NCP1034DR2G [ROCHESTER]

SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO16, LEAD FREE, SOIC-16;
NCP1034DR2G
型号: NCP1034DR2G
厂家: Rochester Electronics    Rochester Electronics
描述:

SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO16, LEAD FREE, SOIC-16

开关 光电二极管
文件: 总24页 (文件大小:1001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1034  
100V Synchronous PWM  
Buck Controller  
Description  
The NCP1034 is a high voltage PWM controller designed for high  
performance synchronous Buck DC/DC applications with input  
voltages up to 100 V. The NCP1034 drives a pair of external  
NMOSFETs. The switching frequency is programmable from  
25 kHz up to 500 kHz allowing the flexibility to tune for efficiency  
and size. A synchronization feature allows the switching frequency to  
be set by an external source or output a synchronization signal to  
multiple NCP1034 controllers. The output voltage can be precisely  
regulated using the internally trimmed 1.25 V reference voltage for  
low voltage applications. Protection features include user  
programmable undervoltage lockout and hiccup current limit.  
Features  
http://onsemi.com  
MARKING  
DIAGRAM  
SOIC16  
D SUFFIX  
CASE 751B  
NCP1034D  
AWLYWWG  
A
WL  
Y
WW  
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
High Voltage Operating up to 100 V  
Programmable Switching Frequency up to 500 kHz  
2 A Output Drive Capability  
PIN CONNECTIONS  
Precision Reference Voltage (1.25 V)  
OCset  
FB  
1
UVLO  
RT  
16  
15  
14  
13  
12  
11  
10  
9
Programmable SoftStart with Prebiased Load Capability  
Programmable Overcurrent Protection  
Programmable Undervoltage Protection  
2
3
4
5
6
Comp  
SS/SD  
SYNC  
PGND  
LDRV  
DRVCC  
GND  
OCIN  
VCC  
VS  
Hiccup Current Limit Using MOSFET R  
External Frequency Synchronization  
16 Pin SOIC Package  
Sensing  
DS(on)  
HDRV  
VB  
7
8
This is a PbFree Device  
Applications  
(Top View)  
48 V NonIsolated DCDC Converter  
Embedded Telecom Systems  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 22 of this data sheet.  
Networking and Computing Voltage Regulator  
Distributed Point of Load Power Architectures  
General High Voltage DCDC Converters  
V
: 48 V  
IN  
V
: 12 V  
D1  
CC  
C1A  
C1B  
2u2  
2u2  
R4  
1N4148  
110k  
C4  
C2  
C3  
8
9
GND  
100n  
100n 100n  
R10  
DRVVCC VB  
Q1  
12  
5
10  
VCC  
SYNC  
RT  
HDRV  
VS  
NTD3055  
L1  
V
OUT  
GND GND  
11  
13  
7
5 V @ 5 A, 200 kHz  
R8  
10k  
10k  
15  
4
OCIN  
LDRV  
PGND  
FB  
13  
GND  
C9  
47  
C9B C9C  
47 47  
R9  
SS/SD  
UVLO  
Q2  
1k2  
R1  
NTD24N06  
16  
1
6
16k9  
2
C8  
OCSET  
GND  
14  
3
1n8  
COMP  
C5  
C6  
R5  
3k9  
R6  
20k  
R7  
11k  
IC1  
NCP1034  
12n  
220n  
R3  
4k7  
R2  
5k6  
C7  
330p  
GND GND GND GND GND  
GND  
Figure 1. Typical Application Circuit  
1
© Semiconductor Components Industries, LLC, 2013  
Publication Order Number:  
February, 2013 Rev. 6  
NCP1034/D  
NCP1034  
T
A F U L  
Figure 2. Internal Block Diagram  
http://onsemi.com  
2
NCP1034  
PIN FUNCTION DESCRIPTION  
PIN  
1
PIN NAME  
OC  
DESCRIPTION  
Current limit set point. A resistor from this pin to GND will set the positive and negative current limit threshold  
set  
2
FB  
Inverting input to the error amplifier. This pin is connected directly to the output of the regulator via resistor  
divider to set the output voltage and provide feedback to the error amplifier.  
3
4
COMP  
SS/SD  
Output of error amplifier. An external resistor and capacitor network is typically connected from this pin to ground  
to provide loop compensation.  
SoftStart / Shutdown. This pin provides user programmable softstart function. External capacitor connected  
from this pin to ground sets the startup time of the output voltage. The converter can be shutdown by pulling this  
pin below 0.3 V.  
5
6
SYNC  
The internal oscillator can be synchronized to an external clock via this pin and other IC’s can be synchronized  
via this pin to internal oscillator. If it is not used this pin should be connected via 10 kresistor to ground.  
P
GND  
Power Ground. This pin serves as a separate ground for the MOSFET driver and should be connected to the  
system’s power ground plane.  
7
8
LDRV  
Output driver for low side MOSFET.  
DRVV  
This pin provides biasing for the internal low side driver. A minimum of 0.1 F, high frequency capacitor must be  
connected from this pin to power ground.  
CC  
9
VB  
This pin powers the high side driver and must be connected to a voltage higher than input voltage. A minimum of  
0.1 F, high frequency capacitor must be connected from this pin to switch node.  
10  
11  
HDRV  
Output driver for high side MOSFET  
V
S
Switch Node. This pin is connected to the source of the upper MOSFET and the drain of the lower MOSFET.  
This pin is return path for the upper gate driver.  
12  
13  
V
This pin provides power for the internal blocks of the IC. A minimum of 0.1 F, high frequency capacitor must be  
CC  
connected from this pin to ground.  
OC  
Overcurrent sensing input. A serial resistor from this pin to drain of low MOSFET must be used to limit the  
current into this pin.  
IN  
14  
15  
16  
GND  
Signal ground for internal reference and control circuitry.  
R
T
Connecting a resistor from this pin to ground sets the oscillator frequency.  
An external voltage divider is used to set the undervoltage threshold levels.  
UVLO  
http://onsemi.com  
3
NCP1034  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Min  
0.3  
0.3  
NA  
Max  
10  
Unit  
V
FB, V , R , OC  
UVLO T set  
COMP, SS/SD, SYNC, OC  
5
V
IN  
P
GND  
NA  
V
LDRV  
0.3  
0.3  
V
+ 0.3  
V
CC  
DRVV , V  
20  
+ 20  
V
CC  
CC  
VB  
V
S
V
V
S
HDRV  
V
S
0.3  
V
B
+ 0.3  
V
V
1.0  
NA  
150  
V
S
GND  
OC Input Current  
NA  
20  
V
mA  
in  
All voltages referenced to GND  
Rating  
Symbol  
Value  
Unit  
°C/W  
°C  
Thermal Resistance, JunctiontoAmbient  
Operating Ambient Temperature Range  
Storage Temperature Range  
R
130  
JA  
T
A
40 to 125  
55 to 150  
40 to 150  
T
STG  
°C  
Junction Operating Temperature  
T
J
°C  
ESD Withstand Voltage (Note 1)  
Human Body Model  
V
ESD  
2.0  
200  
kV  
Machine Model  
Latchup Capability per Jedec JESD78  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Excluding pins V , V and H .  
b
S
DRV  
TYPICAL ELECTRICAL PARAMETERS  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Definition  
Min  
Max  
100  
18  
Unit  
V
V
IN  
Converting Voltage  
Supply Voltage  
V
CC  
10  
10  
V
DRV  
Supply Voltage  
18  
V
CC  
V
B
to V  
Supply Voltage  
10  
18  
V
S
F
SW  
T
J
Operating Frequency  
Junction Temperature  
25  
500  
125  
kHz  
°C  
40  
http://onsemi.com  
4
 
