NE80546RE072256 [ROCHESTER]

64-BIT, 2800 MHz, MICROPROCESSOR, CPGA478, FLIP CHIP, MICRO PGA-478;
NE80546RE072256
型号: NE80546RE072256
厂家: Rochester Electronics    Rochester Electronics
描述:

64-BIT, 2800 MHz, MICROPROCESSOR, CPGA478, FLIP CHIP, MICRO PGA-478

外围集成电路
文件: 总83页 (文件大小:2443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
Intel Celeron D Processor 3xx  
Sequence  
Datasheet  
– On 90 nm Process in the 478-pin Package  
June 2005  
Document Number: 302353-005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® Celeron® D processors 3xx sequence on 90 nm process and in the 478-pin package may contain design defects or errors known as errata  
which may cause the product to deviate from published specifications. Current characterized errata are available on request.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across  
different processor families. See www.intel.com/products/processor_number for details.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Celeron, Intel Xeon, Intel NetBurst and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in  
the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2003–2005 Intel Corporation.  
2
Datasheet  
Contents  
1
Introduction................................................................................................................11  
1.1  
Terminology.........................................................................................................11  
1.1.1 Processor Packaging Terminology.........................................................12  
References..........................................................................................................13  
1.2  
2
Electrical Specifications........................................................................................15  
2.1  
2.2  
2.3  
FSB and GTLREF ...............................................................................................15  
Power and Ground Pins ......................................................................................15  
Decoupling Guidelines ........................................................................................15  
2.3.1  
VCC Decoupling......................................................................................16  
2.3.2 FSB GTL+ Decoupling ...........................................................................16  
2.3.3 FSB Clock (BCLK[1:0]) and Processor Clocking....................................16  
Voltage Identification...........................................................................................17  
2.4.1 Phase Lock Loop (PLL) Power and Filter...............................................18  
Reserved, Unused, and TESTHI Pins.................................................................19  
FSB Signal Groups..............................................................................................20  
Asynchronous GTL+ Signals...............................................................................21  
Test Access Port (TAP) Connection....................................................................21  
FSB Frequency Select Signals (BSEL[1:0])........................................................22  
Absolute Maximum and Minimum Ratings..........................................................22  
Processor DC Specifications...............................................................................23  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
V
CC Overshoot Specification...............................................................................28  
2.12.1 Die Voltage Validation............................................................................29  
GTL+ FSB Specifications....................................................................................30  
2.13  
3
Package Mechanical Specifications.................................................................31  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Package Mechanical Drawing.............................................................................31  
Processor Component Keep-Out Zones .............................................................34  
Package Loading Specifications .........................................................................34  
Package Handling Guidelines .............................................................................35  
Package Insertion Specifications ........................................................................35  
Processor Mass Specification .............................................................................35  
Processor Materials.............................................................................................35  
Processor Markings.............................................................................................36  
Processor Pinout Coordinates.............................................................................37  
4
5
Pin Listing and Signal Descriptions.................................................................39  
4.1  
4.2  
Processor Pin Assignments ................................................................................39  
Alphabetical Signals Reference ..........................................................................54  
Thermal Specifications and Design Considerations.................................63  
5.1  
5.2  
Processor Thermal Specifications.......................................................................63  
5.1.1 Thermal Specifications...........................................................................63  
5.1.2 Thermal Metrology .................................................................................64  
Processor Thermal Features...............................................................................65  
5.2.1 Thermal Monitor .....................................................................................65  
5.2.2 On-Demand Mode..................................................................................65  
Datasheet  
3
5.2.3 PROCHOT# Signal Pin..........................................................................66  
5.2.4 THERMTRIP# Signal Pin .......................................................................66  
5.2.5  
TCONTROL and Fan Speed Reduction (Optional) ...................................67  
5.2.6 Thermal Diode........................................................................................67  
6
7
Features.......................................................................................................................69  
6.1  
6.2  
Power-On Configuration Options ........................................................................69  
Clock Control and Low Power States..................................................................69  
6.2.1 Normal State—State 1 ...........................................................................69  
6.2.2 AutoHALT Powerdown State—State 2 ..................................................70  
6.2.3 Stop-Grant State—State 3 .....................................................................71  
6.2.4 HALT/Grant Snoop State—State 4 ........................................................71  
6.2.5 Sleep State—State 5..............................................................................72  
Boxed Processor Specifications.......................................................................73  
7.1  
Mechanical Specifications...................................................................................74  
7.1.1 Boxed Processor Cooling Solution Dimensions.....................................74  
7.1.2 Boxed Processor Fan Heatsink Weight..................................................75  
7.1.3 Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly .............................................................................75  
Electrical Requirements ......................................................................................76  
7.2.1 Fan Heatsink Power Supply...................................................................76  
Thermal Specifications........................................................................................77  
7.3.1 Boxed Processor Cooling Requirements ...............................................77  
7.3.2 Variable Speed Fan ...............................................................................79  
7.2  
7.3  
8
Debug Tools Specifications.................................................................................81  
8.1  
Logic Analyzer Interface (LAI).............................................................................81  
8.1.1 Mechanical Considerations....................................................................81  
8.1.2 Electrical Considerations........................................................................81  
4
Datasheet  
Figures  
2-1  
2-2  
2-3  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
4-1  
4-2  
5-1  
6-1  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
Phase Lock Loop (PLL) Filter Requirements ......................................................18  
V
V
CC Static and Transient Tolerance....................................................................25  
CC Overshoot Example Waveform....................................................................29  
Processor Package Assembly Sketch.................................................................31  
Processor Package Drawing (Sheet 1 of 2) ........................................................32  
Processor Package Drawing (Sheet 2 of 2) ........................................................33  
Processor Top-Side Marking Example (with Processor Number).......................36  
Processor Top-Side Marking Example................................................................36  
Processor Pinout Coordinates (Top View) ..........................................................37  
Pinout Diagram (Top View—Left Side) ...............................................................40  
Pinout Diagram (Top View—Right Side).............................................................41  
Case Temperature (TC) Measurement Location.................................................64  
Stop Clock State Machine...................................................................................70  
Mechanical Representation of the Boxed Intel® Celeron® D Processor .............73  
Requirements for the Boxed Processor (Side View)...........................................74  
Space Requirements for the Boxed Processor (Top View).................................74  
Boxed Processor Fan Heatsink Power Cable Connector Description.................76  
Baseboard Power Header Placement Relative to Processor Socket..................77  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 1 View)78  
Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View)78  
Boxed Processor Fan Heatsink Set Points .........................................................79  
Datasheet  
5
Tables  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
References..........................................................................................................13  
Core Frequency to FSB Multiplier Configuration.................................................16  
Voltage Identification Definition...........................................................................17  
FSB Pin Groups ..................................................................................................20  
Signal Characteristics .........................................................................................21  
Signal Reference Voltages..................................................................................21  
BSEL[1:0] Frequency Table for BCLK[1:0] .........................................................22  
Processor DC Absolute Maximum Ratings.........................................................22  
Voltage and Current Specifications.....................................................................23  
2-8  
2-9  
VCC Static and Transient Tolerance....................................................................24  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
2-17  
2-18  
3-1  
3-2  
3-3  
4-1  
4-2  
4-3  
5-1  
5-2  
5-3  
GTL+ Signal Group DC Specifications................................................................26  
Asynchronous GTL+ Signal Group DC Specifications........................................26  
PWRGOOD and TAP Signal Group DC Specifications ......................................27  
VCCVID DC Specifications .................................................................................27  
VIDPWRGD DC Specifications...........................................................................27  
BSEL [1:0] and VID[5:0] DC Specifications.........................................................28  
BOOTSELECT DC Specifications.......................................................................28  
VCC Overshoot Specifications.............................................................................28  
GTL+ Bus Voltage Definitions.............................................................................30  
Processor Loading Specifications.......................................................................34  
Package Handling Guidelines.............................................................................35  
Processor Materials ............................................................................................35  
Alphabetical Pin Assignment...............................................................................42  
Numerical Pin Assignment..................................................................................48  
Signal Description ...............................................................................................54  
Processor Thermal Specifications.......................................................................64  
Thermal Diode Parameters.................................................................................67  
Thermal Diode Interface......................................................................................68  
Power-On Configuration Option Pins..................................................................69  
Fan Heatsink Power and Signal Specifications...................................................76  
Boxed Processor Fan Heatsink Set Points .........................................................79  
6-1  
7-1  
7-2  
6
Datasheet  
Revision History  
Revision  
Number  
Description  
Date  
-001  
-002  
-003  
-004  
-005  
Initial release  
June 2004  
Minor updates for clarity  
Added 2.93 GHz processor  
Added 3.06 GHz processor  
July 2004  
September 2004  
November 2004  
June 2005  
Added 3.20 GHz processor (processor number 350)  
Datasheet  
7
8
Datasheet  
®
®
Intel Celeron D Processor 3xx Sequence  
Features  
T Available at 3.20 GHz, 3.06 GHz,  
2.93 GHz, 2.80 GHz, 2.66 GHz, 2.53 GHz,  
and 2.40 GHz  
T Binary compatible with applications  
running on previous members of the Intel  
microprocessor line  
T FSB frequencies at 533 MHz  
T Hyper-Pipelined Technology  
Advance Dynamic Execution  
Very deep out-of-order execution  
T Enhanced branch prediction  
T 16-KB Level 1 data cache  
T 256-KB Advanced Transfer Cache (on-die,  
full-speed Level 2 (L2) cache) with 4-way  
associativity and Error Correcting Code  
(ECC)  
T 144 Streaming SIMD Extensions 2 (SSE2)  
instructions  
T 13 Streaming SIMD Extensions 3 (SSE3)  
instructions  
T Power Management capabilities  
System Management mode  
Multiple low-power states  
T Optimized for 32-bit applications running  
on advanced 32-bit operating systems  
T 478-Pin Package  
The Intel® Celeron® D processor family expands Intel’s processor family into the value-priced PC  
market segment. Celeron D processors provide the value that offers the customer the capability to  
affordably get onto the Internet, and use educational programs, home-office software, and  
productivity applications. All of the Celeron D processors include an integrated L2 cache, and are  
built on Intel’s advanced CMOS process technology. The Celeron D processor is backed by over  
30 years of Intel experience in manufacturing high-quality, reliable microprocessors.  
§
Datasheet  
9
10  
Datasheet  
Introduction  
1 Introduction  
The Intel® Celeron® D processor on 90 nm process and in the 478-pin package uses Flip-Chip Pin  
Grid Array 4 (FC-mPGA4) package technology, and plugs into a 478-pin surface mount, Zero  
Insertion Force (ZIF) socket, referred to as the mPGA478B socket. The Celeron D processor on  
90 nm process and in the 478-pin package is based on the same Intel 32-bit microarchitecture and  
maintains the tradition of compatibility with IA-32 software.  
Note: In this document the Celeron D processor on 90 nm process in the 478-pin package will be referred  
to as the “Celeron D processor,” or simply “the processor.”  
Note: In this document, unless otherwise specified, the Intel® Celeron® D processor 3xx sequence refers  
to Intel Celeron D processors 350, 345, 340, 335, 330, 325, and 320.  
In addition to supporting all the existing Streaming SIMD Extensions 2 (SSE2), there are 13 new  
instructions that further extend the capabilities of Intel processor technology. These new  
instructions are called Steaming SIMD Extensions 3 (SSE3).  
The Celeron D processor’s Front Side Bus (FSB) uses a split-transaction, deferred reply protocol  
like the Intel® Pentium 4 processor. The FSB uses Source-Synchronous Transfer (SST) of address  
and data to improve performance by transferring data four times per bus clock (4X data transfer  
rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times  
per bus clock and is referred to as a “double-clocked” or 2X address bus. Working together, the 4X  
data bus and 2X address bus provide a data bus bandwidth of up to 4.2 GB/s.  
Intel will enable support components for the Celeron D processor including heatsink, heatsink  
retention mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly  
may be completed from the top of the baseboard and should not require any special tooling.  
The processor includes an address bus powerdown capability that removes power from the address  
and data pins when the FSB is not in use. This feature is always enabled on the processor.  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active  
state when driven to a low level. For example, when RESET# is low, a reset has been requested.  
Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where  
the name does not imply an active state but describes part of a binary sequence (such as address or  
data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a  
hex ‘A, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A(H= High logic level, L= Low logic level).  
“Front Side Bus (FSB)” refers to the interface between the processor and system core logic (a.k.a.  
the chipset components). The FSB is a multiprocessing interface to processors, memory, and I/O.  
Datasheet  
11  
Introduction  
1.1.1  
Processor Packaging Terminology  
Commonly used terms are explained here for clarification:  
Intel® Celeron® D processor on 90 nm process and in the 478-pin package — Celeron D  
processor in the FC-mPGA4 package with a 256-KB L2 cache.  
Processor — For this document, the term processor is the generic form of the Celeron D  
processor.  
Keep-out zone — The area on or near the processor that system design can not use.  
Intel£ 865G/865GV/865PE/865P chipset — Chipset that supports DDR memory technology  
for the Celeron D processor.  
Intel® 845G chipset — Chipset with embedded graphics that supports DDR memory  
technology. Changes are required to support the Celeron D processor on 90 nm micron  
process.  
Intel® 852 GME/PM/GMV chipsets — Intel’s Portability chipsets that support DDR  
memory technology for the Celeron D processor  
Processor core — Processor core die with integrated L2 cache.  
FC-mPGA4 package — The Celeron D processor is available in a Flip-Chip Micro Pin Grid  
Array 4 package, consisting of a processor core mounted on a pinned substrate with an  
integrated heat spreader (IHS). This packaging technology employs a 1.27 mm [0.05 in] pitch  
for the substrate pins.  
mPGA478B socket — The Celeron D processor mates with the system board through a  
surface mount, 478-pin, zero insertion force (ZIF) socket.  
Integrated heat spreader (IHS) —A component of the processor package used to enhance  
the thermal performance of the package. Component thermal solutions interface with the  
processor at the IHS surface.  
Retention mechanism (RM)—Since the mPGA478B socket does not include any mechanical  
features for heatsink attach, a retention mechanism is required. Component thermal solutions  
should attach to the processor via a retention mechanism that is independent of the socket.  
12  
Datasheet  
Introduction  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document:  
Table 1-1. References  
Document Number/  
Location  
Document  
http://developer.intel.com/  
design/chipsets/designex/  
252518.htm  
®
Intel 865G/865GV/865PE/865P Chipset Platform Design Guide  
http://developer.intel.com/  
design/chipsets/designex/  
298654.htm  
®
®
Intel Pentium 4 Processor in 478-pin Package and  
®
Intel 845G/845GL Chipset Platform Design Guide  
http://developer.intel.com/  
design/chipsets/designex/  
298654.htm  
®
®
®
Intel Pentium 4 Processor in 478-pin Package and Intel 845G/845GL/  
845GV Chipset Platform Design Guide  
http://developer.intel.com/  
design/Pentium4/guides/  
300564.htm  
®
®
Intel Pentium 4 Processor on 90 nm Process Thermal Design Guidelines  
Voltage Regulator-Down (VRD) 10.0: for Desktop Socket 478 Design Guide  
VRM 9.0 DC-DC Converter Design Guidelines  
http://developer.intel.com/  
design/Pentium4/guides/  
252885.htm  
http://developer.intel.com/  
design/Pentium4/guides/  
249205.htm  
http://developer.intel.com/  
design/Pentium4/guides/  
249891.htm  
®
®
Intel Pentium 4 Processor VR-Down Design Guidelines  
®
Intel Architecture Software Developer's Manual  
®
IA-32 Intel Architecture Software Developer's Manual Volume 1: Basic  
Architecture  
®
IA-32 Intel Architecture Software Developer's Manual Volume 2A:  
http://developer.intel.com/  
design/pentium4/manuals/  
index_new.htm  
Instruction Set Reference Manual A–M  
®
IA-32 Intel Architecture Software Developer's Manual Volume 2B:  
Instruction Set Reference Manual, N–Z  
®
IA-32 Intel Architecture Software Developer's Manual Volume 3: System  
Programming Guide  
http://developer.intel.com/  
design/pentium4/manuals/  
index_new.htm  
®
®
IA-32 Intel Architecture and Intel Extended Memory 64 Software Developer's  
Manual Documentation Changes  
http://www.intel.com/  
design/Xeon/guides/  
249679.htm  
ITP700 Debug Port Design Guide  
§
Datasheet  
13  
Introduction  
14  
Datasheet  
Electrical Specifications  
2 Electrical Specifications  
This chapter describes the electrical characteristics of the processor interfaces and signals. DC  
electrical characteristics are provided.  
2.1  
FSB and GTLREF  
Most Celeron D processor FSB signals use Gunning Transceiver Logic (GTL+) signaling  
technology. The termination voltage level for the Celeron D processor GTL+ signals is VCC, which  
is the operating voltage of the processor core. Because of the speed improvements to data and  
address bus, signal integrity and platform design methods have become more critical than with  
previous processor families.  
The GTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine  
if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board  
(see Table 2-18 for GTLREF specifications). Termination resistors are provided on the processor  
silicon and are terminated to its core voltage (VCC). Intel chipsets will also provide on-die  
termination, thus eliminating the need to terminate the bus on the system board for most GTL+  
signals.  
Some GTL+ signals do not include on-die termination and must be terminated on the system board.  
See Table 2-4 for details regarding these signals.  
The GTL+ bus depends on incident wave switching. Therefore, timing calculations for GTL+  
signals are based on flight time instead of capacitive deratings. Analog signal simulation of the  
FSB, including trace lengths, is highly recommended when designing a system.  
2.2  
2.3  
Power and Ground Pins  
For clean on-chip power distribution, the Celeron D processor has 85 VCC (power) and 179 VSS  
(ground) pins. All power pins must be connected to VCC, while all VSS pins must be connected to  
a system ground plane.The processor VCC pins must be supplied by the voltage determined by the  
VID (Voltage identification) pins.  
Decoupling Guidelines  
Due to its large number of transistors and high internal clock speeds, the processor is capable of  
generating large current swings between low and full power states. This may cause voltages on  
power planes to sag below their minimum values if bulk decoupling is not adequate. Care must be  
taken in the board design to ensure that the voltage provided to the processor remains within the  
specifications listed in Table 2-8. Failure to do so can result in timing violations or reduced lifetime  
of the component. For further information and design guidelines, refer to the applicable VRD  
design guide.  
Datasheet  
15  
Electrical Specifications  
2.3.1  
V
Decoupling  
CC  
Regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR)  
and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the  
large current swings when the part is powering on, or entering/exiting low power states, must be  
provided by the voltage regulator solution (VR). For more details on this topic, refer to the  
applicable VRD design guide.  
2.3.2  
2.3.3  
FSB GTL+ Decoupling  
The Celeron D processor integrates signal termination on the die as well as incorporating high  
frequency decoupling capacitance on the processor package. Decoupling must also be provided by  
the system baseboard for proper GTL+ bus operation.  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor.  
As in previous generation processors, the Celeron D processor core frequency is a multiple of the  
BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its default ratio during  
manufacturing.  
The Celeron D processor uses a differential clocking implementation. For more information on the  
Celeron D processor clocking, refer to the CK409 Clock Synthesizer/Driver Specification or  
CK408 Clock Synthesizer/Driver Specifications.  
Table 2-1. Core Frequency to FSB Multiplier Configuration  
Core Frequency  
(133 MHz BCLK/  
533 MHz FSB)  
Multiplication of System Core  
Frequency to FSB Frequency  
Processor  
Number  
1
Notes  
1/24  
350  
345  
340  
335  
330  
325  
320  
3.20 GHz  
3.06 GHz  
2.93 GHz  
2.80 GHz  
2.66 GHz  
2.53 GHz  
2.40 GHz  
1/23  
1/22  
1/21  
1/20  
1/19  
1/18  
NOTES:  
1.  
Individual processors operate only at or below the rated frequency.  
16  
Datasheet  
Electrical Specifications  
2.4  
Voltage Identification  
The VID specification for the Celeron D processor is supported by the applicable VRD design  
guide. The voltage set by the VID pins is the maximum voltage allowed by the processor. A  
minimum voltage is provided in Table 2-8 and changes with frequency. This allows processors  
running at a higher frequency to have a relaxed minimum voltage specification. The specifications  
have been set such that one voltage regulator can work with all supported frequencies.  
Individual processor VID values may be calibrated during manufacturing such that two devices at  
the same speed may have different VID settings.  
The Celeron D processor uses six voltage identification pins, VID[5:0], to support automatic  
selection of power supply voltages. Table 2-2 specifies the voltage level corresponding to the state  
of VID[5:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to low voltage level. If  
the processor socket is empty (VID[5:0] = x11111), or the voltage regulation circuit cannot supply  
the voltage that is requested, it must disable itself. See the applicable VRD design guide for more  
details.  
Power source characteristics must be guaranteed to be stable whenever the supply to the voltage  
regulator is stable.  
The Celeron D processor’s Voltage Identification circuit requires an independent 1.2 V supply and  
some other power sequencing considerations.  
Table 2-2. Voltage Identification Definition  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VID  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VID  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
VRoutput  
off  
1
1
1
1
1
1
1
0
1
1
1
1
1.475  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
0
1
1
0
1
0
1
0
1.100  
1.125  
1.150  
1.175  
1.200  
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
0
1
1
0
1
0
1
0
1.500  
1.525  
1.550  
1.575  
1.600  
Datasheet  
17  
Electrical Specifications  
2.4.1  
Phase Lock Loop (PLL) Power and Filter  
VCCA and VCCIOPLL are power sources required by the PLL clock generators on the Celeron D  
processor silicon. Since these PLLs are analog, they require low noise power supplies for minimum  
jitter. Jitter is detrimental to the system: it degrades external I/O timings as well as internal core  
timings (i.e., maximum frequency). To prevent this degradation, these supplies must be low pass  
filtered from VCC  
.
The AC low-pass requirements, with input at VCC are as follows:  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
The filter requirements are illustrated in Figure 2-1.  
.
Figure 2-1. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
–0.5 dB  
Forbidden  
Zone  
Forbidden  
Zone  
–28 dB  
–34 dB  
DC  
1 Hz  
Passband  
fpeak  
1 MHz  
66 MHz  
fcore  
High  
Frequency  
Band  
NOTES:  
1. Diagram not to scale.  
2. No specification exists for frequencies beyond fcore (core frequency).  
3. fpeak, if existent, should be less than 0.05 MHz.  
18  
Datasheet  
Electrical Specifications  
2.5  
Reserved, Unused, and TESTHI Pins  
All RESERVED pins must remain unconnected. Connection of these pins to VCC, VSS, or to any  
other signal (including each other) can result in component malfunction or incompatibility with  
future processors. See Chapter 4 for a pin listing of the processor and the location of all  
RESERVED pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an appropriate  
signal level. In a system-level design, on-die termination has been included on the Celeron D  
processor to allow signals to be terminated within the processor silicon. Most unused GTL+ inputs  
should be left as no connects, as GTL+ termination is provided on the processor silicon. However,  
see Table 2-4 for details on GTL+ signals that do not include on-die termination. Unused active  
high inputs should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected; however, this may interfere with some test access port (TAP) functions, complicate  
debug probing, and prevent boundary scan testing. A resistor must be used when tying  
bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability. For unused GTL+ input or I/O signals, use pull-up resistors of the  
same value as the on-die termination resistors (RTT). See Table 2-18.  
TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die  
termination. Inputs and used outputs must be terminated on the system board. Unused outputs may  
be terminated on the system board or left unconnected. Note that leaving unused outputs  
unterminated may interfere with some TAP functions, complicate debug probing, and prevent  
boundary scan testing.  
The TESTHI pins must be tied to the processor VCC using a matched resistor, where a matched  
resistor has a resistance value within ±20% of the impedance of the board transmission line traces.  
For example, if the trace impedance is 60 , then a value between 48 and 72 is required.  
The TESTHI pins may use individual pull-up resistors or be grouped together as detailed below. A  
matched resistor must be used for each group:  
TESTHI[1:0]  
TESTHI[7:2]  
TESTHI8 – cannot be grouped with other TESTHI signals  
TESTHI9 – cannot be grouped with other TESTHI signals  
TESTHI10 – cannot be grouped with other TESTHI signals  
TESTHI11 – cannot be grouped with other TESTHI signals  
TESTHI12 – cannot be grouped with other TESTHI signals  
Datasheet  
19  
Electrical Specifications  
2.6  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type. GTL+ input signals have  
differential input buffers that use GTLREF as a reference level. In this document, the term "GTL+  
Input" refers to the GTL+ input group as well as the GTL+ I/O group when receiving. Similarly,  
"GTL+ Output" refers to the GTL+ output group as well as the GTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals that are dependent upon the rising edge of  
BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals that  
are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0.  
Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time  
during the clock cycle. Table 2-3 identifies which signals are common clock, source synchronous,  
and asynchronous.  
Table 2-3. FSB Pin Groups  
1
Signal Group  
Type  
Signals  
GTL+ Common Clock  
Input  
Synchronous to  
BCLK[1:0]  
BPRI#, DEFER#, RS[2:0]#, RSP#, TRDY#  
GTL+ Common Clock  
I/O  
Synchronous to  
BCLK[1:0]  
AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]#, BR0#, DBSY#,  
DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#, MCERR#  
Signals  
Associated Strobe  
ADSTB0#  
2
REQ[4:0]#, A[16:3]#  
2
A[35:17]#  
ADSTB1#  
GTL+ Source  
Synchronous I/O  
Synchronous to  
Associated strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous to  
BCLK[1:0]  
GTL+ Strobes  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
Asynchronous GTL+  
Input  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#,  
SLP#, STPCLK#, RESET#  
Asynchronous GTL+  
Output  
FERR#/PBE#, IERR#, THERMTRIP#  
PROCHOT#  
Asynchronous GTL+  
Input/Output  
TAP Input  
TAP Output  
FSB Clock  
Synchronous to TCK TCK, TDI, TMS, TRST#  
Synchronous to TCK TDO  
3
Clock  
BCLK[1:0], ITP_CLK[1:0]  
VCC, VCCA, VCCIOPLL, VID[5:0], VSS, VSSA,  
GTLREF[3:0], COMP[1:0], RESERVED, TESTHI[12:0],  
THERMDA, THERMDC, VCC_SENSE, VSS_SENSE,  
Power/Other  
3
VCCVID, VCCVIDLB, BSEL[1:0], SKTOCC#, DBR# ,  
,
VIDPWRGD, BOOTSELECT, OPTIMIZED/COMPAT#  
PWRGOOD  
NOTES:  
1. Refer to Section 4.2 for signal descriptions.  
2. The value of these pins during the active-to-inactive edge of RESET# defines the processor configuration  
options. See Section 6.1 for details.  
3. In processor systems where there is no debug port implemented on the system board, these signals are used  
to support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
20  
Datasheet  
Electrical Specifications  
Table 2-4. Signal Characteristics  
Signals with RTT  
Signals with no RTT  
A20M#, BCLK[1:0], BPM[5:0]#, BR0#, BSEL[1:0],  
COMP[1:0], FERR#/PBE#, IERR#, IGNNE#, INIT#,  
LINT0/INTR, LINT1/NMI, PWRGOOD, RESET#,  
SKTOCC#, SLP#, SMI#, STPCLK#, TDO,  
TESTHI[12:0], THERMDA, THERMDC,  
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#,  
BNR#, BOOTSELECT , BPRI#, D[63:0]#, DBI[3:0]#,  
1
DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#,  
DSTBP[3:0]#, HIT#, HITM#, LOCK#, MCERR#,  
1
OPTIMIZED/COMPAT# , PROCHOT#, REQ[4:0]#,  
THERMTRIP#, VID[5:0], VIDPWRGD,  
GTLREF[3:0], TCK, TDI, TRST#, TMS  
RS[2:0]#, RSP#, TRDY#  
2
Open Drain Signals  
BSEL[1:0], VID[5:0], THERMTRIP#, FERR#/PBE#,  
IERR#, BPM[5:0]#, BR0#, TDO  
NOTES:  
1. The OPTIMIZED/COMPAT# and BOOTSELECT pins have a 500–5000 pull-up to V  
rather than R .  
TT  
CCVID  
2. Signals that do not have R , nor are actively driven to their high-voltage level.  
TT  
Table 2-5. Signal Reference Voltages  
GTLREF  
V
/2  
V
/2  
CCVID  
CC  
BPM[5:0]#, LINT0/INTR, LINT1/NMI, RESET#, BINIT#,  
BNR#, HIT#, HITM#, MCERR#, PROCHOT#, BR0#,  
A[35:0]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BPRI#, D[63:0]#,  
DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#,  
DSTBN[3:0]#, DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,  
RSP#, TRDY#  
A20M#, IGNNE#, INIT#,  
VIDPWRGD,  
1
PWRGOOD , SLP#, SMI#,  
BOOTSELECT,  
OPTIMIZED/  
COMPAT#  
1
1
STPCLK#, TCK , TDI ,  
TMS , TRST#  
1
1
NOTES:  
1.  
These signals also have hysteresis added to the reference voltage. See Table 2-12 for more information.  
2.7  
Asynchronous GTL+ Signals  
Legacy input signals (such as A20M#, IGNNE#, INIT#, SMI#, SLP#, and STPCLK#) use CMOS  
input buffers. All of these signals follow the same DC requirements as GTL+ signals; however, the  
outputs are not actively driven high (during a logical 0-to-1 transition) by the processor. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0].  
All of the Asynchronous GTL+ signals are required to be asserted/de-asserted for at least six  
BCLKs for the processor to recognize the proper signal state. See Section 2.11 for the DC  
specifications for the Asynchronous GTL+ signal groups. See Section 6.2 for additional timing  
requirements for entering and leaving the low power states.  
2.8  
Test Access Port (TAP) Connection  
Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is  
recommended that the Celeron D processor be first in the TAP chain and followed by any other  
components within the system. A translation buffer should be used to connect to the rest of the  
chain unless one of the other components is capable of accepting an input of the appropriate  
voltage level. Similar considerations must be made for TCK, TMS, TRST#, TDI, and TDO. Two  
copies of each signal may be required, with each driving a different voltage level.  
Datasheet  
21  
Electrical Specifications  
2.9  
FSB Frequency Select Signals (BSEL[1:0])  
The BSEL[1:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]).  
Table 2-6 defines the possible combinations of the signals and the frequency associated with each  
combination. The required frequency is determined by the processor, chipset, and clock  
synthesizer. All agents must operate at the same frequency.  
The Celeron D processor currently operates at a 533 MHz FSB frequency (selected by a 133 MHz  
BCLK[1:0] frequency). Individual processors will only operate at their specified FSB frequency.  
For more information about these pins, refer to Section 4.2.  
Table 2-6. BSEL[1:0] Frequency Table for BCLK[1:0]  
BSEL1  
BSEL0  
Function  
L
H
133 MHz  
2.10  
Absolute Maximum and Minimum Ratings  
Table 2-7 specifies absolute maximum and minimum ratings. Within functional operation limits,  
functionality and long-term reliability can be expected.  
At conditions outside functional operation condition limits, but within absolute maximum and  
minimum ratings, neither functionality nor long-term reliability can be expected. If a device is  
returned to conditions within functional operation limits after having been subjected to conditions  
outside these limits, but within the absolute maximum and minimum ratings, the device may be  
functional, but with its lifetime degraded depending on exposure to conditions exceeding the  
functional operation condition limits.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-  
term reliability can be expected. Moreover, if a device is subjected to these conditions for any  
length of time then, when returned to conditions within the functional operating condition limits, it  
will either not function, or its reliability will be severely degraded.  
Although the processor contains protective circuitry to resist damage from static electric discharge,  
precautions should always be taken to avoid high static voltages or electric fields.  
Table 2-7. Processor DC Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
1
V
V
Core voltage with respect to V  
- 0.3  
- 0.3  
1.55  
1.55  
V
V
CC  
SS  
1
FSB termination voltage with respect to V  
Processor case temperature  
TT  
SS  
See  
Chapter 5  
See  
Chapter 5  
2, 3  
2, 3  
T
T
°C  
°C  
C
Processor storage temperature  
–40  
+85  
STORAGE  
NOTES:  
1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must  
be satisfied.  
2. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive  
a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-  
term reliability of the device. For functional operation, refer to the processor case temperature specifications.  
3. This rating applies to the processor and does not include any tray or packaging.  
22  
Datasheet  
Electrical Specifications  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core silicon and  
not at the package pins unless noted otherwise. See Chapter 4 for the pin signal definitions and  
