MC9S08AC96MFGE [ROCHESTER]

8-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP44, ROHS COMPLIANT, LQFP-44;
MC9S08AC96MFGE
型号: MC9S08AC96MFGE
厂家: Rochester Electronics    Rochester Electronics
描述:

8-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP44, ROHS COMPLIANT, LQFP-44

时钟 外围集成电路
文件: 总41页 (文件大小:1489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08AC128  
Rev. 4, 8/2011  
MC9S08AC128 8-Bit  
Microcontroller Data Sheet  
MC9S08AC128  
840B-01  
824D-02  
917A-03  
Power-Saving Modes  
8-Bit HCS08 Central Processor Unit (CPU)  
Wait plus two stops  
40-MHz HCS08 CPU (central processor unit)  
20-MHz internal bus frequency  
HC08 instruction set with added BGND, CALL and  
RTC instructions  
Peripherals  
ADC — 16-channel, 10-bit resolution, 2.5 s  
conversion time, automatic compare function,  
temperature sensor, internal bandgap reference  
channel  
Memory Management Unit to support paged  
memory.  
Linear Address Pointer to allow direct page data  
accesses of the entire memory map  
SCIx Two serial communications interface  
modules supporting LIN 2.0 Protocol and SAE J2602  
protocols; Full duplex non-return to zero (NRZ);  
Master extended break generation; Slave extended  
break detection; Wakeup on active edge  
SPIx — One full and one master-only serial  
peripheral interface modules; Full-duplex or  
single-wire bidirectional; Double-buffered transmit  
and receive; Master or Slave mode; MSB-first or  
LSB-first shifting  
IIC — Inter-integrated circuit bus module; Up to 100  
kbps with maximum bus loading; Multi-master  
operation; Programmable slave address; Interrupt  
driven byte-by-byte data transfer; supports broadcast  
mode and 10 bit addressing  
TPMx — One 2-channel and two 6-channel 16-bit  
timer/pulse-width modulator (TPM) modules:  
Selectable input capture, output compare, and  
edge-aligned PWM capability on each channel. Each  
timer module may be configured for buffered,  
centered PWM (CPWM) on all channels  
KBI — 8-pin keyboard interrupt module  
Development Support  
Background debugging system  
Breakpoint capability to allow single breakpoint  
setting during in-circuit debugging (plus two more  
breakpoints in on-chip debug module)  
On-chip in-circuit emulator (ICE) Debug module  
containing three comparators and nine trigger  
modes. Eight deep FIFO for storing change-of-flow  
addresses and event-only data. Supports both tag  
and force breakpoints.  
Memory Options  
Up to 128K FLASH — read/program/erase over full  
operating voltage and temperature  
Up to 8K Random-access memory (RAM)  
Security circuitry to prevent unauthorized access to  
RAM and FLASH contents  
Clock Source Options  
Clock source options include crystal, resonator,  
external clock, or internally generated clock with  
precision NVM trimming using ICG module  
Input/Output  
System Protection  
Up to 70 general-purpose input/output pins  
Optional computer operating properly (COP) reset  
Software selectable pullups on input port pins  
Software selectable drive strength and slew rate  
control on ports when used as outputs  
with option to run from independent internal clock  
source or bus clock  
CRC module to support fast cyclic redundancy  
checks on system memory  
Low-voltage detection with reset or interrupt  
Illegal opcode detection with reset  
Package Options  
80-pin low-profile quad flat package (LQFP)  
64-pin quad flat package (QFP)  
48-pin quad flat no-lead package (QFN)  
44-pin low-profile quad flat package (LQFP)  
Master reset pin and power-on reset (POR)  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2007-2011. All rights reserved.  
Table of Contents  
Chapter 1  
Device Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.1 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Chapter 2  
Pins and Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.1 Device Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Chapter 3  
3.9 Internal Clock Generation Module Characteristics . . . 24  
3.9.1 ICG Frequency Specifications . . . . . . . . . . . . . 25  
3.10 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.10.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.10.2 Timer/PWM (TPM) Module Timing. . . . . . . . . . 28  
3.11 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.12 FLASH Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.13 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.13.1 Radiated Emissions . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics and Timing Specifications . . . . . . .11  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .11  
3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .11  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .13  
3.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .14  
3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .18  
3.8 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Chapter 4  
Ordering Information and Mechanical Drawings . . . . . . . . . . 35  
4.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.2 Orderable Part Numbering System . . . . . . . . . . . . . . . 35  
4.3 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Chapter 5  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Related Documentation  
MC9S08AC128 Series Reference Manual (MC9S08AC128RM)  
contains extensive product information including modes of operartion, memory, resets and interrupts, reg-  
ister definitions, port pins, CPU, and all peripheral module information.  
For the latest version of the documentation, check our website at:  
http://www.freescale.com  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
2
Freescale Semiconductor  
Chapter 1  
Device Overview  
The MC9S08AC128 is a member of the low-cost, high-performance HCS08 Family of 8-bit  
microcontroller units (MCUs). The MC9S08AC128 uses the enhanced HCS08 core.  
1.1  
MCU Block Diagram  
The block diagram in Figure 1-1 shows the structure of the MC9S08AC128 Series MCU.  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
3
Chapter 1 Device Overview  
HCS08 CORE  
DEBUG  
PTA7  
MODULE (DBG)  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
BDC  
CPU  
BKGD/MS  
CYCLIC REDUNDANCY  
CHECK MODULE (CRC)  
HCS08 SYSTEM CONTROL  
INTERNAL CLOCK  
GENERATOR (ICG)  
RESET  
PTB7/AD1P7  
PTB6/AD1P6  
PTB5/AD1P5  
PTB4/AD1P4  
PTB3/AD1P3  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
EXTAL  
XTAL  
LOW-POWER OSC  
RQ/TPMCLK  
RTI  
COP  
LVD  
PTB2/AD1P2  
PTB1/TPM3CH1/AD1P1  
PTB0/TPM3CH0/AD1P0  
8-BIT KEYBOARD  
INTERRUPT MODULE (KBI1)  
KBI1P7–KBI1P0  
AD1P15–AD1P0  
IRQ  
VDDAD  
PTC6  
PTC5/RxD2  
PTC4  
PTC3/TxD2  
PTC2/MCLK  
PTC1/SDA1  
10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
VSSAD  
VREFL  
VREFH  
SCL  
SDA  
USERMEMORY  
IIC MODULE (IIC1)  
FLASH, RAM  
(BYTES)  
PTC0/SCL1  
(AW128 = 128K, 8K)  
(AW96 = 96K, 6K)  
RXD1  
TXD1  
PTD7/KBI1P7/AD1P15  
SERIAL COMMUNICATIONS  
INTERFACE MODULE (SCI1)  
PTD6/TPM1CLK/AD1P14  
PTD5/AD1P13  
PTD4/TPM2CLK/AD1P12  
PTD3/KBI1P6/AD1P11  
PTD2/KBI1P5/AD1P10  
PTD1/AD1P9  
VDD  
VSS  
VOLTAGE REGULATOR  
RXD2  
TXD2  
SERIAL COMMUNICATIONS  
INTERFACE MODULE (SCI2)  
PTJ7  
PTJ6  
PTJ5  
PTJ4  
PTJ3  
PTJ2  
PTJ1  
PTJ0  
SPSCK1  
MOSI1  
PTD0/AD1P8  
SERIAL PERIPHERAL  
INTERFACE MODULE (SPI1)  
PTE7/SPSCK1  
MISO1  
SS1  
PTE6/MOSI1  
PTE5/MISO1  
PTE4/SS1  
SPSCK2  
MOSI2  
SERIAL PERIPHERAL  
INTERFACE MODULE (SPI2)  
PTH6/MISO2  
PTH5/MOSI2  
MISO2  
PTE3/TPM1CH1  
PTE2/TPM1CH0  
PTE1/RxD1  
PTH4/SPSCK2  
PTH3/TPM2CH5  
PTH2/TPM2CH4  
PTH1/TPM2CH3  
PTH0/TPM2CH2  
TPM1CLK or TPMCLK  
TPM1CH0–TPM1CH5  
6-CHANNEL TIMER/PWM  
MODULE (TPM1)  
PTE0/TxD1  
PTF7  
PTF6  
TPM2CLK or TPMCLK  
TPM2CH0–TPM2CH5  
6-CHANNEL TIMER/PWM  
MODULE (TPM2)  
PTG6/EXTAL  
PTG5/XTAL  
PTF5/TPM2CH1  
PTF4/TPM2CH0  
PTF3/TPM1CH5  
PTF2/TPM1CH4  
PTF1/TPM1CH3  
PTF0/TPM1CH2  
PTG4/KBI1P4  
PTG3/KBI1P3  
PTG2/KBI1P2  
PTG1/KBI1P1  
PTG0/KBIP0  
TPMCLK  
TPM3CH1  
TPM3CH0  
2-CHANNEL TIMER/PWM  
MODULE (TPM3)  
- Pin not connected in 64-pin and 48-pin packages  
- Pin not connected in 48-pin and 44-pin package  
- Pin not connected in 44-pin package  
Figure 1-1. MC9S08AC128 Series Block Diagram  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
4
Freescale Semiconductor  
Chapter 2  
Pins and Connections  
This section describes signals that connect to package pins. It includes pinout diagrams, recommended  
system connections, and detailed discussions of signals.  
2.1  
Device Pin Assignment  
Figure 2-1 shows the 80-pin LQFP package pin assignments for the MC9S08AC128 Series device.  
PTG3/KBI1P3  
PTD3/KBI1P6/AD1P11  
PTD2/KBI1P5/AD1P10  
VSSAD  
VDDAD  
PTD1/AD1P9  
PTD0/AD1P8  
PTB7/AD1P7  
PTB6/AD1P6  
PTB5/AD1P5  
PTB4/AD1P4  
PTB3/AD1P3  
PTB2/AD1P2  
PTB1/TPM3CH1/AD1P1  
PTB0/TPM3CH0/AD1P0  
PTH3/TPM2CH5  
PTH2/TPM2CH4  
PTH1/TPM2CH3  
PTH0/TPM2CH2  
PTA7  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
2
3
4
5
6
7
8
PTC4  
IRQ/TPMCLK  
RESET  
PTF0/TPM1CH2  
PTF1/TPM1CH3  
PTF2/TPM1CH4  
PTF3/TPM1CH5  
PTF4/TPM2CH0  
PTC6  
9
80-Pin  
LQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTF7  
PTF5/TPM2CH1  
PTF6  
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PTE0/TxD1  
PTE1/RxD1  
PTE2/TPM1CH0  
PTE3/TPM1CH1  
Note: Pin names in bold  
are lost in lower pin count  
packages.  
Figure 2-1. MC9S08AC128 Series in 80-Pin LQFP Package  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Chapter 2 Pins and Connections  
Figure 2-2 shows the 64-pin package assignments for the MC9S08AC128 Series devices.  
64  
49  
63 62 61 60 59 58 57 56 55 54 53 52 51 50  
PTC4  
PTG3/KBI1P3  
48  
1
PTD3/KBI1P6/AD1P11  
47  
46  
45  
IRQ/TPMCLK  
RESET  
2
3
4
5
6
7
8
9
PTD2KBI1P5/AD1P10  
VSSAD  
PTF0/TPM1CH2  
PTF1/TPM1CH3  
PTF2/TPM1CH4  
PTF3/TPM1CH5  
PTF4/TPM2CH0  
PTC6  
44  
43  
42  
41  
40  
39  
38  
37  
VDDAD  
PTD1/AD1P9  
PTD0/AD1P8  
PTB7/AD1P7  
PTB6/AD1P6  
PTB5/AD1P5  
64-Pin QFP  
PTF7  
10  
11  
12  
13  
14  
15  
PTF5/TPM2CH1  
PTB4/AD1P4  
PTB3/AD1P3  
PTB2/AD1P2  
PTF6  
PTE0/TxD1  
36  
35  
34  
PTE1/RxD1  
PTB1/TPM3CH1/AD1P1  
PTB0/TPM3CH0/AD1P0  
PTA7  
PTE2/TPM1CH0  
PTE3/TPM1CH1  
16  
33  
23 24 25 26 27 28 29 30 31  
18 19 20 21 22  
32  
17  
Note: Pin names in bold  
are lost in lower pin count  
packages.  
Figure 2-2. MC9S08AC128 Series in 64-Pin QFP Package  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Chapter 2 Pins and Connections  
Figure 2-1 shows the 48-pin package assignments for the MC9S08AC128 Series devices.  
48  
37  
47 46 45 44 43 42 41 40 39 38  
PTC4  
PTG3/KBI1P3  
1
36  
PTD3/KBI1P6/AD1P11  
PTD2KBI1P5/AD1P10  
VSSAD  
IRQ/TPMCLK  
RESET  
2
3
4
5
6
7
8
9
35  
34  
33  
32  
31  
30  
PTF0/TPM1CH2  
PTF1/TPM1CH3  
VDDAD  
48-Pin QFN  
PTF4/TPM2CH0  
PTF5/TPM2CH1  
PTF6  
PTD1/AD1P9  
PTD0/AD1P8  
PTB3/AD1P3  
PTB2/AD1P2  
29  
28  
27  
26  
PTE0/TxD1  
10  
11  
PTB1/TPM3CH1/AD1P1  
PTB0/TPM3CH0/AD1P0  
PTA7  
PTE1/RxD1  
PTE2/TPM1CH0  
PTE3/TPM1CH1  
25  
12  
19 20 21 22 23  
14 15 16 17 18  
24  
13  
Note: Pin names in bold  
are lost in lower pin count  
packages.  
Figure 2-1. MC9S08AC128 Series in 48-Pin QFN Package  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Chapter 2 Pins and Connections  
Figure 2-3 shows the 44-pin LQFP pin assignments for the MC9S08AC128 Series device.  
34  
44  
43 42 41 40 39 38 37 36 35  
PTC4  
1
PTG3/KBI1P3  
PTD3/KBI1P6/AD1P11  
PTD2/KBI1P5/AD1P10  
VSSAD  
33  
IRQ/TPMCLK  
RESET  
2
3
4
5
6
7
8
9
32  
31  
30  
29  
PTF0/TPM1CH2  
PTF1/TPM1CH3  
PTF4/TPM2CH0  
VDDAD  
44-Pin LQFP  
28  
27  
26  
PTD1/AD1P9  
PTD0/AD1P8  
PTB3/AD1P3  
PTB2/AD1P2  
PTF5/TPM2CH1  
PTE0/TxD1  
PTE1/RxD1  
25  
24  
PTE2/TPM1CH0  
PTE3/TPM1CH1  
10  
PTB1/TPM3CH1/AD1P1  
PTB0/TPM3CH0/AD1P0  
11  
23  
18 19 20 21  
13 14 15 16 17  
22  
12  
Figure 2-3. MC9S08AC128 Series in 44-Pin LQFP Package  
Table 2-4. Pin Availability by Package Pin-Count  
Pin Number  
Lowest <-- Priority --> Highest  
80  
64  
48  
44  
Port Pin  
Alt 1  
Alt 2  
1
2
1
2
1
2
1
2
PTC4  
IRQ  
TPMCLK1  
3
3
3
3
RESET  
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTC6  
PTF7  
PTF5  
PTF6  
4
4
4
4
TPM1CH2  
TPM1CH3  
TPM1CH4  
TPM1CH5  
TPM2CH0  
5
5
5
5
6
6
6
6
7
7
8
8
9
9
7
7
10  
11  
12  
10  
11  
12  
TPM2CH1  
8
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
8
Freescale Semiconductor  
Chapter 2 Pins and Connections  
Table 2-4. Pin Availability by Package Pin-Count (continued)  
Pin Number Lowest <-- Priority --> Highest  
80  
64  
48  
44  
Port Pin  
Alt 1  
Alt 2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
9
8
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PTE0  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
PTE6  
PTE7  
VSS  
TxD1  
RxD1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
TPM1CH0  
TPM1CH1  
SS1  
MISO1  
MOSI1  
SPSCK1  
VDD  
PTJ4  
PTJ5  
PTJ6  
PTJ7  
PTG0  
PTG1  
PTG2  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
PTA7  
PTH0  
PTH1  
PTH2  
PTH3  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
KBI1P0  
KBI1P1  
KBI1P2  
TPM2CH2  
TPM2CH3  
TPM2CH4  
TPM2CH5  
TPM3CH0  
TPM3CH1  
AD1P2  
AD1P0  
AD1P1  
AD1P3  
AD1P4  
AD1P5  
AD1P6  
AD1P7  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Chapter 2 Pins and Connections  
Table 2-4. Pin Availability by Package Pin-Count (continued)  
Pin Number Lowest <-- Priority --> Highest  
80  
64  
48  
44  
Port Pin  
Alt 1  
Alt 2  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PTD0  
PTD1  
VDDAD  
VSSAD  
PTD2  
PTD3  
PTG3  
PTG4  
PTD4  
PTD5  
PTD6  
PTD7  
VREFH  
VREFL  
BKGD  
PTG5  
PTG6  
VSS  
AD1P8  
AD1P9  
KBI1P5  
KBI1P6  
KBI1P3  
KBI1P4  
AD1P10  
AD1P11  
TPM2CLK AD1P12  
AD1P13  
TPM1CLK AD1P14  
KBI1P7  
AD1P15  
MS  
XTAL  
EXTAL  
VDD(NC)  
PTC0  
PTC1  
PTH4  
PTH5  
PTH6  
PTC2  
PTC3  
PTC5  
SCL1  
SDA1  
SPSCK2  
MOSI2  
MISO2  
MCLK  
TxD2  
RxD2  
1
TPMCLK, TPM1CLK, and TPM2CLK options are configured  
via software; out of reset, TPM1CLK, TPM2CLK, and  
TPMCLK are available to TPM1, TPM2, and TPM3  
respectively.  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Chapter 3  
Electrical Characteristics and Timing Specifications  
3.1  
Introduction  
This section contains electrical and timing specifications.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 3-1. Parameter Classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 3-2 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ).  
SS  
DD  
MC9S08AC128 Series Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Chapter 3 Electrical Characteristics and Timing Specifications  
Table 3-2. Absolute Maximum Ratings  
Rating Symbol  
Value  
Unit  
Supply voltage  
Input voltage  
V
–0.3 to + 5.8  
V
V
DD  
V
– 0.3 to VDD + 0.3  
In  
Instantaneous maximum current  
Single pin limit (applies to all port pins)1, 2, 3  
ID  
25  
mA  
Maximum current into V  
Storage temperature  
IDD  
120  
mA  
DD  
T
–55 to +150  
C  
stg  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low which would reduce overall power  
consumption.  
MC9S08AC128 Series Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than  
being controlled by the MCU design. In order to take P into account in power calculations, determine the difference between  
I/O  
actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
SS  
DD  
(heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 3-3. Thermal Characteristics  
Rating  
Symbol  
Value  
Unit  
C  
TL to TH  
–40 to 125  
TA  
TJ  
Operating temperature range (packaged)  
Maximum junction temperature  
Thermal resistance 1,2,3,4  
150  
C  
80-pin LQFP  
64-pin QFP  
48-pin QFN  
44-pin LQFP  
1s  
2s2p  
61  
47  
1s  
2s2p  
57  
43  
JA  
C/W  
1s  
2s2p  
81  
28  
1s  
2s2p  
73  
56  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal  
resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation  
of other components on the board, and board thermal resistance.  
2
3
4
Junction to Ambient Natural Convection  
1s - Single Layer Board, one signal layer  
2s2p - Four Layer Board, 2 signal and 2 power layers  
The average chip-junction temperature (T ) in C can be obtained from:  
J
T = T + (P    
)
Eqn. 3-1  
J
A
D
JA  
where:  
T = Ambient temperature, C  
A
= Package thermal resistance, junction-to-ambient, C/W  
JA  
P = P P  
D
int  
I/O  
P
P
= I V , Watts — chip internal power  
int  
I/O  
DD DD  
= Power dissipation on input and output pins — user determined  
For most applications, P  P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K (T + 273C)  
Eqn. 3-2  
D
J
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Chapter 3 Electrical Characteristics and Timing Specifications  
Solving equations 1 and 2 for K gives:  
2
K = P (T + 273C) +   (P )  
Eqn. 3-3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving equations 1 and 2 iteratively for any  
A
D
J
value of T .  
A
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits and  
JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed  
for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 3-4. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Series Resistance  
R1  
1500  
Human Body  
Storage Capacitance  
C
100  
3
pF  
Number of Pulse per pin  
Series Resistance  
R1  
0
Machine  
Latch-up  
Storage Capacitance  
C
200  
3
pF  
Number of Pulse per pin  
Minimum input voltage limit  
Maximum input voltage limit  
– 2.5  
7.5  
V
V
Table 3-5. ESD and Latch-Up Protection Characteristics  
Num C  
Rating  
Symbol  
VHBM  
VMM  
Min  
2000  
200  
500  
100  
Max  
Unit  
1
2
3
4
C Human Body Model (HBM)  
V
V
C Machine Model (MM)  
VCDM  
ILAT  
C Charge Device Model (CDM)  
V
Latch-up Current at TA = 125C  
C
mA  
3.6  
DC Characteristics  
This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various  
operating modes.  
MC9S08AC128 Series Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
Table 3-6. DC Characteristics  
Parameter Symbol  
VDD  
Num C  
Min  
Typ1  
Max  
Unit  
1
2
— Operating Voltage  
2.7  
5.5  
V
P Output high voltage — Low Drive (PTxDSn = 0)  
5 V, ILoad = –2 mA  
VDD – 1.5  
3 V, ILoad = –0.6 mA  
VDD – 1.5  
5 V, ILoad = –0.4 mA  
3 V, ILoad = –0.24 mA  
VDD – 0.8  
VDD – 0.8  
VOH  
V
P Output high voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = –10 mA  
V
DD – 1.5  
3 V, ILoad = –3 mA  
5 V, ILoad = –2 mA  
3 V, ILoad = –0.4 mA  
VDD – 1.5  
VDD – 0.8  
VDD – 0.8  
3
P Output low voltage — Low Drive (PTxDSn = 0)  
5 V, ILoad = 2 mA  
1.5  
1.5  
0.8  
0.8  
3 V, ILoad = 0.6 mA  
5 V, ILoad = 0.4 mA  
3 V, ILoad = 0.24 mA  
VOL  
V
P Output low voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = 10 mA  
1.5  
1.5  
0.8  
0.8  
3 V, ILoad = 3 mA  
5 V, ILoad = 2 mA  
3 V, ILoad = 0.4 mA  
4
5
6
P Output high current — Max total IOH for all ports  
5V IOHT  
3V  
100  
60  
mA  
mA  
P Output low current — Max total IOL for all ports  
5V IOLT  
3V  
100  
60  
P Input high  
2.7v VDD 4.5v  
VIH  
VIH  
0.70xVDD  
0.65xVDD  
voltage; all  
digital inputs  
V
4.5v VDD 5.5v  
7
8
9
P Input low voltage; all digital inputs  
P Input hysteresis; all digital inputs  
P Input leakage current; input only pins2  
VIL  
Vhys  
|IIn|  
0.35 x VDD  
0.06 x VDD  
mV  
A  
A  
k  
k  
pF  
V
0.1  
0.1  
45  
1
1
10 P High Impedance (off-state) leakage current2  
11 P Internal pullup resistors3  
12 P Internal pulldown resistors4  
13 C Input Capacitance; all non-supply pins  
14 D RAM retention voltage  
|IOZ|  
RPU  
RPD  
20  
20  
65  
65  
8
45  
CIn  
VRAM  
VPOR  
tPOR  
0.6  
1.4  
1.0  
2.0  
15 P POR rearm voltage  
0.9  
10  
V
16 D POR rearm time  
s  
17 P Low-voltage detection threshold — high range  
VDD falling VLVDH  
VDD rising  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
V
V
Low-voltage detection threshold — low range  
DD falling VLVDL  
VDD rising  
18  
P
V
2.48  
2.54  
2.56  
2.62  
2.64  
2.7  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Chapter 3 Electrical Characteristics and Timing Specifications  
Table 3-6. DC Characteristics (continued)  
Num C  
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
Low-voltage warning threshold — high range  
19  
20  
21  
P
P
VDD falling VLVWH  
VDD rising  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
V
Low-voltage warning threshold — low range  
DD falling  
DD rising  
VLVWL  
2.48  
2.54  
2.56  
2.62  
2.64  
2.7  
V
V
V
Low-voltage inhibit reset/recover hysteresis  
P
5V Vhys  
3V  
100  
60  
mV  
V
22 P Bandgap Voltage Reference5  
VBG  
1.170  
1.200  
1.230  
1
2
3
4
5
Typical values are based on characterization data at 25C unless otherwise stated.  
Measured with VIn = VDD or VSS  
Measured with VIn = VSS  
Measured with VIn = VDD  
.
.
.
Factory trimmed at VDD = 3.0 V, Temperature = 25 C.  
VDD–VOH (V)  
Average of IOH  
–6.0E-3  
–5.0E-3  
–4.0E-3  
–3.0E-3  
–2.0E-3  
–1.0E-3  
000E+0  
–40C  
25C  
125C  
0
0.3  
0.5  
0.8  
0.9  
1.2  
1.5  
VSupply–VOH  
Figure 3-1. Typical I (Low Drive) vs V –V at V = 3 V  
OH  
DD OH  
DD  
MC9S08AC128 Series Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
VDD–VOH (V)  
Average of IOH  
–20.0E-3  
–18.0E-3  
–16.0E-3  
–14.0E-3  
–12.0E-3  
–10.0E-3  
–8.0E-3  
–40C  
25C  
125C  
–6.0E-3  
–4.0E-3  
–2.0E-3  
000.0E-3  
0
0.3  
0.5  
0.8  
VSupply–VOH  
0.9  
1.2  
1.5  
Figure 3-2. Typical I (High Drive) vs V –V at V = 3 V  
OH  
DD OH  
DD  
Average of IOH  
–7.0E-3  
–40C  
25C  
–6.0E-3  
–5.0E-3  
–4.0E-3  
–3.0E-3  
–2.0E-3  
125C  
–1.0E-3  
000E+0  
0.00  
0.30  
0.50  
0.80  
1.00  
1.30  
2.00  
VDD–VOH (V)  
VSupply–VOH  
Figure 3-3. Typical I (Low Drive) vs V –V at V = 5 V  
OH  
DD OH  
DD  
VDD–VOH (V)  
Average of IOH  
–30.0E-3  
–25.0E-3  
–40C  
25C  
–20.0E-3  
–15.0E-3  
–10.0E-3  
–5.0E-3  
125C  
000.0E+3  
0.00  
0.30  
0.50  
0.80  
1.00  
1.30  
2.00  
VSupply–VOH  
Figure 3-4. Typical I (High Drive) vs V –V at V = 5 V  
OH  
DD OH  
DD  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.7  
Supply Current Characteristics  
Table 3-7. Supply Current Characteristics  
VDD  
(V)  
Temp  
(C)  
Typ1  
Num  
C
Parameter  
Symbol  
Max  
Unit  
5
3
1.1  
1.0  
1.43  
1.2  
Run supply current2 measured at  
(CPU clock = 2 MHz, fBus = 1 MHz)  
1
C
RIDD  
mA  
–40 to 125C  
–40 to 125C  
5
3
6.7  
6
8.05  
7.5  
Run supply current4 measured at  
(CPU clock = 16 MHz, fBus = 8 MHz)  
2
3
C
C
RIDD  
mA  
25  
160  
–40 to 85C  
–40 to 125C  
Stop2 mode supply current  
5
3
A  
A  
A  
A  
nA  
nA  
A  
A  
1.0  
0.8  
1.2  
23  
150  
–40 to 85C  
–40 to 125C  
S2IDD  
S3IDD  
27  
–40 to 85C  
–40 to 125C  
5
1803  
Stop3 mode supply current  
4
5
C
C
25  
170  
–40 to 85C  
–40 to 125C  
3
1.0  
500  
500  
–40 to 85C  
–40 to 125C  
5
300  
RTI adder to stop2 or stop36  
S23IDDRTI  
500  
500  
–40 to 85C  
–40 to 125C  
3
300  
110  
90  
180  
180  
–40 to 85C  
–40 to 125C  
5
6
7
C
C
LVD adder to stop3 (LVDE = LVDSE = 1)  
S3IDDLVD  
160  
160  
–40 to 85C  
–40 to 125C  
3
Adder to stop3 for oscillator enabled7  
(OSCSTEN =1)  
–40 to 85C  
–40 to 125C  
8
8
A  
A  
5,3  
5
S3IDDOSC  
1
Typical values are based on characterization data at 25C unless otherwise stated. See Figure 3-5 through Figure 3-7 for  
typical curves across voltage/temperature.  
2
3
4
5
6
All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins  
Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.  
All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins  
Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.  
Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait  
mode. Wait mode typical is 560 A at 3 V with fBus = 1 MHz.  
Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal, low power mode  
(HGO = 0), clock monitor disabled (LOCD = 1).  
7
MC9S08AC128 Series Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
18  
16  
20 MHz, ADC off, FEE, 25C  
20 MHz, ADC off, FBE, 25C  
14  
12  
10  
8
IDD  
8 MHz, ADC off, FEE, 25C  
8 MHz, ADC off, FBE, 25C  
6
4
1 MHz, ADC off, FEE, 25C  
1 MHz, ADC off, FBE, 25C  
2
0
3.4  
3.8  
5.0  
5.4  
2.2  
2.6  
3.0  
4.2  
4.6  
VDD  
Note: External clock is square wave supplied by function generator. For FEE mode, external reference frequency is 4 MHz  
Figure 3-5. Typical Run I for FBE and FEE Modes, I vs. V  
DD  
DD  
DD  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Chapter 3 Electrical Characteristics and Timing Specifications  
–40C  
25C  
55C  
85C  
Stop2 IDD (A)  
Average of Measurement IDD  
–8.0E-3  
–7.0E-3  
–6.0E-3  
–5.0E-3  
–4.0E-3  
–3.0E-3  
–2.0E-3  
–1.0E-3  
000E+0  
1.8  
2
2.5  
3
3.5  
4
4.5  
5
VDD (V)  
Figure 3-6. Typical Stop 2 I  
DD  
–40C  
25C  
55C  
85C  
Stop3 IDD (A)  
Average of Measurement IDD  
–8.0E-3  
–7.0E-3  
–6.0E-3  
–5.0E-3  
–4.0E-3  
–3.0E-3  
–2.0E-3  
–1.0E-3  
000E+0  
1.8  
2
2.5  
3
3.5  
4
4.5  
5
VDD (V)  
Figure 3-7. Typical Stop3 I  
DD  
MC9S08AC128 Series Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.8  
ADC Characteristics  
Table 3-8. 5 Volt 10-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Absolute  
Delta to VDD (VDD–VDDAD  
VDDAD  
VDDAD  
VSSAD  
VREFH  
2.7  
–100  
–100  
2.7  
5.5  
V
mV  
mV  
V
Supply voltage  
2
)
0
0
+100  
+100  
VDDAD  
2
Ground voltage  
Ref voltage high  
Delta to VSS (VSS–VSSAD  
Stop, reset, module off  
)
VDDAD  
VREFL  
VSSAD  
VSSAD  
VSSAD  
V
Ref voltage low  
Supply current  
Input voltage  
IDDAD  
VADIN  
CADIN  
RADIN  
VREFL  
0.011  
1
VREFH  
5.5  
A  
V
Input capacitance  
Input resistance  
4.5  
3
pF  
k  
5
10-bit mode  
fADCK > 4MHz  
fADCK < 4MHz  
5
10  
Analog source resistance  
External to MCU  
RAS  
k  
8-bit mode (all valid fADCK  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
–40C to 25C  
)
10  
8.0  
4.0  
0.4  
0.4  
ADC conversion clock frequency  
fADCK  
MHz  
3.266  
3.638  
Temp Sensor  
Slope  
mV/  
C
m
25C to 125C  
Temp Sensor  
Voltage  
25C  
VTEMP25  
1.396  
V
1
2
Typical values assume VDDAD = 5.0 V, Temp = 25C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
dc potential difference.  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Chapter 3 Electrical Characteristics and Timing Specifications  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 3-8. ADC Input Impedance Equivalency Diagram  
MC9S08AC128 Series Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
Table 3-9. 5 Volt 10-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDAD REFL  
Characteristic  
Supply current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Unit  
T
IDDAD  
133  
218  
327  
A  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
T
T
IDDAD  
IDDAD  
IDDAD  
A  
A  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
T
P
582  
1
A  
mA  
V
DDAD < 5.5 V  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
Short sample (ADLSMP = 0)  
fADACK  
2
1.25  
3.3  
2
5
MHz  
P
ADC asynchronous clock source  
tADACK = 1/fADACK  
3.3  
Conversion time  
(Including sample time)  
P
tADC  
20  
40  
ADCK  
cycles  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
10-bit mode  
P
P
P
tADS  
ETUE  
DNL  
3.5  
23.5  
1  
ADCK  
cycles  
Sample time  
2.5  
1.0  
1.0  
0.5  
LSB2  
LSB2  
Total unadjusted error  
Includes quantization  
8-bit mode  
0.5  
0.5  
0.3  
10-bit mode  
Differential non-linearity  
Integral non-linearity  
8-bit mode  
Monotonicity and no-missing-codes guaranteed  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
C
INL  
EZS  
EFS  
EQ  
0.5  
0.3  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
1.5  
0.5  
1.5  
0.5  
0.5  
0.5  
LSB2  
LSB2  
LSB2  
LSB2  
P
Zero-scale error  
VADIN = VSSA  
P
Full-scale error  
VADIN = VDDA  
D
Quantization error  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Chapter 3 Electrical Characteristics and Timing Specifications  
Table 3-9. 5 Volt 10-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDAD REFL  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Unit  
10-bit mode  
8-bit mode  
D
EIL  
0.2  
0.1  
2.5  
1  
LSB2  
Input leakage error  
Pad leakage3 * RAS  
1
Typical values assume VDDAD = 5.0V, Temp = 25C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
1 LSB = (VREFH – VREFL)/2N  
Based on input pad leakage current. Refer to pad electricals.  
3.9  
Internal Clock Generation Module Characteristics  
ICG  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Table 3-10. ICG DC Electrical Specifications (Temperature Range = –40 to 125C Ambient)  
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
C1  
C2  
Load capacitors  
See Note 2  
Feedback resistor  
Low range (32k to 100 kHz)  
High range (1M – 16 MHz)  
RF  
10  
1
M  
M  
Series resistor  
Low range  
Low Gain (HGO = 0)  
High Gain (HGO = 1)  
High range  
0
100  
RS  
k  
Low Gain (HGO = 0)  
High Gain (HGO = 1)  
8 MHz  
0
0
10  
20  
4 MHz  
MHz  
1
2
Typical values are based on characterization data at VDD = 5.0V, 25C or is typical recommended value.  
See crystal or resonator manufacturer’s recommendation.  
MC9S08AC128 Series Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.9.1  
ICG Frequency Specifications  
Table 3-11. ICG Frequency Specifications  
(min) to V (max), Temperature Range = –40 to 125C Ambient)  
(V  
= V  
DDA  
DDA  
DDA  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (REFS = 1)  
(Fundamental mode crystal or ceramic resonator)  
Low range  
flo  
32  
100  
kHz  
High range  
1
High Gain, FBE (HGO = 1,CLKS = 10)  
High Gain, FEE (HGO = 1,CLKS = 11)  
Low Power, FBE (HGO = 0, CLKS = 10)  
Low Power, FEE (HGO = 0, CLKS = 11)  
fhi_byp  
fhi_eng  
flp_byp  
flp_eng  
1
2
1
2
16  
10  
8
MHz  
MHz  
MHz  
MHz  
8
Input clock frequency (CLKS = 11, REFS = 0)  
flo  
fhi_eng  
Low range  
High range  
2
32  
2
100  
10  
kHz  
MHz  
fExtal  
fICGIRCLK  
tdc  
3
4
5
0
182.25  
40  
243  
40  
303.75  
60  
MHz  
kHz  
%
Input clock frequency (CLKS = 10, REFS = 0)  
Internal reference frequency (untrimmed)  
Duty cycle of input clock (REFS = 0)  
Output clock ICGOUT frequency  
CLKS = 10, REFS = 0  
All other cases  
fExtal (max)  
fICGDCLKmax  
max)  
fExtal (min)  
flo (min)  
fICGOUT  
6
(
MHz  
fICGDCLKmin  
fICGDCLKmax  
fSelf  
7
8
Minimum DCO clock (ICGDCLK) frequency  
Maximum DCO clock (ICGDCLK) frequency  
Self-clock mode (ICGOUT) frequency 2  
Self-clock mode reset (ICGOUT) frequency  
3
MHz  
MHz  
MHz  
MHz  
40  
fICGDCLKmin  
5.5  
fICGDCLKmax  
10.5  
9
fSelf_reset  
10  
8
Loss of reference frequency 3  
Low range  
High range  
Loss of DCO frequency 4  
Crystal start-up time 5, 6  
Low range  
High range  
FLL lock time , 7  
fLOR  
fLOD  
11  
12  
13  
5
50  
25  
500  
kHz  
0.5  
1.5  
MHz  
t
CSTL  
430  
4
t
ms  
ms  
CSTH  
tLockl  
tLockh  
14  
Low range  
High range  
2
2
nUnlock  
nLock  
15  
16  
FLL frequency unlock range  
–4*N  
–2*N  
4*N  
2*N  
counts  
counts  
FLL frequency lock range  
ICGOUT period jitter, , 8 measured at fICGOUT Max  
Long term jitter (averaged over 2 ms interval)  
CJitter  
17  
% fICG  
0.2  
Internal oscillator deviation from trimmed  
frequency9  
0.5  
0.5  
18  
2  
2  
ACCint  
VDD = 2.7 – 5.5 V, (constant temperature)  
VDD = 5.0 V 10%, –40C to 125C  
%
1
2
Typical values are based on characterization data at VDD = 5.0V, 25C unless otherwise stated.  
Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Chapter 3 Electrical Characteristics and Timing Specifications  
3
4
Loss of reference frequency is the reference frequency detected internally, which transitions the ICG into self-clocked mode if it  
is not in the desired range.  
Loss of DCO frequency is the DCO frequency detected internally, which transitions the ICG into FLL bypassed external mode (if  
an external reference exists) if it is not in the desired range.  
5
6
7
This parameter is characterized before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This specification applies to the period of time required for the FLL to lock after entering FLL engaged internal or external modes.  
If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fICGOUT  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDDA and VSSA and variation in crystal oscillator frequency increase the CJitter percentage for  
a given interval.  
9
See Figure 3-9  
Average of Percentage Error  
Variable  
3 V  
5 V  
Figure 3-9. Internal Oscillator Deviation from Trimmed Frequency  
MC9S08AC128 Series Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.10 AC Characteristics  
This section describes ac timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 3-12. Control Timing  
Num  
C
Parameter  
Bus frequency (tcyc = 1/fBus  
Symbol  
fBus  
Min  
dc  
Typ1  
Max  
20  
Unit  
MHz  
s  
1
2
)
tRTI  
Real-time interrupt internal oscillator period  
External reset pulse width2  
600  
1500  
1.5 x  
tSelf_reset  
textrst  
ns  
(tcyc = 1/fSelf_reset  
)
Reset low drive3  
4
trstdrv  
tMSSU  
tMSH  
34 x tcyc  
25  
ns  
ns  
ns  
5
Active background debug mode latch setup time  
Active background debug mode latch hold time  
6
25  
IRQ pulse width  
7
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
ns  
ns  
8
KBIPx pulse width  
Asynchronous path2  
Synchronous path3  
tILIH, IHIL  
t
100  
1.5 x tcyc  
Port rise and fall time (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
9
3
30  
1
2
Typical values are based on characterization data at VDD = 5.0V, 25C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources.  
3
4
5
When any reset is initiated, internal circuitry drives the reset pin low for about 34 bus cycles and then samples the level on  
the reset pin about 38 bus cycles later to distinguish external reset requests from internal requests.  
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40C to 125C.  
textrst  
RESET PIN  
Figure 3-10. Reset Timing  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Chapter 3 Electrical Characteristics and Timing Specifications  
BKGD/MS  
RESET  
tMSH  
tMSSU  
Figure 3-11. Active Background Debug Mode Latch Timing  
tIHIL  
IRQ/KBIP7-KBIP4  
IRQ/KBIPx  
tILIH  
Figure 3-12. IRQ/KBIPx Timing  
3.10.2 Timer/PWM (TPM) Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 3-13. TPM Input Timing  
Function  
External clock frequency  
External clock period  
Symbol  
fTPMext  
tTPMext  
tclkh  
Min  
dc  
Max  
Unit  
fBus/4  
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
MC9S08AC128 Series Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
tTPMext  
tclkh  
TPMxCLK  
tclkl  
Figure 3-13. Timer External Clock  
tICPW  
TPMxCHn  
TPMxCHn  
tICPW  
Figure 3-14. Timer Input Capture Pulse  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.11 SPI Characteristics  
Table 3-14 and Figure 3-15 through Figure 3-18 describe the timing requirements for the SPI system.  
Table 3-14. SPI Electrical Characteristic  
Num1  
C
Characteristic2  
Symbol  
Min  
Max  
Unit  
Operating frequency3  
Hz  
f
/2048  
dc  
f
f
/2  
/4  
Master  
Slave  
f
Bus  
Bus  
Bus  
op  
f
op  
1
2
Cycle time  
2
4
2048  
tcyc  
tcyc  
Master  
Slave  
tSCK  
tSCK  
Enable lead time  
Enable lag time  
1/2  
Master  
Slave  
t
t
1/2  
t
t
Lead  
Lead  
SCK  
SCK  
3
1/2  
Master  
Slave  
t
t
1/2  
t
t
Lag  
Lag  
SCK  
SCK  
4
5
6
Clock (SPSCK) high time  
Master and Slave  
1/2 tSCK – 25  
1/2 tSCK – 25  
ns  
ns  
t
SCKH  
Clock (SPSCK) low time Master  
and Slave  
t
SCKL  
Data setup time (inputs)  
30  
30  
ns  
ns  
Master  
Slave  
t
t
SI(M)  
SI(S)  
7
Data hold time (inputs)  
30  
30  
ns  
ns  
Master  
Slave  
t
t
HI(M)  
HI(S)  
Access time, slave4  
Disable time, slave5  
8
9
0
40  
40  
ns  
ns  
t
A
t
dis  
10  
Data setup time (outputs)  
25  
25  
ns  
ns  
Master  
Slave  
t
t
SO  
SO  
11  
Data hold time (outputs)  
–10  
–10  
ns  
ns  
Master  
Slave  
t
t
HO  
HO  
1
2
Refer to Figure 3-15 through Figure 3-18.  
All timing is shown with respect to 20% V  
and 70% V , unless noted; 100 pF load on all SPI  
DD  
DD  
pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output  
pins.  
3
4
5
Maximum baud rate must be limited to 5 MHz due to pad input characteristics.  
Time to data active from high-impedance state.  
Hold time to high-impedance state.  
MC9S08AC128 Series Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
SS1  
(OUTPUT)  
1
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
4
5
SCK  
(CPOL = 1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN2  
10  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
11  
MOSI  
(OUTPUT)  
MSB OUT2  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 3-15. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
2
3
SCK  
(CPOL = 0)  
(OUTPUT)  
5
4
SCK  
(CPOL = 1)  
5
4
(OUTPUT)  
6
7
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
11  
BIT 6 . . . 1  
LSB IN  
10  
MOSI  
(OUTPUT)  
MSB OUT(2)  
LSB OUT  
NOTES:  
1. SS output mode (MODFEN = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 3-16. SPI Master Timing (CPHA = 1)  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Chapter 3 Electrical Characteristics and Timing Specifications  
SS  
(INPUT)  
3
1
SCK  
(CPOL = 0)  
5
4
5
(INPUT)  
2
SCK  
(CPOL = 1)  
4
(INPUT)  
9
8
11  
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
7
SLAVE  
6
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 3-17. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
2
SCK  
(CPOL = 0)  
(INPUT)  
5
4
SCK  
(CPOL = 1)  
5
4
(INPUT)  
10  
11  
9
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
NOTE  
6
7
8
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 3-18. SPI Slave Timing (CPHA = 1)  
MC9S08AC128 Series Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.12 FLASH Specifications  
This section provides details about program/erase times and program-erase endurance for the Flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
Table 3-15. Flash Characteristics  
Num  
C
P
P
P
P
P
Characteristic  
Symbol  
Vprog/erase  
VRead  
fFCLK  
Min  
2.7  
2.7  
150  
5
Typ1  
Max  
5.5  
Unit  
1
2
4
5
6
Supply voltage for program/erase  
Supply voltage for read operation  
V
5.5  
V
Internal FCLK frequency2  
200  
6.67  
kHz  
s  
tFcyc  
Internal FCLK period (1/FCLK)  
Byte program time (random location)(2)  
Byte program time (burst mode)(2)  
Page erase time3  
tprog  
tFcyc  
tFcyc  
tFcyc  
tFcyc  
9
4
C
tBurst  
tPage  
7
P
4000  
Mass erase time(2)  
8
P
tMass  
20,000  
Program/erase endurance4  
9
C
C
10,000  
100,000  
cycles  
years  
TL to TH = –40C to + 125C  
T = 25C  
Data retention5  
tD_ret  
10  
15  
100  
1
2
3
Typical values are based on characterization data at VDD = 5.0 V, 25C unless otherwise stated.  
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information  
supplied for calculating approximate time to program and erase.  
4
5
Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on  
how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical  
Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines  
typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Chapter 3 Electrical Characteristics and Timing Specifications  
3.13 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
3.13.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the  
evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported  
emissions levels.  
Table 3-16. Radiated Emissions  
Level1  
Parameter  
Symbol  
Conditions  
Frequency  
fOSC/fBUS  
Unit  
(Max)  
VRE_TEM  
VDD = 5.0 V  
TA = +25oC  
package type  
80 LQFP  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
32kHz crystal  
20MHz Bus  
30  
32  
19  
7
dBV  
Radiated emissions,  
electric field and magnetic field  
I2  
SAE Level  
I2  
1
Data based on laboratory test results.  
2
IEC and SAE Level Maximums: I=36 dBuV.  
MC9S08AC128 Series Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
Chapter 4  
Ordering Information and Mechanical Drawings  
4.1  
Ordering Information  
This section contains ordering numbers for MC9S08AC128 Series devices. See below for an example of the device numbering  
system.  
Table 4-1. Device Numbering System  
Memory  
Available Packages1  
Type  
Device Number  
FLASH  
RAM  
MC9S08AC128  
MC9S08AC96  
128K  
96K  
8K  
6K  
80 LQFP, 64 QFP, 48-QFN, 44-LQFP  
80 LQFP, 64 QFP, 48-QFN, 44-LQFP  
1
See Table 4-2 for package information.  
4.2  
4.3  
Orderable Part Numbering System  
128  
MC 9 S08 AC  
C XX E  
Pb free indicator  
Status  
(MC = Fully Qualified)  
Memory  
Package designator (See Table 4-2)  
Temperature range  
(C = –40C to 85C)  
(M = –40C to 125C)  
(9 = FLASH-based)  
Core  
Family  
Approximate memory size (in KB)  
Mechanical Drawings  
Table 4-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings  
are available on the MC9S08AC128 Series Product Summary pages at http://www.freescale.com.  
To view the latest drawing, either:  
Click on the appropriate link in Table 4-2, or  
Open a browser to the Freescale website (http://www.freescale.com), and enter the appropriate document number (from  
Table 4-2) in the “Enter Keyword” search box at the top of the page.  
®
Table 4-2. Package Information  
Pin Count  
Type  
Designator  
Document No.  
80  
64  
48  
44  
LQFP  
QFP  
LK  
FU  
FT  
FG  
98ASS23237W  
98ASB42844B  
98ARH99048A  
98ASS23225W  
QFN  
LQFP  
MC9S08AC128 Series Data Sheet, Rev. 4  
Freescale Semiconductor  
35  
Chapter 4 Ordering Information and Mechanical Drawings  
MC9S08AC128 Series Data Sheet, Rev. 4  
36  
Freescale Semiconductor  
Chapter 5  
Revision History  
To provide the most up-to-date information, the version of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Revision  
Number  
Revision  
Date  
Description of Changes  
Initial release of a separate data sheet and reference manual. Removed PTH7,  
clarified SPI as one full and one master-only, added missing RoHS logo, updated  
back cover addresses, and incorporated general release edits and updates.  
Added some finalized electrical characteristics.  
1
2
9/2008  
6/2009  
Added the parameter “Bandgap Voltage Reference” in Table 3-6  
Updated Section 3.13, “EMC Performance” and corrected Table 3-16.  
Updated disclaimer page.  
3
4
9/2010  
8/2011  
Added 48-pin QFN package information.  
Updated the t  
in the Table 3-12.  
RTI  
Updated the RI in the Table 3-7.  
DD  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
37  
MC9S08AC128 MCU Series Data Sheet, Rev. 4  
Freescale Semiconductor  
38  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages.  
“Typical” parameters which may be provided in Freescale Semiconductor data  
sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor  
the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or  
for any other application in which the failure of the Freescale Semiconductor  
product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use Freescale Semiconductor products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim  
alleges that Freescale Semiconductor was negligent regarding the design or  
manufacture of the part.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution  
Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbert-  
group.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Freescale™ and the Freescale logo are trademarks of  
Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
MC9S08AC128, Rev. 4  
08/2011  

相关型号:

MC9S08AC96MFUE

MC9S08AC128 8-Bit Microcontroller Data Sheet
FREESCALE

MC9S08AC96MFUE

8-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP64, ROHS COMPLIANT, QFP-64
ROCHESTER

MC9S08AC96MLKE

MC9S08AC128 8-Bit Microcontroller Data Sheet
FREESCALE

MC9S08AW16

Microcontrollers
FREESCALE

MC9S08AW16

微控制器
NXP

MC9S08AW16A

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08AW16CFD

8-BIT, FLASH, 40MHz, MICROCONTROLLER, QCC48, 7 X 7 MM, 1 MM HEIGHT, 0.50 MM PITCH, MO-220VKKD-2, QFN-48
NXP

MC9S08AW16CFDE

暂无描述
NXP

MC9S08AW16CFGE

MC9S08AW16CFGE
FREESCALE

MC9S08AW16CFGER

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, PLASTIC, MS-026BCB, LQFP-44
NXP

MC9S08AW16CFUE

MC9S08AW16CFUE
FREESCALE

MC9S08AW16CFUER

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, 14 X 14 MM, LEAD FREE, PLASTIC, QFP-64
NXP