NCP1034  
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, these specifications apply over V = 12 V,  
CC  
DRVV = V = 12 V, 40°C < TJ < 125°C)  
CC  
B
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
REFERENCE VOLTAGE  
Feedback Voltage  
V
1.25  
V
%
FB  
Accuracy  
40°C < TJ < 125°C  
1.5  
+1.5  
2.0  
FB Voltage Line Regulation  
SUPPLY CURRENT  
L
REG  
10 V < V < 18 V (Note 3)  
mV  
CC  
V
CC  
Supply Current (Stat)  
I
S
S
= 0 V, No Switching, R = 10 k,  
2.0  
3.0  
mA  
CC(Static)  
T
R
= 10 kꢁ  
OCSET  
DRVV Supply Current (Stat)  
I
S
S
= 0 V, No Switching  
= 0 V, No Switching  
0.1  
0.1  
0.3  
0.3  
mA  
mA  
CC  
C(Static)  
S
V
B
Supply Current (Stat)  
I
B(Static)  
S
UNDERVOLTAGE LOCKOUT  
V
V
V
StartThreshold  
StopThreshold  
Hysteresis  
V
(R)  
(F)  
Supply Ramping Up  
7.9  
7.3  
8.9  
8.2  
0.7  
8.9  
8.2  
0.7  
8.9  
8.2  
0.7  
1.25  
1.15  
9.8  
9.0  
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC_UVLO  
V
Supply Ramping Down  
CC_UVLO  
Supply Ramping Up and Down  
Supply Ramping Up  
DRV StartThreshold  
DRV  
DRV  
(R)  
7.9  
7.3  
9.8  
9.0  
CC  
CC_UVLO  
DRV StopThreshold  
(F)  
Supply Ramping Down  
CC  
CC_UVLO  
DRV Hysteresis  
Supply Ramping Up and Down  
Supply Ramping Up  
CC  
V StartThreshold  
B
V
(R)  
7.9  
7.3  
9.8  
9.0  
B_UVLO  
V StopThreshold  
B
V
(F)  
Supply Ramping Down  
B_UVLO  
V Hysteresis  
B
Supply Ramping Up and Down  
Undervoltage Threshold Value  
Undervoltage Threshold Value  
OSCILLATOR  
U
(Rising)  
(Falling)  
1.19  
1.10  
1.31  
1.20  
UVLO  
U
UVLO  
Frequency  
F
S
R
T
R
T
= 20 kꢁ  
= 10 kꢁ  
170  
320  
200  
375  
230  
430  
kHz  
Ramp Amplitude  
Min Duty Cycle  
V
(Note 3)  
2.0  
V
%
ramp  
D
FB = 2 V  
0
min  
Min Pulse Width  
Max Duty Cycle  
D
F
= 200 kHz, (Note 3)  
200  
ns  
%
min(ctrl)  
S
D
F
S
= 400 kHz, FB = 1.2 V  
80  
max  
SYNC Frequency Range  
SYNC(F )  
20% Above Free Running  
Frequency  
500  
0.8  
kHz  
S
SYNC Pulse Duration  
SYNC High Level  
SYNC  
200  
2.0  
ns  
V
(pulse)  
SYNC  
(H)  
SYNC Low Level  
SYNC  
V
(L)  
SYNC Input Threshold  
SYNC Input Hysteresis  
SYNC Input Impedance  
SYNC Output Impedance  
SYNC Output Pulse Width  
ERROR AMPLIFIER  
Input Bias Current  
SYNC  
SYNC  
1.6  
V
(Thre)  
(Hyst)  
300  
mV  
kꢁ  
kꢁ  
ns  
SYNC  
(Note 3)  
(Note 3)  
16  
2.5  
300  
(ZIN)  
(OUT)  
SYNC  
SYNC  
F = 500 kHz, (Note 3)  
S
(Pulse Width)  
I
FB  
S
S
= 3 V, FB = 1 V  
0.1  
0.4  
A
2. Cold temperature performance is guaranteed via correlation using statistical quality control. Not tested in production.  
3. Guaranteed by design but not tested in production.  
http://onsemi.com  
5
NCP1034  
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, these specifications apply over V = 12 V,  
CC  
DRVV = V = 12 V, 40°C < TJ < 125°C)  
CC  
B
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
ERROR AMPLIFIER  
Source/Sink Current  
Bandwidth  
I
50  
100  
10  
120  
A  
MHz  
dB  
(Source/Sink)  
(Note 3)  
(Note 3)  
(Note 3)  
4.0  
DC gain  
55  
Transconductance  
SOFTSTART/SD  
SoftStart Current  
Shutdown Output Threshold  
OVERCURRENT PROTECTION  
OCSET Voltage  
g
m
1500  
15  
3150  
4000  
m
h
o
I
SS  
S
S
= 0 V  
20  
25  
A
S
D
0.3  
0.4  
V
V
1.25  
1.0  
V
A  
%
OCSET  
Hiccup Current  
I
(Note 3)  
/I , (Note 3)  
Hiccup SS  
Hiccup  
Hiccup Duty Cycle  
OUTPUT DRIVERS  
LO, Drive Rise Time  
HI Drive Rise Time  
LO Drive Fall Time  
HI Drive Fall Time  
Dead Band Time  
Hiccup  
I
5.0  
(duty)  
t (Lo)  
r
C = 1.5 nF (See Figure 3)  
17  
17  
10  
10  
60  
1.4  
ns  
ns  
ns  
ns  
ns  
A
L
t (Hi)  
r
C = 1.5 nF (See Figure 3)  
L
t (Lo)  
f
C = 1.5 nF (See Figure 3)  
L
t (Hi)  
f
C = 1.5 nF (See Figure 3)  
L
t
(See Figure 3)  
30  
120  
dead  
LO Output High Short Circuit  
Pulsed Current  
t
V
= 0 V, P v 10 s,  
LDRVhigh  
LDRV W  
T = 25°C (Note 3)  
J
HI Output High Short Circuit  
Pulsed Current  
t
V
= 0 V, P v 10 s,  
2.2  
1.4  
2.2  
A
A
A
HDRVhigh  
HDRV  
W
T = 25°C (Note 3)  
J
LO Output Low Short Circuit  
Pulsed Current  
t
V
= DRVV , P v 10 s,  
T = 25°C (Note 3)  
LDRVhigh  
LDRV CC W  
J
HI Output Low Short Circuit  
Pulsed Current  
t
V
= V , P v 10 s,  
HDRVhigh  
HDRV B W  
T = 25°C (Note 3)  
J
LO Output Resistor, Source  
LO Output Resistor, Sink  
HI Output Resistor, Source  
HI Output Resistor, Sink  
R
Typical Value @ 25°C, (Note 3)  
Typical Value @ 25°C, (Note 3)  
Typical Value @ 25°C, (Note 3)  
Typical Value @ 25°C, (Note 3)  
7
2
7
2
12  
8
LOH  
R
LOL  
R
12  
8
HIH  
R
HIL  
2. Cold temperature performance is guaranteed via correlation using statistical quality control. Not tested in production.  
3. Guaranteed by design but not tested in production.  
http://onsemi.com  
6
 
NCP1034  
t
r
t
f
9 V  
HighSide  
Driver  
(HDrv)  
2 V  
t
r
t
f
9 V  
LowSide  
Driver  
(LDrv)  
2 V  
Deadband  
H to L  
Deadband  
L to H  
Figure 3. Definition of RiseFall Time and Deadband Time  
http://onsemi.com  
7
NCP1034  
TYPICAL OPERATING CHARACTERISTICS  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
Rising  
Falling  
40  
40 20  
0
20  
40  
60  
80  
80  
80  
100 120  
100 120  
100 120  
40 20  
0
20  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. VFB  
Figure 5. UVLOVB  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
9.2  
9.1  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
Rising  
Rising  
Falling  
Falling  
40  
20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. UVLOVCC  
Figure 7. UVLODRVVCC  
1.4  
1.35  
1.3  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
Rising  
Falling  
1.25  
1.2  
1.15  
1.1  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. UVLO  
Figure 9. ICC (Stat)  
http://onsemi.com  
8
NCP1034  
220  
215  
210  
205  
200  
195  
190  
185  
180  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Switching Frequency @ RT = 20 kW  
Figure 11. Maximum Duty Cycle @ f = 400 kHz  
210  
205  
200  
195  
190  
185  
180  
175  
170  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Minimum on Time  
Figure 13. Error Amplifier Transconductance  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
12  
11  
10  
9
Low to High  
High to Low  
DRVV = VB = 10 V  
CC  
8
12 V  
18 V  
7
6
5
4
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Deadtime  
Figure 15. Driver Pullup Resistance  
http://onsemi.com  
9
NCP1034  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.2  
0.21  
0.22  
0.23  
0.24  
0.25  
0.26  
0.27  
0.28  
0.29  
0.3  
DRVV = VB = 10 V  
CC  
12 V  
18 V  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Driver Pulldown Resistance  
Figure 17. OCP @ R8 = 10 kW, ROCIN = 10 kW  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
Figure 18. POSOCP @ R8 = 10 kW,  
OCIN = 10 kW  
R
http://onsemi.com  
10  
NCP1034  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Undervoltage Lockout  
There are four undervoltage lockout circuits. Two of  
them protect external highside and lowside drivers, the  
third ensures that the IC does not start until V is under a  
CC  
set threshold. The last one can be programmed by the user.  
It has a rising threshold at 1.25 V and a falling threshold at  
1.15 V, and the user can define the undervoltage level by an  
external resistor divider. If the voltage is not over the  
threshold value, the device stops operating. The highside  
driver UVLO only stops switching the highside MOSFET  
Programmed falling and rising UVLO voltage can be  
calculated by Equations 1 and 2:  
0
+ 1.15 @ ǒ1 ) R4Ǔ  
0
50  
100  
150  
200  
250  
(eq. 1)  
VUVLO,falling  
R5  
R (k)  
t
Figure 20. Frequency Dependence of Rt Value  
and  
ǒ
R4Ǔ  
(eq. 2)  
V
UVLO,rising + 1.25 @ 1 )  
R5  
Frequency Synchronization  
The NCP1034 can be synchronized to an external clock  
signal. The input synchronization signal should be a TTL  
logic level. The oscillator is synchronized to the rising edge  
of the synchronizing signal. When synchronization is used,  
the free running frequency must be set by the timing resistor  
to a frequency at least 80% of the external synchronization  
Shutdown  
The output voltage can be disabled by pulling the  
SS/SD pin below 0.3 V. A small transistor can be used to pull  
it down as shown in Figure 19. During this time, both  
external MOSFETs are turned off. After the SS/SD pin is  
released, the IC starts its operation with a softstart  
sequence.  
frequency (Example: R = 20 k/ 200 kHz and external  
T
TTL = 220 kHz).  
The NCP1034 can also output synchronization pulses on  
the SYNC pin. Pulses are generated when the internal  
oscillator ramp reaches the high threshold voltage. The  
SS/SD  
SS/SD  
frequency of these pulses is set by an external R resistor. Up  
T
to five NCP1034 controllers can be connected directly to the  
SYNC pin, all of which are synchronized to the controller  
with the highest frequency. The lowest frequency must be at  
least 80% of the highest one.  
The equivalent internal circuit of the Sync pin is shown in  
Figure 21.  
Figure 19. Shutdown Interface  
V
BIAS  
Operating Frequency Selection  
The operating frequency is set by an external resistor  
connected from the R Pin to ground. The value of this  
t
resistor can be selected from Figure 20, which shows  
switching frequency versus the timing resistor value.  
SYNC  
R
t
Oscillator  
R
t
C
t
Figure 21. Equivalent Connection of the Sync Pin  
http://onsemi.com  
11  
 
NCP1034  
Figure 22 shows the part with no synchronization. In this  
circuit the internal clock is fixed by the external timing  
SYNC  
NCP1034  
(Master #1)  
SYNC  
NCP1034  
(Slave #1)  
resistor R . The SYNC pin can be tied to GND through a  
T
series resistor to prevent false triggering in a noisy  
environment.  
R
F
R
T
T
= 200 kHz  
F
SW  
= 180 kHz  
SW  
20 kꢁ  
22 kꢁ  
SYNC  
10 kꢁ  
(optional)  
SYNC  
NCP1034  
(Slave #2)  
NCP1034  
Synchronized System  
Frequency = 200 kHz  
R
T
R
T
F
SW  
= 180 kHz  
20 kꢁ  
F
SW  
= 200 kHz  
22 kꢁ  
Figure 22. Fixed Frequency  
Figure 24. Master Slave Synchronization  
Figure 23 shows the part synchronized to an external  
clock through the SYNC pin. The synchronization  
frequency can be up to 20% greater then the programmed  
Output Voltage  
Output voltage can be set by an external resistor divider  
according to this Equation 3:  
fixed frequency (Example: R = 20 k/ 200 kHz and the  
T
SYNC input frequency can range from 200220 kHz). The  
clock frequency at the SYNC pin replaces the master clock  
generated by the internal oscillator circuit. Pulling the  
SYNC pin low programs the part to run freely at the  
ǒ
R1Ǔ  
(eq. 3)  
V
OUT + Vref @ 1 )  
R2  
Where V is the internal reference voltage 1.25 V. Absolute  
values of resistors R1 and R2 depend on compensation  
network type. See compensation paragraph for details.  
ref  
frequency programmed by R . When pulling the SYNC pin  
T
low a 4.7 kΩ resistor should be used.  
Inductor Selection  
TTL  
The inductor selection is based on the output power,  
frequency, input and output voltage and efficiency  
requirements. High inductor values cause low current  
ripple, slower transient response, higher efficiency and  
increased size. Inductor design can be reduced to desire  
maximum current ripple in the inductor. It is good to have  
Logic  
SYNC  
4.7 kꢁ  
(optional)  
NCP1034  
Input: = 220 kHz  
R
T
current ripple (I  
) between 20% and 50% of the output  
Lmax  
current.  
20 kꢁ  
F
SW  
= 220 kHz  
For buck converter, the inductor should be chosen  
according to Equation 4.  
VOUT  
VOUT  
Figure 23. External Synchronization  
(eq. 4)  
L + ǒ Ǔǒ1 * Ǔ  
f @ ILmax  
VINmax  
Figure 24 shows the part operating in the master slave  
synchronization configuration. In this configuration all  
three parts are connected together through the SYNC pin in  
order to synchronize the system switching frequency. The  
R timing resistor can be the same value for all three parts  
(R = 20 k/ 20 k/ 20 k) which would make the highest  
Output Capacitor Selection  
The output voltage ripple and transient requirements  
determine the output capacitor type and value. The  
important parameter for the selection of the output capacitor  
is equivalent serial resistance (ESR). If the capacitor has low  
ESR, it often has sufficient capacity for filtering as well as  
an adequate RMS current rating.  
T
T
frequency part the master, or to guarantee one part is the  
master the timing resistor can be slightly lower in value. (R  
T
= 20 k/ 22 k/ 22 k)  
http://onsemi.com  
12  
 
NCP1034  
VOUT  
VIN  
The value of the output capacitor should be calculated  
using the following equation:  
(eq. 8)  
(eq. 9)  
P
COND*HIGHFET + I2OUT @ RDS(on)  
@
IL  
VOUT  
C
OUT w  
(eq. 5)  
@ ǒ1 * Ǔ  
P
COND*LOWFET + I2OUT @ RDS(on)  
8 @ f @ ǒV  
Ǔ
OUT * IL @ ESR  
VIN  
For higher switching frequency, it is suitable to use  
multilayer ceramic capacitor (MLCC) with very low ESR.  
The advantages are small size, low output voltage ripple and  
fast transient response. The disadvantage of MLCC type is  
the requirement to use a Type III compensation network.  
Switching losses are depended on draintosource  
voltage at turnoff state, output current and switchon and  
switchoff time as is shown by Equation 10.  
VDS(off)  
(eq. 10)  
@ ǒt Ǔ  
ON ) tOFF @ f @ IOUT  
PSW  
+
2
Input Capacitor Selection  
t
and t  
times are dependent on the transistor gate.  
ON  
OFF  
The input capacitor is used to supply current pulses while  
highside MOSFET is on. When the MOSFET is off, the  
input capacitor is being charged. The value of this capacitor  
can be selected with Equation 6:  
The MOSFET output capacitance loss is caused by the  
charging and discharging during the switching process and  
can be computed using Equation 11.  
C
OSS @ VIN 2 @ f  
VOUT  
VIN  
VOUT  
@ ǒ1 * Ǔ  
VIN  
(eq. 11)  
PCOSS  
+
IOUT  
@
2
(eq. 6)  
Where C  
= C + C  
.
C
IN w  
OSS  
DS  
GS  
f @ VIN  
Significant power dissipation is caused by the reverse  
recovery charge in the lowside MOSFET body diode,  
which conducts at dead time. This charge is needed to close  
the diode. The current from the input power supply flows  
through the highside MOSFET to the lowside MOSFET  
body diode. This power dissipation can be calculated using  
Equation 12.  
Where V  
is the input voltage ripple and the  
IN  
recommended value is about 2% 5% of V . The input  
IN  
capacitor must be large enough to handle the input ripple  
current. Its value should be calculated using Equation 7:  
VOUT  
VIN  
@ ǒ1 * Ǔ  
VOUT  
(eq. 7)  
P
QRR + QRR @ VIN @ f  
Ǹ
(eq. 12)  
I
RMS + IOUT @  
VIN  
Q
is the diode recovery charge as given in the  
RR  
manufacturer’s datasheet. For some types of MOSFETs, this  
dissipation may be dominant at high input voltages. It is  
necessary to take care when selecting a MOSFET. An  
external Schottky diode across the lowside MOSFET can  
be used to eliminate the reverse recovery charge power loss.  
The Schottky diode’s forward voltage should be lower than  
Power MOSFET Selection  
The NCP1034 uses two Nchannel MOSFET’s. They can  
be primary selected by R , maximum draintosource  
DS(on)  
voltage and gate charge. R  
impacts conductive losses  
DS(on)  
and gate charge impacts switching losses. The low side  
MOSFET is selected primarily for conduction losses, and  
the highside MOSFET is selected to reduce switching  
losses especially when the output voltage is less than 30% of  
the input voltages. The draintosource breakdown voltage  
must be higher than the maximum input voltage. Conductive  
power losses can be calculated using the Equations 8 and 9:  
that of the body diode, and reverse recovery time (t ) should  
rr  
be lower then that of the body diode. The Schottky diode’s  
capacitance loss can be calculated as shown in Equation .  
C
Schottky @ VIN 2 @ f  
(eq. 13)  
PC(Schottky)  
+
2
http://onsemi.com  
13  
 
NCP1034  
t
t
dead  
dead  
HighSide  
Logic Signal  
LowSide  
Logic Signal  
t
t
f
d(on)  
R
DSmax  
HighSide  
MOSFET  
R
R
DS(on)min  
t
r
t
d(off)  
t
t
f
r
R
DSmax  
LowSide  
MOSFET  
DS(on)min  
t
d(on)  
t
d(off)  
Figure 25. MOSFETs Timing Diagram  
MOSFETs delays, turnon and turnoff times must be  
short enough to prevent cross conduction. If not, there will  
be cross conduction from the input through both MOSFETs  
to ground. Due to this fact, the following conditions must be  
true:  
supply voltage, low side drive supply voltage and external  
UVLO are over the set thresholds. The softstart capacitor  
is charged by 20 A current source. If POR is low, the SS/SD  
Pin is internally pulled to GND, which means that the  
NCP1034 is in a shutdown state. The SS/SD Pin voltage  
(0 V to 2.6 V) controls internal current source (64 A to  
0 A) with negative linear characteristic. This current  
source injects current into the resistor (25 k) connected  
between the Fb pin and negative input of the error amplifier  
and into the external feedback resistor network. Voltage  
drop on these resistors is over 1.6 V, which is enough to force  
the error amplifier into negative saturation state and to block  
switching.  
When the softstart pin reaches around 1.2 V (exact value  
depends on feedback and compensation network and on  
softstart capacitor; a larger softstart capacitor and a lower  
compensation capacity decrease this level) the IC starts  
switching. The impact of controlled current source  
decreases and the output voltage starts to rise. When the  
softstart capacitor voltage reaches 2.6 V, the output voltage  
is at nominal value.  
t
d(on)high ) tdead u td(off)low ) tf low  
(eq. 14)  
t
d(on)low ) tdead u td(off)high ) tf high  
Where t  
is the controller dead band time, t , t , t  
d(on) r d(off)  
dead  
and t are MOSFETs parameters. These parameters can be  
f
found in the datasheet for specific conditions.  
Bootstrap Circuit  
This circuit is used to obtain a voltage higher than the  
input voltage in order to switchon high side N MOSFET.  
The bootstrap capacitor is charged from the IC’s supply  
voltage through D1, when the low side MOSFET is  
switchedon up to the IC’s supply voltage. It must have  
enough capacity to supply power for the highside circuit  
when the highside MOSFET is being switched on. The  
minimum value recommended for the bootstrap capacitor is  
100 nF. Diode D1 has to be designed to withstand a reverse  
voltage given by the following equation:  
The softstart time must be at least 10 times longer than  
the time needed to charge the compensation network from  
the output of the error amplifier. If the softstart time is not  
long enough, the softstart sequence would be faster than the  
charging compensation network and the IC would start  
without slowly increasing the output voltage. The softstart  
capacitance can be calculated using Equation 16.  
D1VRmin + VIN * VCC  
(eq. 15)  
SoftStart  
The softstart time is set by capacitor connected between  
SS/SD Pin and ground. This function is used for controlling  
the output voltage slope and limiting startup currents. The  
startup sequence initiates when Power On Ready (POR)  
internal signal rises to logic high level. That means the  
(eq. 16)  
C
SS + 15 @ 106 @ TSS  
http://onsemi.com  
14  
 
NCP1034  
POR  
SS  
5V  
~2.6V  
~1.2V  
0V  
V
OUT  
64A  
I
FB  
>1.6V  
1.25V  
1.25V  
FB  
Voltage  
0V  
Figure 26. SoftStart  
Start to Prebiased Output  
time, the energy is not discharged by the lowside MOSFET  
until the softstart sequence crosses the programmed output  
voltage.  
The NCP1034 is able to startup into a prebiased output  
capacitor. The lowside MOSFET does not turn on before  
highside MOSFET gets the first turnon pulse. During this  
V
OUT  
~5V  
~2.6V  
~1.2V  
SS  
LDRV  
HDRV  
Figure 27. Startup to Prebiased Output  
Overcurrent Protection  
The voltage drop across the low side MOSFET R  
connected through resistor R8 and into the IC though pin 13  
a current equal to 5% of the charging current. The capacitor  
continues to discharge until the voltage reaches 0.25 V, and  
then the IC initiates a standard soft start sequence.  
The recommended value for the protection resistor R8 is  
10 k. The R7 resistance value can be calculated using  
Equation 17:  
is  
DS(on)  
OC . Within the IC, this value is compared with the value  
in  
programmed by resistor R7 to set the overcurrent limit. The  
programmed current limit is set by selecting the value of R7,  
which is connected between pin 1 OCset and GND. If the  
voltage drop is larger than the set value, the NCP1034 goes  
into hiccup mode. During this time, both external MOSFETs  
are turned off and the soft start capacitor is discharged with  
R8  
R7 +  
(eq. 17)  
3.56 @ RDS(on) @ Ipk  
http://onsemi.com  
15  
 
NCP1034  
5V  
~1.2V  
~1.9V  
5V  
~1.2V  
0.3V  
~1.9V  
0.3V  
0.3V  
~2.6V  
~1.2V  
~2.6V  
~1.2V  
SS  
V
I
OUT  
OUT  
OUT  
R
Figure 28. Overcurrent Protection (HiCup Mode)  
1
The NCP1034 provides protection of the lowside  
MOSFET against positive overcurrent (from output to this  
MOSFET). Its value can be calculated using Equation 18:  
fP0  
+
(eq. 19)  
2 @ @ Ǹ  
L @ COUT  
One zero of this LC filter is given by the output capacitance  
and output capacitor ESR. Its value can be calculated by  
using the following equation:  
5125 * 0.184 @ R8 @ 1.25  
IPos  
+
(eq. 18)  
R7 @ RDS(on)  
1
Compensation Circuit  
fZ0  
+
(eq. 20)  
2 @ @ COUT @ ESR  
The NCP1034 is a voltage mode buck convertor with a  
transconductance error amplifier compensated by an  
external compensation network. Compensation is needed to  
achieve accurate output voltage regulation and fast transient  
response. The goal of the compensation circuit is to provide  
a loop gain function with the highest crossing frequency and  
adequate phase margin (minimally 45°).  
The next parameter that must be chosen is the zero  
crossover frequency f . It can be chosen to be 1/10 1/5 of  
the switching frequency. These three parameters show the  
necessary type of compensation that can be selected from  
Table 1.  
0
The transfer function of the power stage (the output LC  
filter) is a double pole system. The resonance frequency of  
this filter is expressed as follows:  
Table 1. COMPENSATION TYPES  
Zero Crossover Frequency Condition  
Compensation Type  
Type II (PI)  
Typical Output Capacitor Type  
Electrolytic, Tantalum  
Tantalum, Ceramic  
Ceramic  
f
< f < f < f /2  
Z0 0 S  
P0  
P0  
f
< f < f < f /2  
Type III (PID) Method I  
Type III (PID) Method II  
0
Z0  
S
f
P0  
< f < f /2 < f  
0 S Z0  
Compensation Type II (PI)  
of the switching frequency. Components of the PI  
compensation (Figure 29) network can be specified by the  
following equations:  
This compensation is suitable for lowcost electrolytic  
capacitor. The zero created by the capacitor’s ESR is a few  
kHz and the zero crossover frequency is chosen to be 1/10  
http://onsemi.com  
16  
 
NCP1034  
V
OUT  
for tantalum output capacitors, which have a higher ESR  
than ceramic, and its zeros and poles can be calculated  
shown below:  
R1  
fZ1 + 0.75 @ fP0  
fZ2 + fP0  
OTA  
(eq. 22)  
+
fP2 + fZ0  
V
ref  
R
C
R2  
C1  
C1  
fS  
fP3  
+
2
C
*
C2  
The second one (method II) is for ceramic capacitors:  
1 * sinmax  
fZ2 + f0 @  
fP2 + f0 @  
Ǹ
1 ) sinmax  
1 ) sinmax  
*Optional  
Ǹ
Figure 29. PI compensation (II Type)  
(eq. 23)  
1 * sinmax  
fZ1 + 0.5 @ fZ2  
2 @ @ f0 @ L @ VRAMP @ VOUT  
RC1  
CC1  
CC2  
+
+
+
fP3 + 0.5 @ fS  
ESR @ VIN @ Vref @ gm  
1
The remaining calculations are the same for both methods.  
0.75 @ 2 @ @ fP0 @ RC1  
2
gm  
(eq. 21)  
RC1 uu  
1
1
@ RC1 @ fS  
CC1  
CC2  
+
+
V
OUT * Vref  
2 @ @ fZ1 @ RC1  
R1 +  
@ R2  
1
Vref  
2 @ @ fP3 @ RC1  
V
RAMP  
is the peaktopeak voltage of the oscillator ramp  
and gm is the transconductance error amplifier gain.  
2 @ @ f0 @ L @ VRAMP @ COUT  
CFB1  
RFB1  
+
+
Capacitor C is optional.  
C2  
(eq. 24)  
V
IN @ RC1  
Compensation Type III (PID)  
1
Tantalum and ceramics capacitors have lower ESR than  
electrolytic, so the zero of the output LC filter goes to a  
higher frequency above the zero crossover frequency. This  
situation needs to be compensated by the PID compensation  
network that is show in Figure 30.  
2@ CFB1 @ fP2  
1
R1 +  
R2 +  
* RFB1  
2 @ @ CFB1 @ fZ2  
Vref  
@ R1  
V
OUT * Vref  
V
OUT  
To check the design of this compensation network, the  
equation must be true  
C
C2  
R
C
FB1  
FB1  
R1 @ R2 @ RFB1  
1
gm  
(eq. 25)  
u
R1 @ RFB1 ) R2 @ RFB1 @ R1 @ R2  
R 1  
R
C
C1  
C1  
If it is not true, then a higher value of R must be selected.  
C1  
Input Power Supply  
The NCP1034 controller and builtin drivers need to be  
OTA  
+
powered through V , DRVV and V pins with a voltage  
CC  
CC  
b
R 2  
V
REF  
between 10 V – 18 V. The supply current requirement is a  
summation of the static and dynamic currents. Static current  
consumption can be calculated by the following equation:  
Figure 30. PID Compensation (III Type)  
I
CS + ICC ) IC ) IB  
(eq. 26)  
There are two methods to select the zeros and poles of  
compensation network. The first one (method I) is useable  
http://onsemi.com  
17  
 
NCP1034  
Dynamic current consumption is calculated using the  
following equation, base on the switching frequency and  
MOSFET gate charge.  
shunt voltage regulator and a shunt voltage regulator with  
transistor, as shown in Figure 31. A voltage regulator  
without a transistor can be used when the power  
consumption is low and zener diode power dissipation is  
acceptable. Otherwise, a shunt regulator with transistor can  
be used.  
ǒ Ǔ@ f  
CD + QG(low) ) QG(high)  
I
(eq. 27)  
To power the device, an external power supply or voltage  
regulator from V can be used. Two options are a linear  
IN  
V
IN  
V
CC  
V
IN  
V
CC  
R
D
C
D
C
Figure 31. Linear Shunt  
Voltage Regulator  
Figure 32. Shunt Voltage  
Regulator with Transistor  
For the linear shunt voltage regulator (option a) the V  
voltage is the same as the zener diode reverse voltage V .  
The value of the resistor R can be calculated using  
DC current gain. The maximum power dissipation of the  
resistor, zener diode and transistor are calculated by  
Equations 32 to 34. The transistor reverse breakdown  
voltage must be selected to be able to withstand the voltage  
difference between maximum input voltage and VCC.  
CC  
Z
Equation 28, where I is the minimum reverse current at  
ZT  
V . The value selected should be lower than the calculated  
Z
value. The maximum power losses of resistor R and the  
zener diode D can be calculated by Equations 29 and 30.  
V
INmin * VZT  
R t  
(eq. 31)  
I
)I  
CS  
CD ) IZT  
V
INmin * VCC  
CS ) ICD ) IZT  
R + (VINmax * VCC) @ (ICS ) ICD  
(eq. 28)  
(eq. 29)  
R t  
I
I
CS ) ICD  
ǒ
Ǔ @  
(eq. 32)  
(eq. 33)  
ǒ
Ǔ
P
R + VINmax * VCC  
) IZT  
P
)
V
INmax * VCC  
V
V
INmax * VZT ICS  
ICS  
*
(eq. 30)  
+ ǒ  
Ǔ
PD  
+ ǒ  
Ǔ
PD  
PD  
*
@ VZT  
R
R
The shunt voltage regulator with transistor (option b) is  
advantageous when the zener diode loss is too high or when  
input voltage varies across a wide range and it is difficult to  
INmax * VZT ICS  
(eq. 34)  
(eq. 35)  
+ ǒ  
Ǔ
*
@ VZT  
R
set a bias point. The output voltage is lower than V due to  
Z
ǒ
Ǔ @ ǒI  
Ǔ
P
T + VINmax * VCC  
CS ) ICD  
the V of the transistor. The maximum resistor value of R  
BE  
can be calculated by Equation 31, where is the transistor  
Table 2. POWER SUPPLY REGULTOR EXAMPLES  
R
BIAS  
Q
f
V
INmax  
V
INmin  
I
G(TOT)  
SUPPLYmax  
(nC)  
(kHz)  
(V)  
(V)  
(mA)  
Components  
LSFET  
MOSFETs  
NTD24N06  
NTD3055  
(kW)  
ZD  
Transistor  
24  
7.1  
24  
24  
200  
300  
60  
60  
36  
20  
8.7  
2.6  
MMSZ4699  
HSFET  
LSFET  
NTD24N06  
NTD24N06  
16.9  
10  
MMSZ4699  
MJD31  
HSFET  
PCB Layout  
important, therefore, to pay close attention to the PCB  
layout.  
The layout of highfrequency and highcurrent switching  
converters has a large impact on the circuit parameters. It is  
http://onsemi.com  
18  
 
NCP1034  
The input capacitor, MOSFETs, inductor and output  
and the IC should be very short with wide traces and  
optimally using two layers to achieve minimum inductance  
between them.  
The blocking and bootstrap capacitors should be placed as  
close as possible to the IC. The feedback and compensation  
network should be close to the IC to minimize noise.  
capacitor should be placed as close as possible to one  
another. This is suitable to reduce EMI and to minimize VS  
overshoots. Connecting the signal and power ground at one  
point near the output connector improves load regulation.  
Connection between the source pin of the low side MOSFET  
TYPICAL APPLICATION  
X11  
R11A  
10k  
C1A  
2u2  
R11B  
R11C  
R11D  
R11E  
10k  
10k  
10k  
10k  
D1  
1N4148  
C1B  
2u2  
C10  
D2  
100n  
C2  
100n  
X12  
X22  
C4  
GND GND  
MMSZ4699  
100n  
8
9
DRVVCC VB  
Q2  
12  
5
10  
11  
13  
7
C3  
100n  
GND  
VCC  
SYNC  
RT  
HDRV  
VS  
NTD3055  
L1  
R8  
15  
4
OCIN  
LDRV  
PGND  
FB  
13  
GND  
C9  
47  
C9B C9C  
47 47  
10k  
R4  
110k  
R9  
SS/SD  
UVLO  
1k2  
Q3  
NTD24N06  
R1  
16k9  
16  
1
6
2
C8  
1n8  
OCSET  
GND  
14  
3
COMP  
C5  
R10  
R3  
4k7  
X21  
R5  
3k9  
R6  
20k  
R7  
10k  
C6  
R15  
0R  
IC1  
NCP1034SMD  
10k 220n  
R2  
5k6  
12n  
C7  
330p  
GND GND GND GND GND GND  
GND  
Figure 33. Single Output Buck Converter from 38 V 58 V to 5 V/5 A @ 200 kHz  
90  
38 V  
85  
80  
75  
70  
65  
60  
55  
50  
48 V  
V
= 58 V  
IN  
0
0.5  
1
1.5  
2
2.5  
(A)  
3
3.5  
4
4.5  
5
I
OUT  
Figure 34. Efficiency and Power Loss of Circuit at Figure 33  
http://onsemi.com  
19  
 
NCP1034  
Bill of Materials  
Manufacturer  
Part Number  
Designator  
Qty  
1
Description  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Value  
1k2  
Tolerance Footprint  
Manufacturer  
Vishay  
R9  
R5  
R3  
R2  
R1  
R6  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
CRCW10261K20FKEA  
CRCW10263K90FKEA  
CRCW10264K60FKEA  
CRCW10265K60FKEA  
CRCW102616K9FKEA  
CRCW102620K0FKEA  
CRCW102612K0FKEA  
1
3k9  
Vishay  
1
4k7  
Vishay  
1
5k6  
Vishay  
1
16k9  
20k  
Vishay  
1
Vishay  
R11A, R11B,  
R11C, R11D,  
R11E  
5
12k  
Vishay  
R4  
1
3
1
1
1
1
4
3
2
1
1
1
1
1
1
Resistor  
110k  
10k  
1%  
1%  
10%  
10%  
10%  
10%  
10%  
20%  
10%  
20%  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
1210  
1210  
13x13  
Vishay  
Vishay  
Kemet  
Kemet  
Kemet  
Kemet  
Kemet  
Kemet  
Murata  
Würth  
CRCW1206110KFKEA  
CRCW120610K0FKEA  
C1206C182K5FATU  
C1206C123K5FACTU  
C1206C224K5RACTU  
R7, R8, R10  
Resistor  
C8  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Inductor SMD  
1n8  
C6  
12n  
C5  
220n  
C7  
330p  
C2, C3, C4, C10  
100n  
C1206F104K1RACTU  
C1210C476M9PAC7800  
GRM32ER72A225KA35L  
744355131  
C9A, C9B, C9C  
47/6.3V  
2.2/100V  
13ꢀ  
C1A, C1B  
L1  
D1  
Switching Diode  
Zener Diode 12V  
Power NMOSFET  
Power NMOSFET  
MMSD4148  
MMSZ4699  
NTD3055  
NTD24N06  
NCP1034  
SOD123 ON Semiconductor  
SOD123 ON Semiconductor  
MMSD4148T1G  
D2  
MMSZ4699T1G  
Q2  
DPAK  
DPAK  
ON Semiconductor  
ON Semiconductor  
NTD3055150G  
Q3  
NTD24N06T4G  
IO1  
Synchronous PWM  
Buck Controller  
SOIC16 ON Semiconductor  
NCP1034DR2G  
http://onsemi.com  
20  
NCP1034  
Figure 35. Top Layer  
Figure 36. Bottom Layer  
Figure 37. Top Side Components  
Figure 38. Bottom Side Components  
http://onsemi.com  
21  
NCP1034  
44 mm_  
Figure 39. Typical Application Board Photos  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP1034DR2G  
SOIC16  
(PbFree)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
22  
NCP1034  
PACKAGE DIMENSIONS  
SOIC16  
CASE 751B05  
ISSUE K  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
16  
9
8
B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
G
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
K
M
P
R
C
7
0
_
_
_
_
T−  
SEATING  
PLANE  
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
J
M
D
16 PL  
M
S
S
A
0.25 (0.010)  
T
B
SOLDERING FOOTPRINT*  
8X  
6.40  
16X  
1.12  
1
16  
16X  
0.58  
1.27  
PITCH  
8
9
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1034/D  

相关型号:

NCP103AMX090TCG

CMOS Low Dropout Regulator
ONSEMI

NCP103AMX100TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX105TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX110TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX120TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX125TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX130TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX150TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX160TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX180TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX185TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX210TCG

150 mA CMOS Low Dropout Regulator
ONSEMI