signal pin assignments. Most of the signals on the processor FSB are in the GTL+ signal group. The  
DC specifications for these signals are listed in Table 2-10.  
Previously, legacy signals and Test Access Port (TAP) signals to the processor used low-voltage  
CMOS buffer types. However, these interfaces now follow DC specifications similar to GTL+. The  
DC specifications for these signal groups are listed in Table 2-11 and Table 2-12.  
Table 2-8 through Table 2-15 list the DC specifications for the Celeron D processor and are valid  
only while meeting specifications for case temperature, clock frequency, and input voltages. Care  
should be taken to read all notes associated with each parameter.  
Table 2-8. Voltage and Current Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
VID range  
VID  
1.250  
1.400  
V
See Table 2-9 and VID – I (max)  
2,3,4  
CC  
V
V
V
CC  
CC  
Figure 2-2  
* 1.45 mΩ  
Processor  
Number  
Core Frequency  
for processor with  
I
CC  
multiple VID:  
350  
345  
340  
335  
330  
325  
320  
3.20 GHz  
73  
73  
73  
73  
73  
73  
73  
3.06 GHz  
2.93 GHz  
2.80 GHz  
2.66 GHz  
2.53 GHz  
2.40 GHz  
I
CC  
5
A
I
Stop-Grant  
3.20 GHz  
3.06 GHz  
2.93 GHz  
2.80 GHz  
2.66 GHz  
2.53 GHz  
2.40 GHz  
CC  
350  
345  
340  
335  
330  
325  
320  
40  
40  
40  
40  
40  
40  
40  
I
I
SGNT  
6,7  
A
SLP  
8
9
9
I
I
I
I
I
I
I
I
I
TCC active  
for PLL pins  
I
CC  
A
TCC  
CC  
CC  
CC  
CC  
60  
60  
mA  
mA  
µA  
CC_VCCA  
CC_VCCIOPLL  
CC_GTLREF  
for I/O PLL pin  
for GTLREF pins (all pins)  
200  
/
9
CC_VCCVID  
I
for VCCVID/VCCVIDLB  
150  
mA  
CC  
VCCVIDLB  
NOTES:  
1. Individual processor VID values may be calibrated during manufacturing such that two devices at the same  
speed may have different VID settings.  
2.  
These voltages are targets only. A variable voltage source should exist on systems in the event that a differ-  
ent voltage is required. See Section 2.4 and Table 2-2 for more information.  
Datasheet  
23  
Electrical Specifications  
3. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE pins at the  
socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 Mminimum im-  
pedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise  
from the system is not coupled into the oscilloscope probe.  
4.  
Refer to Table 2-9 and Figure 2-2 for the minimum, typical, and maximum V allowed for a given current. The  
CC  
processor should not be subjected to any V and I combination wherein V exceeds V for a giv-  
CC_MAX  
CC  
CC  
CC  
en current. Moreover, V should never exceed the VID voltage. Failure to adhere to this specification can  
CC  
shorten the processor lifetime.  
5.  
I
is specified at V  
CC_MAX CC_MAX .  
6. The current specified is also for AutoHALT state.  
7. Stop-Grant and I Sleep are specified at V  
8. The maximum instantaneous current the processor will draw while the thermal control circuit is active as in-  
I
CC  
CC  
CC_MAX .  
dicated by the assertion of PROCHOT# is the same as the maximum I for the processor.  
CC  
9. These parameters are based on design characterization and are not tested.  
Table 2-9. VCC Static and Transient Tolerance  
1,2,3  
Voltage Deviation from VID Setting (V)  
Icc (A)  
Maximum Voltage  
Typical Voltage  
Minimum Voltage  
0
5
0.000  
-0.007  
-0.015  
-0.022  
-0.029  
-0.036  
-0.044  
-0.051  
-0.058  
-0.065  
-0.073  
-0.080  
-0.087  
-0.094  
-0.102  
-0.106  
-0.025  
-0.034  
-0.042  
-0.051  
-0.060  
-0.068  
-0.077  
-0.085  
-0.094  
-0.103  
-0.111  
-0.120  
-0.129  
-0.137  
-0.146  
-0.151  
-0.050  
-0.060  
-0.070  
-0.080  
-0.090  
-0.100  
-0.110  
-0.120  
-0.130  
-0.140  
-0.150  
-0.160  
-0.170  
-0.180  
-0.190  
-0.196  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
73  
NOTES:  
1.  
The loadline specification includes both static and transient limits except for overshoot allowed as  
shown in Section 2.12.  
2.  
This table is intended to aid in reading discrete points on Figure 2-3.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE  
pins. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC  
and VSS pins. Refer to the Voltage Regulator-Down (VRD) 10.0 Design Guidelines for Desktop  
Socket 478 for socket loadline guidelines and VR implementation details.  
24  
Datasheet  
Electrical Specifications  
Figure 2-2. VCC Static and Transient Tolerance  
Icc [A]  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
VID - 0.000  
VID - 0.050  
VID - 0.100  
VID - 0.150  
VID - 0.200  
VID - 0.250  
VID - 0.300  
Vcc  
Maximum  
Vcc  
Typical  
Vcc  
Minimum  
NOTES:  
1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in  
Section 2.12.  
2. This loadline specification shows the deviation from the VID set point.  
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE pins. Voltage  
regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS pins. Refer to  
the Voltage Regulator-Down (VRD) 10.0 Design Guidelines for Desktop Socket 478 for socket loadline  
guidelines and VR implementation details.  
Datasheet  
25  
Electrical Specifications  
Table 2-10. GTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit Notes  
2,3  
V
Input Low Voltage  
Input High Voltage  
Output High Voltage  
0.0  
GTLREF – (0.10 * V  
)
CC  
V
IL  
3,4,5  
V
GTLREF + (0.10 * V  
)
V
V
V
IH  
CC  
CC  
CC  
3,5  
V
0.90*V  
N/A  
V
OH  
CC  
V
/
CC  
I
Output Low Current  
A
OL  
[0.50*RR  
+R  
]
ON_MIN  
TT_MIN  
6
I
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
Buffer On Resistance  
N/A  
N/A  
6.33  
8
± 200  
± 200  
10.33  
12  
µA  
LI  
7
I
µA  
LO  
8
R
on_compatible  
8
R
on_optimized  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
3. The V referred to in these specifications is the instantaneous V  
V
IL  
.
CC  
CC  
4.  
5.  
V
V
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
IH  
and V may experience excursions above V  
.
CC  
IH  
OH  
6. Leakage to V with pin held at V  
.
SS  
CC  
7. Leakage to V with pin held at 300 mV.  
CC  
8. These specifications are different depending on whether the platform is forward compatible to the Celeron D proces-  
sor or if it is optimized for the Celeron D processor. A compatible platform is one that is designed for a previous gen-  
eration processor but has some level of compatibility with the Celeron D processor. An optimized platform is one  
designed specifically for the Celeron D processor; however, it may have some level of compatibility with previous  
generation processors.  
Table 2-11. Asynchronous GTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
2,3  
V
Input Low Voltage  
0.0  
V
/2 – (0.10 * V )  
CC  
V
V
IL  
CC  
3,4,5,6  
5,6,7  
8
V
Input High Voltage  
V
/2 + (0.10 * V  
)
V
IH  
CC  
CC  
CC  
CC  
V
Output High Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
Buffer On Resistance  
0.90*V  
V
V
OH  
OL  
CC  
I
V
/[0.50*R  
+R ]  
ON_MIN  
A
CC  
TT_MIN  
9
I
N/A  
N/A  
6.33  
8
± 200  
± 200  
10.33  
12  
µA  
µA  
W
W
IL  
10  
I
LO  
11  
R
on_compatible  
11  
R
on_optimized  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.  
3. LINT0/INTR and LINT1/NMI use GTLREF as a reference voltage. For these two signals  
V
IL  
V
V
V
= GTLREF + (0.10 * V ) and V = GTLREF – (0.10 * V ).  
IH  
IH  
IH  
CC IL CC  
4.  
5.  
is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.  
and V may experience excursions above V  
.
CC  
OH  
6. The V referred to in these specifications refers to instantaneous V  
.
CC  
CC  
7. All outputs are open drain.  
8. The maximum output current is based on maximum current handling capability of the buffer and is not specified into  
the test load.  
9. Leakage to V with pin held at V  
.
SS  
CC  
10. Leakage to V with pin held at 300 mV.  
CC  
26  
Datasheet  
Electrical Specifications  
11. These specifications are different depending on whether the platform is forward compatible to the Celeron D pro-  
cessor or if it is optimized for the Celeron D processor. A compatible platform is one that is designed for a previous  
generation processor but has some level of compatibility with the Celeron D processor. An optimized platform is one  
designed specifically for the Celeron D processor; however, it may have some level of compatibility with previous  
generation processors.  
.
Table 2-12. PWRGOOD and TAP Signal Group DC Specifications  
1,2  
Symbol  
Parameter  
Input Hysteresis  
Min  
Max  
Unit Notes  
3
V
200  
350  
mV  
HYS  
Input low to high threshold  
voltage  
4
V
0.5 * (V + V  
)
0.5 * (V + V )  
HYS_MAX  
V
T+  
CC  
HYS_MIN  
CC  
Input high to low threshold  
voltage  
4
V
0.5 * (V – V  
)
0.5 * (V – V )  
HYS_MIN  
V
T-  
CC  
HYS_MAX  
CC  
4
V
Output High Voltage  
Output Low Current  
Input Leakage Current  
Output Leakage Current  
Buffer On Resistance  
N/A  
7
V
V
OH  
CC  
5
I
45  
mA  
OL  
6
I
± 200  
± 200  
12  
µA  
LI  
7
I
µA  
LO  
8
Ron  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. All outputs are open drain.  
3.  
V
represents the amount of hysteresis, nominally centered about 0.5 * V for all TAP inputs.  
HYS CC  
4. The V referred to in these specifications refers to instantaneous V  
.
CC  
CC  
5. The maximum output current is based on maximum current handling capability of the buffer and is not specified into  
the test load.  
6. Leakage to V with pin held at V  
.
SS  
CC  
7. Leakage to V with Pin held at 300 mV.  
CC  
8. These values work for compatible and optimized platforms. A compatible platform is one that is designed for a pre-  
vious generation processor but has some level of compatibility with the Celeron D processor. An optimized platform  
is one designed specifically for the Celeron D processor; however, it may have some level of compatibility with pre-  
vious generation processors.  
Table 2-13. VCCVID DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCVID  
Voltage  
1.14  
1.14  
1.2  
1.2  
1.26  
1.26  
V
V
VCCVIDLB Voltage  
Table 2-14. VIDPWRGD DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
Input Low Voltage  
Input High Voltage  
0.3  
V
V
IL  
V
0.9  
IH  
Datasheet  
27  
Electrical Specifications  
Table 2-15. BSEL [1:0] and VID[5:0] DC Specifications  
1
Symbol  
(BSEL) Buffer On Resistance  
Parameter  
Max  
Unit  
Notes  
2
R
60  
60  
on  
2
3
R
(VID)  
Buffer On Resistance  
Max Pin Current  
on  
I
8
mA  
µA  
V
OL  
I
Output Leakage Current  
Voltage Tolerance  
200  
LO  
V
3.3 + 5%  
TOL  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. Leakage to V with pin held at 2.5 V.  
SS  
Table 2-16. BOOTSELECT DC Specifications  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
Input Low Voltage  
Input High Voltage  
0.2 * VCCVID  
V
V
IL  
V
0.8 * VCCVID  
IH  
NOTES:  
1. These parameters are not tested and are based on design simulations.  
2.12  
VCC Overshoot Specification  
The Celeron D processor can tolerate short transient overshoot events where VCC exceeds the VID  
voltage when transitioning from a high to low current load condition. This overshoot cannot exceed  
VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage). The time duration of  
the overshoot event must not exceed TOS_MAX (TOS_MAX is the maximum allowable time duration  
above VID). These specifications apply to the processor die voltage as measured across the  
VCC_SENSE and VSS_SENSE pins.  
Table 2-17. VCC Overshoot Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
Magnitude of V overshoot  
above VID  
CC  
V
0.050  
V
2-3  
OS_MAX  
Time duration of V  
overshoot above VID  
CC  
T
25  
µs  
2-3  
OS_MAX  
28  
Datasheet  
Electrical Specifications  
Figure 2-3. VCC Overshoot Example Waveform  
Example Overshoot Waveform  
VID + 0.050  
VID  
VOS  
TOS  
Time  
TOS: Overshoot time above VID  
VOS: Overshoot above VID  
NOTES:  
1. V is measured overshoot voltage.  
OS  
2. T is measured time duration above VID.  
OS  
2.12.1  
Die Voltage Validation  
Overshoot events from application testing on real processors must meet the specifications in  
Table 2-17 when measured across the VCC_SENSE and VSS_SENSE pins. Overshoot events that  
are < 10 ns in duration may be ignored. These measurements of processor die level overshoot  
should be taken with a 100 MHz bandwidth limited oscilloscope.  
Datasheet  
29  
Electrical Specifications  
2.13  
GTL+ FSB Specifications  
Termination resistors are not required for most GTL+ signals; they are integrated into the processor  
silicon.  
Valid high and low levels are determined by the input buffers that compare a signal’s voltage with a  
reference voltage called GTLREF. Table 2-18 lists the GTLREF specifications. The GTL+  
reference voltage (GTLREF) should be generated on the system board using high precision voltage  
divider circuits.  
Table 2-18. GTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
2/3 V  
Max  
Units Notes  
2,3,4,5  
GTLREF  
Bus Reference Voltage  
0.98 * (2/3 V  
)
1.02 * (2/3 V  
CC  
)
V
_compatible  
CC  
CC  
2,3,4,5  
5,6  
GTLREF  
Bus Reference Voltage (0.98 * 0.63) * V  
0.63 * V  
(1.02 * 0.63) * V  
V
_optimized  
CC  
CC  
CC  
On die pull-up for  
BOOTSELECT and  
500  
R
5000  
_pullup  
OPTIMIZED/  
COMPAT# pins  
Termination  
45  
5,7  
5
RTT_compatible  
RTT_optimized  
50  
60  
55  
66  
Resistance  
Termination  
54  
Resistance  
5,8  
5,8  
COMP[1:0]  
COMP[1:0]  
NOTES:  
COMP Resistance  
COMP Resistance  
49.4  
61.3  
49.9  
61.9  
50.4  
62.5  
_compatible  
_optimized  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. The tolerances for this specification have been stated generically to enable the system designer to calculate the mini-  
mum and maximum values across the range of V  
.
CC  
3. GTLREF should be generated from V by a voltage divider of 1% resistors or 1% matched resistors.  
CC  
4. The V referred to in these specifications is the instantaneous V  
.
CC  
CC  
5. These specifications are different depending on whether the platform is forward compatible to the Celeron D processor  
or if it is optimized for the Celeron D processor. A compatible platform is one that is designed for a previous generation  
processor but has some level of compatibility with the Celeron D processor. An optimized platform is one designed spe-  
cifically for the Celeron D processor; however, it may have some level of compatibility with previous generation proces-  
sors.  
6. These pull-ups are to the internal V  
supply.  
CCVID  
7.  
R
is the on-die termination resistance measured at V /2 of the GTL+ output driver.  
TT CC  
8. COMP resistance must be provided on the system board with 1% resistors.  
§
30  
Datasheet  
Package Mechanical Specifications  
3 Package Mechanical  
Specifications  
The Celeron D processor is packaged in a Flip-Chip Pin Grid Array (FC-mPGA4) package that  
interfaces with the motherboard via a mPGA478B socket. The package consists of a processor core  
mounted on a substrate pin-carrier. An integrated heat spreader (IHS) is attached to the package  
substrate and core and serves as the mating surface for processor component thermal solutions  
(such as a heatsink). Figure 3-1 shows a sketch of the processor package components and how they  
are assembled together. Refer to the mPGA479, mPGA478A, mPGA478B, mPGA478C, and  
mPGA476 Socket Design Guidelines for complete details on the mPGA478B socket.  
The package components shown in Figure 3-1 include the following:  
Integrated Heat Spreader (IHS)  
Thermal Interface Material (TIM)  
Processor core (die)  
Package substrate  
Capacitors  
Figure 3-1. Processor Package Assembly Sketch  
CORE (DIE)  
IHS  
TIM  
SUBSTRATE  
CAPACITORS  
SOCKET  
MOTHERBOARD  
NOTE:  
1. Socket and motherboard are included for reference and are not part of processor package.  
3.1  
Package Mechanical Drawing  
The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The drawings include  
dimensions necessary to design a thermal solution for the processor. These dimensions include:  
Package reference with tolerances (total height, length, width, etc.)  
IHS parallelism and tilt  
Pin dimensions  
Top-side and back-side component keep-out dimensions  
Reference datums  
All drawing dimensions are in mm [in].  
Datasheet  
31  
Package Mechanical Specifications  
Figure 3-2. Processor Package Drawing (Sheet 1 of 2)  
32  
Datasheet  
Package Mechanical Specifications  
Figure 3-3. Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
33  
Package Mechanical Specifications  
3.2  
Processor Component Keep-Out Zones  
The processor may contain components on the substrate that define component keep-out zone  
requirements. A thermal and mechanical solution design must not intrude into the required keep-  
out zones. Decoupling capacitors are typically mounted to either the topside or pin-side of the  
package substrate. See Figure 3-2 and Figure 3-3 for keep-out zones.  
The location and quantity of package capacitors may change due to manufacturing efficiencies but  
will remain within the component keep-in.  
3.3  
Package Loading Specifications  
Table 3-1 provides dynamic and static load specifications for the processor package. These  
mechanical maximum load limits should not be exceeded during heatsink assembly, shipping  
conditions, or standard use condition. Also, any mechanical system or component testing should  
not exceed the maximum limits. The processor package substrate should not be used as a  
mechanical reference or load-bearing surface for thermal and mechanical solution. The minimum  
loading specification must be maintained by any thermal and mechanical solutions.  
.
Table 3-1. Processor Loading Specifications  
Parameter  
Minimum  
Maximum  
Notes  
1,2,3  
Static  
44 N [10 lbf]  
445 N [100 lbf]  
890 N [200 lbf]  
667 N [150 lbf]  
1,3,4  
1,3,5  
Dynamic  
Transient  
NOTES:  
1. These specifications apply to uniform compressive loading in a direction normal to the processor IHS.  
2. This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the  
minimum specified load on the processor package.  
3. These specifications are based on limited testing for design characterization. Loading limits are for the  
package only and does not include the limits of the processor socket.  
4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load require-  
ment.  
5. Transient loading is defined as a 2 second duration peak load superimposed on the static load requirement,  
representative of loads experienced by the package during heatsink installation.  
34  
Datasheet  
Package Mechanical Specifications  
3.4  
Package Handling Guidelines  
Table 3-2 includes a list of guidelines on package handling in terms of recommended maximum  
loading on the processor IHS relative to a fixed substrate. These package handling loads may be  
experienced during heatsink removal.  
Table 3-2. Package Handling Guidelines  
Parameter  
Maximum Recommended  
Notes  
1 2  
Shear  
Tensile  
356 N [80 lbf]  
156 N [35 lbf]  
8 N-m [70 lbf-in]  
,
2,3  
2,4  
Torque  
NOTES:  
1. A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.  
2. These guidelines are based on limited testing for design characterization.  
3. A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.  
4. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top sur-  
face.  
3.5  
Package Insertion Specifications  
The Celeron D processor can be inserted into and removed from a mPGA478B socket 15 times.  
The socket should meet the mPGA478B requirements detailed in the mPGA479, mPGA478A,  
mPGA478B, mPGA478C, and mPGA476 Socket Design Guidelines.  
3.6  
3.7  
Processor Mass Specification  
The typical mass of the Celeron D processor is 19 g [0.67 oz]. This mass [weight] includes all the  
components that are included in the package.  
Processor Materials  
Table 3-3 lists some of the package components and associated materials.  
Table 3-3. Processor Materials  
Component  
Material  
Integrated Heat Spreader (IHS)  
Substrate  
Nickel Plated Copper  
Fiber Reinforced Resin  
Gold Plated Copper  
Substrate Pins  
Datasheet  
35  
Package Mechanical Specifications  
3.8  
Processor Markings  
Figure 3-5 and Figure 3-5 show the topside markings on the processor. These diagrams are to aid in  
the identification of the Celeron D processor.  
Figure 3-4. Processor Top-Side Marking Example (with Processor Number)  
m
I
04  
©
Celeron® D  
Processor  
Number  
345 SL7NX XXXXX  
3.06GHz/256/533  
FFFFFFFF-NNNN  
2D Matrix  
Figure 3-5. Processor Top-Side Marking Example  
GROUP1 LINE1  
GROUP1 LINE2  
GROUP1 LINE3  
GROUP1 LINE4  
GROUP1 LINE5  
Grp1line1: INTEL m © ‘03  
Grp1line2: CELERON® D  
Grp1line3: 2.53GHZ/256/533  
Grp1line4: SLxxx PHILLIPINES  
Grp1line5: 7407A234  
ATPO #  
SERIAL #  
ATPO #  
SER #  
2D Matrix  
36  
Datasheet  
Package Mechanical Specifications  
3.9  
Processor Pinout Coordinates  
Figure 3-6 shows the top view of the processor pin coordinates. The coordinates are referred to  
throughout the document to identify processor pins  
.
Figure 3-6. Processor Pinout Coordinates (Top View)  
Clocks  
Async/TAP  
VCC/VSS  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
AF  
AE  
AD  
AC  
AB  
AA  
Y
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
W
V
U
U
T
T
R
R
Address  
Data  
Processor  
Top View  
P
P
N
N
M
L
M
L
K
K
J
J
H
H
G
F
G
F
E
E
D
D
C
C
B
B
A
A
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
VCC/VSS  
Common  
Clock  
= VCC  
= VSS  
= GTLREF  
= Signal/Other  
§
Datasheet  
37  
Package Mechanical Specifications  
38  
Datasheet  
Pin Listing and Signal Descriptions  
4 Pin Listing and Signal  
Descriptions  
This chapter provides the Celeron D processor pinout and signal description.  
4.1  
Processor Pin Assignments  
The pinout footprint is shown in Figure 4-1 and Figure 4-2. These figures represent the pinout  
arranged by pin number. Table 4-1 provides the pinout arranged alphabetically by signal name and  
Table 4-2 provides the pinout arranged numerically by pin number.  
Datasheet  
39  
Pin Listing and Signal Descriptions  
Figure 4-1. Pinout Diagram (Top View—Left Side)  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
AF  
AE  
SKTOCC# Reserved Reserved  
OPTIMIZED/  
BCLK1  
BCLK0  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
AF  
AE  
DBR#  
VSS  
VCCA  
VSS  
VSS  
Reserved  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
COMPAT#  
AD  
AC  
ITP_CLK1 TESTHI12 TESTHI0  
VSSA  
VSS  
VCCIOPLL  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AD  
AC  
ITP_CLK0  
SLP#  
VSS  
TESTHI4 TESTHI5  
TESTHI2 TESTHI3  
PWR  
VSS  
AB  
RESET#  
TESTHI7  
VSS  
VSS  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
AB  
GOOD  
AA  
Y
VSS  
D56#  
D55#  
VSS  
D61#  
VSS  
D63#  
D59#  
VSS  
VSS  
D62#  
VSS  
GTLREF TESTHI6  
AA  
Y
D58#  
D60#  
VSS  
W
V
D57#  
D51#  
VSS  
DSTBP3# DSTBN3#  
W
V
D54#  
D49#  
VSS  
VSS  
D50#  
D47#  
VSS  
D53#  
VSS  
DBI3#  
D52#  
U
T
D48#  
D44#  
VSS  
U
T
D45#  
D42#  
VSS  
D46#  
DSTBN2#  
VSS  
VSS  
R
P
D43#  
D41#  
VSS  
D40#  
R
P
DBI2#  
D38#  
D37#  
VSS  
DSTBP2#  
D36#  
D32#  
VSS  
D34#  
N
M
L
D39#  
VSS  
D33#  
VSS  
VSS  
N
M
L
D35#  
COMP0  
VSS  
D27#  
DP3#  
DP1#  
VSS  
D28#  
DSTBN1#  
VSS  
D24#  
K
J
DP2#  
DP0#  
VSS  
D30#  
DSTBP1#  
VSS  
VSS  
K
J
D29#  
D26#  
VSS  
D14#  
H
G
F
D31#  
DBI1#  
VSS  
D16#  
D10#  
VSS  
D11#  
H
G
F
D25#  
D22#  
VSS  
D18#  
D19#  
VSS  
VSS  
D20#  
D17#  
VSS  
DSTBP0# GTLREF  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
19  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
18  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
17  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
16  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
15  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
14  
E
D21#  
D15#  
VSS  
DSTBN0#  
D5#  
DBI0#  
VSS  
D4#  
D0#  
VSS  
21  
VCC  
VSS  
VCC  
VSS  
VCC  
20  
E
D
C
B
A
D23#  
D12#  
VSS  
D13#  
D7#  
D
C
B
A
D8#  
VSS  
D9#  
D6#  
VSS  
D1#  
VSS  
D3#  
VSS  
D2#  
Reserved  
22  
26  
25  
24  
23  
40  
Datasheet  
Pin Listing and Signal Descriptions  
Figure 4-2. Pinout Diagram (Top View—Right Side)  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
AF  
AE  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VID0  
VCCVID  
VID1  
VCCVIDLB  
VID2  
VCC  
VID3  
VSS  
VID4  
AF  
AE  
BOOT  
SELECT  
AD  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
BSEL0  
BSEL1  
VSS  
VID5  
VIDPWRGD  
AD  
AC  
AB  
AA  
Y
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
BPM0#  
VSS  
VSS  
BPM1#  
BPM4#  
VSS  
BPM2#  
BPM5#  
VSS  
IERR#  
VSS  
VSS  
RSP#  
TESTHI1  
VSS  
AP0#  
A35#  
VSS  
AC  
AB  
AA  
Y
GTLREF  
BPM3#  
VSS  
BINIT#  
TESTHI10  
VSS  
STPCLK#  
TESTHI9  
VSS  
A34#  
A29#  
VSS  
W
V
INIT#  
AP1#  
VSS  
A33#  
A27#  
VSS  
W
V
MCERR#  
TESTHI8  
VSS  
A32#  
U
A31#  
A25#  
A23#  
A17#  
VSS  
U
T
A30#  
A26#  
VSS  
A22#  
A18#  
VSS  
T
R
A28#  
ADSTB1#  
VSS  
VSS  
A21#  
R
P
A24#  
A20#  
A19#  
COMP1  
A12#  
A13#  
VSS  
P
N
VSS  
A16#  
A15#  
VSS  
A14#  
VSS  
N
M
L
A8#  
VSS  
A11#  
A10#  
M
L
A5#  
ADSTB0#  
REQ1#  
VSS  
VSS  
A7#  
A9#  
K
VSS  
A4#  
VSS  
A3#  
A6#  
K
J
TRDY#  
BR0#  
VSS  
REQ2#  
VSS  
REQ3#  
REQ4#  
VSS  
VSS  
REQ0#  
VSS  
J
H
DBSY#  
RS1#  
VSS  
DRDY#  
BNR#  
VSS  
H
G
F
LOCK#  
RS2#  
VSS  
ADS#  
RS0#  
VSS  
G
F
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
TMS  
VSS  
VCC  
VSS  
GTLREF  
TRST#  
VSS  
HIT#  
E
LINT1  
TDO  
HITM#  
VSS  
DEFER#  
BPRI#  
VSS  
E
D
TCK  
LINT0  
TDI  
D
C
A20M#  
VSS  
THERMDC  
PROCHOT#  
C
FERR#/  
PBE#  
B
A
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
SMI#  
VSS  
THERMDA  
IGNNE#  
B
A
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
Reserved TESTHI11 VCC_SENSE VSS_SENSE  
VSS  
THERMTRIP#  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Datasheet  
41  
Pin Listing and Signal Descriptions  
Table 4-1. Alphabetical Pin Assignment  
Table 4-1. Alphabetical Pin Assignment  
Signal Buffer  
Type  
Signal Buffer  
Pin Name  
A3#  
Pin #  
K2  
Direction  
Pin Name  
Pin #  
Direction  
Type  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Asynch GTL+  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
BINIT#  
BNR#  
AA3  
G2  
Common Clock Input/Output  
Common Clock Input/Output  
A4#  
K4  
L6  
A5#  
BOOTSELECT AD1  
Power/Other  
Input  
A6#  
K1  
BPM0#  
BPM1#  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
COMP0  
COMP1  
D0#  
AC6  
AB5  
AC4  
Y6  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input  
A7#  
L3  
A8#  
M6  
L2  
A9#  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
ADSTB0#  
ADSTB1#  
AP0#  
AP1#  
BCLK0  
BCLK1  
M3  
M4  
N1  
M1  
N2  
N4  
N5  
T1  
AA5  
AB4  
D2  
H6  
Common Clock Input/Output  
AD6  
AD5  
L24  
P1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Output  
Output  
Input  
Input  
R2  
P3  
B21  
B22  
A23  
A25  
C21  
D22  
B24  
C23  
C24  
B25  
G22  
H21  
C26  
D23  
J21  
D25  
H22  
E24  
G23  
F23  
F24  
E25  
F26  
D26  
L21  
G26  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D1#  
P4  
D2#  
R3  
T2  
D3#  
D4#  
U1  
P6  
D5#  
D6#  
U3  
T4  
D7#  
D8#  
V2  
D9#  
R6  
W1  
T5  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
U4  
V3  
W2  
Y1  
AB1  
C6  
G1  
L5  
Common Clock Input/Output  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
R5  
AC1  
V5  
Common Clock Input/Output  
Common Clock Input/Output  
AF22  
AF23  
Bus Clock  
Bus Clock  
Input  
Input  
42  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-1. Alphabetical Pin Assignment  
Table 4-1. Alphabetical Pin Assignment  
Signal Buffer  
Signal Buffer  
Pin Name  
D26#  
Pin #  
Direction  
Pin Name  
DBI3#  
Pin #  
Direction  
Type  
Type  
H24  
M21  
L22  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
V21  
AE25  
H5  
Source Synch  
Power/Other  
Input/Output  
Output  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBI0#  
DBI1#  
DBI2#  
DBR#  
DBSY#  
Common Clock Input/Output  
Common Clock Input  
J24  
DEFER#  
DP0#  
E2  
K23  
H25  
M23  
N22  
P21  
M24  
N23  
M26  
N26  
N25  
R21  
P24  
R25  
R24  
T26  
T25  
T22  
T23  
U26  
U24  
U23  
V25  
U21  
V22  
V24  
W26  
Y26  
W25  
Y23  
Y24  
Y21  
AA25  
AA22  
AA24  
E21  
G25  
P26  
J26  
K25  
K26  
L25  
H2  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
DP1#  
DP2#  
DP3#  
DRDY#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#/PBE#  
GTLREF  
GTLREF  
GTLREF  
GTLREF  
HIT#  
E22  
K22  
R22  
W22  
F21  
J23  
P23  
W23  
B6  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Asynch AGL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
AA21  
AA6  
F20  
F6  
Input  
Input  
Input  
Input  
F3  
Common Clock Input/Output  
Common Clock Input/Output  
HITM#  
E3  
IERR#  
AC3  
B2  
Asynch GTL+  
Asynch GTL+  
Asynch GTL+  
TAP  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
IGNNE#  
INIT#  
W5  
ITP_CLK0  
ITP_CLK1  
LINT0  
AC26  
AD26  
D1  
TAP  
Asynch GTL+  
Asynch GTL+  
LINT1  
E5  
LOCK#  
G4  
Common Clock Input/Output  
Common Clock Input/Output  
MCERR#  
V6  
OPTIMIZED/  
COMPAT#  
AE26  
Power/Other  
Input  
PROCHOT#  
PWRGOOD  
REQ0#  
C3  
AB23  
J1  
Asynch GTL+  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/Output  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
REQ1#  
K5  
J4  
REQ2#  
REQ3#  
J3  
REQ4#  
H3  
Datasheet  
43  
Pin Listing and Signal Descriptions  
Table 4-1. Alphabetical Pin Assignment  
Table 4-1. Alphabetical Pin Assignment  
Signal Buffer  
Type  
Signal Buffer  
Pin Name  
Pin #  
Direction  
Pin Name  
VCC  
Pin #  
Direction  
Type  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
A22  
A7  
A20  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
A8  
AE21  
AF24  
AF25  
AB25  
F1  
AA10  
AA12  
AA14  
AA16  
AA18  
AA8  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
RS1#  
G5  
RS2#  
F4  
AB11  
AB13  
AB15  
AB17  
AB19  
AB7  
RSP#  
AB2  
AF26  
AB26  
B5  
SKTOCC#  
SLP#  
Power/Other  
Asynch GTL+  
Asynch GTL+  
Asynch GTL+  
TAP  
Output  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
SMI#  
STPCLK#  
TCK  
Y4  
D4  
AB9  
TDI  
C1  
TAP  
AC10  
AC12  
AC14  
AC16  
AC18  
AC8  
TDO  
D5  
TAP  
TESTHI0  
TESTHI1  
TESTHI2  
TESTHI3  
TESTHI4  
TESTHI5  
TESTHI6  
TESTHI7  
TESTHI8  
TESTHI9  
TESTHI10  
TESTHI11  
TESTHI12  
THERMDA  
THERMDC  
AD24  
AA2  
AC21  
AC20  
AC24  
AC23  
AA20  
AB22  
U6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
TAP  
AD11  
AD13  
AD15  
AD17  
AD19  
AD7  
W4  
Y3  
AD9  
A6  
AE10  
AE12  
AE14  
AE16  
AE18  
AE20  
AE6  
AD25  
B3  
C4  
THERMTRIP# A2  
Output  
Input  
TMS  
F7  
TRDY#  
TRST#  
VCC  
J6  
Common Clock Input  
E6  
TAP  
Input  
AE8  
A10  
A12  
A14  
A16  
A18  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AF11  
AF13  
AF15  
AF17  
AF19  
VCC  
VCC  
VCC  
VCC  
44  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-1. Alphabetical Pin Assignment  
Table 4-1. Alphabetical Pin Assignment  
Signal Buffer  
Signal Buffer  
Pin Name  
VCC  
Pin #  
Direction  
Pin Name  
Pin #  
Direction  
Output  
Type  
Type  
AF2  
AF21  
AF5  
AF7  
AF9  
B11  
B13  
B15  
B17  
B19  
B7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC_SENSE  
VCCVID  
VCCVIDLB  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VIDPWRGD  
VSS  
A5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
VCCIOPLL  
AF4  
AF3  
AE5  
AE4  
AE3  
AE2  
AE1  
AD3  
AD2  
A11  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
B9  
VSS  
A13  
C10  
C12  
C14  
C16  
C18  
C20  
C8  
VSS  
A15  
VSS  
A17  
VSS  
A19  
VSS  
A21  
VSS  
A24  
VSS  
A26  
VSS  
A3  
D11  
D13  
D15  
D17  
D19  
D7  
VSS  
A9  
VSS  
AA1  
AA11  
AA13  
AA15  
AA17  
AA19  
AA23  
AA26  
AA4  
AA7  
AA9  
AB10  
AB12  
AB14  
AB16  
AB18  
AB20  
AB21  
AB24  
AB3  
AB6  
VSS  
VSS  
VSS  
VSS  
D9  
VSS  
E10  
E12  
E14  
E16  
E18  
E20  
E8  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F11  
F13  
F15  
F17  
F19  
F9  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE23  
AD20  
VSS  
VSS  
Datasheet  
45  
Pin Listing and Signal Descriptions  
Table 4-1. Alphabetical Pin Assignment  
Table 4-1. Alphabetical Pin Assignment  
Signal Buffer  
Type  
Signal Buffer  
Pin Name  
VSS  
Pin #  
Direction  
Pin Name  
VSS  
Pin #  
Direction  
Type  
AB8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
B14  
B16  
B18  
B20  
B23  
B26  
B4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC11  
AC13  
AC15  
AC17  
AC19  
AC2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AC22  
AC25  
AC5  
B8  
C11  
C13  
C15  
C17  
C19  
C2  
AC7  
AC9  
AD10  
AD12  
AD14  
AD16  
AD18  
AD21  
AD23  
AD4  
C22  
C25  
C5  
C7  
C9  
D10  
D12  
D14  
D16  
D18  
D20  
D21  
D24  
D3  
AD8  
AE11  
AE13  
AE15  
AE17  
AE19  
AE22  
AE24  
AE7  
D6  
AE9  
D8  
AF1  
E1  
AF10  
AF12  
AF14  
AF16  
AF18  
AF20  
AF6  
E11  
E13  
E15  
E17  
E19  
E23  
E26  
E4  
AF8  
B10  
E7  
B12  
E9  
46  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-1. Alphabetical Pin Assignment  
Table 4-1. Alphabetical Pin Assignment  
Signal Buffer  
Signal Buffer  
Pin Name  
VSS  
Pin #  
Direction  
Pin Name  
VSS  
Pin #  
Direction  
Type  
Type  
F10  
F12  
F14  
F16  
F18  
F2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
P5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSA  
VSS_SENSE  
R1  
R23  
R26  
R4  
T21  
T24  
T3  
F22  
F25  
F5  
T6  
F8  
U2  
G21  
G24  
G3  
U22  
U25  
U5  
G6  
V1  
H1  
V23  
V26  
V4  
H23  
H26  
H4  
W21  
W24  
W3  
W6  
Y2  
J2  
J22  
J25  
J5  
K21  
K24  
K3  
Y22  
Y25  
Y5  
K6  
AD22  
A4  
L1  
Output  
L23  
L26  
L4  
M2  
M22  
M25  
M5  
N21  
N24  
N3  
N6  
P2  
P22  
P25  
Datasheet  
47  
Pin Listing and Signal Descriptions  
Table 4-2. Numerical Pin Assignment  
Table 4-2. Numerical Pin Assignment  
Signal Buffer  
Type  
Signal Buffer  
Pin #  
A2  
Pin Name  
Direction  
Pin #  
B18  
Pin Name  
VSS  
Direction  
Type  
THERMTRIP#  
VSS  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
TAP  
A3  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VCC  
VSS  
A4  
VSS_SENSE  
VCC_SENSE  
TESTHI11  
RESERVED  
VCC  
Output  
Output  
Input  
A5  
D0#  
Input/Output  
Input/Output  
A6  
D1#  
A7  
VSS  
A8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D6#  
Input/Output  
Input/Output  
A9  
VSS  
D9#  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
B2  
VCC  
VSS  
VSS  
TDI  
Input  
VCC  
C2  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Asynch GTL+  
VSS  
C3  
PROCHOT#  
THERMDC  
VSS  
Input/Output  
VCC  
C4  
VSS  
C5  
VCC  
C6  
A20M#  
VSS  
Input  
VSS  
C7  
VCC  
C8  
VCC  
VSS  
VSS  
C9  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VCC  
VSS  
VSS  
RESERVED  
D2#  
VCC  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
Asynch AGL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
Input  
VSS  
VCC  
VSS  
D3#  
VSS  
VCC  
VSS  
IGNNE#  
THERMDA  
VSS  
B3  
VCC  
VSS  
B4  
B5  
SMI#  
Input  
VCC  
D4#  
B6  
FERR#/PBE#  
VCC  
Output  
Input/Output  
B7  
VSS  
B8  
VSS  
D7#  
Input/Output  
Input/Output  
B9  
VCC  
D8#  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
VSS  
VSS  
VCC  
D12#  
LINT0  
BPRI#  
VSS  
Input/Output  
Input  
VSS  
VCC  
D2  
Common Clock Input  
Power/Other  
VSS  
D3  
VCC  
D4  
TCK  
TAP  
Input  
VSS  
D5  
TDO  
VSS  
TAP  
Output  
VCC  
D6  
Power/Other  
48  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-2. Numerical Pin Assignment  
Table 4-2. Numerical Pin Assignment  
Signal Buffer  
Signal Buffer  
Pin #  
D7  
Pin Name  
VCC  
Direction  
Pin #  
E22  
Pin Name  
DSTBN0#  
Direction  
Type  
Type  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
D8  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
D5#  
E23  
E24  
E25  
E26  
F1  
VSS  
D9  
D17#  
D21#  
VSS  
Input/Output  
Input/Output  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
RS0#  
VSS  
Common Clock Input  
Power/Other  
F2  
F3  
HIT#  
RS2#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
F4  
F5  
F6  
GTLREF  
TMS  
Power/Other  
TAP  
Input  
Input  
F7  
F8  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
F9  
VCC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
VSS  
Input/Output  
Input/Output  
VCC  
D13#  
VSS  
D15#  
D23#  
VSS  
DEFER#  
HITM#  
VSS  
LINT1  
TRST#  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
DBI0#  
VSS  
VCC  
Input/Output  
Input/Output  
VSS  
VCC  
VSS  
E2  
Common Clock Input  
Common Clock Input/Output  
Power/Other  
VCC  
E3  
VSS  
E4  
VCC  
E5  
Asynch GTL+  
TAP  
Input  
Input  
GTLREF  
DSTBP0#  
VSS  
Input  
E6  
Input/Output  
E7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
E8  
D19#  
D20#  
VSS  
Input/Output  
Input/Output  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
D22#  
ADS#  
BNR#  
VSS  
Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
G2  
G3  
G4  
LOCK#  
RS1#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
G5  
G6  
G21  
G22  
G23  
G24  
VSS  
Power/Other  
D10#  
D18#  
VSS  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
Datasheet  
49  
Pin Listing and Signal Descriptions  
Table 4-2. Numerical Pin Assignment  
Table 4-2. Numerical Pin Assignment  
Signal Buffer  
Type  
Signal Buffer  
Pin #  
Pin Name  
DBI1#  
Direction  
Pin #  
L4  
Pin Name  
VSS  
Direction  
Type  
G25  
G26  
H1  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
D25#  
VSS  
L5  
ADSTB0#  
A5#  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
L6  
H2  
DRDY#  
REQ4#  
VSS  
Common Clock Input/Output  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
D24#  
D28#  
VSS  
H3  
Source Synch  
Power/Other  
Input/Output  
H4  
H5  
DBSY#  
BR0#  
D11#  
D16#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
COMP0  
DP3#  
VSS  
Input  
H6  
Common Clock Input/Output  
Power/Other  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
A13#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
M2  
D26#  
D31#  
VSS  
Input/Output  
Input/Output  
M3  
A10#  
A11#  
VSS  
Input/Output  
Input/Output  
M4  
M5  
REQ0#  
VSS  
Input/Output  
M6  
A8#  
Input/Output  
Input/Output  
J2  
M21  
M22  
M23  
M24  
M25  
M26  
N1  
D27#  
VSS  
J3  
REQ3#  
REQ2#  
VSS  
Input/Output  
Input/Output  
J4  
D32#  
D35#  
VSS  
Input/Output  
Input/Output  
J5  
J6  
TRDY#  
D14#  
VSS  
Common Clock Input  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
D37#  
A12#  
A14#  
VSS  
Input/Output  
Input/Output  
Input/Output  
DSTBP1#  
D29#  
VSS  
Input/Output  
Input/Output  
N2  
N3  
N4  
A15#  
A16#  
VSS  
Input/Output  
Input/Output  
DP0#  
A6#  
Common Clock Input/Output  
N5  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
N6  
K2  
A3#  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
VSS  
K3  
VSS  
D33#  
D36#  
VSS  
Input/Output  
Input/Output  
K4  
A4#  
Input/Output  
Input/Output  
K5  
REQ1#  
VSS  
K6  
D39#  
D38#  
COMP1  
VSS  
Input/Output  
Input/Output  
Input  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VSS  
DSTBN1#  
D30#  
VSS  
Input/Output  
Input/Output  
P2  
P3  
A19#  
A20#  
VSS  
Input/Output  
Input/Output  
DP1#  
DP2#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
P4  
P5  
P6  
A24#  
D34#  
VSS  
Input/Output  
Input/Output  
L2  
A9#  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
P21  
P22  
L3  
A7#  
50  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-2. Numerical Pin Assignment  
Table 4-2. Numerical Pin Assignment  
Signal Buffer  
Signal Buffer  
Pin #  
P23  
Pin Name  
DSTBP#2  
Direction  
Pin #  
V2  
Pin Name  
A27#  
Direction  
Type  
Type  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
P24  
P25  
P26  
R1  
D41#  
VSS  
V3  
A32#  
V4  
VSS  
DBI2#  
VSS  
Input/Output  
V5  
AP1#  
Common Clock Input/Output  
Common Clock Input/Output  
V6  
MCERR#  
DBI3#  
D53#  
R2  
A18#  
A21#  
VSS  
Input/Output  
Input/Output  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Input/Output  
Input/Output  
R3  
R4  
VSS  
R5  
ADSTB1#  
A28#  
D40#  
DSTBN#2  
VSS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
D54#  
Input/Output  
Input/Output  
R6  
D51#  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
VSS  
A29#  
Input/Output  
Input/Output  
W2  
A33#  
D43#  
D42#  
VSS  
Input/Output  
Input/Output  
W3  
VSS  
W4  
TESTHI9  
INIT#  
Input  
Input  
W5  
A17#  
A22#  
VSS  
Input/Output  
Input/Output  
W6  
VSS  
T2  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
VSS  
T3  
DSTBN3#  
DSTBP3#  
VSS  
Input/Output  
Input/Output  
T4  
A26#  
A30#  
VSS  
Input/Output  
Input/Output  
T5  
T6  
D57#  
Input/Output  
Input/Output  
Input/Output  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
VSS  
D55#  
D46#  
D47#  
VSS  
Input/Output  
Input/Output  
A34#  
Y2  
VSS  
Y3  
TESTHI10  
STPCLK#  
VSS  
Input  
Input  
D45#  
D44#  
A23#  
VSS  
Input/Output  
Input/Output  
Input/Output  
Y4  
Y5  
Y6  
BPM3#  
D60#  
Common Clock Input/Output  
U2  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Input/Output  
U3  
A25#  
A31#  
VSS  
Input/Output  
Input/Output  
VSS  
U4  
D58#  
Input/Output  
Input/Output  
U5  
D59#  
U6  
TESTHI8  
D52#  
VSS  
Input  
VSS  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
Input/Output  
D56#  
Input/Output  
Input  
VSS  
D50#  
D49#  
VSS  
Input/Output  
Input/Output  
TESTHI1  
BINIT#  
VSS  
Common Clock Input/Output  
Power/Other  
D48#  
VSS  
Input/Output  
BPM4#  
GTLREF  
Common Clock Input/Output  
Power/Other  
Input  
Datasheet  
51  
Pin Listing and Signal Descriptions  
Table 4-2. Numerical Pin Assignment  
Table 4-2. Numerical Pin Assignment  
Signal Buffer  
Type  
Signal Buffer  
Pin #  
Pin Name  
VSS  
Direction  
Pin #  
Pin Name  
TESTHI7  
Direction  
Type  
AA7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
Power/Other  
Power/Other  
Power/Other  
Input  
Input  
AA8  
VCC  
VSS  
PWRGOOD  
VSS  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
VCC  
VSS  
RESET#  
SLP#  
Common Clock Input  
Asynch GTL+ Input  
VCC  
VSS  
AP0#  
Common Clock Input/Output  
Power/Other  
AC2  
VSS  
VCC  
VSS  
AC3  
IERR#  
BPM2#  
VSS  
Asynch GTL+  
Output  
AC4  
Common Clock Input/Output  
Power/Other  
VCC  
VSS  
AC5  
AC6  
BPM0#  
VSS  
Common Clock Input/Output  
Power/Other  
VCC  
VSS  
AC7  
AC8  
VCC  
Power/Other  
TESTHI6  
GTLREF  
D62#  
VSS  
Input  
AC9  
VSS  
Power/Other  
Input  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
VCC  
Power/Other  
Input/Output  
VSS  
Power/Other  
VCC  
Power/Other  
D63#  
D61#  
VSS  
Input/Output  
Input/Output  
VSS  
Power/Other  
VCC  
Power/Other  
VSS  
Power/Other  
A35#  
RSP#  
VSS  
Input/Output  
VCC  
Power/Other  
AB2  
Common Clock Input  
Power/Other  
VSS  
Power/Other  
AB3  
VCC  
Power/Other  
AB4  
BPM5#  
BPM1#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
VSS  
Power/Other  
AB5  
TESTHI3  
TESTHI2  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
Input  
Input  
AB6  
AB7  
VCC  
VSS  
Power/Other  
AB8  
Power/Other  
TESTHI5  
TESTHI4  
VSS  
Input  
Input  
AB9  
VCC  
VSS  
Power/Other  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
Power/Other  
VCC  
VSS  
Power/Other  
ITP_CLK0  
Input  
Input  
Input  
Output  
Power/Other  
BOOTSELECT Power/Other  
VCC  
VSS  
Power/Other  
AD2  
VIDPWRGD  
VID5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AD3  
VCC  
VSS  
Power/Other  
AD4  
VSS  
Power/Other  
AD5  
BSEL1  
BSEL0  
VCC  
Output  
Output  
VCC  
VSS  
Power/Other  
AD6  
Power/Other  
AD7  
VCC  
VSS  
Power/Other  
AD8  
VSS  
Power/Other  
AD9  
VCC  
VSS  
Power/Other  
AD10  
VSS  
52  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-2. Numerical Pin Assignment  
Table 4-2. Numerical Pin Assignment  
Signal Buffer  
Signal Buffer  
Pin #  
Pin Name  
VCC  
Direction  
Pin #  
Pin Name  
Direction  
Type  
Type  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
OPTIMIZED/  
COMPAT#  
AE26  
Power/Other  
Input  
VSS  
AF1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
VCC  
AF2  
VCC  
VSS  
AF3  
VCCVIDLB  
VCCVID  
VCC  
Input  
Input  
VCC  
AF4  
VSS  
AF5  
VCC  
AF6  
VSS  
VSS  
AF7  
VCC  
VCC  
AF8  
VSS  
VCCIOPLL  
VSS  
AF9  
VCC  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
VSS  
VSSA  
VSS  
VCC  
VSS  
TESTHI0  
TESTHI12  
ITP_CLK1  
VID4  
Input  
VCC  
Input  
VSS  
Input  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
Output  
Output  
VSS  
AE2  
VID3  
VCC  
AE3  
VID2  
VSS  
AE4  
VID1  
VCC  
AE5  
VID0  
VSS  
AE6  
VCC  
VCC  
AE7  
VSS  
BCLK0  
BCLK1  
RESERVED  
RESERVED  
SKTOCC#  
Input  
Input  
AE8  
VCC  
Bus Clock  
AE9  
VSS  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
VCC  
VSS  
Power/Other  
Output  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
RESERVED  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCCA  
VSS  
DBR#  
Output  
Datasheet  
53  
Pin Listing and Signal Descriptions  
4.2  
Alphabetical Signals Reference  
Table 4-3. Signal Description (Sheet 1 of 8)  
Name  
Type  
Description  
36  
A[35:3]# (Address) define a 2 -byte physical memory address space. In sub-  
phase 1 of the address phase, these pins transmit the address of a transaction.  
In sub-phase 2, these pins transmit transaction type information. These signals  
®
must connect the appropriate pins of all agents on the Celeron D processor  
FSB. A[35:3]# are protected by parity signals AP[1:0]#. A[35:3]# are source  
synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#.  
Input/  
Output  
A[35:3]#  
On the active-to-inactive transition of RESET#, the processor samples a subset  
of the A[35:3]# pins to determine power-on configuration. See Section 6.1 for  
more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks physical address  
bit 20 (A20#) before looking up a line in any internal cache and before driving a  
read/write transaction on the bus. Asserting A20M# emulates the 8086  
processor's address wrap-around at the 1-MB boundary. Assertion of A20M# is  
only supported in real mode.  
A20M#  
ADS#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[35:3]# and REQ[4:0]# pins. All bus agents observe the ADS#  
activation to begin parity checking, protocol checking, address decode, internal  
snoop, or deferred reply ID match operations associated with the new  
transaction.  
Input/  
Output  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and  
falling edges. Strobes are associated with signals as shown below.  
Signals  
Associated Strobe  
Input/  
Output  
ADSTB[1:0]#  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB0#  
ADSTB1#  
AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#,  
A[35:3]#, and the transaction type on the REQ[4:0]#. A correct parity signal is  
high if an even number of covered signals are low and low if an odd number of  
covered signals are low. This allows parity to be high when all the covered  
signals are high. AP[1:0]# should connect the appropriate pins of all Celeron D  
processor FSB agents. The following table defines the coverage model of these  
signals.  
Input/  
AP[1:0]#  
Output  
Request Signals  
Subphase 1  
Subphase 2  
A[35:24]#  
A[23:3]#  
AP0#  
AP1#  
AP1#  
AP1#  
AP0#  
AP0#  
REQ[4:0]#  
The differential pair BCLK (Bus Clock) determines the FSB frequency. All  
processor FSB agents must receive these signals to drive their outputs and latch  
their inputs.  
BCLK[1:0]  
Input  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing V  
.
CROSS  
54  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BINIT# (Bus Initialization) may be observed and driven by all processor FSB  
agents and if used, must connect the appropriate pins of all such agents. If the  
BINIT# driver is enabled during power-on configuration, BINIT# is asserted to  
signal any bus condition that prevents reliable future operation.  
If BINIT# observation is enabled during power-on configuration, and BINIT# is  
sampled asserted, symmetric agents reset their bus LOCK# activity and bus  
request arbitration state machines. The bus agents do not reset their IOQ and  
transaction tracking state machines upon observation of BINIT# activation. Once  
the BINIT# assertion has been observed, the bus agents will re-arbitrate for the  
FSB and attempt completion of their bus queue and IOQ entries.  
Input/  
Output  
BINIT#  
If BINIT# observation is disabled during power-on configuration, a central agent  
may handle an assertion of BINIT# as appropriate to the error handling  
architecture of the system.  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Input/  
Output  
BNR#  
This input is required to determine whether the processor is installed in a  
platform that supports the Celeron D processor. The Celeron D processor will not  
operate if this pin is low. This input has a weak internal pull-up.  
BOOTSELECT  
Input  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor  
signals. They are outputs from the processor which indicate the status of  
breakpoints and programmable counters used for monitoring processor  
performance. BPM[5:0]# should connect the appropriate pins of all Celeron D  
processor FSB agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is  
a processor output used by debug tools to determine processor debug  
readiness.  
Input/  
Output  
BPM[5:0]#  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ#  
is used by debug tools to request debug operation of the processor.  
Refer to the applicable chipset platform design guide for more detailed  
information.  
These signals do not have on-die termination. Refer to Section 2.5, and the  
applicable chipset platform design guide for termination requirements.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor  
FSB. It must connect the appropriate pins of all processor FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes all other  
agents to stop issuing new requests, unless such requests are part of an  
ongoing locked operation. The priority agent keeps BPRI# asserted until all of its  
requests are completed, then releases the bus by de-asserting BPRI#.  
BPRI#  
BR0#  
Input  
BR0# (Bus Request 0) drives the BREQ0# signal in the system and is used by  
the processor to request the bus. During power-on configuration this pin is  
sampled to determine the agent ID = 0.  
Input/  
Output  
This signal does not have on-die termination and must be terminated.  
The BCLK[1:0] frequency select signals BSEL[1:0] are used to select the  
processor input clock frequency. Table 2-6 defines the possible combinations of  
the signals and the frequency associated with each combination. The required  
BSEL[1:0]  
Output frequency is determined by the processor, chipset and clock synthesizer. All  
agents must operate at the same frequency. For more information about these  
pins, including termination recommendations refer to Section 2.9 and the  
appropriate platform design guidelines.  
COMP[1:0] must be terminated on the system board using precision resistors.  
Analog Refer to the applicable chipset platform design guide for details on  
implementation.  
COMP[1:0]  
Datasheet  
55  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor FSB agents, and must connect the appropriate pins on  
all such agents. The data driver asserts DRDY# to indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a  
pair of one DSTBP# and one DSTBN#. The following table shows the grouping  
of data signals to data strobes and DBI#.  
Quad-Pumped Signal Groups  
DSTBN#/  
DSTBP#  
Input/  
Output  
Data Group  
DBI#  
D[63:0]#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# pins determine the polarity of the data signals. Each  
group of 16 data signals corresponds to one DBI# signal. When the DBI# signal  
is active, the corresponding data group is inverted and therefore sampled active  
high.  
DBI[3:0]# (Data Bus Invert) are source synchronous and indicate the polarity of  
the D[63:0]# signals.The DBI[3:0]# signals are activated when the data on the  
data bus is inverted. If more than half the data bits, within a 16-bit group, would  
have been asserted electrically low, the bus agent may invert the data bus  
signals for that particular sub-phase for that 16-bit group.  
DBI[3:0] Assignment To Data Bus  
Input/  
Output  
DBI[3:0]#  
Bus Signal  
Data Bus Signals  
DBI3#  
DBI2#  
DBI1#  
DBI0#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DBR# (Debug Reset) is used only in processor systems where no debug port is  
implemented on the system board. DBR# is used by a debug port interposer so  
that an in-target probe can drive system reset. If a debug port is implemented in  
the system, DBR# is a no connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on  
Input/ the processor FSB to indicate that the data bus is in use. The data bus is  
Output released after DBSY# is de-asserted. This signal must connect the appropriate  
pins on all processor FSB agents.  
DBSY#  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the  
responsibility of the addressed memory or Input/Output agent. This signal must  
connect the appropriate pins of all processor FSB agents.  
DEFER#  
DP[3:0]#  
Input  
DP[3:0]# (Data Parity) provide parity protection for the D[63:0]# signals. They  
are driven by the agent responsible for driving D[63:0]#, and must connect the  
appropriate pins of all Celeron D processor FSB agents.  
Input/  
Output  
56  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
Input/ indicating valid data on the data bus. In a multi-common clock data transfer,  
Output DRDY# may be de-asserted to insert idle clocks. This signal must connect the  
appropriate pins of all processor FSB agents.  
DRDY#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBN0#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Input/  
Output  
DSTBN[3:0]#  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Input/  
Output  
DSTBP[3:0]#  
FERR#/PBE# (Floating Point Error/Pending Break Event) is a multiplexed signal  
and its meaning is qualified by STPCLK#. When STPCLK# is not asserted,  
FERR#/PBE# indicates a floating-point error and will be asserted when the  
processor detects an unmasked floating-point error. When STPCLK# is not  
asserted, FERR#/PBE# is similar to the ERROR# signal on the Intel 387  
coprocessor, and is included for compatibility with systems using MS-DOS*-type  
floating-point error reporting.  
FERR#/PBE#  
Output  
When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the  
processor has a pending break event waiting for service. The assertion of  
FERR#/PBE# indicates that the processor should be returned to the Normal  
state. For additional information on the pending break event functionality,  
including the identification of support of the feature and enable/disable  
information, refer to volume 3 of the Intel Architecture Software Developer's  
Manual and the Intel Processor Identification and the CPUID Instruction  
application note.  
GTLREF determines the signal reference level for GTL+ input pins. GTLREF is  
used by the GTL+ receivers to determine if a signal is a logical 0 or logical 1.  
Refer to the applicable chipset platform design guide for more information.  
GTLREF  
Input  
Input/ HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
Output results. Any FSB agent may assert both HIT# and HITM# together to indicate  
that it requires a snoop stall, which can be continued by reasserting HIT# and  
HIT#  
HITM# together.  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an internal  
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction  
on the processor FSB. This transaction may optionally be converted to an  
external error signal (e.g., NMI) by system core logic. The processor will keep  
IERR# asserted until the assertion of RESET#.  
IERR#  
Output  
This signal does not have on-die termination. Refer to Section 2.5 for termination  
requirements.  
Datasheet  
57  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is de-asserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside the processor  
without affecting its internal caches or floating-point registers. The processor  
then begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the appropriate  
pins of all processor FSB agents.  
INIT#  
Input  
Input  
If INIT# is sampled active on the active to inactive transition of RESET#, then the  
processor executes its Built-in Self-Test (BIST).  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems  
where no debug port is implemented on the system board. ITP_CLK[1:0] are  
used as BCLK[1:0] references for a debug port implemented on an interposer. If  
a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the  
system. These are not processor signals.  
ITP_CLK[1:0]  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC  
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a  
maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable  
interrupt. INTR and NMI are backward compatible with the signals of those  
names on the Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the  
APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is  
the default configuration.  
LOCK# indicates to the system that a transaction must occur atomically. This  
signal must connect the appropriate pins of all processor FSB agents. For a  
locked sequence of transactions, LOCK# is asserted from the beginning of the  
first transaction to the end of the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of the processor  
FSB, it will wait until it observes LOCK# de-asserted. This enables symmetric  
agents to retain ownership of the processor FSB throughout the bus locked  
operation and ensure the atomicity of lock.  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error  
without a bus protocol violation. It may be driven by all processor FSB agents.  
MCERR# assertion conditions are configurable at a system level. Assertion  
options are defined by the following options:  
Enabled or disabled.  
Input/  
Output  
MCERR#  
Asserted, if configured, for internal errors along with IERR#.  
Asserted, if configured, by the request initiator of a bus transaction after it  
observes an error.  
Asserted by any bus agent when it observes an error in a bus transaction.  
For more details regarding machine check architecture, refer to the IA-32  
Software Developer’s Manual, Volume 3: System Programming Guide.  
58  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 6 of 8)  
Name  
Type  
Description  
This is an input to the processor to determine if the processor is in an optimized  
platform or a compatible platform. This input has a weak internal pull-up.  
A compatible platform is one that is designed for a previous generation  
processor but has some level of compatibility with the Celeron D processor. An  
optimized platform is one designed specifically for the Celeron D processor;  
however, it may have some level of compatibility with previous generation  
processors.  
OPTIMIZED/  
COMPAT#  
Input  
As an output, PROCHOT# (Processor Hot) goes active when the processor  
temperature monitoring sensor detects that the processor has reached its  
Input/ maximum safe operating temperature. This indicates that the processor Thermal  
Output Control Circuit (TCC) has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system activates the TCC, if enabled. The TCC remains  
active until the system de-asserts PROCHOT#.  
PROCHOT#  
PWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that the clocks and power supplies are stable and  
within their specifications. ‘Clean’ implies that the signal will remain low (capable  
of sinking leakage current), without glitches, from the time that the power  
supplies are turned on until they come within specification. The signal must then  
transition monotonically to a high state. PWRGOOD can be driven inactive at  
PWRGOOD  
Input  
any time, but clocks and power must again be stable before a subsequent rising  
edge of PWRGOOD. It must also meet the minimum pulse width specification  
and be followed by a 1 ms to 10 ms RESET# pulse.  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
REQ[4:0]# (Request) must connect the appropriate pins of all processor FSB  
Input/ agents. They are asserted by the current bus owner to define the currently active  
Output transaction type. These signals are source synchronous to ADSTB0#. Refer to  
the AP[1:0]# signal description for a details on parity checking of these signals.  
REQ[4:0]#  
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. For a  
power-on Reset, RESET# must stay active for at least 1 ms after V and BCLK  
CC  
have reached their proper specifications. On observing active RESET#, all FSB  
agents will de-assert their outputs within two clocks. RESET# must not be kept  
asserted for more than 10 ms while PWRGOOD is asserted.  
RESET#  
RS[2:0]#  
Input  
Input  
A number of bus signals are sampled at the active-to-inactive transition of  
RESET# for power-on configuration. These configuration options are described  
in the Section 6.1.  
This signal does not have on-die termination and must be terminated on the  
system board.  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of all processor FSB agents.  
RSP# (Response Parity) is driven by the response agent (the agent responsible  
for completion of the current transaction) during assertion of RS[2:0]#, the  
signals for which RSP# provides parity protection. It must connect to the  
appropriate pins of all processor FSB agents.  
RSP#  
Input  
A correct parity signal is high if an even number of covered signals are low and  
low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is  
also high, since this indicates it is not being driven by any agent guaranteeing  
correct parity.  
SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System  
board designers may use this pin to determine if the processor is present.  
SKTOCC#  
Output  
Datasheet  
59  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter  
the Sleep state. During Sleep state, the processor stops providing internal clock  
signals to all units, leaving only the Phase-Locked Loop (PLL) still operating.  
Processors in this state will not recognize snoops or interrupts. The processor  
will recognize only assertion of the RESET# signal, and de-assertion of SLP#. If  
SLP# is de-asserted, the processor exits Sleep state and returns to Stop-Grant  
state, restarting its internal clock signals to the bus and processor core units.  
SLP#  
SMI#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously by system  
logic. On accepting a System Management Interrupt, the processor saves the  
current state and enter System Management Mode (SMM). An SMI  
Acknowledge transaction is issued, and the processor begins program execution  
from the SMM handler.  
Input  
Input  
If SMI# is asserted during the de-assertion of RESET#, the processor will tristate  
its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to enter a low  
power Stop-Grant state. The processor issues a Stop-Grant Acknowledge  
transaction, and stops providing internal clock signals to all processor core units  
except the FSB and APIC units. The processor continues to snoop bus  
transactions and service interrupts while in Stop-Grant state. When STPCLK# is  
de-asserted, the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK#  
is an asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus (also known  
as the Test Access Port).  
TCK  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDI  
TDO (Test Data Out) transfers serial test data out of the processor. TDO  
provides the serial output needed for JTAG specification support.  
TDO  
Output  
Input  
TESTHI[12:0] must be connected to a V power source through a resistor for  
CC  
TESTHI[12:0]  
proper processor operation. See Section 2.5 for more details.  
THERMDA  
THERMDC  
Other Thermal Diode Anode. See Section 5.2.6.  
Other Thermal Diode Cathode. See Section 5.2.6.  
In the event of a catastrophic cooling failure, the processor will automatically  
shut down when the silicon has reached a temperature approximately 20 °C  
above the maximum T . Assertion of THERMTRIP# (Thermal Trip) indicates the  
C
processor junction temperature has reached a level beyond which permanent  
silicon damage may occur. Upon assertion of THERMTRIP#, the processor will  
shut off its internal clocks (thus halting program execution) in an attempt to  
reduce the processor junction temperature. To protect the processor, its core  
THERMTRIP#  
Output voltage (V ) must be removed following the assertion of THERMTRIP#. Driving  
CC  
of the THERMTRIP# signal is enabled within 10 µs of the assertion of  
PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated,  
THERMTRIP# remains latched until PWRGOOD is de-asserted. While the de-  
assertion of the PWRGOOD signal will de-assert THERMTRIP#, if the  
processor’s junction temperature remains at or above the trip level,  
THERMTRIP# will again be asserted within 10 µs of the assertion of  
PWRGOOD.  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
TMS  
Input  
tools.  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
TRDY#  
TRST#  
Input  
Input  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins of all FSB agents.  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be  
driven low during power on Reset.  
60  
Datasheet  
Pin Listing and Signal Descriptions  
Table 4-3. Signal Description (Sheet 8 of 8)  
Name  
Type  
Description  
VCC are the power pins for the processor. The voltage supplied to these pins is  
determined by the VID[5:0] pins.  
VCC  
Input  
VCCA provides isolated power for the internal processor core PLLs. Refer to the  
applicable chipset platform design guide for complete implementation details.  
VCCA  
Input  
Input  
VCCIOPLL provides isolated power for internal processor FSB PLLs. Follow the  
guidelines for VCCA, and refer to the applicable chipset platform design guide  
for complete implementation details.  
VCCIOPLL  
VCC_SENSE is an isolated low impedance connection to processor core power  
VCC_SENSE  
VCCVID  
Output (V ). It can be used to sense or measure voltage near the silicon with little  
CC  
noise.  
1.2 V is required to be supplied to the VCCVID pin if the platform is going to  
Input  
Input  
support the Celeron D processor. Refer to the applicable chipset platform design  
guide for more information.  
1.2 V is required to be supplied to the VCCVIDLB pin if the platform is going to  
support the Celeron D processor. Refer to the applicable chipset platform design  
guide for more information.  
VCCVIDLB  
VID[5:0] (Voltage ID) pins are used to support automatic selection of power  
supply voltages (V ). These are open drain signals that are driven by the  
CC  
Celeron D processor and must be pulled up to 3.3 V with 1 k5% resistors. The  
voltage supply for these pins must be valid before the VR can supply V to the  
CC  
VID[5:0]  
Output processor. Conversely, the VR output must be disabled until the voltage supply  
for the VID pins becomes valid. The VID pins are needed to support the  
processor voltage specification variations. See Table 2-2 for definitions of these  
pins. The VR must supply the voltage that is requested by the pins, or disable  
itself.  
The processor requires this input to determine that the VCCVID and VCCVIDLB  
voltages are stable and within specification.  
VIDPWRGD  
Input  
VSS are the ground pins for the processor and should be connected to the  
system ground plane.  
VSS  
Input  
VSSA  
Input  
VSSA is the isolated ground for internal PLLs.  
VSS_SENSE is an isolated low impedance connection to processor core V . It  
can be used to sense or measure ground near the silicon with little noise.  
SS  
VSS_SENSE  
Output  
§
Datasheet  
61  
Pin Listing and Signal Descriptions  
62  
Datasheet  
Thermal Specifications and Design Considerations  
5 Thermal Specifications and  
Design Considerations  
5.1  
Processor Thermal Specifications  
The Celeron D processor requires a thermal solution to maintain temperatures within operating  
limits as set forth in Section 5.1.1. Any attempt to operate the processor outside these operating  
limits may result in permanent damage to the processor and potentially other components within  
the system. As processor technology changes, thermal management becomes increasingly crucial  
when building computer systems. Maintaining the proper thermal environment is key to reliable,  
long-term system operation.  
A complete thermal solution includes both component and system level thermal management  
features. Component level thermal solutions can include active or passive heatsinks attached to the  
processor Integrated Heat Spreader (IHS). Typical system level thermal solutions may consist of  
system fans combined with ducting and venting.  
For more information on designing a component level thermal solution, refer to the applicable  
thermal design guide.  
Note: The boxed processor will ship with a component thermal solution. Refer to Chapter 7 for details on  
the boxed processor.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based systems, the  
system/processor thermal solution should be designed such that the processor remains within the  
minimum and maximum case temperature (TC) specifications when operating at or below the  
Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not  
designed to provide this level of thermal capability may affect the long-term reliability of the  
processor and system. For more details on thermal solution design, refer to the appropriate  
processor thermal design guidelines.  
The Celeron D processor introduces a new methodology for managing processor temperatures  
through fan speed control. Selection of the appropriate fan speed will be based on the temperature  
reported by the processor’s Thermal Diode. The fan must be turned on to full speed when TDIODE  
is at or above TCONTROL and TC must be maintained at or below TC (max) as defined by the  
processor thermal specifications in Table 5-1. The fan speed may be lowered when the processor  
temperature can be maintained below TCONTROL as measured by the thermal diode. Systems  
implementing fan speed control must be designed to read temperature values from the diode and  
T
CONTROL register and take appropriate action. Systems that do not alter the fan speed (always at  
full speed) only need to guarantee the case temperature meets specifications in Table 5-1.  
The case temperature is defined at the geometric top center of the processor IHS. Analysis  
indicates that real applications are unlikely to cause the processor to consume maximum power  
dissipation for sustained periods of time. Intel recommends that complete thermal solution designs  
target the Thermal Design Power (TDP) indicated in Table 5-1 instead of the maximum processor  
Datasheet  
63  
Thermal Specifications and Design Considerations  
power consumption. The Thermal Monitor feature is intended to help protect the processor in the  
unlikely event that an application exceeds the TDP recommendation for a sustained period of time.  
For more details on the usage of this feature, refer to Section 5.2. In all cases, the Thermal  
Monitor feature must be enabled for the processor to remain within specification.  
Table 5-1. Processor Thermal Specifications  
Core  
Frequency  
(GHz)  
Processor  
Number  
ThermalDesign Minimum T  
Maximum T  
(°C)  
1,2  
C
C
Notes  
Power (W)  
(°C)  
350  
345  
3.20  
3.06  
2.93  
2.80  
2.66  
2.53  
2.40  
73  
73  
73  
73  
73  
73  
73  
5
5
5
5
5
5
5
67  
67  
67  
67  
67  
67  
67  
340  
335  
330  
325  
320  
NOTES:  
1. Thermal Design Power (TDP) should be used for processor thermal solution design targets. The  
TDP is not the maximum power that the processor can dissipate.  
2. This table shows the maximum TDP for a given frequency range. Individual processors may  
have a lower TDP.  
5.1.2  
Thermal Metrology  
The maximum and minimum case temperatures (TC) are specified in Table 5-1. These temperature  
specifications are meant to help ensure proper operation of the processor. Figure 5-1 illustrates  
where Intel recommends TC thermal measurements should be made. For detailed guidelines on  
temperature measurement methodology, refer to the applicable thermal design guide.  
Figure 5-1. Case Temperature (TC) Measurement Location  
Measure from edge of processor IHS  
15.5 mm[0.61 in]  
Measure TC at this point  
(geometric center of IHS)  
15.5 mm[0.61 in]  
31 mm x 31 mm IHS[1.22 x 1.22 in]  
35 mm x 35 mm substrate [1.378 in x 1.378 in]  
64  
Datasheet  
Thermal Specifications and Design Considerations  
5.2  
Processor Thermal Features  
5.2.1  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the TCC when  
the processor silicon reaches its maximum operating temperature. The TCC reduces processor  
power consumption as needed by modulating (starting and stopping) the internal processor core  
clocks. The Thermal Monitor feature must be enabled for the processor to be operating  
within specifications. The temperature at which Thermal Monitor activates the thermal control  
circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal  
manner, and interrupt requests are latched (and serviced during the time that the clocks are on)  
while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e., TCC is  
active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle  
specific to the processor (typically 30–50%). Clocks often will not be off for more than  
3.0 microseconds when the TCC is active. Cycle times are processor speed dependent and will  
decrease as processor core frequencies increase. A small amount of hysteresis has been included to  
prevent rapid active/inactive transitions of the TCC when the processor temperature is near its  
maximum operating temperature. Once the temperature has dropped below the maximum  
operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock  
modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the TCC would  
only be activated for very short periods of time when running the most power intensive  
applications. The processor performance impact due to these brief periods of TCC activation is  
expected to be so minor that it would be immeasurable. An under-designed thermal solution that is  
not able to prevent excessive activation of the TCC in the anticipated ambient environment may  
cause a noticeable performance loss, and in some cases may result in a TC that exceeds the  
specified maximum temperature and may affect the long-term reliability of the processor. In  
addition, a thermal solution that is significantly under-designed may not be capable of cooling the  
processor even when the TCC is active continuously. Refer to the applicable thermal design guide  
for information on designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and  
cannot be modified. The Thermal Monitor does not require any additional hardware, software  
drivers, or interrupt handling routines.  
5.2.2  
On-Demand Mode  
The Celeron D processor provides an auxiliary mechanism that allows system software to force the  
processor to reduce its power consumption. This mechanism is referred to as "On-Demand" mode  
and is distinct from the Thermal Monitor feature. On-Demand mode is intended as a means to  
reduce system level power consumption. Systems using the Celeron D processor must not rely on  
software usage of this mechanism to limit the processor temperature.  
If bit 4 of the ACPI P_CNT Control Register (located in the processor IA32_THERM_CONTROL  
MSR) is written to a '1', the processor will immediately reduce its power consumption via  
modulation (starting and stopping) of the internal core clock, independent of the processor  
temperature. When using On-Demand mode, the duty cycle of the clock modulation is  
programmable via bits 3:1 of the same ACPI P_CNT Control Register. In On-Demand mode, the  
duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5%  
Datasheet  
65  
Thermal Specifications and Design Considerations  
increments. On-Demand mode may be used in conjunction with the Thermal Monitor. If the system  
tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty  
cycle of the TCC will override the duty cycle selected by the On-Demand mode.  
5.2.3  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature  
has reached its maximum operating temperature. If the Thermal Monitor is enabled (note that the  
Thermal Monitor must be enabled for the processor to be operating within specification), the TCC  
will be active when PROCHOT# is asserted. The processor can be configured to generate an  
interrupt upon the assertion or de-assertion of PROCHOT#. Refer to the Intel Architecture  
Software Developer's Manuals for specific register and programming details.  
The Celeron D processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from over-temperature situations. The PROCHOT# signal is  
bi-directional in that it can either signal when the processor has reached its maximum operating  
temperature or be driven from an external source to activate the TCC. The ability to activate the  
TCC via PROCHOT# can provide a means for thermal protection of system components.  
One application is the thermal protection of voltage regulators (VR). System designers can create a  
circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR  
is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR can cool down  
as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR  
thermal designs to target maximum sustained current instead of maximum current. Systems should  
still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in  
case of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is operating at its  
Thermal Design Power. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time  
when running the most power intensive applications. An under-designed thermal solution that is  
not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may  
cause a noticeable performance loss. Refer to the applicable chipset platform design guide and the  
applicable VRD design guide for details on implementing the bi-directional PROCHOT# feature.  
5.2.4  
THERMTRIP# Signal Pin  
Regardless of whether or not the Thermal Monitor feature is enabled, in the event of a catastrophic  
cooling failure, the processor will automatically shut down when the silicon has reached an  
elevated temperature (refer to the THERMTRIP# definition in Table 4-3). At this point, the FSB  
signal THERMTRIP# will go active and stay active as described in Table 4-3. THERMTRIP#  
activation is independent of processor activity and does not generate any bus cycles.  
66  
Datasheet  
Thermal Specifications and Design Considerations  
5.2.5  
T
and Fan Speed Reduction (Optional)  
CONTROL  
TCONTROL and Fan Speed Reduction are not requirements for the Celeron D processor on 90 nm  
process and in the 478-pin package, but are provided as options for platforms that can use these  
features. TCONTROL is part of the temperature specification that defines temperature for system fan  
speed management. The BIOS reads the TCONTROL value once and configures the fan control chip  
appropriately. The value for TCONTROL will be set during manufacturing and is unique for each  
processor. The TCONTROL temperature for a given processor can be obtained by reading the  
IA32_TEMPERATURE_TARGET MSR in the processor and is in hexadecimal format.  
The value of TCONTROL (read from IA32_TEMPERATURE_TARGET MSR) can vary from 00 h  
to 1E h (0 to 30 °C). The TCONTROL read from the IA32_TEMPERATURE_TARGET MSR needs  
to be added to a base value of 50 °C to get the final value for comparison with Thermal Diode  
temperature (TDIODE). TCONTROL plus the base value of 50 °C is compared to the temperature  
reported by TDIODE. When the TDIODE temperature is below TCONTROL, fan speed can be at  
minimum. As TDIODE approaches TCONTROL plus the base value of 50 °C, fan speed should be  
increased in an effort to maintain TDIODE at/below TCONTROL plus the base value of 50 °C. For  
platforms that support this feature, the processor TC-MAX specification must be within guidelines,  
as defined by the processor thermal specifications in Table 5-1. For 845G/x chipset platforms that  
were not designed to read IA32_TEMPERATURE_TARGET MSR, the processor must be kept  
within the TC-MAX specification.  
5.2.6  
Thermal Diode  
The processor incorporates an on-die thermal diode. A thermal sensor located on the system board  
may monitor the die temperature of the processor for thermal management/long term die  
temperature change purposes. Table 5-2 and Table 5-3 provide the diode parameter and interface  
specifications. This thermal diode is separate from the Thermal Monitor’s thermal sensor and  
cannot be used to predict the behavior of the Thermal Monitor.  
Table 5-2. Thermal Diode Parameters  
Symbol  
Parameter  
Forward Bias Current  
Min  
Typ  
Max  
Unit  
Notes  
1
I
11  
187  
uA  
FW  
2,3,4  
2,3,5  
n
Diode Ideality Factor  
Series Resistance  
1.0083  
3.242  
1.011  
3.33  
1.0137  
3.594  
R
T
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias.  
2. Characterized at 75 °C.  
3. Not 100% tested. Specified by design characterization.  
4.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:  
qVD/nkT  
I
= I * (e  
–1)  
FW  
S
where I = saturation current, q = electronic charge, V = voltage across the diode, k = Boltzmann Constant,  
S
D
and T = absolute temperature (Kelvin).  
5.  
The series resistance, RT, is provided to allow for a more accurate measurement of the junction temperature. RT, as defined,  
includes the pins of the processor but does not include any socket resistance or board trace resistance between the socket  
and the external remote diode thermal sensor. RT can be used by remote diode thermal sensors with automatic series re-  
sistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calcu-  
lated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:  
T
= [R * (N-1) * I  
] / [nk/q * ln N]  
FWmin  
error  
T
where T  
charge.  
= sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic  
error  
Datasheet  
67  
Thermal Specifications and Design Considerations  
Table 5-3. Thermal Diode Interface  
Pin Name  
Pin Number  
Pin Description  
THERMDA  
THERMDC  
B3  
C4  
diode anode  
diode cathode  
§
68  
Datasheet  
Features  
6 Features  
This chapter contains power-on configuration options and clock control/low power state  
descriptions.  
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Celeron D processor samples  
the hardware configuration at reset, on the active-to-inactive transition of RESET#. For  
specifications on these options, refer to Table 6-1.  
The sampled information configures the processor for subsequent operation. These configuration  
options cannot be changed except by another reset. All resets reconfigure the processor; for reset  
purposes, the processor does not distinguish between a "warm" reset and a "power-on" reset.  
Table 6-1. Power-On Configuration Option Pins  
1,2  
Configuration Option  
Pin  
Output tristate  
SMI#  
Execute BIST  
INIT#  
In Order Queue pipelining (set IOQ depth to 1)  
Disable MCERR# observation  
Disable BINIT# observation  
APIC Cluster ID (0-3)  
Disable bus parking  
A7#  
A9#  
A10#  
A[12:11]#  
A15#  
BR0#  
Symmetric agent arbitration ID  
RESERVED  
A[6:3]#, A8#, A[14:13]#, A[16:35]#  
NOTES:  
1. Asserting this signal during RESET# will select the corresponding option.  
2. Address pins not identified in this table as configuration options should not be asserted  
during RESET#.  
6.2  
Clock Control and Low Power States  
The processor allows the use of AutoHALT, Stop-Grant, and Sleep states to reduce power  
consumption by stopping the clock to internal sections of the processor, depending on each  
particular state. See Figure 6-1 for a visual representation of the processor low power states.  
6.2.1  
Normal State—State 1  
This is the normal operating state for the processor.  
Datasheet  
69  
Features  
6.2.2  
AutoHALT Powerdown State—State 2  
AutoHALT is a low power state entered when the processor executes the HALT instruction. The  
processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or  
LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or  
the AutoHALT Power Down state. See the Intel Architecture Software Developer's Manual,  
Volume III: System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the AutoHALT Power Down state.  
When the system de-asserts the STPCLK# interrupt, the processor will return execution to the  
HALT state.  
While in AutoHALT Power Down state, the processor will process FSB snoops and interrupts.  
Figure 6-1. Stop Clock State Machine  
HALT Instruction and  
HALT Bus Cycle Generated  
2. Auto HALT Power Down State  
BCLK running.  
Snoops and interrupts allowed.  
1. Normal State  
Normal execution.  
INIT#, BINIT#, INTR, NMI,  
SMI#, RESET#  
Snoop  
Event  
Occurs  
Snoop  
Event  
Serviced  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
3. Stop Grant State  
BCLK running.  
Snoops and interrupts allowed.  
4. HALT/Grant Snoop State  
BCLK running.  
Service snoops to caches.  
Snoop Event Occurs  
Snoop Event Serviced  
SLP#  
SLP#  
Asserted  
De-asserted  
5. Sleep State  
BCLK running.  
No snoops or interrupts allowed.  
70  
Datasheet  
Features  
6.2.3  
Stop-Grant State—State 3  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks  
after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.  
Since the GTL+ signal pins receive power from the FSB, these pins should not be driven (allowing  
the level to return to VCC) for minimum power drawn by the termination resistors in this state. In  
addition, all other input pins on the FSB should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in the Stop-Grant state. The event is latched and  
can be serviced by software upon exit from the Stop Grant state.  
RESET# causes the processor to immediately initialize itself, but the processor will stay in Stop-  
Grant state. A transition back to the Normal state will occur with the de-assertion of the STPCLK#  
signal. When re-entering the Stop Grant state from the Sleep state, STPCLK# should only be de-  
asserted one or more bus clocks after the de-assertion of SLP#.  
A transition to the HALT/Grant Snoop state occurs when the processor detects a snoop on the FSB  
(see Section 6.2.4). A transition to the Sleep state (see Section 6.2.5) occurs with the assertion of  
the SLP# signal.  
While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] are latched by the processor,  
and only serviced when the processor returns to the Normal state. Only one occurrence of each  
event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor processes snoops on the FSB and latches interrupts  
delivered on the FSB.  
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# is asserted if there  
is any pending interrupt latched within the processor. Pending interrupts that are blocked by the  
EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to  
system logic that it should return the processor to the Normal state.  
6.2.4  
HALT/Grant Snoop State—State 4  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-Grant state or  
in AutoHALT Power Down state. During a snoop or interrupt transaction, the processor enters the  
HALT/Grant Snoop state. The processor stays in this state until the snoop on the FSB has been  
serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched.  
After the snoop is serviced or the interrupt is latched, the processor returns to the Stop-Grant state  
or AutoHALT Power Down state, as appropriate.  
Datasheet  
71  
Features  
6.2.5  
Sleep State—State 5  
The Sleep state is a very low power state in which the processor maintains its context, maintains  
the phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can only be  
entered from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state  
upon the assertion of the SLP# signal. The SLP# pin should only be asserted when the processor is  
in the Stop Grant state. SLP# assertions while the processor is not in the Stop Grant state is out of  
specification and may result in erroneous processor operation.  
Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will  
cause unpredictable behavior.  
In the Sleep state, the processor is incapable of responding to snoop transactions or latching  
interrupt signals. No transitions or assertions of signals (with the exception of SLP# or RESET#)  
are allowed on the FSB while the processor is in Sleep state. Any transition on an input signal  
before the processor has returned to Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as specified in  
the RESET# pin specification, then the processor will reset itself, ignoring the transition through  
Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and  
STPCLK# signals should be de-asserted immediately after RESET# is asserted to ensure the  
processor correctly executes the reset sequence.  
Once in the Sleep state, the SLP# pin must be de-asserted if another asynchronous FSB event needs  
to occur. The SLP# pin has a minimum assertion of one BCLK period.  
When the processor is in the Sleep state, it does not respond to interrupts or snoop transactions.  
§
72  
Datasheet  
Boxed Processor Specifications  
7 Boxed Processor Specifications  
The Celeron D processor is also offered as a boxed Intel processor. Boxed Intel processors are  
intended for system integrators who build systems from baseboards and standard components. The  
boxed Celeron D processor will be supplied with a cooling solution. This chapter documents  
baseboard and system requirements for the cooling solution that will be supplied with the boxed  
Celeron D processor. This chapter is particularly important for OEMs that manufacture baseboards  
for system integrators. Unless otherwise noted, all figures in this chapter are dimensioned in  
millimeters and inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed  
Celeron D processor.  
Drawings in this section reflect only the specifications on the boxed Intel processor product.  
These dimensions should not be used as a generic keep-out zone for all cooling solutions. It is  
the system designer's responsibility to consider their proprietary cooling solution when  
designing to the required keep-out zone on their system platform and chassis. Refer to the  
Intel® Pentium 4 Processor on 90 nm Process Thermal Design Guidelines for further  
guidance. Contact your local Intel Sales Representative for this document.  
Figure 7-1. Mechanical Representation of the Boxed Intel® Celeron® D Processor  
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.  
Datasheet  
73  
Boxed Processor Specifications  
7.1  
Mechanical Specifications  
7.1.1  
Boxed Processor Cooling Solution Dimensions  
This section documents the mechanical specifications of the boxed Celeron D processor. The  
boxed processor will be shipped with an unattached fan heatsink. Figure 7-1 shows a mechanical  
representation of the boxed Celeron D processor.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The  
physical space requirements and dimensions for the boxed processor with assembled fan heatsink  
are shown in Figure 7-2 (Side Views), and Figure 7-3 (Top View). The airspace requirements for  
the boxed processor fan heatsink must also be incorporated into new baseboard and system  
designs. Airspace requirements are shown in Figure 7-6 and Figure 7-7. Note that some figures  
have centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.  
Figure 7-2. Requirements for the Boxed Processor (Side View)  
Figure 7-3. Space Requirements for the Boxed Processor (Top View)  
74  
Datasheet  
Boxed Processor Specifications  
7.1.2  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5 and the  
Intel® Pentium 4 Processor on 90 nm Process Thermal Design Guidelines for details on the  
processor weight and heatsink requirements.  
Note: The processor retention mechanism based on the Intel reference design should be used, to ensure  
compatibility with the heatsink attach clip assembly and the boxed processor thermal solution. The  
heatsink attach clip assembly is latched to the retention tab features at each corner of the retention  
mechanism.  
The target load applied by the clips to the processor heat spreader for Intel's reference design is  
75 ±15 lbf (maximum load is constrained by the package load capability). It is normal to observe a  
bow or bend in the board due to this compressive load on the processor package and the socket.  
The level of bow or bend depends on the motherboard material properties and component layout.  
Any additional board stiffening devices (such as plates) are not necessary and should not be used  
along with the reference mechanical components and boxed processor. Using such devices  
increases the compressive load on the processor package and socket, likely beyond the maximum  
load that is specified for those components. See the Intel® Pentium 4 Processor on 90 nm Process  
Thermal Design Guidelines for details on the Intel reference design.  
Chassis that have adequate clearance between the motherboard and chassis wall (minimum  
0.250 inch) should be selected to ensure the board's underside bend does not contact the chassis.  
7.1.3  
Boxed Processor Retention Mechanism and Heatsink  
Attach Clip Assembly  
The boxed processor thermal solution requires a processor retention mechanism and a heatsink  
attach clip assembly, to secure the processor and fan heatsink in the baseboard socket. The boxed  
processor will not ship with retention mechanisms but will ship with the heatsink attach clip  
assembly. Baseboards designed for use by system integrators should include the retention  
mechanism that supports the boxed Celeron D processor. Baseboard documentation should include  
appropriate retention mechanism installation instructions.  
Datasheet  
75  
Boxed Processor Specifications  
7.2  
Electrical Requirements  
7.2.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable will be  
shipped with the boxed processor to draw power from a power header on the baseboard. The power  
cable connector and pinout are shown in Figure 7-4. Baseboards must provide a matched power  
header to support the boxed processor. Table 7-1 contains specifications for the input and output  
signals at the fan heatsink connector. The fan heatsink outputs a SENSE signal, which is an open-  
collector output that pulses at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor  
provides VOH to match the system board-mounted fan speed monitor requirements, if applicable.  
Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should  
be tied to GND.  
Note: The motherboard must supply a constant +12 V to the processor's power header to ensure proper  
operation of the variable speed fan for the boxed processor.  
The power header on the baseboard must be positioned to allow the fan heatsink power cable to  
reach it. The power header identification and location should be documented in the platform  
documentation, or on the system board itself. Figure 7-7 shows the location of the fan power  
connector relative to the processor socket. The baseboard power header should be positioned  
within 4.33 inches from the center of the processor socket.  
Figure 7-4. Boxed Processor Fan Heatsink Power Cable Connector Description  
Pin  
1
Signal  
GND  
Straight square pin, 3-pin terminal housing with  
polarizing ribs and friction locking ramp.  
2
3
+12V  
0.100" pin pitch, 0.025" square pin width.  
SENSE  
Waldom*/Molex* P/N 22-01-3037 or equivalent.  
Match with straight pin, friction lock header on motherboard  
Waldom/Molex P/N 22-23-2031, AMP* P/N 640456-3,  
or equivalent.  
1
2
3
Table 7-1. Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 volt fan power supply  
IC: Fan current draw  
10.2  
12  
13.8  
740  
V
mA  
pulses per fan  
revolution  
1
SENSE: SENSE frequency  
2
NOTES:  
1. Baseboard should pull this pin up to 5 V with a resistor.  
76  
Datasheet  
Boxed Processor Specifications  
Figure 7-5. Baseboard Power Header Placement Relative to Processor Socket  
7.3  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution used by the boxed  
processor.  
7.3.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's  
temperature specification is also a function of the thermal design of the entire system, and  
ultimately the responsibility of the system integrator. The processor temperature specification is  
found in Chapter 5 of this document. The boxed processor fan heatsink is able to keep the  
processor temperature within the specifications (see Table 5-1) in chassis that provide good  
thermal management. For the boxed processor fan heatsink to operate properly, it is critical that the  
airflow provided to the fan heatsink is unimpeded. Airflow of the fan heatsink is into the center and  
out of the sides of the fan heatsink. Airspace is required around the fan to ensure that the airflow  
through the fan heatsink is not blocked. Blocking the airflow to the fan heatsink reduces the  
cooling efficiency and decreases fan life. Figure 7-6 and Figure 7-7 illustrate an acceptable  
airspace clearance for the fan heatsink. The air temperature entering the fan is required to be at or  
below 38 °C. Again, meeting the processor's temperature specification is the responsibility of the  
system integrator.  
Datasheet  
77  
Boxed Processor Specifications  
Figure 7-6. Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 1 View)  
Figure 7-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (Side 2 View)  
78  
Datasheet  
Boxed Processor Specifications  
7.3.2  
Variable Speed Fan  
The boxed processor fan operates at different speeds over a short range of internal chassis  
temperatures. This allows the processor fan to operate at a lower speed and noise level, while  
internal chassis temperatures are low. If internal chassis temperature increases beyond a lower set  
point, the fan speed will rise linearly with the internal temperature until the higher set point is  
reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan noise  
levels. Systems should be designed to provide adequate air around the boxed processor fan  
heatsink that remains below the lower set point. These set points, represented in Figure 7-8 and  
Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The internal chassis  
temperature should be kept below 38 ºC. Meeting the processor's temperature specification  
(see Chapter 5) is the responsibility of the system integrator.  
Note: The motherboard must supply a constant +12 V to the processor's power header to ensure proper  
operation of the variable speed fan for the boxed processor (refer to Table 7-1 for the specific  
requirements).  
Figure 7-8. Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Table 7-2. Boxed Processor Fan Heatsink Set Points  
Boxed Processor Fan  
Heatsink Set Point (ºC)  
Boxed Processor Fan Speed  
Notes  
When the internal chassis temperature is below or equal to this set point,  
the fan operates at its lowest speed. Recommended maximum internal  
chassis temperature for nominal operating environment.  
1
X 30 °C  
When the internal chassis temperature is at this point, the fan operates  
between its lowest and highest speeds. Recommended maximum  
internal chassis temperature for worst-case operating environment.  
Y = 34 °C  
When the internal chassis temperature is above or equal to this set point,  
the fan operates at its highest speed.  
1
Z 38 °C  
NOTES:  
1. Set point variance is approximately ±1°C from fan heatsink to fan heatsink.  
§
Datasheet  
79  
Boxed Processor Specifications  
80  
Datasheet  
Debug Tools Specifications  
8 Debug Tools Specifications  
Refer to the ITP700 Debug Port Design Guide for information regarding debug tools  
specifications. The ITP700 Debug Port Design Guide is located on http://developer.intel.com.  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use  
in debugging Celeron D processor systems. Tektronix and Agilent should be contacted to obtain  
specific information about their logic analyzer interfaces. The following information is general in  
nature. Specific information must be obtained from the logic analyzer vendor.  
Due to the complexity of Celeron D processor systems, the LAI is critical in providing the ability to  
probe and capture FSB signals. There are two sets of considerations to keep in mind when  
designing a Celeron D processor system that can make use of an LAI: mechanical and electrical.  
8.1.1  
Mechanical Considerations  
The LAI is installed between the processor socket and the Celeron D processor. The LAI pins plug  
into the socket, while the Celeron D processor pins plug into a socket on the LAI. Cabling that is  
part of the LAI egresses the system to allow an electrical connection between the Celeron D  
processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout  
volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor.  
System designers must make sure that the keepout volume remains unobstructed inside the system.  
Note that it is possible that the keepout volume reserved for the LAI may differ from the space  
normally occupied by the Celeron D processor heatsink. If this is the case, the logic analyzer  
vendor will provide a cooling solution as part of the LAI.  
8.1.2  
Electrical Considerations  
The LAI will also affect the electrical performance of the FSB; therefore, it is critical to obtain  
electrical load models from each of the logic analyzers to be able to run system level simulations to  
prove that their tool will work in the system. Contact the logic analyzer vendor for electrical  
specifications and load models for the LAI solution they provide.  
§
Datasheet  
81  
Debug Tools Specifications  
82  
Datasheet  

相关型号:

NE80549KC017003

RISC Microprocessor, 64-Bit, 1400MHz, CMOS
INTEL

NE80549KC017003/SL9BW

RISC Microprocessor, 64-Bit, 1400MHz, CMOS
INTEL

NE80549KE025009

Microprocessor, 64-Bit, 1600MHz, CMOS, CPGA611, PGA-611
INTEL

NE80549KE025009/SL9DG

RISC Microprocessor, 64-Bit, 1600MHz, CMOS
INTEL

NE80549KE025009/SL9P8

RISC Microprocessor, 64-Bit, 1600MHz, CMOS
INTEL

NE80549KE025015

Microprocessor, 64-Bit, 1600MHz, CMOS, CPGA611, PGA-611
INTEL

NE80549KE025015/SL9DF

RISC Microprocessor, 64-Bit, 1600MHz, CMOS
INTEL

NE80549KE0256M/SL9PA

RISC Microprocessor, 64-Bit, 1600MHz, CMOS
INTEL

NE80549KE0258M

Microprocessor, 64-Bit, 1600MHz, CMOS, CPGA611, PGA-611
INTEL

NE80549KE025LK/SL98T

RISC Microprocessor, 64-Bit, 1600MHz, CMOS
INTEL

NE80549KE025LK/SL9P7

RISC Microprocessor, 64-Bit, 1600MHz, CMOS
INTEL

NE80549KEB17003/SL9PB

RISC Microprocessor, 64-Bit, 1420MHz, CMOS
INTEL