MIC39100-1.8BSTR [ROCHESTER]

1.8 V FIXED POSITIVE LDO REGULATOR, 0.63 V DROPOUT, PDSO4, SOT-223, 4 PIN;
MIC39100-1.8BSTR
型号: MIC39100-1.8BSTR
厂家: Rochester Electronics    Rochester Electronics
描述:

1.8 V FIXED POSITIVE LDO REGULATOR, 0.63 V DROPOUT, PDSO4, SOT-223, 4 PIN

光电二极管 输出元件 调节器
文件: 总13页 (文件大小:1130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC39100/39101/39102  
1A Low-Voltage Low-Dropout Regulator  
General Description  
Features  
TheMIC39100,MIC39101,andMIC39102are1Alow-dropout  
linearvoltageregulatorsthatprovidelow-voltage,high-current  
outputfromanextremelysmallpackage.UtilizingMicrel’spro-  
prietary Super βeta PNP™ pass element, the MIC39100/1/2  
offers extremely low dropout (typically 410mV at 1A) and low  
ground current (typically 11mA at 1A).  
• Fixed and adjustable output voltages to 1.24V  
• 410mV typical dropout at 1A  
Ideal for 3.0V to 2.5V conversion  
Ideal for 2.5V to 1.8V conversion  
• 1A minimum guaranteed output current  
• 1% initial accuracy  
• Low ground current  
The MIC39100 is a fixed output regulator offered in the  
SOT-223 package. The MIC39101 and MIC39102 are fixed  
and adjustable regulators, respectively, in a thermally en-  
hanced power 8-lead SOIC package.  
• Current limiting and thermal shutdown  
• Reversed-battery protection  
• Reversed-leakage protection  
• Fast transient response  
• Low-profile SOT-223 package  
• Power SO-8 package  
The MIC39100/1/2 is ideal for PC add-in cards that need to  
convert from standard 5V to 3.3V, 3.3V to 2.5V or 2.5V to  
1.8V.Aguaranteed maximum dropout voltage of 630mV over  
all operating conditions allows the MIC39100/1/2 to provide  
2.5V from a supply as low as 3.13V and 1.8V from a supply  
as low as 2.43V.  
Applications  
• LDO linear regulator for PC add-in cards  
• PowerPC™ power supplies  
• High-efficiency linear power supplies  
• SMPS post regulator  
• Multimedia and PC processor supplies  
• Battery chargers  
The MIC39100/1/2 is fully protected with overcurrent limit-  
ing, thermal shutdown, and reversed-battery protection.  
Fixed voltages of 5.0V, 3.3V, 2.5V, and 1.8V are available  
on MIC39100/1 with adjustable output voltages to 1.24V on  
MIC39102.  
• Low-voltage microcontrollers and digital logic  
For other voltages, contact Micrel.  
Typical Applications  
100k  
Error  
Flag  
Output  
MIC39100  
IN OUT  
MIC39101  
MIC39102  
VIN  
3.3V  
VIN  
3.3V  
VIN  
2.5V  
2.5V  
IN  
OUT  
2.5V  
IN  
OUT  
1.5V  
R1  
R1  
R2  
ENABLE  
SHUTDOWN  
ENABLE  
SHUTDOWN  
EN  
FLG  
EN  
ADJ  
10µF  
tantalum  
10µF  
tantalum  
10µF  
tantalum  
GND  
GND  
GND  
2.5V/1A Regulator  
2.5V/1A Regulator with Error Flag  
1.5V/1A Adjustable Regulator  
Super βeta PNP is a trademark of Micrel, Inc.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
August 2005  
1
M9999-082505-B  
MIC39100/39101/39102  
Micrel  
Ordering Information  
Part Number  
Voltage Junction Temp. Range  
Package  
Standard  
RoHS Compliant  
MIC39100-1.8BS MIC39100-1.8WS*  
MIC39100-2.5BS MIC39100-2.5WS*  
MIC39100-3.3BS MIC39100-3.3WS*  
MIC39100-5.0BS MIC39100-5.0WS*  
MIC39101-1.8BM MIC39101-1.8YM  
MIC39101-2.5BM MIC39101-2.5YM  
MIC39101-3.3BM MIC39101-3.3YM  
MIC39101-5.0BM MIC39101-5.0YM  
1.8V  
2.5V  
3.3V  
5.0V  
1.8V  
2.5V  
3.3V  
5.0V  
Adj.  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
MIC39102BM  
MIC39102YM  
* RoHS compliant with ‘high-melting solder’ exemption.  
Pin Configuration  
GND  
TAB  
1
2
3
IN GND OUT  
MIC39100-x.x  
Fixed  
SOT-223 (S)  
EN  
IN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
EN  
IN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
OUT  
FLG  
OUT  
ADJ  
MIC39101-x.x  
Fixed  
SOIC-8 (M)  
MIC39102  
Adjustable  
SOIC-8 (M)  
Pin Description  
Pin No.  
Pin No.  
Pin No.  
Pin Name  
Pin Function  
MIC39100 MIC39101 MIC39102  
1
1
1
EN  
Enable (Input): CMOS-compatible control input. Logic high = enable, logic  
low or open = shutdown.  
2
3
4
2
3
IN  
Supply (Input)  
3
OUT  
FLG  
Regulator Output  
Flag (Output): Open-collector error flag output. Active low = output under-  
voltage.  
4
ADJ  
Adjustment Input: Feedback input. Connect to resitive voltage-divider  
network.  
2, TAB  
5–8  
5–8  
GND  
Ground  
M9999-082505  
2
August 2005  
MIC39100/39101/39102  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ).......................................–20V to +20V  
Supply Voltage (V )................................... +2.25V to +16V  
IN  
IN  
Enable Voltage (V ) ..................................................+20V  
Enable Voltage (V ) ..................................................+16V  
EN  
EN  
Storage Temperature (T ) ........................ –65°C to +150°C  
Maximum Power Dissipation (P  
)..................... Note 4  
S
D(max)  
Lead Temperature (soldering, 5 sec.)........................ 260°C  
Junction Temperature (T )........................ –40°C to +125°C  
J
ESD, Note 3  
Package Thermal Resistance  
SOT-223 ) .....................................................15°C/W  
JC  
SOIC-8 )........................................................20°C/W  
JC  
Electrical Characteristics(Note 12)  
VIN = VOUT + 1V; VEN = 2.25V; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +125°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOUT  
Output Voltage  
10mA  
–1  
–2  
1
2
%
%
10mA ≤ IOUT ≤ 1A, VOUT + 1V ≤ VIN ≤ 8V  
Line Regulation  
IOUT = 10mA, VOUT + 1V ≤ VIN ≤ 16V  
VIN = VOUT + 1V, 10mA ≤ IOUT ≤ 1A,  
0.06  
0.2  
40  
0.5  
1
%
%
Load Regulation  
ΔVOUT/ΔT  
ppm/°C  
Output Voltage Temp. Coefficient,  
100  
Note 5  
VDO  
Dropout Voltage, Note 6  
IOUT = 100mA, ΔVOUT = –1%  
140  
200  
250  
mV  
mV  
IOUT = 500mA, ΔVOUT = –1%  
IOUT = 750mA, ΔVOUT = –1%  
IOUT = 1A, ΔVOUT = –1%  
275  
330  
mV  
mV  
500  
550  
630  
mV  
mV  
410  
400  
4
IGND  
Ground Current, Note 7  
IOUT = 100mA, VIN = VOUT + 1V  
IOUT = 500mA, VIN = VOUT + 1V  
IOUT = 750mA, VIN = VOUT + 1V  
IOUT = 1A, VIN = VOUT + 1V  
µA  
mA  
mA  
mA  
A
6.5  
11  
20  
IOUT(lim)  
Enable Input  
VEN  
Current Limit  
VOUT = 0V, VIN = VOUT + 1V  
1.8  
2.5  
Enable Input Voltage  
Enable Input Current  
logic low (off)  
logic high (on)  
VEN = 2.25V  
0.8  
V
V
2.25  
IEN  
1
15  
30  
75  
µA  
µA  
VEN = 0.8V  
2
4
µA  
µA  
Flag Output  
IFLG(leak)  
Output Leakage Current  
Output Low Voltage  
VOH = 16V  
0.01  
210  
1
2
µA  
µA  
VFLG(do)  
VFLG  
VIN = 2.250V, IOL, = 250µA, Note 9  
300  
400  
mV  
mV  
Low Threshold  
High Threshold  
Hysteresis  
% of VOUT  
% of VOUT  
93  
%
%
%
99.2  
1
August 2005  
3
M9999-082505-B  
MIC39100/39101/39102  
Micrel  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MIC39102 Only  
Reference Voltage  
1.228 1.240 1.252  
V
V
V
1.215  
1.203  
1.265  
1.277  
Note 10  
Note 7  
Adjust Pin Bias Current  
40  
20  
80  
120  
nA  
nA  
Reference Voltage  
Temp. Coefficient  
ppm/°C  
Adjust Pin Bias Current  
Temp. Coefficient  
0.1  
nA/°C  
Note 1. Exceeding the absolute maximum ratings may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4. PD(max) = (TJ(max) – TA) ÷ θJA, where θJA depends upon the printed circuit layout. See “Applications Information.”  
Note 5. Output voltage temperature coefficient is ΔVOUT(worst case) ÷ (TJ(max) – TJ(min)) where TJ(max) is +125°C and TJ(min) is –40°C.  
Note 6. VDO = VIN – VOUT when VOUT decreases to 98% of its nominal output voltage with VIN = VOUT + 1V. For output voltages below 2.25V, dropout  
voltage is the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V.  
Note 7. IGND is the quiescent current. IIN = IGND + IOUT  
.
Note 8. VEN ≤ 0.8V, VIN ≤ 8V, and VOUT = 0V.  
Note 9. For a 2.5V device, VIN = 2.250V (device is in dropout).  
Note 10. VREF ≤ VOUT ≤ (VIN – 1V), 2.25V ≤ VIN ≤ 16V, 10mA ≤ IL ≤ 1A, TJ = TMAX  
.
Note 11. Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 200mA load pulse at VIN = 16V for t = 10ms.  
Note 12. Specification for packaged product only.  
M9999-082505  
4
August 2005  
MIC39100/39101/39102  
Micrel  
Typical Characteristics  
P ower S upply  
R ejection R atio  
P ower S upply  
R ejection R atio  
P ower S upply  
R ejection R atio  
80  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
VIN = 5V  
VOUT = 3.3V  
VIN = 5V  
VOUT = 3.3V  
VIN = 3.3V  
VOUT = 2.5V  
60  
40  
IOUT = 1A  
20  
IOUT = 1A  
C OUT = 47µF  
C IN = 0  
IOUT = 1A  
C OUT = 10µF  
C IN = 0  
C OUT = 10µF  
C IN = 0  
0
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k 10k  
1M  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k 10k  
1M  
1k 10k  
1M  
10 100  
100k  
10 100  
FREQUENCY (Hz)  
100k  
10 100  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
P ower S upply  
R ejection R atio  
Dropout Voltage  
vs . Output C urrent  
Dropout Voltage  
vs . Temperature  
80  
60  
40  
20  
0
600  
550  
500  
450  
400  
350  
300  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VIN = 3.3V  
VOUT = 2.5V  
ILOAD = 1A  
2.5V  
1.8V  
3.3V  
3.3V  
1.8V  
TA = 25°C  
2.5V  
IOUT = 1A  
C OUT = 47µF  
C IN = 0  
0
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k 10k  
-40 -20  
0
20 40 60 80 100 120  
1M  
3.5  
8
0
250 500 750 1000 1250  
OUTPUT CURRENT (mA)  
10 100  
FREQUENCY (Hz)  
100k  
TEMPERATURE (°C)  
Dropout C haracteris tics  
(2.5V)  
Dropout C haracteris tics  
(3.3V)  
G round C urrent  
vs . Output C urrent  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
14  
12  
10  
8
I
=100mA  
I
=100mA  
LOAD  
LOAD  
1.8V  
2.5V  
I
=750mA  
3.3V  
LOAD  
I
=750mA  
6
LOAD  
I
=1A  
LOAD  
4
I
=1A  
LOAD  
2
0
0
200 400 600 800 1000  
OUTPUT CURRENT (mA)  
2
2.3  
2.6  
2.9  
3.2  
2.8  
3.2  
3.6  
4.0  
4.4  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
G round C urrent  
vs . S upply Voltage (2.5V)  
G round C urrent  
vs . S upply Voltage (2.5V)  
G round C urrent  
vs . S upply Voltage (3.3V)  
1.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
35  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
25  
20  
15  
10  
5
I
LOAD =100mA  
I
=100mA  
=10mA  
LOAD  
I
I
=1A  
LOAD  
LOAD  
I
=10mA  
LOAD  
0
0
2
4
6
8
0
2
4
6
0
2
4
6
8
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
August 2005  
5
M9999-082505-B  
MIC39100/39101/39102  
Micrel  
G round C urrent  
vs . S upply Voltage (3.3V)  
G round C urrent  
vs . Temperature  
G round C urrent  
vs . Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
40  
30  
20  
10  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5V  
3.3V  
I
=10mA  
LOAD  
I
=1A  
LOAD  
1.8V  
3.3V  
2.5V  
1.8V  
ILOAD = 500mA  
-40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
-40 -20  
0
20 40 60 80 100 120  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Voltage  
vs . Temperature  
G round C urrent  
vs . Temperature  
S hort C ircuit  
vs . Temperature  
20  
15  
10  
5
3.40  
3.35  
3.30  
3.25  
3.20  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ILOAD = 1A  
2.5V  
3.3V  
Typical 3.3V  
Device  
1.8V  
2.5V  
1.8V  
3.3V  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
E rror F lag  
P ull-Up R es is tor  
E nable C urrent  
vs . Temperature  
F lag-L ow Voltage  
vs . Temperature  
6
5
4
3
2
1
12  
10  
8
250  
200  
150  
100  
50  
VIN = 5V  
VIN = VOUT + 1V  
F LAG -LOW  
VOLTAG E  
VE N = 2.4V  
F LAG HIG H  
(OK)  
6
VIN = 2.25V  
R P ULL-UP = 22kΩ  
4
F LAG LOW  
(FAULT)  
2
0
0
0
0.01 0.1  
1
10 100 1000 10000  
-40 -20  
0
20 40 60 80 100 120 140  
-40 -20  
0
20 40 60 80 100 120 140  
RESISTANCE (k)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
M9999-082505  
6
August 2005  
MIC39100/39101/39102  
Micrel  
Functional Characteristics  
August 2005  
7
M9999-082505-B  
MIC39100/39101/39102  
Micrel  
Functional Diagrams  
IN  
OUT  
OV ILIMIT  
18V  
1.240V  
Ref.  
Thermal  
Shut-  
down  
MIC39100  
GND  
MIC39100 Fixed Regulator Block Diagram  
OUT  
IN  
O.V.  
ILIMIT  
18V  
1.180V  
1.240V  
Ref.  
FLAG  
EN  
Thermal  
Shut-  
down  
GND  
MIC39101  
MIC39101 Fixed Regulator with Flag and Enable Block Diagram  
OUT  
IN  
O.V.  
ILIMIT  
18V  
1.240V  
Ref.  
ADJ  
EN  
Thermal  
Shut-  
down  
GND  
MIC39102  
MIC39102 Adjustable Regulator Block Diagram  
M9999-082505  
8
August 2005  
MIC39100/39101/39102  
Micrel  
Input Capacitor  
Applications Information  
An input capacitor of 1µF or greater is recommended when  
thedeviceismorethan4inchesawayfromthebulkacsupply  
capacitance or when the supply is a battery. Small, surface  
mount, ceramic chip capacitors can be used for bypassing.  
Larger values will help to improve ripple rejection by bypass-  
ing the input to the regulator, further improving the integrity  
of the output voltage.  
The MIC39100/1/2 is a high-performance low-dropout volt-  
age regulator suitable for moderate to high-current voltage  
regulator applications. Its 630mV dropout voltage at full load  
and overtemperature makes it especially valuable in bat-  
tery-powered systems and as high-efficiency noise filters in  
post-regulatorapplications.UnlikeolderNPN-passtransistor  
designs, where the minimum dropout voltage is limited by the  
base-to-emitter voltage drop and collector-to-emitter satura-  
tion voltage, dropout performance of the PNPoutput of these  
Error Flag  
The MIC39101 features an error flag (FLG), which monitors  
the output voltage and signals an error condition when this  
voltage drops 5% below its expected value. The error flag is  
an open-collector output that pulls low under fault conditions  
and may sink up to 10mA. Low output voltage signifies a  
number of possible problems, including an overcurrent fault  
(the device is in current limit) or low input voltage. The flag  
output is inoperative during overtemperature conditions. A  
devices is limited only by the low V saturation voltage.  
CE  
Atrade-off for the low dropout voltage is a varying base drive  
requirement.Micrel’sSuperβetaPNPprocessreducesthis  
drive requirement to only 2% of the load current.  
The MIC39100/1/2 regulator is fully protected from damage  
due to fault conditions. Linear current limiting is provided.  
Output current during overload conditions is constant. Ther-  
mal shutdown disables the device when the die temperature  
exceedsthemaximumsafeoperatingtemperature.Transient  
protection allows device (and load) survival even when the  
input voltage spikes above and below nominal. The output  
structure of these regulators allows voltages in excess of  
the desired output voltage to be applied without reverse  
pull-up resistor from FLG to either V or V  
is required  
IN  
OUT  
for proper operation. For information regarding the minimum  
and maximum values of pull-up resistance, refer to the graph  
in the typical characteristics section of the data sheet.  
Enable Input  
TheMIC39101andMIC39102versionsfeatureanactive-high  
enable input (EN) that allows on-off control of the regulator.  
Current drain reduces to “zero” when the device is shutdown,  
with only microamperes of leakage current. The EN input has  
TTL/CMOScompatiblethresholdsforsimplelogicinterfacing.  
current flow.  
MIC39100-x.x  
VIN  
VOUT  
IN  
OUT  
GND  
CIN  
COUT  
EN may be directly tied to V and pulled up to the maximum  
IN  
supply voltage  
Transient Response and 3.3V to 2.5V or 2.5V to 1.8V  
Conversion  
Figure 1. Capacitor Requirements  
Output Capacitor  
The MIC39100/1/2 has excellent transient response to  
variations in input voltage and load current. The device has  
been designed to respond quickly to load current variations  
and input voltage variations. Large output capacitors are not  
required to obtain this performance. A standard 10µF output  
capacitor, preferably tantalum, is all that is required. Larger  
values help to improve performance even further.  
The MIC39100/1/2 requires an output capacitor to maintain  
stability and improve transient response. Proper capaci-  
tor selection is important to ensure proper operation. The  
MIC39100/1/2 output capacitor selection is dependent upon  
theESR(equivalentseriesresistance)oftheoutputcapacitor  
to maintain stability. When the output capacitor is 10µF or  
greater, the output capacitor should have an ESR less than  
2Ω. This will improve transient response as well as promote  
stability.Ultra-low-ESRcapacitors(<100mΩ),suchasceramic  
chip capacitors, may promote instability.These very low ESR  
levelsmaycauseanoscillationand/orunderdampedtransient  
response.Alow-ESRsolidtantalumcapacitorworksextremely  
well and provides good transient response and stability over  
temperature. Aluminum electrolytics can also be used, as  
long as the ESR of the capacitor is <2Ω.  
By virtue of its low-dropout voltage, this device does not satu-  
rate into dropout as readily as similar NPN-based designs.  
When converting from 3.3V to 2.5V or 2.5V to 1.8V, the NPN  
based regulators are already operating in dropout, with typi-  
cal dropout requirements of 1.2V or greater. To convert down  
to 2.5V or 1.8V without operating in dropout, NPN-based  
regulators require an input voltage of 3.7V at the very least.  
The MIC39100 regulator will provide excellent performance  
with an input as low as 3.0V or 2.5V respectively. This gives  
the PNP based regulators a distinct advantage over older,  
NPN based linear regulators.  
The value of the output capacitor can be increased without  
limit. Higher capacitance values help to improve transient  
response and ripple rejection and reduce output noise.  
Minimum Load Current  
TheMIC39100/1/2regulatorisspecifiedbetweenniteloads.  
If the output current is too small, leakage currents dominate  
and the output voltage rises. A 10mA minimum load current  
is necessary for proper regulation.  
August 2005  
9
M9999-082505-B  
MIC39100/39101/39102  
Micrel  
Adjustable Regulator Design  
Using the power SOIC-8 reduces the θ dramatically and  
JC  
allows the user to reduce θ . The total thermal resistance,  
CA  
θ
(junction-to-ambient thermal resistance) is the limiting  
MIC39102  
JA  
factor in calculating the maximum power dissipation capabil-  
VIN  
IN  
OUT  
VOUT  
COUT  
R1  
R2  
ity of the device. Typically, the power SOIC-8 has a θ of  
JC  
ENABLE  
SHUTDOWN  
EN  
ADJ  
20°C/W, this is significantly lower than the standard SOIC-8  
GND  
which is typically 75°C/W. θ is reduced because pins 5  
CA  
through 8 can now be soldered directly to a ground plane  
whichsignificantlyreducesthecase-to-sinkthermalresistance  
and sink to ambient thermal resistance.  
R1  
R2  
VOUT = 1.240V 1+  
Low-dropout linear regulators from Micrel are rated to a  
maximumjunctiontemperatureof125°C.Itisimportantnotto  
exceed this maximum junction temperature during operation  
of the device. To prevent this maximum junction temperature  
frombeingexceeded, theappropriategroundplaneheatsink  
must be used.  
Figure 2. Adjustable Regulator with Resistors  
The MIC39102 allows programming the output voltage any-  
wherebetween1.24Vandthe16Vmaximumoperatingrating  
of the family. Two resistors are used. Resistors can be quite  
large, up to 1MΩ, because of the very high input impedance  
and low bias current of the sense comparator: The resistor  
values are calculated by:  
V
OUT  
R1 = R2  
1  
SOIC-8  
1.240  
Where V is the desired output voltage. Figure 2 shows  
O
component definition. Applications with widely varying load  
currents may scale the resistors to draw the minimum load  
current required for proper operation (see above).  
JA  
ground plane  
heat sink area  
JC  
CA  
Power SOIC-8 Thermal Characteristics  
AMBIENT  
One of the secrets of the MIC39101/2’s performance is its  
power SO-8 package featuring half the thermal resistance of  
a standard SO-8 package. Lower thermal resistance means  
more output current or higher input voltage for a given pack-  
age size.  
printed circuit board  
Figure 3. Thermal Resistance  
Figure 4 shows copper area versus power dissipation with  
each trace corresponding to a different temperature rise  
above ambient.  
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a single-  
piece electrical and thermal conductor. This concept has  
been used by MOSFET manufacturers for years, proving  
very reliable and cost effective for the user.  
Fromthesecurves,theminimumareaofcoppernecessaryfor  
the part to operate safely can be determined. The maximum  
allowable temperature rise must be calculated to determine  
operation along which curve.  
Thermal resistance consists of two main elements, θ (junc-  
JC  
tion-to-case thermal resistance) and θ (case-to-ambient  
CA  
thermal resistance). See Figure 3. θ is the resistance from  
JC  
the die to the leads of the package. θ is the resistance  
CA  
from the leads to the ambient air and it includes θ (case-  
CS  
to-sink thermal resistance) and θ (sink-to-ambient thermal  
SA  
resistance).  
900  
800  
900  
T
= 125°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
TJ A  
=
700  
600  
500  
400  
300  
200  
100  
0
TA = 85°C  
50°C 25°C  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Figure 4. Copper Area vs. Power-SOIC  
Power Dissipation  
Figure 5. Copper Area vs. Power-SOIC  
Power Dissipation  
M9999-082505  
10  
August 2005  
MIC39100/39101/39102  
Micrel  
Quick Method  
ΔT = T  
– T  
A(max)  
J(max)  
Determine the power dissipation requirements for the design  
along with the maximum ambient temperature at which the  
device will be operated. Refer to Figure 5, which shows safe  
operating curves for three different ambient temperatures:  
25°C, 50°C and 85°C. From these curves, the minimum  
amount of copper can be determined by knowing the maxi-  
mum power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as above,  
836mW, the curve in Figure 5 shows that the required area  
T
= 125°C  
J(max)  
T
= maximum ambient operating temperature  
A(max)  
For example, the maximum ambient temperature is 50°C,  
the ΔT is determined as follows:  
ΔT = 125°C – 50°C  
ΔT = 75°C  
Using Figure 4, the minimum amount of required copper can  
bedeterminedbasedontherequiredpowerdissipation.Power  
dissipation in a linear regulator is calculated as follows:  
2
of copper is 160mm .  
The θ of this package is ideally 63°C/W, but it will vary  
depending upon the availability of copper ground plane to  
which it is attached.  
P = (V – V  
) I  
+ V ·I  
IN GND  
JA  
D
IN  
OUT OUT  
If we use a 2.5V output device and a 3.3V input at an output  
current of 1A, then our power dissipation is as follows:  
P = (3.3V – 2.5V) × 1A + 3.3V × 11mA  
D
P = 800mW + 36mW  
D
P = 836mW  
D
From Figure 4, the minimum amount of copper required to  
2
operate this application at a ΔT of 75°C is 160mm .  
August 2005  
11  
M9999-082505-B  
MIC39100/39101/39102  
Micrel  
Package Information  
3.15 (0.124)  
2.90 (0.114)  
C
L
7.49 (0.295)  
6.71 (0.264)  
3.71 (0.146)  
3.30 (0.130)  
C
L
2.41 (0.095)  
2.21 (0.087)  
1.04 (0.041)  
0.85 (0.033)  
4.7 (0.185)  
4.5 (0.177)  
DIMENSIONS:  
MM (INCH)  
1.70 (0.067)  
16°  
6.70 (0.264)  
6.30 (0.248)  
1.52 (0.060)  
10°  
0.10 (0.004)  
0.38 (0.015)  
10°  
0.02 (0.0008)  
0.25 (0.010)  
MAX  
0.84 (0.033)  
0.64 (0.025)  
0.91 (0.036) MIN  
SOT-223 (S)  
8-Lead SOIC (M)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2005 Micrel Incorporated  
M9999-082505  
12  
August 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY