdog input at different  
points in the program, rather than “pulsing” the watchdog  
SET  
input high-low-high or low-high-low. This technique avoids  
WDI  
a “stuck” loop, in which the watchdog timer would contin-  
LOW  
ue to be reset within the loop, keeping the watchdog from  
timing out. Figure 15 shows an example of a flow diagram  
SUBROUTINE  
OR PROGRAM LOOP,  
SET WDI  
where the I/O driving the watchdog input is set high at the  
beginning of the program, set low at the beginning of  
every subroutine or loop, then set high again when the  
program returns to the beginning. If the program should  
“hang” in any subroutine, the problem would quickly be  
corrected, since the I/O is continually set low and the  
watchdog timer is allowed to time out, triggering a reset or  
an interrupt. As described in the Watchdog Input Current  
section, this scheme results in higher average WDI input  
current than does the method of leaving WDI low for the  
majority of the timeout period and periodically pulsing it  
low-high-low.  
HIGH  
RETURN  
END  
Figure 15. Watchdog Flow Diagram  
____Pin Configurations (continued)  
__________Typical Operating Circuit  
TOP VIEW  
+5V  
REAL-  
TIME  
CLOCK  
1
2
3
4
8
7
6
5
BATT  
OUT  
CMOS  
RAM  
0.1µF  
RESET  
WDI  
V
CC  
MAX818  
GND  
V
CC  
OUT  
BATT  
CE IN  
CE OUT  
0.1µF  
MAX817  
MAX818  
MAX819  
0.1µF  
DIP/SO/µMAX  
A0–A15  
RESET  
RESET  
µP  
1
2
3
4
8
7
6
5
BATT  
RESET  
MR  
OUT  
I/O  
WDI**  
CE IN* CE OUT*  
GND  
V
CC  
MAX819  
ADDRESS  
DECODE  
GND  
PFI  
PFO  
*CE IN AND CE OUT APPLY TO MAX818 ONLY.  
**WDI APPLIES TO MAX817/MAX818 ONLY.  
DIP/SO/µMAX  
______________________________________________________________________________________ 15  
+5V Microprocessor Supervisory Circuits  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNTꢁ 719  
PART  
TEMP. RANGE  
-:±°C to +85°C  
-:±°C to +85°C  
±°C to +7±°C  
±°C to +7±°C  
±°C to +7±°C  
-:±°C to +85°C  
-:±°C to +85°C  
±°C to +7±°C  
±°C to +7±°C  
±°C to +7±°C  
-:±°C to +85°C  
-:±°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX817_EPA  
MAX817_ESA  
MAX818_CPA  
MAX818_CSA  
MAX818_CUA  
MAX818_EPA  
MAX818_ESA  
MAX819_CPA  
MAX819_CSA  
MAX819_CUA  
MAX819_EPA  
MAX819_ESA  
8 Plastic DIP  
8 SO  
8 µMAX  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 µMAX  
8 Plastic DIP  
8 SO  
These parts offer a choice of reset threshold voltage. From the  
table below, select the suffix corresponding to the desired  
threshold and insert it into the blank to complete the part number.  
Devices are available in both leaded and lead-free packaging.  
Specify lead free by adding the + symbol at the end of the part  
number when ordering.  
SUFFIX  
RESET THRESHOLD (V)  
L
:.45  
:.:±  
M
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.036  
A1 0.004  
MAX  
0.044  
0.008  
0.014  
0.007  
0.120  
0.120  
MIN  
0.91  
0.10  
0.25  
0.13  
2.95  
2.95  
MAX  
1.11  
0.20  
0.36  
0.18  
3.05  
3.05  
A
C
α
A
B
C
D
E
e
0.010  
0.005  
0.116  
0.116  
0.101mm  
0.004 in  
e
B
A1  
L
0.0256  
0.65  
H
L
α
0.188  
0.016  
0°  
0.198  
0.026  
6°  
4.78  
0.41  
0°  
5.03  
0.66  
6°  
21-0036D  
E
H
8-PIN µMAX  
MICROMAX SMALL-OUTLINE  
PACKAGE  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600  
© 2±±5 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 8 1 9 L  
Pa rt Nu m ber T abl e  
N o t e s :  
1 . S e e t h e M A X 8 1 9 L Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
M A X 8 1 9 L f u l l d a t a s h e e t ( P D F , 2 6 0 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3 . D i d n ' t F i n d W h a t Y o u N e e d ? A s k o u r a p p l i c a t i o n s e n g i n e e r s . E x p e r t a s s i s t a n c e i n f i n d i n g p a r t s , u s u a l l y w i t h i n  
o n e b u s i n e s s d a y .  
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e  
f u l l d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e  
p r o d u c t u s e s .  
P a r t N u m b e r  
F r e e  
S a m p l e  
B u y  
D i r e c t  
T e m p  
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M A X 8 1 9 L C P A  
P D I P ; 8 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 8 - 1 *  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 1 9 L C P A +  
M A X 8 1 9 L E P A +  
M A X 8 1 9 L E P A  
P D I P ; 8 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 8 + 1 *  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
P D I P ; 8 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 8 + 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
P D I P ; 8 p i n ; . 3 0 0 "  
D w g : 2 1 - 0 0 4 3 D ( P D F )  
U s e p k g c o d e / v a r i a t i o n : P 8 - 1 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 1 9 L C S A - T  
M A X 8 1 9 L C S A + T  
M A X 8 1 9 L C S A +  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 2 *  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 2 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 2 *  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
M A X 8 1 9 L C S A  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 2 *  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 1 9 L E S A + T  
M A X 8 1 9 L E S A +  
M A X 8 1 9 L E S A - T  
M A X 8 1 9 L E S A  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 + 2 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 2 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
S O I C ; 8 p i n ; . 1 5 0 "  
D w g : 2 1 - 0 0 4 1 B ( P D F )  
U s e p k g c o d e / v a r i a t i o n : S 8 - 2 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
M A X 8 1 9 L C U A +  
M A X 8 1 9 L C U A  
M A X 8 1 9 L C U A + T  
M A X 8 1 9 L C U A - T  
M A X 8 1 9 L E U A + T  
M A X 8 1 9 L E U A - T  
M A X 8 1 9 L E U A  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
0 C t o + 7 0 C  
R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
R o H S / L e a d - F r e e : Y e s  
R o H S / L e a d - F r e e : N o  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 - 1 *  
M A X 8 1 9 L E U A +  
u M A X ; 8 p i n ; 3 x 3 m m  
D w g : 2 1 - 0 0 3 6 J ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
U s e p k g c o d e / v a r i a t i o n : U 8 + 1 *  
D i d n ' t F i n d W h a t Y o u N e e d ?  
C O N T A C T U S : S E N D U S A N E M A I L  
C o p y r i g h t 2 0 0 7 b y M a x i m I n t e g r a t e d P r o d u c t s , D a l l a s S e m i c o n d u c t o r L e g a l N o t i c e s P r i v a c y P o l i c y  

相关型号:

MAX819LCSA

+5V Microprocessor Supervisory Circuits
MAXIM

MAX819LCSA+T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, SOIC-8
MAXIM

MAX819LCSA-T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

MAX819LCUA

+5V Microprocessor Supervisory Circuits
MAXIM

MAX819LCUA+

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 3 X 3 MM, ROHS COMPLIANT, MICRO, SOP-8
ROCHESTER

MAX819LCUA+T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 3 X 3 MM, ROHS COMPLIANT, MICRO, SOP-10
MAXIM

MAX819LCUA-T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 3 X 3 MM, MICRO, SOP-10
MAXIM

MAX819LEPA

+5V Microprocessor Supervisory Circuits
MAXIM

MAX819LESA

+5V Microprocessor Supervisory Circuits
MAXIM

MAX819LESA+

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, SOIC-8
MAXIM

MAX819LESA+T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, SOIC-8
MAXIM

MAX819LESA-T

Power Supply Support Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM