MT55V512V32PT-10 [ROCHESTER]

512KX32 ZBT SRAM, 5ns, PQFP100, PLASTIC, TQFP-100;
MT55V512V32PT-10
型号: MT55V512V32PT-10
厂家: Rochester Electronics    Rochester Electronics
描述:

512KX32 ZBT SRAM, 5ns, PQFP100, PLASTIC, TQFP-100

静态存储器
文件: 总35页 (文件大小:1144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
MT55L1MY18P, MT55V1MV18P,  
MT55L512Y32P, MT55V512V32P,  
MT55L512Y36P, MT55V512V36P  
3.3V VDD, 3.3V or 2.5V I/O; 2.5V VDD, 2.5V I/O  
18Mb ZBT® SRAM  
Features  
Figure 1: 100-Pin TQFP  
JEDEC-Standard MS-026 BHA (LQFP)  
High frequency and 100 percent bus utilization  
Single 3.3V ±± percent or 2.±V ±± percent power supply  
Separate 3.3V ±± percent or 2.±V ±± percent isolated  
output buffer supply (VDDQ)  
Advanced control logic for minimum control signal  
interface  
Individual byte write controls may be tied LOW  
Single R/W# (read/write) control pin/ball  
CKE# pin/ball to enable clock and suspend operations  
Three chip enables for simple depth expansion  
Clock-controlled and registered addresses, data  
I/Os, and control signals  
Internally self-timed, fully coherent WRITE  
Internally self-timed, registered outputs to eliminate  
the need to control OE#  
SNOOZE MODE for reduced-power standby  
Common data inputs and data outputs  
Linear or Interleaved Burst Modes  
Figure 2: 165-Ball FBGA  
JEDEC-Standard MS-216 (Var. CAB-1)  
Burst feature (optional)  
Pin and ball/function compatibility with 2Mb, 4Mb,  
and 8Mb ZBT SRAM  
TQFP  
Options  
Marking  
Timing (Access/Cycle/MHz)  
3.2ns/±ns/200 MHz  
3.±ns/6ns/166 MHz  
4.2ns/7.±ns/133 MHz  
±ns/10ns/100 MHz  
Configurations  
3.3V VDD, 3.3V, or 2.±V I/O  
1 Meg x 18  
-±  
-6  
-7.±  
-10  
MT±±L1MY18P  
MT±±L±12Y32P  
MT±±L±12Y36P  
Part Number Example:  
±12K x 32  
±12K x 36  
MT55L512Y36PT-10  
2.±V VDD, 2.±V I/O  
1 Meg x 18  
±12K x 32  
±12K x 36  
Packages  
100-pin TQFP  
MT±±V1MV18P  
MT±±V±12V32P  
MT±±V±12V36P  
General Description  
The Micron® Zero Bus Turnaround™ (ZBT®) SRAM  
family employs high-speed, low-power CMOS designs  
using an advanced CMOS process.  
T
F1  
Microns 18Mb ZBT SRAMs integrate a 1 Meg x 18,  
±12K x 32, or ±12K x 36 SRAM core with advanced syn-  
16±-ball, 13mm x 1±mm FBGA  
Operating Temperature Range  
chronous peripheral circuitry and  
a 2-bit burst  
Commercial (0ºC  
?
TA  
?
+70ºC)  
None  
IT2  
counter. These SRAMs are optimized for 100 percent  
bus utilization, eliminating any turnaround cycles for  
READ to WRITE, or WRITE to READ, transitions. All  
synchronous inputs pass through registers controlled  
by a positive-edge-triggered single clock input (CLK).  
The synchronous inputs include all addresses, all data  
inputs, chip enable (CE#), two additional chip enables  
Industrial (-40ºC  
?
TA  
?
+8±ºC)  
NOTE:  
1. A Part Marking Guide for the FBGA devices can be found on  
Micron’s Web site—http://www.micron.com/numberguide.  
2. Contact Factory for availability of Industrial Temperature  
devices.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
©2003 Micron Technology, Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
for easy depth expansion (CE2, CE2#), cycle start input  
(ADV/LD#), synchronous clock enable (CKE#), byte  
write enables (BWa#, BWb#, BWc# and BWd#), and  
read/write (R/W#).  
cycle one, the address is present on rising edge one.  
BYTE WRITEs need to be asserted on the same cycle as  
the address. The data associated with the address is  
required two cycles later, or on the rising edge of clock  
cycle three.  
Address and write control are registered on-chip to  
simplify WRITE cycles. This allows self-timed write  
cycles. Individual byte enables allow individual bytes  
to be written. During a BYTE WRITE cycle, BWa# con-  
trols DQa pins/balls; BWb# controls DQb pins/balls;  
BWc# controls DQc pins/balls; and BWd# controls  
DQd pins/balls. Cycle types can only be defined when  
an address is loaded, i.e., when ADV/LD# is LOW. Par-  
ity/ECC bits are only available on the x18 and x36 ver-  
sions.  
Asynchronous inputs include the output enable  
(OE#, which may be tied LOW for control signal mini-  
mization), clock (CLK) and snooze enable (ZZ, which  
may be tied LOW if unused). There is also a burst mode  
pin/ball (MODE) that selects between interleaved and  
linear burst modes. MODE may be tied HIGH, LOW or  
left unconnected if burst is unused. The data out (Q) is  
enabled by OE#. WRITE cycles can be from one to four  
bytes wide as controlled by the write control inputs.  
All READ, WRITE, and DESELECT cycles are initi-  
ated by the ADV/LD# input. Subsequent burst  
addresses can be internally generated as controlled by  
the burst advance pin/ball (ADV/LD#). Use of burst  
mode is optional. It is allowable to give an address for  
each individual READ and WRITE cycle. BURST cycles  
wrap around after the fourth access from a base  
address.  
The device is ideally suited for systems requiring  
high bandwidth and zero bus turnaround delays.  
Please refer to Microns Web site (www.micron.com/  
sramds) for the latest data sheet.  
Dual Voltage I/O  
To allow for continuous, 100 percent use of the data  
bus, the pipelined ZBT SRAM uses a late LATE WRITE  
cycle. For example, if a WRITE cycle begins in clock  
The 3.3V VDD device is tested for 3.3V and 2.±V I/O  
function. The 2.±V VDD device is tested for only 2.±V  
I/O function.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
2
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 3: Functional Block Diagram  
1 Meg x 18  
18  
20  
20  
20  
ADDRESS  
SA0, SA1, SA  
REGISTER 0  
SA1  
SA0  
SA1'  
SA0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
K
ADV/LD#  
K
CLK  
CKE#  
20  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
20  
O
U
T
O
U
T
P
S
E
N
S
P
D
A
T
U
T
U
T
ADV/LD#  
BWa#  
1 Meg x 9 x 2  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
E
B
U
F
WRITE  
DRIVERS  
S
T
E
E
R
I
DQs  
DQPa  
DQPb  
18  
18  
18  
18  
18  
18  
18  
A
M
P
MEMORY  
ARRAY  
F
S
T
E
R
S
E
R
S
BWb#  
R/W#  
S
N
G
E
E
18  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE#  
CE#  
READ LOGIC  
CE2  
CE2#  
Figure 4: Functional Block Diagram  
512K x 32/36  
17  
19  
19  
19  
ADDRESS  
SA0, SA1, SA  
REGISTER 0  
SA1  
SA0  
SA1'  
SA0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
K
ADV/LD#  
K
CLK  
CKE#  
19  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
19  
O
U
T
O
U
T
P
S
E
N
S
P
D
A
T
U
T
ADV/LD#  
BWa#  
BWb#  
BWc#  
U
T
512K x 8 x 4  
(x32)  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
E
B
U
F
DQs  
512K x 9 x 4  
(x36)  
WRITE  
DRIVERS  
36  
36  
36  
36  
36  
S
36  
36  
A
M
P
DQPa  
DQPb  
DQPc  
DQPd  
T
E
E
R
I
F
S
T
E
R
S
MEMORY  
ARRAY  
E
R
S
S
BWd#  
R/W#  
N
G
E
E
36  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
OE#  
CE#  
READ LOGIC  
CE2  
CE2#  
NOTE:  
1. Functional block diagrams illustrate simplified device operation. See truth tables, pin/ball descriptions, and timing dia-  
grams for detailed information.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
3
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 5: Pin Layout (Top View)  
100-Pin TQFP  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
SA  
SA  
81  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SA  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
SA  
SA  
SA  
SA  
SA  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
CLK  
SA  
SA  
SA  
3
3
DNU  
DNU  
V
SS  
DD  
V
V
DD  
SS  
V
x18  
CE2#  
BWa#  
BWb#  
NC  
DNU  
DNU  
SA0  
SA1  
SA  
NC  
CE2  
CE#  
SA  
SA  
SA  
SA  
SA  
100  
MODE  
(LBO#)  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
81  
SA  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
SA  
SA  
SA  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
SA  
SA  
SA  
SA  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
CLK  
SA  
SA  
SA  
3
3
DNU  
DNU  
VDD  
VSS  
VSS  
VDD  
x32/x36  
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
DNU  
DNU  
SA0  
SA1  
SA  
SA  
CE#  
SA  
SA  
SA  
SA  
100  
MODE  
(LBO#)  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
NOTE:  
1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.  
2. Pins 14, 16, and 66 do not have to be connected directly to VDD if the input voltage is O VIH.  
3. Pins 43 and 42 are reserved for address expansion; 36Mb and 72Mb, respectively.  
.
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
4
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 1:  
TQFP Pin Descriptions  
SYMBOL  
TYPE  
DESCRIPTION  
ADV/LD#  
Input  
Synchronous Address Advance/Load: When HIGH, this input is used to advance the internal  
burst counter, controlling burst access after the external address is loaded. When ADV/LD# is  
HIGH, R/W# is ignored. A LOW on ADV/LD# clocks a new address at the CLK rising edge.  
BWa#  
BWb#  
BWc#  
BWd#  
Input  
Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be  
written when a WRITE cycle is active and must meet the setup and hold times around the  
rising edge of CLK. BWs need to be asserted on the same cycle as the address. BWs are  
associated with addresses and apply to subsequent data. BWa# controls DQa pins; BWb#  
controls DQb pins; BWc# controls DQc pins; BWd# controls DQd pins.  
CE#  
Input  
Input  
Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled  
only when a new external address is loaded (ADV/LD# LOW).  
CE2#  
Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled  
only when a new external address is loaded (ADV/LD# LOW). This input can be used for  
memory depth expansion.  
CE2  
Input  
Input  
Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled  
only when a new external address is loaded (ADV/LD# LOW). This input can be used for  
memory depth expansion.  
CKE#  
Synchronous Clock Enable: This active LOW input permits CLK to propagate throughout the  
device. When CKE# is HIGH, the device ignores the CLK input and effectively internally  
extends the previous CLK cycle. This input must meet setup and hold times around the rising  
edge of CLK.  
CLK  
Input  
Input  
Clock: This signal registers the address, data, chip enables, byte write enables, and burst  
control inputs on its rising edge. All synchronous inputs must meet setup and hold times  
around the clock’s rising edge.  
MODE (LBO#)  
Mode: This input selects the burst sequence. A LOW on this pin selects linear burst. NC or  
HIGH on this pin selects interleaved burst. Do not alter input state while device is operating.  
LBO# is the JEDEC-standard term for MODE.  
OE# (G#)  
R/W#  
Input  
Input  
Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G#  
is the JEDEC-standard term for OE#.  
Read/Write: This input determines the cycle type when ADV/LD# is LOW and is the only  
means for determining READs and WRITEs. READ cycles may not be converted into WRITEs  
(and vice versa) other than by loading a new address. A LOW on this pin permits BYTE WRITE  
operations and must meet the setup and hold times around the rising edge of CLK. Full bus-  
width WRITEs occur if all byte write enables are LOW.  
SA0  
SA1  
SA  
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of CLK. SA0 and SA1 are the two least significant bits (LSB) of  
the address field and set the internal burst counter if burst is desired.  
ZZ  
Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power  
standby mode in which all data in the memory array is retained. When ZZ is active, all other  
inputs are ignored. This pin has an internal pull-down and can be left unconnected.  
DQa  
DQb  
DQc  
DQd  
Input/  
Output  
SRAM Data I/Os: Byte “a” associated with is DQa pins; byte “b” is associated with DQb pins;  
byte “c” is associated with DQc pins; byte “d” is associated withDQd pins. Input data must  
meet setup and hold times around the rising edge of CLK.  
NF/DQPa  
NF/DQPb  
NF/DQPc  
NF/DQPd  
NF  
I/O  
No Function/Parity Data I/Os: On the x32 version, these are No Function (NF). On the x18  
version, byte “a” parity is DQPa; byte “b” parity is DQPb. On the x36 version, byte “a” parity  
is DQPa; byte “b” parity is DQPb; byte “c” parity is DQPc; byte “d” parity is DQPd.  
VDD  
Supply  
Supply  
Power Supply: See DC Electrical Characteristics and Operating Conditions for range.  
VDDQ  
Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for  
range.  
VSS  
Supply  
Ground: GND.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
5
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 1:  
TQFP Pin Descriptions (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
DNU  
Do Not Use: These pins are internally connected to the die. They may be left floating or  
connected to ground to improve package heat dissipation.  
NC  
NF  
No Connect: These pins are not internally connected to the die. They may be left floating,  
driven by signals, or connected to ground to improve package heat dissipation.  
No Function: These pins are internally connected to the die and have the capacitance of an  
input pin. They may be left floating, driven by signals, or connected to ground to improve  
package heat dissipation.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
6
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 6: Ball Layout (Top View)  
165-Ball FBGA  
x18  
x32/x36  
1
2
3
4
5
6
7
8
9
10  
11  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
NC  
NC  
SA  
SA  
NC  
CE# BWc# BWb# CE2# CKE# ADV/LD# SA  
CE2 BWd# BWa# CLK R/W# OE# (G#) SA  
SA  
SA  
NC  
NC  
NC  
NC  
SA  
SA  
NC  
CE# BWb#  
NC  
CE2# CKE# ADV/L D# SA  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
CE2  
NC  
VSS  
BWa# CLK R/W# OE# (G#) SA  
1
1
NC NF/DQPb  
NF/DQPc  
DQc  
DQc  
DQc  
DQc  
VDD  
VDDQ  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NF  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
TDO  
TCK  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDDQ  
NC  
VDDQ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NF  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
TDO  
TCK  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
DQPa  
DQa  
DQa  
DQa  
DQa  
ZZ  
DQc VDDQ  
DQc VDDQ  
DQc VDDQ  
DQc VDDQ  
VDDQ DQb DQb  
VDDQ DQb DQb  
VDDQ DQb DQb  
VDDQ DQb DQb  
NC  
DQb VDDQ  
DQb VDDQ  
DQb VDDQ  
DQb VDDQ  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
NC  
F
F
F
F
NC  
G
H
J
G
H
J
G
H
J
G
H
J
NC  
VDD  
NC  
NC  
NC  
ZZ  
VDD  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
DQd DQd VDDQ  
DQd DQd VDDQ  
DQd DQd VDDQ  
VDDQ DQa DQa  
VDDQ DQa DQa  
VDDQ DQa DQa  
VDDQ DQa DQa  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
SA  
VDDQ DQa  
VDDQ DQa  
VDDQ DQa  
VDDQ DQa  
NC  
K
L
K
L
K
L
K
L
NC  
NC  
M
N
P
M
N
P
M
N
P
M
N
P
DQd DQd VDDQ  
NC  
1
1
NC NF/DQPa  
NF/DQPd  
NC  
NC  
VDDQ  
SA  
VDDQ  
SA  
VDDQ  
SA  
NC  
SA  
SA  
NC  
2
NC  
2
NC  
SA  
TDI  
TMS  
SA1  
SA0  
SA  
SA  
SA  
NF  
SA  
SA  
TDI  
TMS  
SA1  
SA0  
SA  
NF  
R
R
R
R
2
2
MODE NC  
(LBO#)  
SA  
SA  
SA  
SA  
MODE NC  
(LBO#)  
SA  
SA  
SA  
SA  
SA  
TOP VIEW  
TOP VIEW  
NOTE:  
1. No Function (NF) is used on the x32 version. Parity (DQPx) is used on the x36 version.  
2. Balls 2R and 2P are reserved for address expansion; 36Mb and 72Mb, respectively.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
7
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 2:  
FBGA Ball Descriptions  
SYMBOL  
TYPE  
DESCRIPTION  
ADV/LD#  
Input  
Synchronous Address Advance/Load: When HIGH, this input is used to advance the internal  
burst counter, controlling burst access after the external address is loaded. When ADV/LD# is  
HIGH, R/W# is ignored. A LOW on ADV/LD# clocks a new address at the CLK rising edge.  
BWa#  
BWb#  
BWc#  
BWd#  
Input  
Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be  
written when a WRITE cycle is active and must meet the setup and hold times around the  
rising edge of CLK. BWs need to be asserted on the same cycle as the address. BWs are  
associated with addresses and apply to subsequent data. BWa# controls DQa balls; BWb#  
controls DQb balls; BWc# controls DQc balls; BWd# controls DQd balls.  
CE#  
Input  
Input  
Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled  
only when a new external address is loaded (ADV/LD# LOW).  
CE2#  
Synchronous Chip Enable: This active LOW input is used to enable the device and is sampled  
only when a new external address is loaded (ADV/LD# LOW). This input can be used for  
memory depth expansion.  
CE2  
Input  
Input  
Synchronous Chip Enable: This active HIGH input is used to enable the device and is sampled  
only when a new external address is loaded (ADV/LD# LOW). This input can be used for  
memory depth expansion.  
CKE#  
Synchronous Clock Enable: This active LOW input permits CLK to propogate throughout the  
device. When CKE# is HIGH, the device ignores the CLK input and effectively internally  
extends the previous CLK cycle. This input must meet the setup and hold times around the  
rising edge of CLK.  
CLK  
Input  
Input  
Clock: This signal registers the address, data, chip enables, byte write enables, and burst  
control inputs on its rising edge. All synchronous inputs must meet setup and hold times  
around the clock’s rising edge.  
MODE (LBO#)  
Mode: This input selects the burst sequence. A LOW on this input selects “linear burst.” NC or  
HIGH on this input selects “interleaved burst.” Do not alter input state while device is  
operating. LBO# is the JEDEC-standard term for MODE.  
OE# (G#)  
R/W#  
Input  
Input  
Output Enable: This active LOW, asynchronous input enables the data I/O output drivers. G#  
is the JEDEC-standard term for OE#.  
Read/Write: This input determines the cycle type when ADV/LD# is LOW and is the only  
means for determining READs and WRITEs. READ cycles may not be converted into WRITEs  
(and vice versa) other than by loading a new address. A LOW on this ball permits BYTE WRITE  
operations to meet the setup and hold times around the rising edge of CLK. Full bus-width  
WRITEs occur if all byte write enables are LOW.  
SA0  
SA1  
SA  
Input  
Input  
Input  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of CLK. SA0 and SA1 are the two least significant bits (LSB) of  
the address field and set the internal burst counter if burst is desired.  
TMS  
TDI  
TCK  
IEEE 1149.1 Test Inputs: JEDEC-standard 3.3V and 2.5V I/O levels. These balls may be left not  
connected if the JTAG function is not used in the circuit.  
ZZ  
Snooze Enable: This active HIGH, asynchronous input causes the device to enter a low-power  
standby mode in which all data in the memory array is retained. When ZZ is active, all other  
inputs are ignored. This ball has an internal pull-down and can be left unconnected.  
DQa  
DQb  
DQc  
DQd  
Input/  
Output  
SRAM Data I/Os: For the x18 version, byte “a” is associated with DQa balls; byte “b” is  
associated with DQb balls. For the x32 and x36 versions, byte “a” is associated with DQa  
balls; byte “b” is associated with DQb balls; byte “c” is associated with DQc balls; byte “d” is  
associated with DQd balls. Input data must meet setup and hold times around the rising  
edge of CLK.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
8
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 2:  
FBGA Ball Descriptions (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
NF/DQPa  
NF/DQPb  
NF/DQPc  
NF/DQPd  
NF  
I/O  
No Function/Parity Data I/Os: On the x32 version, these are No Function (NF). On the x18  
version, byte “a” parity is DQPa; byte “b” parity is DQPb. On the x36 version, byte “a” parity  
is DQPa; byte “b” parity is DQPb; byte “c” parity is DQPc; byte “d” parity is DQPd.  
TDO  
VDD  
Output  
Supply  
Supply  
IEEE 1149.1 Test Output: JEDEC-standard 3.3V and 2.5V I/O levels.  
Power Supply: See DC Electrical Characteristics and Operating Conditions for range.  
VDDQ  
Isolated Output Buffer Supply: See DC Electrical Characteristics and Operating Conditions for  
range.  
VSS  
NC  
Supply  
Ground: GND.  
No Connect: These balls are not internally connected to the die. They may be left floating,  
driven by signals, or connected to ground to improve package heat dissipation.  
NF  
No Function: These balls are internally connected to the die and have the capacitance of an  
input ball. They may be left floating, driven by signals, or connected to ground to improve  
package heat dissipation.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
9
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 3:  
Interleaved Burst Address Table (Mode = NC or HIGH)  
FIRST ADDRESS  
(EXTERNAL)  
SECOND ADDRESS  
(INTERNAL)  
THIRD ADDRESS  
(INTERNAL)  
FOURTH ADDRESS  
(INTERNAL)  
X…X00  
X…X01  
X…X10  
X…X11  
X…X01  
X…X00  
X…X11  
X…X10  
X…X10  
X…X11  
X…X00  
X…X01  
X…X11  
X…X10  
X…X01  
X…X00  
Table 4:  
Linear Burst Address Table (Mode = LOW)  
FIRST ADDRESS  
(EXTERNAL)  
SECOND ADDRESS  
(INTERNAL)  
THIRD ADDRESS  
FOURTH ADDRESS  
(INTERNAL)  
(INTERNAL)  
X…X00  
X…X01  
X…X10  
X…X11  
X…X01  
X…X10  
X…X11  
X…X00  
X…X10  
X…X11  
X…X00  
X…X01  
X…X11  
X…X00  
X…X01  
X…X10  
Table 5:  
Partial Truth Table For READ/WRITE Commands (x18)  
FUNCTION  
R/W#  
BWa#  
BWb#  
H
L
L
L
L
X
L
X
H
L
READ  
WRITE Byte “a”  
WRITE Byte “b”  
WRITE All Byte  
WRITE ABORT/NOP  
H
L
L
H
H
NOTE:  
Using R/W# and byte write(s), any one or more bytes may be written.  
Table 6:  
Partial Truth Table For READ/WRITE Commands (x32/x36)  
FUNCTION  
R/W#  
BWa#  
BWb#  
BWc#  
BWd#  
H
L
L
L
L
L
L
X
L
X
H
L
X
H
H
L
X
H
H
H
L
READ  
WRITE Byte “a”  
WRITE Byte “b”  
WRITE Byte “c”  
WRITE Byte “d”  
WRITE All Byte  
WRITE ABORT/NOP  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
NOTE:  
Using R/W# and byte write(s), any one or more bytes may be written.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
10  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 7:  
State Diagram For ZBT SRAM  
DS  
BURST  
DS  
DS  
DESELECT  
WRITE  
READ  
BEGIN  
READ  
BEGIN  
WRITE  
WRITE  
BURST  
READ  
READ  
BURST  
BURST  
WRITE  
BURST  
READ  
BURST  
WRITE  
BURST  
KEY:  
COMMAND OPERATION  
DS  
DESELECT  
READ  
WRITE  
BURST  
New READ  
New WRITE  
BURST READ,  
BURST WRITE, or  
CONTINUE DESELECT  
NOTE:  
1. A STALL or IGNORE CLOCK EDGE cycle is not shown in the above diagram. This is because CKE# HIGH only blocks the  
clock (CLK) input and does not change the state of the device.  
2. States change on the rising edge of the clock (CLK).  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
11  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 7:  
Notes: 5–10  
Truth Table  
ADDRESS  
USED  
ADV/  
LD# R/W# BWx OE# CKE# CLK  
OPERATION  
CE# CE2# CE2  
ZZ  
DQ  
NOTES  
None  
None  
None  
None  
H
X
X
X
X
H
X
X
X
X
L
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
LJH High-Z  
LJH High-Z  
LJH High-Z  
LJH High-Z  
DESELECT CYCLE  
DESELECT Cycle  
DESELECT Cycle  
L
X
H
1
CONTINUE  
DESELECT Cycle  
READ Cycle (Begin  
Burst)  
External  
Next  
L
X
L
L
X
L
H
X
H
X
H
X
H
X
X
X
L
L
L
L
L
L
L
L
L
H
L
H
L
H
X
H
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
LJH  
LJH  
Q
Q
1, 11  
2
READ Cycle  
(Continue Burst)  
External  
Next  
H
H
X
X
X
X
X
X
LJH High-Z  
NOP/DUMMY READ  
(Begin Burst)  
DUMMY READ  
(Continue Burst)  
X
L
X
L
H
L
LJH High-Z 1, 2, 11  
External  
Next  
LJH  
LJH  
D
D
3
WRITE Cycle (Begin  
Burst)  
X
L
X
L
H
L
X
L
L
1, 3, 11  
2, 3  
WRITE Cycle  
(Continue Burst)  
NOP/WRITE ABORT  
(Begin Burst)  
None  
H
H
X
X
LJH High-Z  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
LJH High-Z 1, 2, 3,  
WRITE ABORT  
(Continue Burst)  
11  
Current  
None  
LJH  
4
IGNORE CLOCK  
EDGE (Stall)  
SNOOZE MODE  
X
High-Z  
NOTE:  
1. CONTINUE BURST cycles, whether READ or WRITE, use the same control inputs. The type of cycle performed (READ  
or WRITE) is chosen in the initial BEGIN BURST cycle. A CONTINUE DESELECT cycle can only be entered if a DESELECT  
cycle is executed first.  
2. DUMMY READ and WRITE ABORT cycles can be considered NOPs because the device performs no external opera-  
tion. A WRITE ABORT means a WRITE command is given, but no operation is performed.  
3. OE# may be wired LOW to minimize the number of control signals to the SRAM. The device will automatically turn  
off the output drivers during a WRITE cycle. OE# may be used when the bus turn-on and turn-off times do not meet  
an application’s requirements.  
4. If an IGNORE CLOCK EDGE command occurs during a READ operation, the DQ bus will remain active (Low-Z). If it  
occurs during a WRITE cycle, the bus will remain in High-Z. No WRITE operations will be performed during the  
IGNORE CLOCK EDGE cycle.  
5. X means “Don’t Care.” H means logic HIGH. L means logic LOW. BWx = H means all byte write signals (BWa#, BWb#,  
BWc#, and BWd#) are HIGH. BWx = L means one or more byte write signals are LOW.  
6. BWa# enables WRITEs to byte “a” (DQa pins/balls); BWb# enables WRITEs to byte “b” (DQb pins/balls); BWc#  
enables WRITEs to byte “c” (DQc pins/balls); BWd# enables WRITEs to byte “d” (DQd pins/balls).  
7. All inputs except OE# and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.  
8. Wait states are inserted by setting CKE# HIGH.  
9. This device contains circuitry that will ensure that the outputs will be in High-Z during power-up.  
10. The device incorporates a 2-bit burst counter. Address wraps to the initial address every fourth BURST CYCLE.  
11. The address counter is incremented for all CONTINUE BURST cycles.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
12  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Stresses greater than those listed may cause perma-  
nent damage to the device. This is a stress rating only,  
and functional operation of the device at these or any  
other conditions above those indicated in the opera-  
tional sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Absolute Maximum Ratings  
3.3V VDD  
Voltage on VDD Supply  
Relative to VSS ..................................-0.±V to +4.6V  
Voltage on VDDQ Supply  
Relative to VSS .................................... -0.±V to VDD  
VIN (Inputs) ............................. -0.±V to VDD + 0.±V  
VIN (DQs) .............................. -0.±V to VDDQ + 0.±V  
Storage Temperature (TQFP).................-±±ºC to +1±0ºC  
Storage Temperature (FBGA).................-±±ºC to +12±ºC  
Junction Temperature .......................................... +1±0ºC  
Short Circuit Output Current ...............................100mA  
Junction temperature depends upon package type,  
cycle time, loading, ambient temperature, and airflow.  
2.5V VDD  
Voltage on VDD Supply  
Relative to VSS ..................................-0.3V to +3.6V  
Voltage on VDDQ Supply Relative  
to VSS ................................................-0.3V to +3.6V  
VIN (Inputs) ............................. -0.3V to VDD + 0.3V  
VIN (DQs) .............................. -0.3V to VDDQ + 0.3V  
Storage Temperature (TQFP).................-±±ºC to +1±0ºC  
Storage Temperature (FBGA).................-±±ºC to +12±ºC  
Junction Temperature .......................................... +1±0ºC  
Short Circuit Output Current ...............................100mA  
Table 8:  
3.3V VDD, 3.3V I/O DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 18; 0ºC ? TA ? +70ºC; VDD and VDDQ = 3.3V 0.165V unless otherwise  
noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
VIH  
VIL  
ILI  
2.0  
-0.3  
-1.0  
-1.0  
VDD + 0.3  
0.8  
V
V
1, 2  
1, 2  
4
0V ? VIN ? VDD  
1.0  
µA  
µA  
Output Leakage Current  
Output(s) disabled,  
ILO  
1.0  
0V ? VIN ? VDD  
Output High Voltage  
Output Low Voltage  
Supply Voltage  
IOH = -4.0mA  
IOL = 8.0mA  
VOH  
VOL  
2.4  
V
V
V
V
1
1
0.4  
3.465  
VDD  
VDD  
3.135  
3.135  
1
Isolated Output Buffer Supply  
VDDQ  
1, 5  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
13  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 9:  
3.3V VDD, 2.5V I/O DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 18; 0ºC ? TA ? +70ºC; VDD = 3.3V 0.165V and VDDQ = 2.5V 0.125V unless  
otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
Input High (Logic 1) Voltage  
Data bus (DQx)  
Inputs  
VIHQ  
VIH  
VIL  
1.7  
1.7  
VDDQ + 0.3  
VDD + 0.3  
0.7  
V
V
1, 2  
1, 2  
1, 2  
4
-0.3  
-1.0  
-1.0  
V
Input Low (Logic 0) Voltage  
Input Leakage Current  
0V ? VIN ? VDD  
ILI  
1.0  
µA  
µA  
Output(s) disabled,  
0V ? VIN ? VDDQ  
(DQX)  
ILO  
1.0  
Output Leakage Current  
IOH = -2.0mA  
IOH = -1.0mA  
IOL = 2.0mA  
IOL = 1.0mA  
VOH  
VOH  
VOL  
1.7  
2.0  
V
V
V
V
V
V
1
1
Output High Voltage  
Output Low Voltage  
0.7  
1
VOL  
0.4  
1
VDD  
VDDQ  
3.135  
2.375  
3.465  
2.625  
1
Supply Voltage  
1, 5  
Isolated Output Buffer Supply  
Table 10: 2.5V VDD, 2.5V I/O DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 18; 0ºC ? TA ? +70ºC; VDD and VDDQ = 2.5V 0.125V unless otherwise  
noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
Data bus (DQx)  
Inputs  
VIHQ  
VIH  
VIL  
1.7  
1.7  
VDDQ + 0.3  
VDD + 0.3  
0.7  
V
V
1, 3  
1, 3  
1, 3  
4
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
-0.3  
-1.0  
-1.0  
V
0V ? VIN ? VDD  
ILI  
1.0  
µA  
µA  
Output Leakage Current  
Output(s) disabled,  
0V ? VIN ? VDDQ  
(DQX)  
ILO  
1.0  
IOH = -2.0mA  
IOH = -1.0mA  
IOL = 2.0mA  
IOL = 1.0mA  
VOH  
VOH  
VOL  
1.7  
2.0  
V
V
V
V
V
V
1
1
Output High Voltage  
Output Low Voltage  
0.7  
1
VOL  
0.4  
1
Supply Voltage  
VDD  
VDDQ  
2.375  
2.375  
2.625  
2.625  
1
Isolated Output Buffer Supply  
1, 5  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
14  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 11: TQFP Capacitance  
Note 10; notes appear following parameter tables on page 18  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
MAX  
UNITS  
CI  
CO  
CA  
4.2  
3.5  
4
5
4
5
5
pF  
pF  
pF  
pF  
Control Input Capacitance  
Input/Output Capacitance (DQ)  
Address Input Capacitance  
Clock Capacitance  
TA = 25°C; f = 1 MHz  
VDD = 3.3V  
CCK  
4.2  
Table 12: FBGA Capacitance  
Note 10; notes appear following parameter tables on page 18  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
MAX  
UNITS  
CI  
CO  
CA  
4
4
4
5
5
pF  
pF  
pF  
pF  
Control Input Capacitance  
Input/Output Capacitance (DQ)  
Address Input Capacitance  
Clock Capacitance  
4.5  
5
TA = 25°C; f = 1 MHz  
VDD = 3.3V  
CCK  
5.5  
Table 13: TQFP Thermal Resistance  
Note 10; notes appear following parameter tables on page 18  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS  
Junction to Ambient  
(Airflow of 1m/s, two-layer  
board)  
28.9  
°C/W  
Test conditions follow standard test methods  
JA  
and procedures for measuring thermal  
impedance, per EIA/JESD51.  
Thermal Resistance  
Junction to Case (Top)  
4.2  
°C/W  
JC  
Table 14: FBGA Thermal Resistance  
Note 10; notes appear following parameter tables on page 18  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS  
Junction to Ambient  
(Airflow of 1m/s, two-layer  
board)  
32  
°C/W  
JA  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/JESD51.  
Junction to Case (Top)  
1.7  
°C/W  
°C/W  
JC  
Junction to Board (Bottom)  
10.4  
JB  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
15  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 15: 3.3V VDD, IDD Operating Conditions and Maximum Limits  
(1 Meg x 18 and 512K x 32/36)  
Notes appear following parameter tables on page 18; 0ºC ? TA ? +70ºC; VDD and VDDQ = 3.3V 0.165V or 2.5V 0.125V  
unless otherwise noted  
MAX  
DESCRIPTION  
CONDITIONS  
SYM  
TYP  
-5  
-6  
-7.5  
-10  
UNITS NOTES  
Device selected; All inputs ?ꢁVIL  
Power Supply  
Current:  
Operating  
t
IDD  
300  
420  
380  
340  
300  
mA  
mA  
mA  
6, 7, 8  
6, 7, 8  
7, 8  
or OꢁVIH; Cycle time Oꢁ KC (MIN);  
VDD = MAX; Outputs open  
Power Supply  
Current: Idle  
Device selected; VDD = MAX;  
CKE# OꢁVIH; All inputs ?ꢁVSS + 0.2  
IDD1  
ISB2  
120  
8
180  
30  
170  
30  
160  
30  
150  
30  
t
or OꢁVDD - 0.2; Cycle time Oꢁ KC (MIN)  
Device deselected; VDD = MAX;  
All inputs ?ꢁVSS + 0.2 or OꢁVDD - 0.2;  
All inputs static; CLK frequency = 0  
CMOS Standby  
Clock Running  
Snooze Mode  
Device deselected; VDD = MAX;  
ADV/LD# OꢁVIH; All inputs ?ꢁVSS + 0.2  
ISB4  
120  
8
180  
30  
170  
30  
160  
30  
150  
30  
mA  
mA  
7, 8  
8
t
or OꢁVDD - 0.2; Cycle time Oꢁ KC (MIN)  
ZZ OꢁVIH  
ISB2Z  
Table 16: 2.5V VDD, IDD Operating Conditions and Maximum Limits  
(1 Meg x 18 and 512K x 32/36)  
Notes appear following parameter tables on page 18; 0ºC ? TA ? +70ºC; VDD and VDDQ = 2.5V 0.125V unless otherwise  
noted  
MAX  
DESCRIPTION  
CONDITIONS  
SYM  
TYP  
-5  
-6  
-7.5  
-10  
UNITS NOTES  
Power Supply  
Current:  
Operating  
Device selected; All inputs ?ꢁVIL  
t
IDD  
250  
370  
330  
290  
250  
mA  
mA  
mA  
6, 7, 9  
6, 7, 9  
7, 9  
or OꢁVIH; Cycle time Oꢁ KC (MIN);  
VDD = MAX; Outputs open  
Device selected; VDD = MAX;  
Power Supply  
Current: Idle  
CKE# OꢁVIH; All inputs ?ꢁVSS + 0.2  
IDD1  
ISB2  
100  
8
170  
30  
150  
30  
130  
30  
120  
30  
t
or OꢁVDD - 0.2; Cycle time Oꢁ KC (MIN)  
Device deselected; VDD = MAX;  
All inputs ?ꢁVSS + 0.2 or OꢁVDD - 0.2;  
All inputs static; CLK frequency = 0  
CMOS Standby  
Clock Running  
Snooze Mode  
Device deselected; VDD = MAX;  
ADV/LD# OꢁVIH; All inputs ?ꢁVSS + 0.2  
ISB4  
100  
8
170  
30  
150  
30  
130  
30  
120  
30  
mA  
mA  
7, 9  
9
t
or OꢁVDD - 0.2; Cycle time Oꢁ KC (MIN)  
ZZ OꢁVIH  
ISB2Z  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
16  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 17: AC Electrical Characteristics and Recommended Operating Conditions  
Notes 11-13 ; notes appear following parameter tables on page 18; 0ºC ? TA ? +70ºC; TJ ?ꢁ95ºC (commercial); TJ ?ꢁ110ºC  
(industrial); VDD = 3.3V 0.165V unless otherwise noted  
-5  
-6  
-7.5  
-10  
DESCRIPTION  
SYMBOL MIN MAX MIN MAX MIN MAX MIN MAX UNITS NOTES  
Clock  
tKHKH  
fKF  
tKHKL  
tKLKH  
5.0  
6.0  
7.5  
10.0  
ns  
MHz  
ns  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
200  
3.2  
166  
3.5  
133  
4.2  
100  
5.0  
2.0  
2.0  
2.2  
2.2  
3.0  
3.0  
3.2  
3.2  
14  
14  
ns  
Output Times  
tKHQV  
tKHQX  
tKHQX1  
tKHQZ  
tGLQV  
tGLQX  
Clock to output valid  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
15  
Clock to output invalid  
Clock to output in Low-Z  
Clock to output in High-Z  
OE# to output valid  
10, 15, 16  
10, 15, 16  
11  
3.0  
3.0  
3.5  
3.5  
3.5  
4.2  
3.5  
5.0  
0
0
0
0
10, 15, 16  
OE# to output in  
Low-Z  
tGHQZ  
OE# to output in  
High-Z  
3.2  
3.5  
3.5  
5.0  
ns  
10, 15, 16  
Setup Times  
tAVKH  
tEVKH  
tCVKH  
tDVKH  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
17  
17  
17  
17  
Address  
Clock enable (CKE#)  
Control signals  
Data-in  
Hold Times  
tKHAX  
tKHEX  
tKHCX  
tKHDX  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
17  
17  
17  
17  
Address  
Clock enable (CKE#)  
Control signals  
Data-in  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
17  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Notes  
9. Typical values are measured at 2.±V, 2±ºC, and  
10ns cycle time.  
10. This parameter is sampled.  
1. All voltages referenced to VSS (GND).  
2. For 3.3V VDD:  
t
Overshoot:  
VIH ? +4.6V for t ? KHKH/2 for  
I ? 20mA  
11. OE# can be considered a “Don’t Care” during  
WRITEs; however, controlling OE# can help fine-  
tune a system for turnaround timing.  
t
Undershoot: VIL O -0.7V for t ? KHKH/2 for  
I ? 20mA  
12. Test conditions as specified with the output load-  
ing shown in Figures 11 and 12 for 3.3V I/O and  
Figures 13 and 14 for 2.±V I/O unless otherwise  
noted.  
13. A WRITE cycle is defined by R/W# LOW, having  
been registered into the device at ADV/LD# LOW.  
A READ cycle is defined by R/W# HIGH with ADV/  
LD# LOW. Both cases must meet setup and hold  
times.  
14. Measured as HIGH above VIH and LOW below VIL.  
1±. Refer to Technical Note TN-±±-01, “Designing  
with ZBT SRAMs,” for a more thorough discussion  
of these parameters.  
16. This parameter is measure with the output load-  
ing shown in Figure 12 for 3.3V I/O and Figure 14  
for 2.±V I/O.  
Power-up: VIH ? +3.6V and VDD ? 3.13±V for  
t ? 200ms  
3. For 2.±V VDD:  
t
Overshoot: VIH ? +3.6V for t ? KHKH/2 for  
I ? 20mA  
t
Undershoot: VIL O -0.±V for t ? KHKH/2 for  
I ? 20mA  
Power-up:  
VIH ? +2.6±V and VDD ? 2.37±V for  
t ? 200ms  
4. The MODE and ZZ pins/balls have an internal  
pull-up/pull-down and input leakage = ±10µA.  
±. VDDQ should never exceed VDD. VDD and VDDQ  
can be externally wired together to the same  
power supply.  
6. IDD is specified with no output current and  
increases with faster cycle times. IDDQ increases  
with faster cycle times and greater output loading.  
7. “Device deselected” means device is in power-  
down mode as defined in the truth table. “Device  
selected” means device is active (not in power-  
down mode).  
17. This is a synchronous device. All addresses must  
meet the specified setup and hold times with sta-  
ble logic levels for all rising edges of CLK when the  
chip is enabled. To remain enabled, chip enable  
must be valid at each rising edge of CLK when  
ADV/LD# is LOW.  
8. Typical values are measured at 3.3V, 2±ºC, and  
10ns cycle time.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
18  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 8:  
READ/WRITE Timing  
1
2
3
4
5
6
7
8
9
10  
t
KHKH  
t
CLK  
t
t
t
t
EVKH KHEX  
KLKH  
KHKL  
CKE#  
t
CVKH KHCX  
CE#  
ADV/LD#  
R/W#  
BWx#  
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
KHQV  
t
t
AVKH KHAX  
t
t
t
t
KHQZ  
KHQX  
GLQV  
KHQX1  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
GHQZ  
t
DVKH KHDX  
t
KHQX  
t
GLQX  
OE#  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
NOTE:  
1. For these waveforms, ZZ is tied LOW.  
2. Burst sequence order is determined by MODE (0 = linear, 1 = interleaved). BURST operations are optional.  
3. CE# represents three signals. When CE# = 0, it represents CE# = 0, CE2# = 0, CE2 = 1.  
4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most  
recent data may be from the input data register.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
19  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 9:  
NOP, STALL, and DESELECT Cycles  
1
2
3
4
5
6
7
8
9
10  
CLK  
CKE#  
CE#  
ADV/LD#  
R/W#  
BWx#  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
KHQZ  
D(A1)  
Q(A2)  
Q(A3)  
D(A4)  
Q(A5)  
KHQX  
DQ  
t
COMMAND  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
NOTE:  
1. The IGNORE CLOCK EDGE or STALL cycle (clock 3) illustrates CKE# being used to create a “pause.” A WRITE is not  
performed during this cycle.  
2. For these waveforms, ZZ and OE# are tied LOW.  
3. CE# represents three signals. When CE# = 0, it represents CE# = 0, CE2# = 0, CE2 = 1.  
4. Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most  
recent data may be from the input data register.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
20  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
SNOOZE MODE  
SNOOZE MODE is a low-current, “power-down”  
mode in which the device is deselected and current is  
reduced to ISB2Z. The duration of SNOOZE MODE is  
dictated by the length of time the ZZ is in a HIGH state.  
After the device enters SNOOZE MODE, all inputs  
except ZZ become disabled and all outputs go  
to High-Z.  
The ZZ is an asynchronous, active HIGH input that  
causes the device to enter SNOOZE MODE. When the  
ZZ becomes a logic HIGH, ISB2Z is guaranteed after the  
time tZZI is met. Any READ or WRITE operation pend-  
ing when the device enters SNOOZE MODE is not  
guaranteed to complete successfully. Therefore,  
SNOOZE MODE must not be initiated until valid pend-  
ing operations are completed. Similarly, when exiting  
SNOOZE MODE during tRZZ, only a DESELECT or  
READ cycle should be given.  
Table 18: SNOOZE MODE Electrical CharacteristicS  
DESCRIPTION  
CONDITIONS  
SYMBOL  
ISB2Z  
tZZ  
tRZZ  
tZZI  
tRZZI  
MIN  
MAX  
30  
2(tKHKH)  
UNITS  
NOTES  
Current during SNOOZE MODE  
ZZ active to input ignored  
ZZ O VIH  
mA  
ns  
1
1
1
1
2(tKHKH)  
0
ns  
ns  
ns  
ZZ inactive to input sampled  
ZZ active to snooze current  
ZZ inactive to exit snooze current  
2(tKHKH)  
NOTE:  
1. This parameter is sampled.  
Figure 10:  
SNOOZE MODE Waveform  
CLK  
t
ZZ  
t
RZZ  
ZZ  
t
ZZI  
I
SUPPLY  
I
ISB2Z  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
21  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
3.3V VDD, 3.3V I/O AC Test Conditions  
Input pulse levels ........................VIH = (VDD/2.2) + 1.±V  
.........................VIL = (VDD/2.2) - 1.±V  
2.5V VDD, 2.5V I/O AC Test Conditions  
Input pulse levels..........................VIH = (VDD/2) + 1.2±V  
.......................... VIL = (VDD/2) - 1.2±V  
Input rise and fall times ............................................. 1ns  
Input timing reference levels............................. VDD/2.2  
Output reference levels....................................VDDQ/2.2  
Output load...................................See Figures 11 and 12  
Input rise and fall times ............................................. 1ns  
Input timing reference levels.................................VDD/2  
Output reference levels.......................................VDDQ/2  
Output load................................... See Figures 13 and 14  
3.3V VDD, 2.5V I/O AC Test Conditions  
Input pulse levels ....................VIH = (VDD/2.64) + 1.2±V  
..................... VIL = (VDD/2.64) - 1.2±V  
Input rise and fall times ..............................................1ns  
Input timing reference levels............................VDD/2.64  
Output reference levels.......................................VDDQ/2  
Output load................................... See Figures 13 and 14  
3.3V I/O Output Load Equivalent  
2.5V I/O Output Load Equivalent  
Figure 11:  
Figure 13:  
VT = VDDQ/2  
VT = VDDQ/2.2  
50  
50  
Q
Q
ZO= 50Ω  
ZO= 50Ω  
30pF  
30pF  
Figure 12:  
Figure 14:  
+2.5V  
+3.3V  
317  
225  
Q
Q
5pF  
351  
5pF  
225Ω  
NOTE:  
For Figures 11 and 13, 30pF = distributive test jig capacitance.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
22  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The SRAM incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance  
with IEEE Standard 1149.1-1990 but does not have the  
set of functions required for full 1149.1 compliance.  
These functions from the IEEE specification are  
excluded because their inclusion places an added  
delay in the critical speed path of the SRAM. Note that  
the TAP controller functions in a manner that does not  
conflict with the operation of other devices using  
1149.1 fully compliant TAPs. The TAP operates using  
JEDEC-standard 3.3V or 2.±V I/O logic levels.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller.  
All inputs are captured on the rising edge of TCK. All  
outputs are driven from the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP  
controller and is sampled on the rising edge of TCK. It  
is allowable to leave this ball unconnected if the TAP is  
not used. The ball is pulled up internally, resulting in a  
logic HIGH level.  
The SRAM contains a TAP controller, instruction  
register, boundary scan register, bypass register, and  
ID register.  
Test Data-In (TDI)  
The TDI ball is used to serially input information  
into the registers and can be connected to the input of  
any of the registers. The register between TDI and TDO  
is chosen by the instruction that is loaded into the TAP  
instruction register. For information on loading the  
instruction register, see Figure 1±. TDI is internally  
pulled up and can be unconnected if the TAP is unused  
in an application. TDI is connected to the most signifi-  
cant bit (MSB) of any register. (See Figure 16.)  
Disabling the JTAG Feature  
These balls can be left floating (unconnected), if the  
JTAG function is not to be implemented. Upon power-  
up, the device will come up in a reset state which will  
not interfere with the operation of the device.  
Figure 15:  
TAP Controller State Diagram  
Test Data-Out (TDO)  
TEST-LOGIC  
1
The TDO output ball is used to serially clock data-  
out from the registers. The output is active depending  
upon the current state of the TAP state machine. (See  
Figure 1±.) The output changes on the falling edge of  
TCK. TDO is connected to the least significant bit  
(LSB) of any register. (See Figure 16.)  
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
Figure 16:  
1
1
TAP Controller Block Diagram  
1
1
EXIT1-DR  
EXIT1-IR  
0
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
Bypass Register  
2
1 0  
0
0
Selection  
Circuitry  
Selection  
Circuitry  
EXIT2-DR  
1
EXIT2-IR  
1
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
.
.
. 2 1 0  
UPDATE-DR  
UPDATE-IR  
x
.
.
.
.
. 2 1 0  
1
0
1
0
Boundary Scan Register*  
NOTE:  
TCK  
TMS  
The 0/1 next to each state represents the value  
of TMS at the rising edge of TCK.  
TAP CONTROLLER  
NOTE:  
X = 74 for all configurations.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
23  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
The boundary scan register is loaded with the con-  
tents of the RAM I/O ring when the TAP controller is in  
the Capture-DR state and is then placed between the  
TDI and TDO balls when the controller is moved to the  
Shift-DR state. The EXTEST, SAMPLE/PRELOAD and  
SAMPLE Z instructions can be used to capture the  
contents of the I/O ring.  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD)  
for five rising edges of TCK. This RESET does not affect  
the operation of the SRAM and may be performed  
while the SRAM is operating.  
At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
The Boundary Scan Order tables show the order in  
which the bits are connected. Each bit corresponds to  
one of the balls on the SRAM package. The MSB of the  
register is connected to TDI, and the LSB is connected  
to TDO.  
TAP REGISTERS  
Registers are connected between the TDI and TDO  
balls and allow data to be scanned into and out of the  
SRAM test circuitry. Only one register can be selected  
at a time through the instruction register. Data is seri-  
ally loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of  
TCK.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-  
bit code during the Capture-DR state when the  
IDCODE command is loaded in the instruction regis-  
ter. The IDCODE is hardwired into the SRAM and can  
be shifted out when the TAP controller is in the Shift-  
DR state. The ID register has a vendor code and other  
information described in the Identification Register  
Definitions table.  
Instruction Register  
Three-bit instructions can be serially loaded into  
the instruction register. This register is loaded when it  
is placed between the TDI and TDO balls as shown in  
Figure 16. Upon power-up, the instruction register is  
loaded with the IDCODE instruction. It is also loaded  
with the IDCODE instruction if the controller is placed  
in a reset state as described in the previous section.  
When the TAP controller is in the Capture-IR state,  
the two LSBs are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test  
data path.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the  
three-bit instruction register. All combinations are  
listed in the Instruction Codes table. Three of these  
instructions are listed as RESERVED and should not be  
used. The other five instructions are described in detail  
below.  
Bypass Register  
The TAP controller used in this SRAM is not fully  
compliant to the 1149.1 convention because some of  
the mandatory 1149.1 instructions are not fully imple-  
mented. The TAP controller cannot be used to load  
address, data or control signals into the SRAM and  
cannot preload the I/O buffers. The SRAM does not  
implement the 1149.1 commands EXTEST or INTEST  
or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these  
instructions are executed.  
To save time when serially shifting data through reg-  
isters, it is sometimes advantageous to skip certain  
chips. The bypass register is a single-bit register that  
can be placed between the TDI and TDO balls. This  
allows data to be shifted through the SRAM with mini-  
mal delay. The bypass register is set LOW (VSS) when  
the BYPASS instruction is executed.  
Boundary Scan Register  
The boundary scan register is connected to all the  
input and bidirectional balls on the SRAM. The SRAM  
as a 7± bit-long register.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
24  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Instructions are loaded into the TAP controller dur-  
ing the Shift-IR state when the instruction register is  
placed between TDI and TDO. During this state,  
instructions are shifted through the instruction regis-  
ter through the TDI and TDO balls. To execute the  
instruction once it is shifted in, the TAP controller  
needs to be moved into the Update-IR state.  
the Capture-DR state, a snapshot of data on the inputs  
and bidirectional balls is captured in the boundary  
scan register.  
The user must be aware that the TAP controller  
clock can only operate at a frequency up to 10 MHz,  
while the SRAM clock operates more than an order of  
magnitude faster. Because there is a large difference in  
the clock frequencies, it is possible that during the  
Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not  
harm the device, but there is no guarantee as to the  
value that will be captured. Repeatable results may not  
be possible.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is  
to be executed whenever the instruction register is  
loaded with all 0s. EXTEST is not implemented in this  
SRAM TAP controller, and therefore this device is not  
compliant to 1149.1.  
To guarantee that the boundary scan register will  
capture the correct value of a signal, the SRAM signal  
must be stabilized long enough to meet the TAP con-  
The TAP controller does recognize an all-0 instruc-  
tion. When an EXTEST instruction is loaded into the  
instruction register, the SRAM responds as if a SAM-  
PLE/PRELOAD instruction has been loaded. There is  
one difference between the two instructions. Unlike  
the SAMPLE/PRELOAD instruction, EXTEST places  
the SRAM outputs in a High-Z state.  
t
trollers capture setup plus hold time (tCS plus CH).  
The SRAM clock input might not be captured correctly  
if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and  
simply ignore the value of the CLK captured in the  
boundary scan register.  
Once the data is captured, it is possible to shift out  
the data by putting the TAP into the Shift-DR state.  
This places the boundary scan register between the  
TDI and TDO balls.  
Note that since the PRELOAD part of the command  
is not implemented, putting the TAP to the Update-DR  
state while performing a SAMPLE/PRELOAD instruc-  
tion will have the same effect as the Pause-DR com-  
mand.  
IDCODE  
The IDCODE instruction causes a vendor-specific,  
32-bit code to be loaded into the instruction register. It  
also places the instruction register between the TDI  
and TDO balls and allows the IDCODE to be shifted  
out of the device when the TAP controller enters the  
Shift-DR state. The IDCODE instruction is loaded into  
the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary  
scan register to be connected between the TDI and  
TDO balls when the TAP controller is in a Shift-DR  
state. It also places all SRAM outputs into a High-Z  
state.  
BYPASS  
When the BYPASS instruction is loaded in the  
instruction register and the TAP is placed in a Shift-DR  
state, the bypass register is placed between the TDI  
and TDO balls. The advantage of the BYPASS instruc-  
tion is that it shortens the boundary scan path when  
multiple devices are connected together on a board.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruc-  
tion. The PRELOAD portion of this instruction is not  
implemented, so the device TAP controller is not fully  
1149.1-compliant.  
Reserved  
These instructions are not implemented but are  
reserved for future use. Do not use these instructions.  
When the SAMPLE/PRELOAD instruction is loaded  
into the instruction register and the TAP controller is in  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
25  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 17:  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
t
THTH  
THTL  
TLTH  
t
t
MVTH  
DVTH  
THMX  
Test Mode Select  
(TMS)  
t
THDX  
Test Data-In  
(TDI)  
t
TLOV  
t
TLOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Table 19: TAP AC Electrical Characteristics  
Notes 1, 2; 0ºC ? TA ? +70ºC; VDD = 3.3V 0.165V or 2.5V 0.125V  
DESCRIPTION  
SYMBOL  
MIN  
MAX  
UNITS  
Clock  
tTHTH  
fTF  
tTHTL  
tTLTH  
Clock cycle time  
100  
ns  
MHz  
ns  
10  
Clock frequency  
Clock HIGH time  
Clock LOW time  
40  
40  
ns  
Output Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
ns  
ns  
ns  
TCK LOW to TDO unknown  
20  
TCK LOW to TDO valid  
TDI valid to TCK HIGH  
TCK HIGH to TDI invalid  
10  
10  
Setup Times  
tMVTH  
tCS  
10  
10  
ns  
ns  
TMS setup  
Capture setup  
Hold Times  
tTHMX  
tCH  
10  
10  
ns  
ns  
TMS hold  
Capture hold  
NOTE:  
t
1. CS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.  
2. Test conditions are specified using the loads in Figures Table 18 and 19.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
26  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input Pulse Levels .......................................... Vss to 3.0V  
Input rise and fall times ..............................................1ns  
Input timing reference levels.................................... 1.±V  
Output reference levels............................................. 1.±V  
Test load termination supply voltage ...................... 1.±V  
Input Pulse Levels........................................... Vss to 2.±V  
Input rise and fall times ............................................. 1ns  
Input timing reference levels.................................. 1.2±V  
Output reference levels........................................... 1.2±V  
Test load termination supply voltage .................... 1.2±V  
Figure 18:  
3.3V TAP AC Output Load Equivalent  
Figure 19:  
2.5V TAP AC Output Load Equivalent  
1.25V  
1.5V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
Table 20: 3.3V VDD, TAP DC Electrical Characteristics and Operating Conditions  
0ºC ? TA ? +70ºC; VDD = 3.3V 0.165V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
VIH  
VIL  
ILI  
2.0  
-0.3  
-10  
-10  
VDD + 0.3  
V
V
1, 2  
1, 2  
2
0.8  
10  
10  
0V ? VIN ? VDD  
µA  
µA  
Output Leakage Current  
Output(s) disabled,  
ILO  
2
0V ? VIN ? VDD (TDO)  
Output Low Voltage  
Output High Voltage  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH2  
0.7  
0.8  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
IOHC = -100µA  
IOHT = -2mA  
2.9  
2.0  
Table 21: 2.5V VDD, TAP DC Electrical Characteristics and Operating Conditions  
0ºC ? TA ? +70ºC;VDD = 2.5V 0.125V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
VIH  
VIL  
ILI  
1.7  
-0.3  
-10  
-10  
VDD + 0.3  
V
V
1, 2  
1, 2  
2
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Input Leakage Current  
0.7  
10  
10  
0V ? VIN ? VDD  
µA  
µA  
Output(s) disabled,  
ILO  
2
Output Leakage Current  
0V ? VIN ? VDD (TDO)  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH2  
0.2  
0.7  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Output Low Voltage  
Output High Voltage  
IOHC = -100µA  
IOHT = -2mA  
2.1  
1.7  
NOTE:  
1. All voltages referenced to VSS (GND).  
2. TAP control balls only. For boundary scan ball specifications, please refer to the I/O DC Electrical Characteristics and  
Operation Conditions tables.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
27  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 22: Identification Register Definitions  
BIT  
INSTRUCTION FIELD  
CONFIGURATION DESCRIPTION  
0000  
Revision Number  
(31:28)  
Reserved for version number.  
00111  
00110  
Device Depth  
(27:23)  
Defines depth of 1Mb.  
Defines depth of 512K.  
Device Width  
(22:18)  
00011  
00100  
Defines width of x18 bits.  
Defines width of x 32 or x36 bits.  
xxxxxx  
00000101100  
1
Micron Device ID  
(17:12)  
Reserved for future use.  
Micron JEDEC ID Code  
(11:1)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
ID Register Presence  
Indicator (0)  
Table 23: Scan Register Sizes  
REGISTER NAME  
BIT SIZE  
Instruction  
3
1
Bypass  
ID  
32  
75  
Boundary Scan: x18, x32, x36  
Table 24: Instruction Codes  
INSTRUCTION  
CODE  
DESCRIPTION  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
100  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1-compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
28  
©2003 Micron Technology, Inc.  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 25: 165-Ball FBGA Boundary Scan Order (x18)  
BIT#  
SIGNAL NAME  
BALL ID  
BIT#  
SIGNAL NAME  
BALL ID  
1
2
3
4
5
6
7
8
MODE (LBO#)  
NF  
1R  
6N  
11P  
8R  
8P  
9R  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
CLK  
NC  
NC  
CE2#  
BWa#  
NC  
BWb#  
NC  
CE2  
CE#  
SA  
SA  
NC  
6B  
11B  
1A  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1C  
1D  
1E  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
1K  
1L  
1M  
1N  
2K  
2L  
NF  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
ZZ  
NC  
NC  
NC  
NC  
NC  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
9P  
10R  
10P  
11R  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
11C  
10F  
10E  
10D  
10G  
11A  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
NC  
NC  
NC  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
SA1  
SA0  
2M  
2J  
3P  
3R  
4P  
4R  
6P  
6R  
9B  
8A  
8B  
7A  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
7B  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
29  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 26: 165-Ball FBGA Boundary Scan Order (x32)  
BIT#  
SIGNAL NAME  
BALL ID  
BIT#  
SIGNAL NAME  
BALL ID  
1
2
3
4
5
6
7
8
MODE (LB0#)  
NF  
1R  
6N  
11P  
8R  
8P  
9R  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
CLK  
NC  
NC  
6B  
11B  
1A  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1C  
1D  
1E  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
1K  
1L  
1M  
2J  
NF  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
CE#  
SA  
9P  
10R  
10P  
11R  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
11A  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
ZZ  
NF  
SA  
NC  
NF  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
NF  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
NF  
2K  
2L  
NC  
SA  
SA  
SA  
2M  
1N  
3P  
3R  
4P  
4R  
6P  
6R  
SA  
SA  
SA  
SA  
SA1  
SA0  
SA  
9B  
8A  
8B  
7A  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
7B  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
30  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Table 27: 165-Ball FBGA Boundary Scan Order (x36)  
BIT#  
SIGNAL NAME  
BALL ID  
BIT#  
SIGNAL NAME  
BALL ID  
1
2
3
4
5
6
7
8
MODE (LB0#)  
NF  
1R  
6N  
11P  
8R  
8P  
9R  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
CLK  
NC  
NC  
CE2#  
BWa#  
BWb#  
BWc#  
BWd#  
CE2  
CE#  
SA  
SA  
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
SA  
6B  
11B  
1A  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1C  
1D  
1E  
1F  
1G  
2D  
2E  
2F  
2G  
1J  
1K  
1L  
1M  
2J  
NF  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
9P  
10R  
10P  
11R  
11H  
11N  
11M  
11L  
11K  
11J  
10M  
10L  
10K  
10J  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
11A  
10B  
10A  
9A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
ZZ  
DQPa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
2K  
2L  
2M  
1N  
3P  
3R  
4P  
4R  
6P  
6R  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA1  
SA0  
9B  
8A  
8B  
7A  
ADV/LD#  
OE# (G#)  
CKE#  
R/W#  
7B  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
31  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 20: 100-Pin Plastic TQFP  
(JEDEC LQFP)  
+0.10  
-0.20  
22.10  
20.10 0.10  
0.65 TYP  
0.32  
+0.06  
-0.10  
0.625  
SEE DETAIL A  
14.00 0.10  
16.00 0.20  
PIN #1 ID  
+0.03  
0.15  
1.40 0.05  
-0.02  
GAGE PLANE  
0.60 0.15  
1.60 MAX  
0.10  
+0.10  
-0.05  
0.10  
1.00 TYP  
0.25  
DETAIL A  
NOTE:  
1. All dimensions in inches (millimeters) ------------- or typical where noted.  
MAX  
MIN  
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
32  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Figure 21:  
165-Ball FBGA  
0.85 0.075  
0.12  
C
SEATING PLANE  
C
BALL A11  
165X Ø 0.45  
10.00  
LL DIAMETER REFERS  
EFLOW CONDITION. THE  
W DIAMETER IS Ø 0.40  
BALL A1  
PIN A1 ID  
1.20 MAX  
1.00  
TYP  
PIN A1 ID  
7.50 0.05  
14.00  
15.00 0.10  
7.00 0.05  
1.00  
TYP  
MOLD COMPOUND: EPOXY NOVOLAC  
SUBSTRATE: PLASTIC LAMINATE  
6.50 0.05  
5.00 0.05  
13.00 0.10  
SOLDER BALL MATERIAL: EUTECTIC 62% Sn, 36%  
SOLDER BALL PAD: Ø .33mm  
NOTE:  
MAX  
1. All dimensions in inches (millimeters) ------------- or typical where noted.  
MIN  
Data Sheet Designation  
No Marking: This data sheet contains minimum and maximum limits specified over the complete power  
supply and temperature range for production devices. Although considered final, these specifications are sub-  
ject to change, as further product development and data characterization sometimes occur.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.  
ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc., and the architecture is supported by Micron Technology, Inc.,  
and Motorola, Inc.  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
33  
18Mb: 1 MEG x 18, 512K x 32/36  
PIPELINED ZBT SRAM  
Document Revision History  
Rev D; Pub. 2/03..........................................................................................................................................................2/03  
Changed designation from Preliminary to Production  
Rev C; Pub. 12/02 ......................................................................................................................................................12/02  
Added TJ specifications to the AC Electrical Characteristics table  
Corrected Boundary Scan errors  
Updated TQFP and FBGA Thermal Resistance values  
Corrected grammatical errors  
Rev B; PRELIMINARY ...............................................................................................................................................11/02  
Changed designation from ADVANCE to PRELIMINARY  
Corrected grammatical errors  
New ADVANCE data sheet for 0.16µm process; Rev A; Pub. 6/02...........................................................................6/02  
18Mb: 1 Meg x 18, 512K x 32/36 Pipelined ZBT SRAM  
MT55L1MY18P_16_D.fm – Rev. D, Pub. 2/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
34  

相关型号:

MT55V512V32PT-5

512KX32 ZBT SRAM, 3.2ns, PQFP100, PLASTIC, MS-026BHA, TQFP-100
ROCHESTER

MT55V512V32PT-6

512KX32 ZBT SRAM, 3.5ns, PQFP100, PLASTIC, TQFP-100
ROCHESTER

MT55V512V32PT-7.5

512KX32 ZBT SRAM, 4.2ns, PQFP100, PLASTIC, TQFP-100
ROCHESTER

MT55V512V36FF-10

ZBT SRAM, 512KX36, 7.5ns, CMOS, PBGA165, 13 X 15 MM, FBGA-165
CYPRESS

MT55V512V36FF-11

ZBT SRAM, 512KX36, 8.5ns, CMOS, PBGA165, 13 X 15 MM, FBGA-165
CYPRESS

MT55V512V36FF-12

ZBT SRAM, 512KX36, 9ns, CMOS, PBGA165, FBGA-165
CYPRESS

MT55V512V36FT-10

ZBT SRAM, 512KX36, 7.5ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS