PCI7410PDV [ROCHESTER]

PCMCIA BUS CONTROLLER, PQFP208, PLASTIC, LQFP-208;
PCI7410PDV
型号: PCI7410PDV
厂家: Rochester Electronics    Rochester Electronics
描述:

PCMCIA BUS CONTROLLER, PQFP208, PLASTIC, LQFP-208

时钟 数据传输 PC 外围集成电路
文件: 总241页 (文件大小:1984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ  
t
Data Manual  
March 2004  
Connectivity Solutions  
SCPS074A  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−3  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−4  
Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
Feature/Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3.1  
3.2  
Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
Summary of Flash Media Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
MultiMediaCard (MMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Secure Digital (SD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Memory Stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Dedicated Socket (Function 1) Interface . . . . . . . . . . . . . . . 3−3  
3.3  
3.4  
3.5  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
Clamping Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
Peripheral Component Interconnect (PCI) Interface . . . . . . . . . . . . . . 3−3  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
1394 PCI Bus Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
PCI Bus Lock (LOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
Serial EEPROM I C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
2
Loading Subsystem Identification . . . . . . . . . . . . . . . . . . . . . 3−5  
3.5.4.1  
3.5.4.2  
Function 2 Subsystem Identification . . . . . . . . 3−6  
Function 3 Subsystem Identification . . . . . . . . 3−6  
3.6  
PC Card Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
3.6.6  
3.6.7  
3.6.8  
3.6.9  
3.6.10  
3.6.11  
3.6.12  
PC Card Insertion/Removal and Recognition . . . . . . . . . . . 3−6  
Low Voltage CardBus Card Detection . . . . . . . . . . . . . . . . . 3−6  
Card Detection With A PCI7410 Controller . . . . . . . . . . . . . 3−7  
Power Switch Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
Zoomed Video Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
Standardized Zoomed-Video Register Model . . . . . . . . . . . 3−10  
Internal Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
Integrated Pullup Resistors for PC Card Interface . . . . . . . 3−10  
SPKROUT and CAUDPWM Usage . . . . . . . . . . . . . . . . . . . 3−11  
LED Socket Activity Indicators . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−12  
PCI Firmware Loading Function Programming Model . . . . 3−12  
iii  
3.6.12.1  
3.6.12.2  
Data/Address Register . . . . . . . . . . . . . . . . . . . 3−13  
Firmware Loader Control Register . . . . . . . . . 3−13  
3.7  
3.8  
Serial EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−14  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
Serial-Bus Interface Implementation . . . . . . . . . . . . . . . . . . . 3−14  
Accessing Serial-Bus Devices Through Software . . . . . . . 3−14  
Serial-Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 3−14  
Serial-Bus EEPROM Application . . . . . . . . . . . . . . . . . . . . . . 3−16  
Programmable Interrupt Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
PC Card Functional and Card Status Change Interrupts . 3−19  
Interrupt Masks and Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−20  
Using Parallel IRQ Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
Using Parallel PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
Using Serialized IRQSER Interrupts . . . . . . . . . . . . . . . . . . . 3−22  
SMI Support in the PCI7410 Controller . . . . . . . . . . . . . . . . 3−22  
3.9  
Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−22  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
3.9.5  
3.9.6  
3.9.7  
3.9.8  
3.9.9  
1394 Power Management (Function 1) . . . . . . . . . . . . . . . . 3−23  
Integrated Low-Dropout Voltage Regulator (LDO-VR) . . . . 3−23  
Clock Run Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−24  
CardBus PC Card Power Management . . . . . . . . . . . . . . . . 3−24  
16-Bit PC Card Power Management . . . . . . . . . . . . . . . . . . . 3−24  
Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−24  
Requirements for Suspend Mode . . . . . . . . . . . . . . . . . . . . . 3−25  
Ring Indicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−25  
PCI Power Management for CardBus (Function 0) . . . . . . 3−26  
3.9.9.1  
3.9.9.2  
Function 2 Power Management . . . . . . . . . . . . 3−27  
Function 3 Power Management . . . . . . . . . . . . 3−27  
3.9.10  
3.9.11  
3.9.12  
CardBus Bridge Power Management . . . . . . . . . . . . . . . . . . 3−27  
ACPI Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−28  
Master List of PME Context Bits and Global Reset-Only  
Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−28  
3.10 IEEE 1394 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−30  
3.10.1  
3.10.2  
3.10.3  
PHY Port Cable Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 3−30  
Crystal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−31  
Bus Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−32  
4
PC Card Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . 4−1  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
Device ID Register Function 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−3  
Device ID Register Function 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−3  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
Class Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
iv  
4.10 Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−7  
4.11 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−7  
4.12 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−7  
4.13 CardBus Socket Registers/ExCA Base Address Register . . . . . . . . . 4−8  
4.14 Capability Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4.15 Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
4.16 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
4.17 CardBus Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
4.18 Subordinate Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
4.19 CardBus Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−11  
4.20 CardBus Memory Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 4−11  
4.21 CardBus Memory Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 4−12  
4.22 CardBus I/O Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−12  
4.23 CardBus I/O Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−13  
4.24 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−13  
4.25 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−14  
4.26 Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−15  
4.27 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−16  
4.28 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−16  
4.29 PC Card 16-Bit I/F Legacy-Mode Base-Address Register . . . . . . . . . 4−17  
4.30 System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−18  
4.31 UM_CD Debounce Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−20  
4.32 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−21  
4.33 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . 4−22  
4.34 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4.35 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4.36 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−24  
4.37 Multifunction Routing Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4−25  
4.38 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−26  
4.39 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−27  
4.40 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−28  
4.41 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−29  
4.42 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−30  
4.43 Next Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−30  
4.44 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 4−31  
4.45 Power Management Control/Status Register . . . . . . . . . . . . . . . . . . . . 4−32  
4.46 Power Management Control/Status Bridge Support Extensions  
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−33  
4.47 Power-Management Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−33  
4.48 Serial Bus Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−34  
4.49 Serial Bus Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−34  
4.50 Serial Bus Slave Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−35  
4.51 Serial Bus Control/Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−36  
ExCA Compatibility Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . 5−1  
5
v
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
ExCA Identification and Revision Register . . . . . . . . . . . . . . . . . . . . . . 5−5  
ExCA Interface Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−6  
ExCA Power Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−7  
ExCA Interrupt and General Control Register . . . . . . . . . . . . . . . . . . . 5−8  
ExCA Card Status-Change Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−9  
ExCA Card Status-Change Interrupt Configuration Register . . . . . . . 5−10  
ExCA Address Window Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 5−11  
ExCA I/O Window Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−12  
ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers . . . . 5−13  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers . . . . 5−13  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers . . . . . 5−14  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers . . . . 5−14  
5.13 ExCA Memory Windows 0−4 Start-Address Low-Byte Registers . . . 5−15  
5.14 ExCA Memory Windows 0−4 Start-Address High-Byte Registers . . . 5−16  
5.15 ExCA Memory Windows 0−4 End-Address Low-Byte Registers . . . . 5−17  
5.16 ExCA Memory Windows 0−4 End-Address High-Byte Registers . . . 5−18  
5.17 ExCA Memory Windows 0−4 Offset-Address Low-Byte Registers . . 5−19  
5.18 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers . 5−20  
5.19 ExCA Card Detect and General Control Register . . . . . . . . . . . . . . . . 5−21  
5.20 ExCA Global Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−22  
5.21 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers . . . 5−23  
5.22 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers . . . 5−23  
5.23 ExCA Memory Windows 0−4 Page Registers . . . . . . . . . . . . . . . . . . . 5−24  
CardBus Socket Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . . . . . 6−1  
6
7
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−2  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3  
Socket Present State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−4  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−5  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−7  
Socket Power Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−8  
OHCI Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−1  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−2  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−2  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−3  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−4  
Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . 7−5  
Latency Timer and Class Cache Line Size Register . . . . . . . . . . . . . . 7−5  
Header Type and BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−6  
OHCI Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−6  
TI Extension Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−7  
7.10 CardBus CIS Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−8  
7.11 CardBus CIS Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−8  
7.12 Subsystem Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−9  
7.13 Power Management Capabilities Pointer Register . . . . . . . . . . . . . . . 7−9  
vi  
7.14 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−10  
7.15 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−10  
7.16 Minimum Grant and Maximum Latency Register . . . . . . . . . . . . . . . . . 7−11  
7.17 OHCI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−11  
7.18 Capability ID and Next Item Pointer Registers . . . . . . . . . . . . . . . . . . . 7−12  
7.19 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 7−13  
7.20 Power Management Control and Status Register . . . . . . . . . . . . . . . . 7−14  
7.21 Power Management Extension Registers . . . . . . . . . . . . . . . . . . . . . . . 7−14  
7.22 PCI PHY Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−15  
7.23 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . 7−15  
7.24 Link Enhancement Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−17  
7.25 Subsystem Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−18  
OHCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−1  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
OHCI Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−4  
GUID ROM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−5  
Asynchronous Transmit Retries Register . . . . . . . . . . . . . . . . . . . . . . . 8−6  
CSR Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−6  
CSR Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−7  
CSR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−7  
Configuration ROM Header Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−8  
Bus Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−8  
Bus Options Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−9  
8.10 GUID High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−10  
8.11 GUID Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−10  
8.12 Configuration ROM Mapping Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8−11  
8.13 Posted Write Address Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−11  
8.14 Posted Write Address High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−12  
8.15 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−12  
8.16 Host Controller Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−13  
8.17 Self-ID Buffer Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−14  
8.18 Self-ID Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−15  
8.19 Isochronous Receive Channel Mask High Register . . . . . . . . . . . . . . 8−16  
8.20 Isochronous Receive Channel Mask Low Register . . . . . . . . . . . . . . . 8−17  
8.21 Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−18  
8.22 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−20  
8.23 Isochronous Transmit Interrupt Event Register . . . . . . . . . . . . . . . . . . 8−22  
8.24 Isochronous Transmit Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 8−23  
8.25 Isochronous Receive Interrupt Event Register . . . . . . . . . . . . . . . . . . . 8−24  
8.26 Isochronous Receive Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 8−25  
8.27 Initial Bandwidth Available Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−25  
8.28 Initial Channels Available High Register . . . . . . . . . . . . . . . . . . . . . . . . 8−26  
8.29 Initial Channels Available Low Register . . . . . . . . . . . . . . . . . . . . . . . . . 8−26  
8.30 Fairness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−27  
8.31 Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−28  
vii  
8.32 Node Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−29  
8.33 PHY Layer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−30  
8.34 Isochronous Cycle Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−31  
8.35 Asynchronous Request Filter High Register . . . . . . . . . . . . . . . . . . . . . 8−32  
8.36 Asynchronous Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . 8−34  
8.37 Physical Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8−35  
8.38 Physical Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . 8−37  
8.39 Physical Upper Bound Register (Optional Register) . . . . . . . . . . . . . . 8−37  
8.40 Asynchronous Context Control Register . . . . . . . . . . . . . . . . . . . . . . . . 8−38  
8.41 Asynchronous Context Command Pointer Register . . . . . . . . . . . . . . 8−39  
8.42 Isochronous Transmit Context Control Register . . . . . . . . . . . . . . . . . . 8−40  
8.43 Isochronous Transmit Context Command Pointer Register . . . . . . . . 8−41  
8.44 Isochronous Receive Context Control Register . . . . . . . . . . . . . . . . . . 8−41  
8.45 Isochronous Receive Context Command Pointer Register . . . . . . . . 8−43  
8.46 Isochronous Receive Context Match Register . . . . . . . . . . . . . . . . . . . 8−44  
TI Extension Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−1  
9
9.1  
9.2  
9.3  
9.4  
9.5  
DV and MPEG2 Timestamp Enhancements . . . . . . . . . . . . . . . . . . . . . 9−1  
Isochronous Receive Digital Video Enhancements . . . . . . . . . . . . . . . 9−2  
Isochronous Receive Digital Video Enhancements Register . . . . . . . 9−2  
Link Enhancement Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−4  
Timestamp Offset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−5  
10 PHY Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−1  
10.1 Base Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−1  
10.2 Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−4  
10.3 Vendor Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−5  
10.4 Vendor-Dependent Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−6  
10.5 Power-Class Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−7  
11 PCI Firmware Loading Function Programming Model (Function 3) . . . . 11−1  
11.1 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−1  
11.2 Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−2  
11.3 Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−2  
11.4 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−3  
11.5 Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . 11−4  
11.6 Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−4  
11.7 Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−4  
11.8 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−5  
11.9 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−5  
11.10 Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−5  
11.11 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−6  
11.12 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−6  
11.13 Capabilities Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−6  
11.14 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−7  
11.15 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−7  
11.16 Minimum Grant Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−7  
viii  
11.17 Maximum Latency Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−7  
11.18 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−8  
11.19 Next-Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−8  
11.20 Power-Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 11−9  
11.21 Power-Management Control/Status Register . . . . . . . . . . . . . . . . . . 11−10  
11.22 Power-Management Bridge Support Extension Register . . . . . . . . 11−10  
11.23 Power-Management Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . 11−11  
11.24 Miscellaneous Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−11  
11.25 Subsystem Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−12  
12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−1  
12.1 Absolute Maximum Ratings Over Operating Temperature  
Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−1  
12.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 12−1  
12.3 Electrical Characteristics Over Recommended Operating  
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−3  
12.4 Electrical Characteristics Over Recommended Ranges of Operating  
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−3  
12.4.1  
12.4.2  
12.4.3  
Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−3  
Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−4  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−4  
12.5 PCI Clock/Reset Timing Requirements Over Recommended Ranges  
of Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . 12−4  
12.6 Switching Characteristics for PHY Port Interface . . . . . . . . . . . . . . . . . 12−5  
12.7 Operating, Timing, and Switching Characteristics of XI . . . . . . . . . . . 12−5  
12.8 PCI Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . 12−5  
13 Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13−1  
ix  
List of Illustrations  
Figure  
2−1  
2−2  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
Title  
Page  
PCI7410 GHK-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
PCI7410 PDV-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2−2  
PCI7410 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3-State Bidirectional Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
Serial ROM Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5  
Zoomed Video Implementation Using the PCI7410 Controller . . . . . . . . . 3−9  
Zoomed Video Switching Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
SPKROUT Connection to Speaker Driver . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
Two Sample LED Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−12  
Serial-Bus Start/Stop Conditions and Bit Transfers . . . . . . . . . . . . . . . . . . 3−15  
Serial-Bus Protocol Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−15  
3−10 Serial-Bus Protocol—Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
3−11 Serial-Bus Protocol—Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
3−12 EEPROM Interface Doubleword Data Collection . . . . . . . . . . . . . . . . . . . . 3−16  
3−13 IRQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
3−14 System Diagram Implementing CardBus Device Class Power  
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−23  
3−15 Signal Diagram of Suspend Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−25  
3−16 RI_OUT Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−26  
3−17 Block Diagram of a Status/Enable Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−28  
3−18 TP Cable Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−30  
3−19 Typical Compliant DC Isolated Outer Shield Termination . . . . . . . . . . . . . 3−31  
3−20 Non-DC Isolated Outer Shield Termination . . . . . . . . . . . . . . . . . . . . . . . . . 3−31  
3−21 Load Capacitance for the PCI7410 PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−32  
3−22 Recommended Crystal and Capacitor Layout . . . . . . . . . . . . . . . . . . . . . . . 3−32  
5−1  
5−2  
6−1  
ExCA Register Access Through I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−2  
ExCA Register Access Through Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−2  
Accessing CardBus Socket Registers Through PCI Memory . . . . . . . . . . 6−1  
12−1 Test Load Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12−4  
x
List of Tables  
Table  
Title  
Page  
1−1  
2−1  
2−2  
2−3  
2−4  
2−5  
2−6  
2−7  
2−8  
2−9  
Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5  
Signal Names by PDV Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
Signal Names by GHK Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5  
CardBus PC Card Signal Names Sorted Alphabetically . . . . . . . . . . . . . . 2−7  
16-Bit PC Card Signal Names Sorted Alphabetically . . . . . . . . . . . . . . . . . 2−9  
Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
PC Card Power Switch Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
PCI System Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
PCI Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−12  
PCI Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
2−10 Multifunction and Miscellaneous Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 2−14  
2−11 16-Bit PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . 2−15  
2−12 16-Bit PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 2−16  
2−13 CardBus PC Card Interface System Terminals . . . . . . . . . . . . . . . . . . . . . . 2−17  
2−14 CardBus PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . 2−18  
2−15 CardBus PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . 2−19  
2−16 IEEE 1394 Physical Layer Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−20  
2−17 Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−20  
2−18 UltraMedia Dedicated Socket Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−21  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
PCI Bus Master Command Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
PC Card—Card Detect and Voltage Sense Connections . . . . . . . . . . . . . 3−7  
TPS2221 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
TPS2211A Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
Functionality of the ZV Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
Terminals With Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−12  
Firmware Loader I/O Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−13  
Firmware Loader Control Register Description . . . . . . . . . . . . . . . . . . . . . . 3−14  
3−10 PCI7410 Registers Used to Program Serial-Bus Devices . . . . . . . . . . . . . 3−14  
3−11 EEPROM Loading Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−17  
3−12 Interrupt Mask and Flag Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
3−13 PC Card Interrupt Events and Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3−20  
3−14 Interrupt Pin Register Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−22  
3−15 SMI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−22  
3−16 Requirements for Internal/External 1.8-V Core Power Supply . . . . . . . . . 3−24  
3−17 Power-Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−27  
3−18 Function 2 Power-Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 3−27  
xi  
3−19 Function 3 Power-Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 3−27  
4−1  
4−2  
4−3  
4−4  
4−5  
4−6  
4−7  
4−8  
4−9  
Bit Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
Functions 0 and 1 PCI Configuration Register Map . . . . . . . . . . . . . . . . . . 4−1  
Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
Secondary Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
Interrupt Pin Register Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−14  
Bridge Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−15  
System Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−18  
General Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−21  
4−10 General-Purpose Event Status Register Description . . . . . . . . . . . . . . . . . 4−22  
4−11 General-Purpose Event Enable Register Description . . . . . . . . . . . . . . . . 4−23  
4−12 General-Purpose Input Register Description . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4−13 General-Purpose Output Register Description . . . . . . . . . . . . . . . . . . . . . . 4−24  
4−14 Multifunction Routing Status Register Description . . . . . . . . . . . . . . . . . . . 4−25  
4−15 Retry Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−26  
4−16 Card Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−27  
4−17 Device Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−28  
4−18 Diagnostic Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−29  
4−19 Power Management Capabilities Register Description . . . . . . . . . . . . . . . 4−31  
4−20 Power Management Control/Status Register Description . . . . . . . . . . . . . 4−32  
4−21 Power Management Control/Status Bridge Support Extensions Register  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−33  
4−22 Serial Bus Data Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−34  
4−23 Serial Bus Index Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−34  
4−24 Serial Bus Slave Address Register Description . . . . . . . . . . . . . . . . . . . . . 4−35  
4−25 Serial Bus Control/Status Register Description . . . . . . . . . . . . . . . . . . . . . . 4−36  
5−1  
5−2  
5−3  
5−4  
5−5  
5−6  
5−7  
5−8  
ExCA Registers and Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−3  
ExCA Identification and Revision Register Description . . . . . . . . . . . . . . . 5−5  
ExCA Interface Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . 5−6  
ExCA Power Control Register Description—82365SL Support . . . . . . . . 5−7  
ExCA Power Control Register Description—82365SL-DF Support . . . . . 5−7  
ExCA Interrupt and General Control Register Description . . . . . . . . . . . . 5−8  
ExCA Card Status-Change Register Description . . . . . . . . . . . . . . . . . . . . 5−9  
ExCA Card Status-Change Interrupt Configuration Register  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−10  
5−9  
ExCA Address Window Enable Register Description . . . . . . . . . . . . . . . . 5−11  
5−10 ExCA I/O Window Control Register Description . . . . . . . . . . . . . . . . . . . . . 5−12  
5−11 ExCA Memory Windows 0−4 Start-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−16  
5−12 ExCA Memory Windows 0−4 End-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−18  
5−13 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−20  
5−14 ExCA Card Detect and General Control Register Description . . . . . . . . . 5−21  
xii  
5−15 ExCA Global Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 5−22  
6−1  
6−2  
6−3  
6−4  
6−5  
6−6  
6−7  
7−1  
7−2  
7−3  
7−4  
7−5  
7−6  
7−7  
7−8  
7−9  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−1  
Socket Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−2  
Socket Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3  
Socket Present State Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 6−4  
Socket Force Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 6−6  
Socket Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−7  
Socket Power Management Register Description . . . . . . . . . . . . . . . . . . . 6−8  
Function 2 Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−1  
Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−3  
Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−4  
Class Code and Revision ID Register Description . . . . . . . . . . . . . . . . . . . 7−5  
Latency Timer and Class Cache Line Size Register Description . . . . . . . 7−5  
Header Type and BIST Register Description . . . . . . . . . . . . . . . . . . . . . . . . 7−6  
OHCI Base Address Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 7−6  
TI Base Address Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−7  
CardBus CIS Base Address Register Description . . . . . . . . . . . . . . . . . . . 7−8  
7−10 Subsystem Identification Register Description . . . . . . . . . . . . . . . . . . . . . . 7−9  
7−11 Interrupt Line Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−10  
7−12 PCI Interrupt Pin Register—Read-Only INTPIN Per Function . . . . . . . . . 7−10  
7−13 Minimum Grant and Maximum Latency Register Description . . . . . . . . . 7−11  
7−14 OHCI Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−11  
7−15 Capability ID and Next Item Pointer Registers Description . . . . . . . . . . . . 7−12  
7−16 Power Management Capabilities Register Description . . . . . . . . . . . . . . . 7−13  
7−17 Power Management Control and Status Register Description . . . . . . . . . 7−14  
7−18 Power Management Extension Registers Description . . . . . . . . . . . . . . . . 7−14  
7−19 PCI PHY Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−15  
7−20 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . 7−16  
7−21 Link Enhancement Control Register Description . . . . . . . . . . . . . . . . . . . . 7−17  
7−22 Subsystem Access Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−18  
8−1  
8−2  
8−3  
8−4  
8−5  
8−6  
8−7  
8−8  
8−9  
OHCI Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−1  
OHCI Version Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−4  
GUID ROM Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−5  
Asynchronous Transmit Retries Register Description . . . . . . . . . . . . . . . . 8−6  
CSR Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−7  
Configuration ROM Header Register Description . . . . . . . . . . . . . . . . . . . . 8−8  
Bus Options Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−9  
Configuration ROM Mapping Register Description . . . . . . . . . . . . . . . . . . . 8−11  
Posted Write Address Low Register Description . . . . . . . . . . . . . . . . . . . . 8−11  
8−10 Posted Write Address High Register Description . . . . . . . . . . . . . . . . . . . . 8−12  
8−11 Host Controller Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . 8−13  
8−12 Self-ID Count Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−15  
8−13 Isochronous Receive Channel Mask High Register Description . . . . . . . 8−16  
8−14 Isochronous Receive Channel Mask Low Register Description . . . . . . . . 8−17  
xiii  
8−15 Interrupt Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−18  
8−16 Interrupt Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−20  
8−17 Isochronous Transmit Interrupt Event Register Description . . . . . . . . . . . 8−22  
8−18 Isochronous Receive Interrupt Event Register Description . . . . . . . . . . . 8−24  
8−19 Initial Bandwidth Available Register Description . . . . . . . . . . . . . . . . . . . . . 8−25  
8−20 Initial Channels Available High Register Description . . . . . . . . . . . . . . . . . 8−26  
8−21 Initial Channels Available Low Register Description . . . . . . . . . . . . . . . . . 8−26  
8−22 Fairness Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−27  
8−23 Link Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−28  
8−24 Node Identification Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−29  
8−25 PHY Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−30  
8−26 Isochronous Cycle Timer Register Description . . . . . . . . . . . . . . . . . . . . . . 8−31  
8−27 Asynchronous Request Filter High Register Description . . . . . . . . . . . . . 8−32  
8−28 Asynchronous Request Filter Low Register Description . . . . . . . . . . . . . . 8−34  
8−29 Physical Request Filter High Register Description . . . . . . . . . . . . . . . . . . . 8−35  
8−30 Physical Request Filter Low Register Description . . . . . . . . . . . . . . . . . . . 8−37  
8−31 Asynchronous Context Control Register Description . . . . . . . . . . . . . . . . . 8−38  
8−32 Asynchronous Context Command Pointer Register Description . . . . . . . 8−39  
8−33 Isochronous Transmit Context Control Register Description . . . . . . . . . . 8−40  
8−34 Isochronous Receive Context Control Register Description . . . . . . . . . . . 8−41  
8−35 Isochronous Receive Context Match Register Description . . . . . . . . . . . . 8−44  
9−1  
9−2  
TI Extension Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−1  
Isochronous Receive Digital Video Enhancements Register  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−2  
9−3  
9−4  
Link Enhancement Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−4  
Timestamp Offset Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9−5  
10−1 Base Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−1  
10−2 Base Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−2  
10−3 Page 0 (Port Status) Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . 10−4  
10−4 Page 0 (Port Status) Register Field Descriptions . . . . . . . . . . . . . . . . . . . . 10−4  
10−5 Page 1 (Vendor ID) Register Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 10−5  
10−6 Page 1 (Vendor ID) Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . 10−5  
10−7 Page 7 (Vendor-Dependent) Register Configuration . . . . . . . . . . . . . . . . . 10−6  
10−8 Page 7 (Vendor-Dependent) Register Field Descriptions . . . . . . . . . . . . . 10−6  
10−9 Power Class Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10−7  
11−1 Function 3 Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−1  
11−2 Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−2  
11−3 Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−3  
11−4 Class Code and Revision ID Register Description . . . . . . . . . . . . . . . . . . . 11−4  
11−5 Base Address Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11−5  
11−6 Power-Management Capabilities Register Description . . . . . . . . . . . . . . . 11−9  
11−7 Power-Management Control/Status Register Description . . . . . . . . . . . . 11−10  
11−8 Miscellaneous Control Register Description . . . . . . . . . . . . . . . . . . . . . . . 11−11  
11−9 Subsystem Access Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 11−12  
xiv  
1 Introduction  
The Texas Instruments PCI7410 device is an integrated single-socket UltraMediaPC Card controller with an IEEE  
1394 open host controller link-layer controller (LLC) and two-port 1394 PHY. The PCI7410 controller also includes  
a dedicated interface that can be used as a Secure Digital (SD)/MultiMediaCard (MMC), or Memory Stick socket. This  
high performance integrated solution provides the latest in PC Card, IEEE 1394, and UltraMediatechnology.  
1.1 Description  
The PCI7410 CardBus controller is a four-function, 33-MHz PCI device compliant with the PCI Local Bus  
Specification. Function 0 provides a PC Card socket controller compliant with the latest PC Card Standards. Function  
1 provides a dedicated socket for either SD/MMC or Memory Stick. Function 2 of the PCI7410 controller is an  
integrated IEEE 1394 OHCI host controller and two-port PHY. Function 3 is the interface to load the PCI7410 program  
RAM with firmware. The PCI7410 controller provides features that make it the best choice for bridging between the  
PCI bus and PC Cards, and supports any combination of 16-bit and CardBus cards powered at 5 V or 3.3 V as  
required.  
There is no PCMCIA card and socket service software changes required to move systems from the existing CardBus  
socket controller to the PCI7410 controller. The PCI7410 controller is register compatible with the Intel 82365SL–DF  
ExCA controller and implements the host interface defined in the PC Card Standard. The PCI7410 internal data path  
logic allows the host to access 8-, 16-, and 32-bit cards using full 32-bit PCI cycles for maximum performance.  
Independent buffering and the pipeline architecture provide an unsurpassed performance level with sustained  
bursting. The PCI7410 controller can be programmed to accept posted writes to improve bus utilization. All card  
signals are internally buffered to allow hot insertion and removal without external buffering.  
Function 1 of the PCI7410 controller provides a dedicated interface for either a Secure Digital (and MMC) or Memory  
Stick socket. Secure Digital cards are based upon the MultiMediaCard (MMC). SD is essentially a superset of MMC.  
The additional security features of the SD cards also allow their use in more-secure applications or in devices where  
content protection is essential. Memory Stick cards are about the size of a stick of gum and are 2,8 mm thick.  
Developed by Sony, there are two types of Memory Stick cards, the standard Memory Stick and MagicGate Memory  
Stick. MagicGate technology provides security to Memory Stick cards so that they can be used to store and protect  
copyrighted data.  
Function 2 of the PCI7410 controller is an integrated 1394a-2000 OHCI PHY/link-layer controller (LLC) that is fully  
compliant with the PCI Local Bus Specification, the PCI Bus Power Management Interface Specification, IEEE Std  
1394-1995, IEEE Std 1394a-2000, and the 1394 Open Host Controller Interface Specification. It is capable of  
transferring data between the 33-MHz PCI bus and the 1394 bus at 100M bits/s, 200M bits/s, and 400M bits/s. The  
PCI7410 controller provides two 1394 ports that have separate cable bias (TPBIAS). The PCI7410 controller also  
supports the IEEE Std 1394a-2000 power-down features for battery-operated applications and arbitration  
enhancements.  
As required by the 1394 Open Host Controller Interface Specification (OHCI) and IEEE Std 1394a-2000, internal  
control registers are memory-mapped and non-prefetchable. The PCI configuration header is accessed through  
configuration cycles specified by PCI, and it provides plug-and-play (PnP) compatibility. Furthermore, the PCI7410  
controller is compliant with the PCI Bus Power Management Interface Specification as specified by the PC 2001  
Design Guide requirements. The PCI7410 controller supports the D0, D1, D2, and D3 power states.  
Function 3 of the PCI7410 controller is the interface to load the PCI7410 program RAM with firmware. This function  
provides an I/O window that a software driver uses to load the PCI7410 firmware into the internal RAM.  
The PCI7410 design provides PCI bus master bursting, and it is capable of transferring a cacheline of data at 132M  
bytes/s after connection to the memory controller. Because PCI latency can be large, deep FIFOs are provided to  
buffer the 1394 data.  
The PCI7410 controller provides physical write posting buffers and a highly-tuned physical data path for SBP-2  
performance. The PCI7410 controller also provides multiple isochronous contexts, multiple cacheline burst transfers,  
advanced internal arbitration, and bus-holding buffers.  
1−1  
 
The PCI7410 PHY-layer provides the digital and analog transceiver functions needed to implement a two-port node  
in a cable-based 1394 network. Each cable port incorporates two differential line transceivers. The transceivers  
include circuitry to monitor the line conditions as needed for determining connection status, for initialization and  
arbitration, and for packet reception and transmission.  
The PCI7410 PHY-layer requires only an external 24.576-MHz crystal as a reference for the cable ports. An external  
clock may be provided instead of a crystal. An internal oscillator drives an internal phase-locked loop (PLL), which  
generates the required 393.216-MHz reference signal. This reference signal is internally divided to provide the clock  
signals that control transmission of the outbound encoded strobe and data information. A 49.152-MHz clock signal  
is supplied to the integrated LLC for synchronization and is used for resynchronization of the received data. Data bits  
to be transmitted through the cable ports are received from the integrated LLC and are latched internally in  
synchronization with the 49.152-MHz system clock. These bits are combined serially, encoded, and transmitted at  
98.304M, 196.608M, or 393.216M bits/s (referred to as S100, S200, or S400 speeds, respectively) as the outbound  
data-strobe information stream. During transmission, the encoded data information is transmitted differentially on the  
twisted-pair B (TPB) cable pair(s), and the encoded strobe information is transmitted differentially on the twisted-pair  
A (TPA) cable pair(s).  
Various implementation specific functions and general-purpose inputs and outputs are provided through several  
multifunction terminals. These terminals present a system with options, such as PCI LOCK and parallel IRQs.  
ACPI-complaint general-purpose events may be programmed and controlled through the multifunction terminals, and  
an ACPI-compliant programming interface is included for the general-purpose inputs and outputs.  
The PCI7410 controller is compliant with the latest PCI Bus Power Management Specification, and provides several  
low-power modes, which enable the host power system to further reduce power consumption. The PCI7410 controller  
also has a four-pin interface compatible with both the TI TPS2211 and TPS2221 power switches.  
An advanced CMOS process achieves low power consumption and allows the PCI7410 controller to operate at PCI  
clock rates up to 33 MHz.  
1.2 Features  
The PCI7410 controller supports the following features:  
PC Card Standard 8.0 compliant  
PCI Bus Power Management Interface Specification 1.1 compliant  
Advanced Configuration and Power Interface (ACPI) Specification 2.0 compliant  
PCI Local Bus Specification Revision 2.3 compliant  
PC 98/99 and PC2001 compliant  
Compliant with the PCI Bus Interface Specification for PCI-to-CardBus Bridges  
Fully compliant with provisions of IEEE Std 1394-1995 for a high-performance serial bus and IEEE Std  
1394a-2000  
Fully compliant with 1394 Open Host Controller Interface Specification 1.1  
1.8-V core logic and 3.3-V I/O cells with internal voltage regulator to generate 1.8-V core V  
Universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments  
Supports PC Card or CardBus with hot insertion and removal  
CC  
Supports 132-MBps burst transfers to maximize data throughput on both the PCI bus and the CardBus  
Supports serialized IRQ with PCI interrupts  
Programmable multifunction terminals  
Many interrupt modes supported  
1−2  
 
Serial ROM interface for loading subsystem ID and subsystem vendor ID  
ExCA-compatible registers are mapped in memory or I/O space  
Intel 82365SL–DF register compatible  
Supports ring indicate, SUSPEND, and PCI CCLKRUN protocol and PCI bus Lock (LOCK)  
Provides VGA/palette memory and I/O, and subtractive decoding options, LED activity terminals  
Fully interoperable with FireWireand i.LINKimplementations of IEEE Std 1394  
Compliant with Intel Mobile Power Guideline 2000  
Full IEEE Std 1394a-2000 support includes: connection debounce, arbitrated short reset, multispeed  
concatenation, arbitration acceleration, fly-by concatenation, and port disable/suspend/resume  
Power-down features to conserve energy in battery-powered applications include: automatic device power  
down during suspend, PCI power management for link-layer, and inactive ports powered down,  
ultralow-power sleep mode  
Two IEEE Std 1394a-2000 fully compliant cable ports at 100M bits/s, 200M bits/s, and 400M bits/s  
Cable ports monitor line conditions for active connection to remote node  
Cable power presence monitoring  
Separate cable bias (TPBIAS) for each port  
Physical write posting of up to three outstanding transactions  
PCI burst transfers and deep FIFOs to tolerate large host latency  
External cycle timer control for customized synchronization  
Extended resume signaling for compatibility with legacy DV components  
PHY-Link logic performs system initialization and arbitration functions  
PHY-Link encode and decode functions included for data-strobe bit level encoding  
PHY-Link incoming data resynchronized to local clock  
Low-cost 24.576-MHz crystal provides transmit and receive data at 100M bits/s, 200M bits/s, and  
400M bits/s  
Node power class information signaling for system power management  
Register bits give software control of contender bit, power class bits, link active control bit, and IEEE Std  
1394a-2000 features  
Isochronous receive dual-buffer mode  
Out-of-order pipelining for asynchronous transmit requests  
Register access fail interrupt when the PHY SCLK is not active  
PCI power-management D0, D1, D2, and D3 power states  
Initial bandwidth available and initial channels available registers  
PME support per 1394 Open Host Controller Interface Specification  
Advanced submicron, low-power CMOS technology  
1.3 Related Documents  
Advanced Configuration and Power Interface (ACPI) Specification (Revision 2.0)  
1−3  
 
1394 Open Host Controller Interface Specification (Release 1.1)  
IEEE Standard for a High Performance Serial Bus (IEEE Std 1394-1995)  
IEEE Standard for a High Performance Serial Bus—Amendment 1 (IEEE Std 1394a-2000)  
PC Card Standard (Release 8.0)  
PC 2001 Design Guide  
PCI Bus Power Management Interface Specification (Revision 1.1)  
PCI Local Bus Specification (Revision 2.3)  
Mobile Power Guidelines 2000  
Serial Bus Protocol 2 (SBP-2)  
Serialized IRQ Support for PCI Systems  
PCI Mobile Design Guide  
PCI Bus Power Management Interface Specification for PCI to CardBus Bridges  
PCI14xx Implementation Guide for D3 Wake-Up  
PCI to PCMCIA CardBus Bridge Register Description  
Texas Instruments TPS2221 product data sheet, SLVS419  
Texas Instruments TPS2211A product data sheet, SLVS282  
SD Memory Card Specifications, March 2000  
The Multimedia Card System Specification, version 3.2, January 2002  
SmartMediaStandard 2000, May 19, 2000  
Memory Stick Standard, Format Specification, version 1.3, July 2000  
ISO/IEC 7816 Series, Parts 1−10  
PC/SC Workgroup Specifications, version 1.0, Parts 1−8  
1.4 Trademarks  
Intel is a trademark of Intel Corporation.  
TI, UltraMedia, and MicroStar BGA are trademarks of Texas Instruments.  
FireWire is a trademark of Apple Computer, Inc.  
i.LINK is a trademark of Sony Corporation of America.  
Memory Stick is a trademark of Sony Kabushiki Kaisha TA Sony Corporation, Japan.  
SmartMedia is a trademark of Kabushiki Kaisha Toshiba DBA Toshiba Corporation, Japan.  
Other trademarks are the property of their respective owners.  
1−4  
 
1.5 Terms and Definitions  
Terms and definitions used in this document are given in Table 1−1.  
Table 1−1. Terms and Definitions  
TERM  
DEFINITIONS  
ATA  
AT (advanced technology, as in PC AT) attachment interface  
ATA driver  
An existing host software component that loads when any flash media adapter and card is inserted into a PC Card  
socket. This driver is logically attached to a predefined CIS provided by the PCI7410 controller when the adapter  
and media are both inserted.  
CIS  
Card information structure. Tuple list defined by the PC Card standard to communicate card information to the host  
computer  
CSR  
Control and status register  
Flash Media  
SmartMedia, Memory Stick, MMC, or SD/MMC Flash operating in an ATA compatible mode  
Function 3 firmware loader A hardware element of the PCI7410 that provides a software interface to the TI firmware loader driver to load the  
program RAM with firmware  
ISO/IEC 7816  
Memory Stick  
MMC  
The Smart Card standard  
A small-form-factor flash interface that is defined, promoted, and licensed by Sony  
MultiMediaCard. Specified by the MMC Association, and scope is encompassed by the SD Flash specification.  
Open host controller interface  
OHCI  
PCMCIA  
RSVD  
Personal Computer Memory Card International Association. Standards body that governs the PC Card standards  
Reserved for future use  
SD Flash  
SmartMedia  
SPI  
Secure Digital Flash. Standard governed by the SD Association  
Also known as SSFDC, defined by Toshiba and governed by SSFDC Forum  
Serial peripheral interface, a general-purpose synchronous serial interface. For more information, see the  
Multimedia Card System Specification, version 3.2.  
SSFDC  
Solid State Floppy Disk Card. The SSFDC Forum specifies SmartMedia  
TI firmware loader driver  
A qualified software component provided by Texas Instruments that loads the firmware into the PCI7410 on power  
up and initialization.  
TI Smart Card driver  
A qualified software component provided by Texas Instruments that loads when an UltraMedia-based Smart Card  
adapter is inserted into a PC Card slot. This driver is logically attached to a CIS provided by the PCI7410 when the  
adapter and media are both inserted.  
UART  
Universal asynchronous receiver and transmitter  
UltraMedia  
De facto industry standard promoted by Texas Instruments that integrates CardBus, Smart Card, Memory Stick,  
MultiMediaCard/Secure Digital and SmartMedia functionality into one controller.  
1.6 Ordering Information  
ORDERING NUMBER  
NAME  
VOLTAGE  
PACKAGE  
PCI7410  
PC Card, UltraMedia, and Integrated 1394a-2000 OHCI  
Two-Port PHY/Link-Layer Controller  
3.3-V, 5-V tolerant I/Os  
208-terminal LQFP (PDV)  
209-ball PBGA (GHK)  
1−5  
 
1−6  
2 Terminal Descriptions  
The PCI7410 controller is available in two packages, a 208-terminal quad flatpack (PDV) and a 209-terminal  
MicroStar BGApackage (GHK). The terminal layout for the GHK package is shown in Figure 2−1. The terminal  
layout with signal names for the PDV package is shown in Figure 2−2.  
PAR  
VCCP  
AD13  
C/BE1  
GND  
AD11  
AD12  
AD7  
C/BE0  
AD8  
VCC  
AD4  
AD5  
AD3  
AD2  
AD1  
PC1  
PC0  
TPB0N TPA0N  
TPB0P TPA0P  
R0  
R1  
TPB1N TPA1N  
TPB1P TPA1P  
NC  
W
V
U
T
ANALOG  
TPBIAS0  
ANALOG ANALOG  
SKT_  
SEL0  
TPBIAS1  
GND  
VCC  
VCC  
FILTER0  
XO  
SERR  
VCC  
ANALOG ANALOG ANALOG  
SKT_  
SEL1  
FILTER1  
CNA  
DVSEL PERR  
AD15  
TRDY  
AD10  
AD14  
AD6  
AD9  
AD0  
PC2  
NC  
NC  
XI  
R
P
N
M
L
VCC  
GND  
GND  
PHY_  
TEST  
_MA  
AD16  
GND  
VCC  
C/BE2  
AD19  
AD23  
AD25  
AD29  
REQ  
IRDY  
AD18  
AD22  
AD24  
AD28  
STOP  
CPS  
NC  
NC  
NC  
VDPLL  
GND  
UM_  
PWR_  
CTRL  
MS_BS  
SD_DATA1/  
IRQ  
MS_SDIO  
FRAME AD17  
VSPLL  
SD_WP  
SD_DATA0  
MS_RFU5 MS_RFU7  
MS_INS  
SD_CD  
MS_SCLK  
SD_CLK  
SD_DATA2  
AD20  
AD21  
SD_CMD  
SD_SC  
CAD2  
//D11  
CAD0  
//D3  
CCD1  
//CD1  
VR_  
PORT  
VCCP  
GND  
GNT  
IDSEL C/BE3  
VCC  
GND  
CAD6  
//D13  
CAD3  
//D5  
CAD4  
//D12  
CAD1  
//D4  
AD27  
AD31  
AD26  
AD30  
K
J
RI_OUT  
/PME  
CAD8 CC/BE0  
//D15 //CE1  
CAD7 CRSVD CAD5  
//D7  
//D14  
//D6  
CAD11 CAD12  
CAD10 CAD9  
//CE2 //A10  
MFUNC6  
PCLK  
VCC  
GRST  
PRST  
VR_EN  
VCC  
H
G
F
//OE  
//A11  
VR_  
PORT  
CC/BE1  
//A8  
CAD15 CAD13  
//IOWR //IORD  
MFUNC4 MFUNC1  
SUSPEND  
VCCCB  
GND  
CAUDIO  
//BVD2  
CRSVD CAD27  
//D2 //D0  
CAD26 CVS2 CIRDY CPAR CPERR  
//A0 //VS2 //A15 //A13 //A14  
CRSVD CAD16 CAD14  
MFUNC5 MFUNC3 MFUNC2  
MFUNC0 CLK_48 RSVD  
VD1/  
//A18  
//A17  
//A9  
CBLOCK  
//A19  
CAD31 CAD28 CSERR CAD25 CAD21 CAD18 CTRDY  
//D10 //D8 //WAIT //A1 //A5 //A7 //A22  
CSTOP  
//A20  
RSVD  
NC  
SPKROUT  
GND  
SDA  
SCL  
VCC  
E
D
C
B
A
VCCD0  
CGNT//  
WE  
CAD30 CCD2 CINT// CAD24 CAD22 CAD20 CC/BE2 CCLK  
VD2/  
RSVD RSVD  
VPPD1  
//D9  
//CD2 READY  
//A2  
//A4  
//A6  
//A12  
//A16  
CFRAME  
//A23  
VD0/  
VCCD1  
CAD29  
//D1  
CVS1 CC/BE3 CREQ// CRST// CAD17  
CCLKRUN  
//WP  
RSVD  
RSVD  
//VS1  
//REG INPACK RESET //A24  
CAD23  
//A3  
CAD19  
//A25  
CSTSCHG  
//BVD1  
CDEVSEL  
//A21  
VD3/  
VPPD0  
VCC  
GND  
VCC  
GND VCCCB  
VCC  
GND  
RSVD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Figure 2−1. PCI7410 GHK-Package Terminal Diagram  
2−1  
 
PDV LOW-PROFILE QUAD FLAT PACKAGE  
(LQFP)  
TOP VIEW  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
NC  
CDEVSEL//A21  
CCLK//A16  
CTRDY//A22  
CIRDY//A15  
CFRAME//A23  
GND  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
TPBIAS1  
NC  
TPA1P  
NC  
TPA1N  
ANALOGVCC  
ANALOGGND  
TPB1P  
TPB1N  
NC  
CC/BE2//A12  
CAD17//A24  
CAD18//A7  
CAD19//A25  
CVS2//VS2  
CAD20//A6  
CRST//RESET  
VCC  
ANALOGVCC  
R1  
R0  
ANALOGGND  
NC  
CAD21//A5  
CAD22//A4  
CREQ//INPACK  
CAD23//A3  
VCCCB  
TPBIAS0  
TPA0P  
TPA0N  
ANALOGVCC  
NC  
CC/BE3//REG  
CAD24//A2  
CAD25//A1  
CAD26//A0  
GND  
ANALOGGND  
TPB0P  
TPB0N  
CPS  
CVS1//VS1  
CINT//READY(IREQ)  
CSERR//WAIT  
CAUDIO//BVD2(SPKR)  
CSTSCHG//BVD1(STSCHG/RI)  
CCLKRUN//WP(IOIS16)  
CCD2//CD2  
CAD27//D0  
CAD28//D8  
VCC  
SKT_SEL1  
SKT_SEL0  
PC0  
PCI7410  
PC1  
PC2  
AD0  
AD1  
AD2  
AD3  
VCC  
CAD29//D1  
CAD30//D9  
CRSVD//D2  
CAD31//D10  
GND  
AD4  
AD5  
AD6  
AD7  
C/BE0  
AD8  
RSVD  
RSVD  
AD9  
RSVD  
GND  
RSVD  
AD10  
RSVD  
AD11  
RSVD  
AD12  
RSVD  
VCCP  
AD13  
VCC  
CLK_48  
AD14  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
AD15  
C/BE1  
PAR  
Figure 2−2. PCI7410 PDV-Package Terminal Diagram  
2−2  
 
Table 2−1 and Table 2−2 list the terminal assignments arranged in terminal-number order, with corresponding signal  
names for both CardBus and 16-bit PC Cards; Table 2−1 is for terminals on the PDV package and Table 2−2 is for  
terminals on the GHK package. Table 2−3 and Table 2−4 list the terminal assignments arranged in alphanumerical  
order by signal name, with corresponding terminal numbers for both PDV and GHK packages; Table 2−3 is for  
CardBus signal names and Table 2−4 is for 16-bit PC Card signal names.  
Terminal E5 on the GHK package is an identification ball used for device orientation; it has no internal connection  
within the controller.  
Table 2−1. Signal Names by PDV Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus PC  
16-Bit  
CardBus  
16-Bit  
CardBus  
16-Bit  
Card  
PC Card  
PC Card  
PC Card  
PC Card  
PC Card  
1
SDA  
SDA  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
GND  
GND  
AD19  
AD18  
AD17  
AD16  
C/BE2  
FRAME  
IRDY  
77  
78  
PC0  
PC0  
SKT_SEL0  
SKT_SEL1  
CPS  
2
SCL  
SCL  
AD19  
SKT_SEL0  
SKT_SEL1  
CPS  
3
MFUNC0  
MFUNC1  
SPKROUT  
GND  
MFUNC0  
MFUNC1  
SPKROUT  
GND  
AD18  
79  
4
AD17  
80  
5
AD16  
81  
TPB0N  
TPB0P  
ANALOGGND  
NC  
TPB0N  
TPB0P  
ANALOGGND  
NC  
6
C/BE2  
FRAME  
IRDY  
82  
7
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
SUSPEND  
VR_PORT  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
SUSPEND  
VR_PORT  
83  
8
84  
9
V
CC  
V
CC  
85  
ANALOGVCC  
TPA0N  
TPA0P  
ANALOGVCC  
TPA0N  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
86  
87  
TPA0P  
88  
TPBIAS0  
NC  
TPBIAS0  
NC  
89  
V
CC  
V
CC  
90  
ANALOGGND  
R0  
ANALOGGND  
R0  
VR_EN  
PRST  
GRST  
PCLK  
VR_EN  
PRST  
GRST  
PCLK  
91  
C/BE1  
AD15  
C/BE1  
AD15  
92  
R1  
R1  
93  
ANALOGVCC  
NC  
ANALOGVCC  
NC  
AD14  
AD14  
94  
GNT  
GNT  
AD13  
AD13  
95  
TPB1N  
TPB1P  
ANALOGGND  
ANALOGVCC  
TPA1N  
NC  
TPB1N  
TPB1P  
ANALOGGND  
ANALOGVCC  
TPA1N  
REQ  
REQ  
V
CCP  
V
CCP  
96  
RI_OUT/PME  
AD31  
RI_OUT/PME  
AD31  
AD12  
AD11  
AD10  
GND  
AD9  
AD12  
AD11  
AD10  
GND  
AD9  
97  
98  
AD30  
AD30  
99  
GND  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
NC  
AD29  
AD29  
TPA1P  
TPA1P  
AD28  
AD28  
AD8  
AD8  
NC  
NC  
AD27  
AD27  
C/BE0  
AD7  
C/BE0  
AD7  
TPBIAS1  
NC  
TPBIAS1  
NC  
AD26  
AD26  
V
CCP  
V
CCP  
AD6  
AD6  
FILTER0  
FILTER1  
VDPLL  
VSPLL  
FILTER0  
FILTER1  
VDPLL  
VSPLL  
AD25  
AD24  
C/BE3  
IDSEL  
AD25  
AD24  
C/BE3  
IDSEL  
AD5  
AD5  
AD4  
AD4  
V
CC  
V
CC  
AD3  
AD2  
AD1  
AD0  
PC2  
PC1  
AD3  
AD2  
AD1  
AD0  
PC2  
PC1  
XI  
XI  
V
CC  
V
CC  
XO  
XO  
AD23  
AD22  
AD21  
AD20  
AD23  
AD22  
AD21  
AD20  
CNA  
CNA  
PHY_TEST_MA  
PHY_TEST_MA  
UM_PWR_CTRL UM_PWR_CTRL  
GND GND  
2−3  
 
Table 2−1. Signal Names by PDV Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus  
PC Card  
16-Bit  
PC Card  
CardBus  
16-Bit  
CardBus PC  
16-Bit  
PC Card  
PC Card  
Card  
PC Card  
115  
MS_INS/  
SD_CD  
MS_INS/  
SD_CD  
147  
CAD14  
A9  
179  
CAD26  
A0  
116  
117  
SD_WP  
MS_BS/  
SD_WP  
MS_BS/  
148  
149  
CAD16  
A17  
A8  
180  
181  
GND  
GND  
VS1  
CC/BE1  
CVS1  
SD_DATA1/IRQ SD_DATA1/IRQ  
118  
119  
120  
121  
MS_SDIO/  
SD_DATA0  
MS_SDIO/  
SD_DATA0  
150  
151  
152  
153  
CRSVD  
A18  
182  
183  
184  
185  
CINT  
CSERR  
READY(IREQ)  
WAIT  
MS_SCLK/  
SD_CLK  
MS_SCLK/  
SD_CLK  
V
CC  
V
CC  
MS_RFU5/  
SD_CMD  
MS_RFU5/  
SD_CMD  
CPAR  
A13  
A19  
CAUDIO  
CSTSCHG  
BVD2(SPKR)  
BVD1(STSCHG/RI)  
MS_RFU7/  
MS_RFU7/  
CBLOCK  
SD_CD/DATA3 SD_CD/DATA3  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
SD_DATA2 SD_DATA2  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
CPERR  
CSTOP  
CGNT  
A14  
A20  
WE  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
CCLKRUN  
CCD2  
WP(IOIS1)  
CD2  
V
CC  
V
CC  
VR_PORT  
CCD1  
CAD0  
CAD2  
GND  
VR_PORT  
CD1  
D3  
CAD27  
CAD28  
D0  
CDEVSEL  
CCLK  
A21  
A16  
A22  
A15  
A23  
GND  
A12  
A24  
A7  
D8  
V
CC  
V
CC  
D11  
GND  
D4  
CTRDY  
CIRDY  
CFRAME  
GND  
CAD29  
CAD30  
CRSVD  
CAD31  
GND  
D1  
D9  
CAD1  
CAD4  
CAD3  
CAD6  
CAD5  
CRSVD  
CAD7  
CAD8  
CC/BE0  
D2  
D12  
D5  
D10  
CC/BE2  
CAD17  
CAD18  
CAD19  
CVS2  
GND  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
D13  
D6  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
D14  
D7  
A25  
VS2  
A6  
D15  
CE1  
CAD20  
CRST  
RESET  
V
CC  
V
CC  
V
CC  
V
CC  
CAD9  
CAD10  
CAD11  
CAD12  
GND  
A10  
CE2  
OE  
CAD21  
CAD22  
CREQ  
CAD23  
A5  
A4  
V
CC  
V
CC  
CLK_48  
CLK_48  
INPACK  
A3  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
A11  
GND  
IORD  
IOWR  
V
V
CCCB  
CCCB  
REG  
CAD13  
CAD15  
CC/BE3  
CAD24  
CAD25  
A2  
A1  
V
V
CCCB  
CCCB  
2−4  
Table 2−2. Signal Names by GHK Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus PC  
16-Bit  
CardBus  
PC Card  
16-Bit  
PC Card  
CardBus  
16-Bit  
Card  
PC Card  
PC Card  
MFUNC6  
CAD11  
CAD12  
CAD10  
CAD9  
PC Card  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
D01  
D19  
E01  
E02  
E03  
E05  
E06  
VD3/VPPD0  
VD3/VPPD0  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E17  
E18  
E19  
F01  
F02  
F03  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
F17  
F18  
F19  
G01  
G02  
G03  
G05  
G06  
G14  
G15  
G17  
G18  
G19  
H01  
H02  
H03  
H05  
RSVD  
CAD31  
CAD28  
CSERR  
CAD25  
CAD21  
CAD18  
CTRDY  
CSTOP  
CBLOCK  
RSVD  
D10  
D8  
H06  
H14  
H15  
H17  
H18  
H19  
J01  
J02  
J03  
J05  
J06  
J14  
J15  
J17  
J18  
J19  
K01  
K02  
K03  
K05  
K06  
K14  
K15  
K17  
K18  
K19  
L01  
L02  
L03  
L05  
L06  
L14  
L15  
L17  
L18  
L19  
M01  
M02  
M03  
M05  
M06  
M14  
MFUNC6  
OE  
V
CC  
V
CC  
RSVD  
GND  
RSVD  
GND  
A11  
WAIT  
A1  
CE2  
V
CC  
V
CC  
A10  
CSTSCHG  
GND  
BVD1(STSCHG/RI)  
GND  
A5  
V
V
CC  
CC  
A7  
GNT  
REQ  
GNT  
REQ  
RI_OUT/PME  
AD31  
AD30  
D15  
V
V
A22  
A20  
A19  
CCCB  
CAD23  
CCCB  
A3  
RI_OUT/PME  
AD31  
V
CC  
V
CC  
CAD19  
GND  
A25  
GND  
A21  
V
V
AD30  
CC  
CC  
MFUNC5  
MFUNC3  
MFUNC2  
MFUNC0  
CLK_48  
RSVD  
MFUNC5  
MFUNC3  
MFUNC2  
MFUNC0  
CLK_48  
RSVD  
D2  
CAD8  
CC/BE0  
CAD7  
CRSVD  
CAD5  
GND  
CDEVSEL  
VD0/VCCD1  
RSVD  
CE1  
VD0/VCCD1  
RSVD  
RSVD  
D1  
D7  
D14  
RSVD  
D6  
CAD29  
CCLKRUN  
CVS1  
GND  
AD29  
AD28  
AD27  
AD26  
D13  
WP(IOIS16)  
VS1  
CRSVD  
CAD27  
CAUDIO  
CAD26  
CVS2  
AD29  
D0  
AD28  
CC/BE3  
CREQ  
REG  
BVD2(SPKR)  
A0  
AD27  
INPACK  
RESET  
A24  
AD26  
CRST  
VS2  
CAD6  
CAD3  
CAD4  
CAD1  
GND  
CAD17  
CFRAME  
VD2/VPPD1  
RSVD  
CIRDY  
A15  
D5  
A23  
CPAR  
A13  
D12  
VD2/VPPD1  
RSVD  
RSVD  
D9  
CPERR  
CRSVD  
CAD16  
CAD14  
A14  
D4  
A18  
GND  
RSVD  
A17  
V
V
CCP  
CCP  
CAD30  
CCD2  
A9  
AD25  
AD24  
AD25  
AD24  
IDSEL  
C/BE3  
D11  
CD2  
V
V
CC  
CC  
CINT  
READY(IREQ)  
A2  
VR_PORT  
SUSPEND  
MFUNC4  
MFUNC1  
VR_PORT  
SUSPEND  
MFUNC4  
MFUNC1  
IDSEL  
C/BE3  
CAD2  
CAD24  
CAD22  
CAD20  
CC/BE2  
CCLK  
A4  
A6  
CAD0  
D3  
A12  
V
V
CCD1  
CD1  
CCCB  
CCCB  
A8  
A16  
CC/BE1  
CAD15  
CAD13  
GND  
VR_PORT  
VR_PORT  
SDA  
SDA  
IOWR  
IORD  
GND  
V
V
V
V
CC  
CC  
CGNT  
WE  
CC  
CC  
GND  
GND  
AD23  
AD22  
AD20  
AD21  
AD23  
AD22  
AD20  
AD21  
SPKROUT  
SCL  
SPKROUT  
SCL  
PCLK  
PCLK  
GRST  
PRST  
VR_EN  
GRST  
PRST  
NC  
NC  
VD1/VCCD0  
VD1/VCCD0  
VR_EN  
MS_INS/  
SD_CD  
MS_INS/  
SD_CD  
2−5  
 
Table 2−2. Signal Names by GHK Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus  
PC Card  
16-Bit  
PC Card  
CardBus  
16-Bit  
CardBus  
PC Card  
16-Bit  
PC Card  
PC Card  
PC Card  
M15  
M17  
M18  
MS_SCLK/  
SD_CLK  
MS_SCLK/  
SD_CLK  
P17  
P18  
P19  
CNA  
CNA  
U13  
U14  
U15  
ANALOGVCC ANALOGVCC  
MS_RFU5/  
SD_CMD  
MS_RFU5/  
SD_CMD  
PHY_TEST_MA PHY_TEST_MA  
GND GND  
ANALOGVCC ANALOGVCC  
MC_RFU7/  
MC_RFU7/  
TPBIAS1  
TPBIAS1  
SD_CD/DATA3  
SD_CD/DATA3  
M19  
N01  
N02  
N03  
N05  
N06  
N14  
N15  
N17  
N18  
SD_DATA2  
GND  
SD_DATA2  
GND  
R01  
R02  
R03  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
V
V
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
AD13  
AD11  
C/BE0  
AD4  
AD13  
AD11  
C/BE0  
AD4  
CC  
CC  
DEVSEL  
PERR  
DEVSEL  
PERR  
AD19  
AD19  
AD18  
AD18  
AD15  
AD15  
FRAME  
AD17  
FRAME  
AD17  
AD10  
AD10  
AD2  
AD2  
AD6  
AD6  
PC0  
PC0  
VSPLL  
VSPLL  
AD0  
AD0  
TPB0P  
TPA0P  
R1  
TPB0P  
TPA0P  
R1  
UM_PWR_CTRL UM_PWR_CTRL  
SKT_SEL1  
ANALOGVCC  
ANALOGGND  
SKT_SEL1  
ANALOGVCC  
ANALOGGND  
SD_WP  
SD_WP  
MS_BS/  
MS_BS/  
TPB1P  
TPB1P  
SD_DATA1/IRQ  
SD_DATA1/IRQ  
N19  
MS_SDIO/  
SD_DATA0  
MS_SDIO/  
SD_DATA0  
R13  
ANALOGGND  
ANALOGGND  
V15  
TPA1P  
TPA1P  
P01  
P02  
P03  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
AD16  
C/BE2  
IRDY  
STOP  
TRDY  
AD14  
AD9  
AD16  
C/BE2  
IRDY  
STOP  
TRDY  
AD14  
AD9  
R14  
R17  
R18  
R19  
T01  
T19  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
NC  
FILTER1  
XI  
NC  
FILTER1  
XI  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
PAR  
PAR  
V
CCP  
V
CCP  
GND  
AD7  
GND  
AD7  
XO  
XO  
SERR  
SERR  
V
CC  
V
CC  
FILTER0  
C/BE1  
AD12  
FILTER0  
C/BE1  
AD12  
AD3  
PC1  
AD3  
PC1  
PC2  
PC2  
TPB0N  
TPA0N  
R0  
TPB0N  
TPA0N  
R0  
CPS  
NC  
CPS  
NC  
AD8  
AD8  
AD5  
AD5  
NC  
NC  
AD1  
AD1  
TPB1N  
TPA1N  
NC  
TPB1N  
TPA1N  
NC  
NC  
NC  
SKT_SEL0  
ANALOGGND  
TPBIAS0  
SKT_SEL0  
ANALOGGND  
TPBIAS0  
NC  
NC  
VDPLL  
VDPLL  
2−6  
Table 2−3. CardBus PC Card Signal Names Sorted Alphabetically  
TERMINAL NUMBER  
TERMINAL NUMBER  
TERMINAL NUMBER  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
74  
73  
72  
71  
69  
68  
67  
66  
64  
63  
61  
60  
59  
57  
56  
55  
43  
42  
41  
40  
38  
37  
36  
35  
31  
30  
28  
27  
26  
25  
23  
22  
83  
90  
97  
85  
93  
98  
126  
129  
127  
131  
130  
GHK  
R09  
U09  
V09  
W09  
V08  
U08  
R08  
W07  
U07  
P08  
R07  
V06  
U06  
V05  
P07  
R06  
P01  
N06  
N03  
N02  
M05  
M06  
M03  
M02  
L03  
L02  
K06  
K05  
K03  
K02  
J06  
PDV  
132  
135  
136  
139  
140  
141  
142  
144  
147  
145  
148  
164  
165  
166  
168  
171  
172  
174  
177  
178  
179  
188  
189  
191  
192  
194  
184  
65  
GHK  
K14  
J17  
PDV  
160  
204  
111  
152  
154  
80  
GHK  
F13  
F06  
P17  
F14  
F15  
P10  
B12  
B13  
F08  
F17  
J18  
AD0  
AD1  
CAD6  
CAD7  
CIRDY  
CLK_48  
CNA  
AD2  
CAD8  
J14  
AD3  
CAD9  
H18  
H17  
H14  
H15  
G18  
F19  
G17  
F18  
B14  
E13  
A14  
C13  
E12  
C12  
A12  
C11  
E11  
F11  
F09  
E09  
B08  
C08  
E08  
F10  
V07  
U05  
P02  
L06  
E18  
J15  
CPAR  
AD4  
CAD10  
CAD11  
CAD12  
CAD13  
CAD14  
CAD15  
CAD16  
CAD17  
CAD18  
CAD19  
CAD20  
CAD21  
CAD22  
CAD23  
CAD24  
CAD25  
CAD26  
CAD27  
CAD28  
CAD29  
CAD30  
CAD31  
CAUDIO  
C/BE0  
CPERR  
CPS  
AD5  
AD6  
CREQ  
CRST  
173  
169  
134  
150  
193  
183  
155  
185  
159  
181  
167  
49  
AD7  
AD8  
CRSVD  
CRSVD  
CRSVD  
CSERR  
CSTOP  
CSTSCHG  
CTRDY  
CVS1  
AD9  
AD10  
AD11  
E10  
E17  
A09  
E14  
B10  
F12  
R02  
T19  
R17  
N05  
E01  
K01  
N01  
W06  
P19  
K19  
G19  
A15  
A10  
A07  
J01  
AD12  
AD13  
AD14  
AD15  
AD16  
CVS2  
AD17  
DEVSEL  
FILTER0  
FILTER1  
FRAME  
GND  
AD18  
105  
106  
45  
AD19  
AD20  
AD21  
6
AD22  
GND  
24  
AD23  
GND  
39  
AD24  
GND  
62  
AD25  
GND  
114  
128  
143  
162  
180  
195  
19  
AD26  
GND  
AD27  
GND  
AD28  
C/BE1  
54  
GND  
AD29  
C/BE2  
44  
GND  
AD30  
C/BE3  
32  
GND  
AD31  
J05  
CBLOCK  
CC/BE0  
CC/BE1  
CC/BE2  
CC/BE3  
CCD1  
153  
137  
149  
163  
176  
125  
187  
158  
186  
157  
161  
156  
GNT  
ANALOGGND  
ANALOGGND  
ANALOGGND  
ANALOGVCC  
ANALOGVCC  
ANALOGVCC  
CAD0  
U11  
R12  
R13  
R11  
U13  
U14  
L15  
K18  
L14  
K15  
K17  
GRST  
17  
H02  
L05  
P03  
F05  
G06  
F03  
F02  
G05  
F01  
H06  
N18  
G15  
C14  
B11  
L17  
C09  
C15  
B09  
A16  
B15  
D19  
IDSEL  
IRDY  
33  
46  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
3
4
CCD2  
7
CCLK  
8
CAD1  
CCLKRUN  
CDEVSEL  
CFRAME  
CGNT  
9
CAD2  
10  
CAD3  
11  
CAD4  
MS_BS/  
117  
SD_DATA1/IRQ  
CAD5  
133  
J19  
CINT  
182  
C10  
MS_INS/SD_CD  
115  
M14  
2−7  
 
Table 2−3. CardBus PC Card Signal Names Sorted Alphabetically (Continued)  
TERMINAL NUMBER  
TERMINAL NUMBER  
TERMINAL NUMBER  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
GHK  
PDV  
GHK  
PDV  
GHK  
MS_RFU5/  
SD_CMD  
120  
M17  
RSVD  
202  
C06  
V
CC  
V
CC  
V
CC  
V
CC  
14  
A05  
MS_RFU7/  
SD_CD/DATA3  
121  
119  
118  
M18  
M15  
N19  
RSVD  
R0  
197  
91  
C07  
W13  
V13  
34  
47  
70  
A08  
A13  
E19  
MS_SCLK/  
SD_CLK  
MS_SDIO/  
SD_DATA0  
R1  
92  
NC  
NC  
E05  
P11  
P12  
P13  
P14  
R14  
W16  
W04  
H01  
V10  
W10  
P09  
R03  
P18  
H03  
J02  
SCL  
SDA  
2
1
E03  
D01  
M19  
N17  
T01  
U10  
R10  
E02  
P05  
G03  
W12  
V12  
W15  
V15  
U12  
U15  
W11  
V11  
W14  
V14  
P06  
N15  
V
V
V
V
V
V
123  
138  
151  
170  
190  
203  
146  
175  
29  
G01  
H19  
L19  
CC  
CC  
CC  
CC  
CC  
CC  
84  
NC  
89  
SD_DATA2  
SD_WP  
SERR  
122  
116  
52  
78  
79  
5
NC  
94  
M01  
R01  
W08  
A11  
G14  
L01  
NC  
100  
102  
104  
53  
NC  
SKT_SEL0  
SKT_SEL1  
SPKROUT  
STOP  
NC  
V
V
CCCB  
CCCB  
PAR  
PCLK  
PC0  
18  
50  
12  
86  
87  
99  
101  
88  
103  
81  
82  
95  
96  
48  
113  
V
CCP  
77  
SUSPEND  
TPA0N  
V
CCP  
58  
W05  
P15  
B05  
E06  
C05  
A04  
H05  
G02  
L18  
PC1  
76  
VDPLL  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
VR_EN  
107  
205  
206  
207  
208  
15  
PC2  
75  
TPA0P  
PERR  
PHY_TEST_MA  
PRST  
REQ  
51  
TPA1N  
112  
16  
TPA1P  
TPBIAS0  
TPBIAS1  
TPB0N  
20  
RI_OUT/PME  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
21  
J03  
VR_PORT  
VR_PORT  
VSPLL  
13  
196  
198  
199  
201  
200  
B07  
F07  
A06  
E07  
B06  
TPB0P  
124  
108  
109  
110  
TPB1N  
N14  
R18  
R19  
TPB1P  
XI  
TRDY  
XO  
UM_PWR_CTRL  
2−8  
Table 2−4. 16-Bit PC Card Signal Names Sorted Alphabetically  
TERMINAL NUMBER  
TERMINAL NUMBER  
TERMINAL NUMBER  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
74  
GHK  
R09  
U09  
V09  
W09  
V08  
U08  
R08  
W07  
U07  
P08  
R07  
V06  
U06  
V05  
P07  
R06  
P01  
N06  
N03  
N02  
M05  
M06  
M03  
M02  
L03  
L02  
K06  
K05  
K03  
K02  
J06  
PDV  
147  
139  
142  
163  
152  
154  
160  
158  
148  
150  
153  
155  
157  
159  
161  
164  
166  
83  
GHK  
F19  
H18  
H15  
C14  
F14  
F15  
F13  
C15  
F18  
F17  
E18  
E17  
A16  
E14  
B15  
B14  
A14  
U11  
R12  
R13  
R11  
U13  
U14  
A09  
F10  
V07  
U05  
P02  
L06  
L17  
C09  
J15  
PDV  
129  
131  
133  
135  
189  
192  
194  
127  
130  
132  
134  
136  
105  
106  
45  
GHK  
K18  
K15  
J19  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
A0  
A9  
A10  
D4  
D5  
73  
72  
A11  
D6  
71  
A12  
D7  
J17  
69  
A13  
D8  
E09  
C08  
E08  
L14  
K17  
K14  
J18  
68  
A14  
D9  
67  
A15  
D10  
66  
A16  
D11  
64  
A17  
D12  
63  
A18  
D13  
61  
A19  
D14  
60  
A20  
D15  
J14  
59  
A21  
FILTER0  
FILTER1  
FRAME  
GND  
T19  
R17  
N05  
E01  
K01  
N01  
W06  
P19  
K19  
G19  
A15  
A10  
A07  
J01  
57  
A22  
56  
A23  
55  
A24  
6
43  
A25  
GND  
24  
42  
ANALOGGND  
ANALOGGND  
ANALOGGND  
ANALOGVCC  
ANALOGVCC  
ANALOGVCC  
BVD1(STSCHG/RI)  
BVD2(SPKR)  
C/BE0  
C/BE1  
C/BE2  
C/BE3  
CD1  
GND  
39  
41  
90  
GND  
62  
40  
97  
GND  
114  
128  
143  
162  
180  
195  
19  
38  
85  
GND  
37  
93  
GND  
36  
98  
GND  
35  
185  
184  
65  
GND  
31  
GND  
30  
GNT  
28  
54  
GRST  
IDSEL  
INPACK  
IORD  
IOWR  
IRDY  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
17  
H02  
L05  
B12  
G18  
G17  
P03  
F05  
G06  
F03  
F02  
G05  
F01  
H06  
N18  
27  
44  
33  
26  
32  
173  
144  
145  
46  
25  
125  
187  
137  
140  
204  
111  
80  
23  
CD2  
22  
J05  
CE1  
179  
178  
177  
174  
172  
171  
168  
165  
F11  
E11  
C11  
A12  
C12  
E12  
C13  
E13  
CE2  
H17  
F06  
P17  
P10  
R02  
F09  
B08  
F08  
3
A1  
CLK_48  
CNA  
4
A2  
7
A3  
CPS  
8
A4  
DEVSEL  
D0  
49  
9
A5  
188  
191  
193  
10  
A6  
D1  
11  
A7  
D2  
MS_BS/  
117  
SD_DATA1/IRQ  
A8  
149  
G15  
D3  
126  
L15  
MS_INS/SD_CD  
115  
M14  
2−9  
 
Table 2−4. 16-Bit PC Card Signal Names Sorted Alphabetically (Continued)  
TERMINAL NUMBER  
TERMINAL NUMBER  
TERMINAL NUMBER  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
GHK  
PDV  
GHK  
PDV  
GHK  
MS_RFU5/  
SD_CMD  
120  
M17  
RSVD  
200  
B06  
V
CC  
V
CC  
V
CC  
V
CC  
47  
A13  
MS_RFU7/  
SD_CD/DATA3  
121  
119  
118  
M18  
M15  
N19  
RSVD  
RSVD  
R0  
202  
197  
91  
C06  
C07  
W13  
70  
E19  
G01  
H19  
MS_SCLK/  
SD_CLK  
123  
138  
MS_SDIO/  
SD_DATA0  
NC  
NC  
E05  
P11  
P12  
P13  
P14  
R14  
W16  
H14  
W04  
H01  
V10  
W10  
P09  
R03  
P18  
H03  
C10  
B11  
J02  
R1  
SCL  
92  
2
V13  
E03  
D01  
M19  
N17  
T01  
U10  
R10  
E02  
P05  
G03  
W12  
V12  
W15  
V15  
U12  
U15  
W11  
V11  
W14  
V14  
P06  
N14  
A05  
A08  
V
V
V
V
151  
170  
190  
203  
146  
175  
29  
L19  
M01  
R01  
W08  
A11  
G14  
L01  
W05  
P15  
B05  
E06  
C05  
A04  
H05  
G02  
L18  
N14  
B10  
F12  
E10  
D19  
B09  
R18  
R19  
CC  
CC  
CC  
CC  
84  
NC  
89  
SDA  
1
NC  
94  
SD_DATA2  
SD_WP  
SERR  
122  
116  
52  
78  
79  
5
NC  
100  
102  
104  
141  
53  
V
V
CCCB  
CCCB  
NC  
NC  
SKT_SEL0  
SKT_SEL1  
SPKROUT  
STOP  
V
CCP  
CCP  
OE  
V
58  
PAR  
VDPLL  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
VR_EN  
VR_PORT  
VR_PORT  
VSPLL  
107  
205  
206  
207  
208  
15  
PCLK  
PC0  
18  
50  
12  
86  
87  
99  
101  
88  
103  
81  
82  
95  
96  
48  
113  
14  
34  
77  
SUSPEND  
TPA0N  
PC1  
76  
PC2  
75  
TPA0P  
PERR  
PHY_TEST_MA  
PRST  
READY(IREQ)  
REG  
51  
TPA1N  
112  
16  
TPA1P  
13  
TPBIAS0  
TPBIAS1  
TPB0N  
124  
108  
181  
167  
183  
156  
186  
109  
110  
182  
176  
20  
VS1  
REQ  
TPB0P  
VS2  
RESET  
RI_OUT/PME  
RSVD  
RSVD  
RSVD  
RSVD  
169  
21  
B13  
J03  
TPB1N  
WAIT  
TPB1P  
WE  
196  
198  
199  
201  
B07  
F07  
A06  
E07  
TRDY  
WP(IOIS16)  
XI  
UM_PWR_CTRL  
V
XO  
CC  
CC  
V
2−10  
The terminals are grouped in tables by functionality, such as PCI system function, power-supply function, etc. The  
terminal numbers are also listed for convenient reference.  
Table 2−5. Power Supply Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
E01, K01, N01,  
W06, P19, K19,  
G19, A15, A10,  
A07  
Device ground terminal  
6, 24, 39, 62,  
114, 128, 143,  
162, 180, 195  
GND  
G01, M01, R01,  
W08, L19, H19,  
E19, A13, A08,  
A05  
Power supply terminal for I/O and internal voltage regulator  
14, 34, 47, 70,  
123, 138, 151,  
170, 190, 203  
V
CC  
Clamp voltage for PC CardBus interface. Matches card B signaling environment,  
5 V or 3.3 V  
V
V
146, 175  
G14, A11  
CCCB  
29, 58  
15  
L01, W05  
H05  
I
Clamp voltage for PCI and miscellaneous I/O, 5 V or 3.3 V  
Internal voltage regulator enable. Active low  
1.8 V output from voltage regulator  
CCP  
VR_EN  
VR_PORT  
13, 124  
G02, L18  
I/O  
Table 2−6. PC Card Power Switch Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
VD1/VCCD0 206  
VD0/VCCD1 205  
VD3/VPPD0 208  
VD2/VPPD1 207  
E06  
B05  
A04  
C05  
O
Logic controls to the TPS2211A or TPS2221 PC Card power interface  
Table 2−7. PCI System Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
GRST  
PCLK  
Global reset. When the global reset is asserted, the GRST signal causes the PCI7410 controller to place all  
output buffers in a high-impedance state and reset all internal registers. When GRST is asserted, the  
controller is completely in its default state. GRST must be connected to POWER_OK.  
17  
18  
H02  
I
I
PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are sampled at the  
rising edge of PCLK.  
H01  
H03  
PCI bus reset. When the PCI bus reset is asserted, PRST causes the PCI7410 controller to place all output  
buffers in a high-impedance state and reset internal registers. When PRST is asserted, the controller is  
completely nonfunctional. After PRST is deasserted, the PCI7410 controller is in a default state.  
When SUSPEND and PRST are asserted, the controller is protected from PRST clearing the internal  
registers. All outputs are placed in a high-impedance state, but the contents of the registers are preserved.  
16  
I
PRST  
2−11  
 
Table 2−8. PCI Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
22  
23  
25  
26  
27  
28  
30  
31  
35  
36  
37  
38  
40  
41  
42  
43  
55  
56  
57  
59  
60  
61  
63  
64  
66  
67  
68  
69  
71  
72  
73  
74  
J05  
J06  
K02  
K03  
K05  
K06  
L02  
L03  
M02  
M03  
M06  
M05  
N02  
N03  
N06  
P01  
R06  
P07  
V05  
U06  
V06  
R07  
P08  
U07  
W07  
R08  
U08  
V08  
W09  
V09  
U09  
R09  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the primary  
interface. During the address phase of a primary-bus PCI cycle, AD31−AD0 contain a 32-bit address or  
other destination information. During the data phase, AD31−AD0 contain data.  
I/O  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
PCI-bus commands and byte enables. These signals are multiplexed on the same PCI terminals. During  
the address phase of a primary-bus PCI cycle, C/BE3−C/BE0 define the bus command. During the data  
phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit  
data bus carry meaningful data. C/BE0 applies to byte 0 (AD7−AD0), C/BE1 applies to byte 1 (AD15−AD8),  
C/BE2 applies to byte 2 (AD23−AD16), and C/BE3 applies to byte 3 (AD31−AD24).  
32  
44  
54  
65  
L06  
P02  
U05  
V07  
C/BE3  
C/BE2  
C/BE1  
C/BE0  
I/O  
I/O  
PCI-bus parity. In all PCI-bus read and write cycles, the PCI7410 controller calculates even parity across  
the AD31−AD0 and C/BE3−C/BE0 buses. As an initiator during PCI cycles, the PCI7410 controller outputs  
this parity indicator with a one-PCLK delay. As a target during PCI cycles, the PCI7410 controller compares  
its calculated parity to the parity indicator of the initiator. A compare error results in the assertion of a parity  
error (PERR).  
PAR  
53  
W04  
2−12  
 
Table 2−9. PCI Interface Control Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
PCI device select. The PCI7410 controller asserts DEVSEL to claim a PCI cycle as the target device. As a  
49  
45  
R02  
N05  
I/O PCI initiator on the bus, the PCI7410 controller monitors DEVSEL until a target responds. If no target responds  
before timeout occurs, then the PCI7410 controller terminates the cycle with an initiator abort.  
DEVSEL  
PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate that a bus  
I/O transaction is beginning, and data transfers continue while this signal is asserted. When FRAME is  
deasserted, the PCI bus transaction is in the final data phase.  
FRAME  
PCI bus grant. GNT is driven by the PCI bus arbiter to grant the PCI7410 controller access to the PCI bus  
19  
33  
46  
J01  
L05  
P03  
I
I
after the current data transaction has completed. GNT may or may not follow a PCI bus request, depending  
on the PCI bus parking algorithm.  
GNT  
IDSEL  
IRDY  
Initialization device select. IDSEL selects the PCI7410 controller during configuration space accesses. IDSEL  
can be connected to one of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. IRDY indicates the ability of the PCI bus initiator to complete the current data phase of the  
I/O transaction. A data phase is completed on a rising edge of PCLK where both IRDY and TRDY are asserted.  
Until IRDY and TRDY are both sampled asserted, wait states are inserted.  
PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity does not match  
PAR when PERR is enabled through bit 6 of the command register (PCI offset 04h, see Section 4.5).  
51  
20  
R03  
J02  
I/O  
PERR  
REQ  
O
PCI bus request. REQ is asserted by the PCI7410 controller to request access to the PCI bus as an initiator.  
PCI system error. SERR is an output that is pulsed from the PCI7410 controller when enabled through bit 8  
of the command register (PCI offset 04h, see Section 4.5) indicating a system error has occurred. The  
PCI7410 controller need not be the target of the PCI cycle to assert this signal. When SERR is enabled in the  
command register, this signal also pulses, indicating that an address parity error has occurred on a CardBus  
interface.  
52  
T01  
O
SERR  
PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current PCI bus  
50  
48  
P05  
P06  
I/O transaction. STOP is used for target disconnects and is commonly asserted by target devices that do not  
support burst data transfers.  
STOP  
TRDY  
PCI target ready. TRDY indicates the ability of the primary bus target to complete the current data phase of  
I/O the transaction. A data phase is completed on a rising edge of PCLK when both IRDY and TRDY are asserted.  
Until both IRDY and TRDY are asserted, wait states are inserted.  
2−13  
 
Table 2−10. Multifunction and Miscellaneous Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
CLK_48  
MFUNC0  
PDV  
GHK  
204  
F06  
I
48-MHz clock terminal  
Multifunction terminal 0. See Section 4.37, Multifunction Routing Status Register, for  
3
4
F05  
G06  
F03  
F02  
G05  
F01  
I/O  
configuration details.  
Multifunction terminal 1. See Section 4.37, Multifunction Routing Status Register, for  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
configuration details.  
Multifunction terminal 2. See Section 4.37, Multifunction Routing Status Register, for  
7
configuration details.  
Multifunction terminal 3. See Section 4.37, Multifunction Routing Status Register, for  
8
configuration details.  
Multifunction terminal 4. See Section 4.37, Multifunction Routing Status Register, for  
9
configuration details.  
Multifunction terminal 5. See Section 4.37, Multifunction Routing Status Register, for  
10  
configuration details.  
Multifunction terminal 6. See Section 4.37, Multifunction Routing Status Register, for  
11  
H06  
E05  
configuration details.  
No connect. These terminals have no connection anywhere within the package. Terminal  
E05 on the GHK package is used as a key to indicate the location of the A01 corner of  
the BGA package.  
84, 89, 94, P11, P12,  
NC  
100, 102,  
104  
P13, P14,  
R14, W16  
PHY_TEST_MA  
RI_OUT/PME  
112  
P18  
I
PHY test pin. Not for customer use. It must be tied to ground.  
Ring indicate out and power management event output. This terminal provides an output  
for ring-indicate or PME signals.  
21  
J03  
O
Serial clock. This terminal provides the serial clock signaling and is implemented as  
open-drain. For normal operation (a ROM is implemented in the design), this terminal  
SCL  
SDA  
2
1
E03  
D01  
I/O  
I/O  
I/O  
must be pulled high to the ROM V  
low to ground with a 220-resistor.  
with a 2.7-kresistor. Otherwise, it must be pulled  
DD  
Serial data. At GRST, the SDA signal is sampled to determine if a two-wire serial ROM  
is present. If the serial ROM is detected, then this terminal provides the serial data  
signaling.  
This terminal is implemented as open-drain, and for normal operation (a ROM is  
implemented in the design), this terminal must be pulled high to the ROM V  
2.7-kresistor. Otherwise, it must be pulled low to ground with a 220-resistor.  
with a  
DD  
Socket select terminals. Depending on how these two terminals are configured, the  
PCI7410 controller configures PCI function 1 to support either Secure Digital, Memory  
Stick, or Smart Card. See Section 3.2.4, Dedicated Socket (Function 1) Interface, for  
details.  
SKT_SEL0  
SKT_SEL1  
78  
79  
U10  
R10  
Speaker output. SPKROUT is the output to the host system that can carry SPKR or  
CAUDIO through the PCI7410 controller from the PC Card interface. SPKROUT is a low  
value (0) default. Card insertion or removal, or turning power on or off does not cause any  
changes to the SPKROUT terminal.  
5
E02  
G03  
O
I
SPKROUT  
SUSPEND  
Suspend. SUSPEND protects the internal registers from clearing when the GRST or  
PRST signal is asserted. See Section 3.9.6, Suspend Mode, for details.  
12  
2−14  
 
Table 2−11. 16-Bit PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
166  
164  
161  
159  
157  
155  
153  
150  
148  
158  
160  
154  
152  
163  
142  
139  
147  
149  
165  
168  
171  
172  
174  
177  
178  
179  
A14  
B14  
B15  
E14  
A16  
E17  
E18  
F17  
F18  
C15  
F13  
F15  
F14  
C14  
H15  
H18  
F19  
G15  
E13  
C13  
E12  
C12  
A12  
C11  
E11  
F11  
O
PC Card address. 16-bit PC Card address lines. A25 is the most significant bit.  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
136  
134  
132  
130  
127  
194  
192  
189  
135  
133  
131  
129  
126  
193  
191  
188  
J14  
J18  
K14  
K17  
L14  
E08  
C08  
E09  
J17  
J19  
K15  
K18  
L15  
F08  
B08  
F09  
I/O  
PC Card data. 16-bit PC Card data lines. D15 is the most significant bit.  
D4  
D3  
D2  
D1  
D0  
2−15  
 
Table 2−12. 16-Bit PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
Battery voltage detect 1. BVD1 is generated by 16-bit memory PC Cards that include batteries. BVD1  
is used with BVD2 as an indication of the condition of the batteries on a memory PC Card. Both BVD1  
and BVD2 are high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak  
and must be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change Interrupt Configuration  
Register, for enable bits. See Section 5.5, ExCA Card Status-Change Register, and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD1  
(STSCHG/RI)  
185  
A09  
I
Status change. STSCHG is used to alert the system to a change in the READY, write protect, or  
battery voltage dead condition of a 16-bit I/O PC Card.  
Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.  
Battery voltage detect 2. BVD2 is generated by 16-bit memory PC Cards that include batteries. BVD2  
is used with BVD1 as an indication of the condition of the batteries on a memory PC Card. Both BVD1  
and BVD2 are high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak  
and must be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change Interrupt Configuration  
Register, for enable bits. See Section 5.5, ExCA Card Status-Change Register, and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD2  
(SPKR)  
184  
F10  
I
I
Speaker. SPKR is an optional binary audio signal available only when the card and socket have been  
configured for the 16-bit I/O interface. The audio signals from cards A and B are combined by the  
PCI7410 controller and are output on SPKROUT.  
Card detect 1 and card detect 2. CD1 and CD2 are internally connected to ground on the PC Card.  
When a PC Card is inserted into a socket, CD1 and CD2 are pulled low. For signal status, see  
Section 5.2, ExCA Interface Status Register.  
125  
187  
L17  
C09  
CD1  
CD2  
137  
140  
J15  
H17  
Card enable 1 and card enable 2. CE1 and CE2 enable even- and odd-numbered address bytes. CE1  
enables even-numbered address bytes, and CE2 enables odd-numbered address bytes.  
CE1  
CE2  
O
I
Input acknowledge. INPACK is asserted by the PC Card when it can respond to an I/O read cycle  
at the current address.  
INPACK  
IORD  
IOWR  
OE  
173  
144  
145  
141  
B12  
G18  
G17  
H14  
I/O read. IORD is asserted by the PCI7410 controller to enable 16-bit I/O PC Card data output during  
host I/O read cycles.  
O
O
O
I/O write. IOWR is driven low by the PCI7410 controller to strobe write data into 16-bit I/O PC Cards  
during host I/O write cycles.  
Output enable. OE is driven low by the PCI7410 controller to enable 16-bit memory PC Card data  
output during host memory read cycles.  
Ready. The ready function is provided by READY when the 16-bit PC Card and the host socket are  
configured for the memory-only interface. READY is driven low by 16-bit memory PC Cards to  
indicate that the memory card circuits are busy processing a previous write command. READY is  
driven high when the 16-bit memory PC Card is ready to accept a new data transfer command.  
READY  
(IREQ)  
182  
C10  
I
Interrupt request. IREQ is asserted by a 16-bit I/O PC Card to indicate to the host that a device on  
the 16-bit I/O PC Card requires service by the host software. IREQ is high (deasserted) when no  
interrupt is requested.  
Attribute memory select. REG remains high for all common memory accesses. When REG is  
asserted, access is limited to attribute memory (OE or WE active) and to the I/O space (IORD or  
IOWR active). Attribute memory is a separately accessed section of card memory and is generally  
used to record card capacity and other configuration and attribute information.  
176  
169  
B11  
B13  
O
O
REG  
RESET  
PC Card reset. RESET forces a hard reset to a 16-bit PC Card.  
2−16  
 
Table 2−12. 16-Bit PC Card Interface Control Terminals (Continued)  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
VS1  
VS2  
181  
167  
B10  
F12  
Voltage sense 1 and voltage sense 2. VS1 and VS2, when used in conjunction with each other, determine  
the operating voltage of the PC Card.  
I/O  
I
Bus cycle wait. WAIT is driven by a 16-bit PC Card to extend the completion of the memory or I/O cycle in  
progress.  
183  
156  
E10  
D19  
WAIT  
WE  
Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE is also used for  
memory PC Cards that employ programmable memory technologies.  
O
Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the write-protect switch on  
16-bit memory PC Cards. For 16-bit I/O cards, WP is used for the 16-bit port (IOIS16) function.  
WP  
(IOIS16)  
186  
B09  
I
I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card when the  
address on the bus corresponds to an address to which the 16-bit PC Card responds, and the I/O port that  
is addressed is capable of 16-bit accesses.  
Table 2−13. CardBus PC Card Interface System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
CardBus clock. CCLK provides synchronous timing for all transactions on the CardBus interface. All  
signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO, CCD2, CCD1, CVS2, and CVS1 are  
sampled on the rising edge of CCLK, and all timing parameters are defined with the rising edge of this  
signal. CCLK operates at the PCI bus clock frequency, but it can be stopped in the low state or slowed  
down for power savings.  
CCLK  
158  
C15  
O
CardBus clock run. CCLKRUN is used by a CardBus PC Card to request an increase in the CCLK  
frequency, and by the PCI7410 controller to indicate that the CCLK frequency is going to be decreased.  
186  
169  
B09  
B13  
I/O  
O
CCLKRUN  
CRST  
CardBus reset. CRST brings CardBus PC Card-specific registers, sequencers, and signals to a known  
state. When CRST is asserted, all CardBus PC Card signals are placed in a high-impedance state, and  
the PCI7410 controller drives these signals to a valid logic level. Assertion can be asynchronous to  
CCLK, but deassertion must be synchronous to CCLK.  
2−17  
 
Table 2−14. CardBus PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
CAD31  
CAD30  
CAD29  
CAD28  
CAD27  
CAD26  
CAD25  
CAD24  
CAD23  
CAD22  
CAD21  
CAD20  
CAD19  
CAD18  
CAD17  
CAD16  
CAD15  
CAD14  
CAD13  
CAD12  
CAD11  
CAD10  
CAD9  
194  
192  
191  
189  
188  
179  
178  
177  
174  
172  
171  
168  
166  
165  
164  
148  
145  
147  
144  
142  
141  
140  
139  
136  
135  
132  
133  
130  
131  
127  
129  
126  
E08  
C08  
B08  
E09  
F09  
F11  
E11  
C11  
A12  
C12  
E12  
C13  
A14  
E13  
B14  
F18  
G17  
F19  
G18  
H15  
H14  
H17  
H18  
J14  
J17  
K14  
J19  
K17  
K15  
L14  
K18  
L15  
CardBus address and data. These signals make up the multiplexed CardBus address and data bus on  
the CardBus interface. During the address phase of a CardBus cycle, CAD31−CAD0 contain a 32-bit  
address. During the data phase of a CardBus cycle, CAD31−CAD0 contain data. CAD31 is the most  
significant bit.  
I/O  
CAD8  
CAD7  
CAD6  
CAD5  
CAD4  
CAD3  
CAD2  
CAD1  
CAD0  
CardBus bus commands and byte enables. CC/BE3−CC/BE0 are multiplexed on the same CardBus  
terminals. During the address phase of a CardBus cycle, CC/BE3−CC/BE0 define the bus command.  
During the data phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths  
of the full 32-bit data bus carry meaningful data. CC/BE0 applies to byte 0 (CAD7−CAD0), CC/BE1 applies  
to byte 1 (CAD15−CAD8), CC/BE2 applies to byte 2 (CAD23−CAD16), and CC/BE3 applies to byte 3  
(CAD31−CAD24).  
176  
163  
149  
137  
B11  
C14  
G15  
J15  
CC/BE3  
CC/BE2  
CC/BE1  
CC/BE0  
I/O  
I/O  
CardBus parity. In all CardBus read and write cycles, the PCI7410 controller calculates even parity across  
the CAD and CC/BE buses. As an initiator during CardBus cycles, the PCI7410 controller outputs CPAR  
with a one-CCLK delay. As a target during CardBus cycles, the PCI7410 controller compares its calculated  
parity to the parity indicator of the initiator; a compare error results in a parity error assertion.  
CPAR  
152  
F14  
2−18  
 
Table 2−15. CardBus PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
184  
153  
GHK  
CardBus audio. CAUDIO is a digital input signal from a PC Card to the system speaker. The PCI7410  
controller supports the binary audio mode and outputs a binary signal from the card to SPKROUT.  
CAUDIO  
CBLOCK  
F10  
I
E18  
I/O  
CardBus lock. CBLOCK is used to gain exclusive access to a target.  
125  
187  
L17  
C09  
CCD1  
CCD2  
CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction with CVS1 and  
CVS2 to identify card insertion and interrogate cards to determine the operating voltage and card type.  
I
CardBus device select. The PCI7410 controller asserts CDEVSEL to claim a CardBus cycle as the  
target device. As a CardBus initiator on the bus, the PCI7410 controller monitors CDEVSEL until a  
target responds. If no target responds before timeout occurs, then the PCI7410 controller terminates  
the cycle with an initiator abort.  
157  
161  
A16  
B15  
I/O  
CDEVSEL  
CFRAME  
CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle. CFRAME is asserted  
to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted.  
When CFRAME is deasserted, the CardBus bus transaction is in the final data phase.  
I/O  
CardBus bus grant. CGNT is driven by the PCI7410 controller to grant a CardBus PC Card access to  
the CardBus bus after the current data transaction has been completed.  
156  
182  
D19  
C10  
O
I
CGNT  
CINT  
CardBus interrupt. CINT is asserted low by a CardBus PC Card to request interrupt servicing from the  
host.  
CardBus initiator ready. CIRDY indicates the ability of the CardBus initiator to complete the current data  
phase of the transaction. A data phase is completed on a rising edge of CCLK when both CIRDY and  
CTRDY are asserted. Until CIRDY and CTRDY are both sampled asserted, wait states are inserted.  
160  
F13  
I/O  
CIRDY  
CardBus parity error. CPERR reports parity errors during CardBus transactions, except during special  
cycles. It is driven low by a target two clocks following the data cycle during which a parity error is  
detected.  
154  
173  
F15  
B12  
I/O  
I
CPERR  
CREQ  
CardBus request. CREQ indicates to the arbiter that the CardBus PC Card desires use of the CardBus  
bus as an initiator.  
CardBus system error. CSERR reports address parity errors and other system errors that could lead  
to catastrophic results. CSERR is driven by the card synchronous to CCLK, but deasserted by a weak  
pullup; deassertion may take several CCLK periods. The PCI7410 controller can report CSERR to the  
system by assertion of SERR on the PCI interface.  
183  
E10  
I
CSERR  
CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop the current CardBus  
transaction. CSTOP is used for target disconnects, and is commonly asserted by target devices that  
do not support burst data transfers.  
155  
185  
159  
E17  
A09  
E14  
I/O  
I
CSTOP  
CSTSCHG  
CTRDY  
CardBus status change. CSTSCHG alerts the system to a change in the card status, and is used as  
a wake-up mechanism.  
CardBus target ready. CTRDY indicates the ability of the CardBus target to complete the current data  
phase of the transaction. A data phase is completed on a rising edge of CCLK, when both CIRDY and  
CTRDY are asserted; until this time, wait states are inserted.  
I/O  
CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used in conjunction with  
CCD1 and CCD2 to identify card insertion and interrogate cards to determine the operating voltage and  
card type.  
CVS1  
CVS2  
181  
167  
B10  
F12  
I/O  
2−19  
 
Table 2−16. IEEE 1394 Physical Layer Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
Cable not active. This terminal is asserted high when there are no ports receiving incoming bias voltage.  
If it is not used, then this terminal must be strapped either to GND through a resistor.  
CNA  
CPS  
111  
P17  
I/O  
I
Cable power status input. This terminal is normally connected to cable power through a 400-kresistor.  
This circuit drives an internal comparator that is used to detect the presence of cable power. If CPS is  
not used to detect cable power, then this terminal must be tied to ground.  
80  
P10  
PLL filter terminals. These terminals are connected to an external capacitance to form a lag-lead filter  
required for stable operation of the internal frequency multiplier PLL running off of the crystal oscillator.  
A 0.1-µF 10% capacitor is the only external component required to complete this filter.  
FILTER0  
FILTER1  
105  
106  
T19  
R17  
I/O  
I
PC0  
PC1  
PC2  
77  
76  
75  
V10  
W10  
P09  
Power class programming inputs. On hardware reset, these inputs set the default value of the power  
class indicated during self-ID. Programming is done by tying these terminals high or low.  
Current-setting resistor terminals. These terminals are connected to an external resistance to set the  
internal operating currents and cable driver output currents. A resistance of 6.34 k1% is required  
to meet the IEEE Std 1394-1995 output voltage limits.  
R0  
R1  
91  
92  
W13  
V13  
TPA0P  
TPA0N  
87  
86  
V12  
W12  
I/O  
I/O  
Twisted-pair cable A differential signal terminals. Board trace lengths from each pair of positive and  
negative differential signal pins must be matched and as short as possible to the external load resistors  
and to the cable connector.  
TPA1P  
TPA1N  
101  
99  
V15  
W15  
Twisted-pair bias output. This provides the 1.86-V nominal bias voltage needed for proper operation  
of the twisted-pair cable drivers and receivers and for signaling to the remote nodes that there is an  
active cable connection. Each of these pins must be decoupled with a 1.0-µF capacitor to ground.  
TPBIAS0  
TPBIAS1  
88  
103  
U12  
U15  
I/O  
TPB0P  
TPB0N  
82  
81  
V11  
W11  
I/O  
I/O  
Twisted-pair cable B differential signal terminals. Board trace lengths from each pair of positive and  
negative differential signal pins must be matched and as short as possible to the external load resistors  
and to the cable connector.  
TPB1P  
TPB1N  
96  
95  
V14  
W14  
Crystal oscillator inputs. These pins connect to a 24.576-MHz parallel resonant fundamental mode  
crystal. The optimum values for the external shunt capacitors are dependent on the specifications of  
the crystal used (see Section 3.10.2, Crystal Selection). Terminal 5 has an internal 10-k(nominal  
value) pulldown resistor. An external clock input can be connected to the XI terminal. When using an  
external clock input, the XO terminal must be left unconnected. Refer to Section 3.10.2 for the operating  
characteristics of the XI terminal.  
XI  
XO  
109  
110  
R18  
R19  
Table 2−17. Power Supply Terminals  
TERMINAL  
NUMBER  
PDV  
GHK  
I/O  
DESCRIPTION  
NAME  
83  
90  
97  
U11  
R12  
R13  
ANALOGGND  
Analog circuit ground terminals.  
Analog circuit power terminals. A parallel combination of high frequency decoupling capacitors near  
each terminal is suggested, such as 0.1 µF and 0.001 µF. Lower frequency 10-µF filtering capacitors  
are also recommended. These supply terminals are separated from VDPLL and VSPLL internal to  
the controller to provide noise isolation. They must be tied at a low-impedance point on the circuit  
board.  
85  
93  
98  
R11  
U13  
U14  
ANALOGVCC  
PLL circuit power terminals. A parallel combination of high frequency decoupling capacitors near the  
terminal is suggested, such as 0.1 µF and 0.001 µF. Lower frequency 10-µF filtering capacitors are  
also recommended. This supply terminal is separated from AVDx internal to the controller to provide  
noise isolation. It must be tied at a low-impedance point on the circuit board.  
VDPLL  
VSPLL  
107  
108  
P15  
N14  
PLL circuit ground terminals. This terminal must be tied to the low-impedance circuit board ground  
plane.  
2−20  
 
UltraMedia defines additional functionality for the CardBus/PC Card terminals. Table 2−18 provides the signal  
descriptions for the dedicated socket signals.  
Table 2−18. UltraMedia Dedicated Socket Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
MS_BS/  
PDV  
GHK  
Memory Stick bus state. This signal provides Memory Stick bus state information.  
SD flash data 1. This signal provides the SD data path in accordance with the SD Memory  
Card Specifications.  
O
I/O  
117  
115  
N18  
SD_DATA1/IRQ  
MS_INS/  
SD_CD  
Signals a memory stick or SD card insertion  
SD flash card detection  
M14  
M17  
I/O  
I
Memory Stick reserved. This terminal is in a high-impedance state when an UltraMedia  
Memory Stick card has been inserted.  
MS_RFU5/  
SD_CMD  
120  
121  
SD flash command. This signal provides the SD command in accordance with the SD  
Memory Card Specifications.  
I/O  
I
Memory Stick reserved. This terminal is in a high-impedance state when an UltraMedia  
Memory Stick card has been inserted.  
MS_RFU7/  
SD_CD/DATA3  
M18  
SD flash card detection/data 3. This signal provides the SD data path in accordance with  
the SD Memory Card Specifications.  
I/O  
MS_SCLK/  
SD_CLK  
Memory Stick clock. This output provides the MS clock, which operates at 16 MHz.  
SD flash clock. This output provides the MMC/SD clock, which operates at 16 MHz.  
119  
118  
M15  
N19  
O
MS_SDIO/  
SD_DATA0  
I/O  
I/O  
Memory Stick serial data I/O. This signal provides Memory Stick data input/output.  
SD flash data 0. This signal provides the MMC_SD data path in accordance with the SD  
Memory Card Specifications.  
196, 198, B07, F07,  
199, 201, A06, E07,  
200, 202, B06, C06,  
RSVD  
I/O  
Reserved for Smart Card use  
197  
C07  
SD flash data 2. This signal provides the SD data path and CD in accordance with the SD  
Memory Card Specifications.  
SD_DATA2  
122  
M19  
I/O  
SD_WP  
116  
113  
N17  
N15  
I
SD card write protect signal  
UltraMedia card power control  
UM_PWR_CTRL  
O
2−21  
 
2−22  
3 Feature/Protocol Descriptions  
The following sections give an overview of the PCI7410 controller. Figure 3−1 shows the connections to the PCI7410  
controller. The PCI interface includes all address/data and control signals for PCI protocol. The interrupt interface  
includes terminals for parallel PCI, parallel ISA, and serialized PCI and ISA signaling.  
CPU  
AGP  
Graphics  
Controller  
North  
Bridge  
Memory  
South  
Bridge  
PCI Bus  
Power  
Switch  
SD/MS  
16  
68  
EEPROM  
PCI7410  
PC Card  
Power  
Switch  
1394  
Socket  
Figure 3−1. PCI7410 System Block Diagram  
3.1 Power Supply Sequencing  
The PCI7410 controller contains 3.3-V I/O buffers with 5-V tolerance requiring a core power supply and clamp  
voltages. The core power supply is always 1.8 V. The clamp voltages can be either 3.3 V or 5 V, depending on the  
interface. The following power-up and power-down sequences are recommended.  
The power-up sequence is:  
1. Apply 3.3-V power to V  
.
CC  
3−1  
 
2. Assert GRST to the device to disable the outputs during power up. Output drivers must be powered up in  
the high-impedance state to prevent high current levels through the clamp diodes to the 5-V supply.  
3. Apply the clamp voltage.  
The power-down sequence is:  
1. Assert GRST to switch the outputs to the high-impedance state.  
2. Remove the clamp voltage.  
3. Remove the 3.3-V power from V  
.
CC  
3.2 Summary of Flash Media Cards  
3.2.1 MultiMediaCard (MMC)  
The MultiMediaCard is a flash-memory card about the size of a postage stamp and 1,4 mm in thickness. The  
specification for MMC is governed by the MultiMediaCard Association (MMCA). The interface for MMC cards is based  
on a 7-terminal serial bus. The MultiMediaCard system specification defines a communication protocol for MMC  
cards, referred to as MultiMediaCard mode. In addition, all MMC cards work in the alternate SPI mode. The SPI mode  
allows a microcontroller to interface directly to the MMC card, but at the cost of slower performance.  
The voltage range for communication with MMC cards is 2.0 to 3.6 V, and the memory-access voltage range is a  
card-specific subrange of the communication voltage range. Like SmartMedia cards, MMC cards can be read-only  
or read/write; however, MMC cards can also have I/O functionality.  
MMC cards are designed to be used in either a stand-alone implementation or in a system with other MMC cards.  
When in the MultiMediaCard mode, the bus protocol can address cards with up to 64K of memory, and up to 30 cards  
on a single physical bus. However, the maximum data rate is only available with up to 10 MMC cards on the bus. In  
order to accommodate such a wide variety of system implementations, the MMC clock rate can be varied from 0 to  
20 MHz.  
MMC cards, like SmartMedia cards, are also used in many types of consumer electronic devices. Because of their  
small size, they are primarily used in portable music players and phones.  
3.2.2 Secure Digital (SD)  
SD cards are the same size as MMC cards, except for the thickness, which at 2,1 mm is slightly thicker than an MMC  
card. SD cards are based upon MMC cards, with the addition of two terminals. The use of these two terminals and  
a reserved terminal on MMC cards allows the data bus on SD cards to be up to 4 bits wide instead of the 1-bit width  
of the MMC data bus. SD cards can communicate in either SD mode or SPI mode.  
The voltage range for basic communication with SD cards is 2.0 to 3.6 V, and the voltage range for other commands  
and memory access is 2.7 to 3.6 V. SD cards can be read-only or read/write.  
SD is essentially a superset of MMC, in that MMC cards work in SD systems, but SD cards do not work in current  
MMC systems. Unlike MMC, each SD card in a system must have a dedicated bus. One of the primary benefits of  
SD cards is the added security that they provide. SD cards comply with the highest security of SDMI, have built-in  
write-protect features, and include a mechanical write-protect switch.  
SD cards are used in many of the same devices as MMC cards. The additional security features of the SD cards also  
allow their use in more-secure applications or in devices where content protection is essential.  
3.2.3 Memory Stick  
Memory Stick cards are about the size of a stick of gum and are 2,8 mm thick. Developed by Sony, Memory Stick  
cards have a 10-terminal interface of which three terminals are used for serial communication, two terminals apply  
power, two terminals are ground, one terminal is for insertion detection, and two terminals are reserved for future use.  
Each card also includes an erasure-prevention switch to protect data stored on the card.  
3−2  
 
The voltage range for Memory Stick cards is 2.7 to 3.6 V, and the clock speed can be up to 20 MHz. Memory Stick  
cards use the FAT file system to allow for easy communication with PCs.  
There are two types of Memory Stick cards, the standard Memory Stick and the MagicGate Memory Stick. MagicGate  
technology provides security to Memory Stick cards so that they can be used to store and protect copyrighted data.  
Memory Stick cards are primarily used to store still images, moving images, voice and music. As such, they are used  
in a variety of devices, including portable music players, digital cameras, and digital picture frames.  
3.2.4 Dedicated Socket (Function 1) Interface  
Dedicated socket (function 1) terminals can be configured to use one of the two interfaces: Secure Digital (SD) or  
Memory Stick (MS). To use the SD or MS interface, the TPS2020 power switch is recommended. There are two socket  
select terminals (SKT_SEL1 and SKT_SEL2) in the PCI7410 controller, depending on how these two terminals are  
configured, the PCI7410 controller configures the dedicated socket (function 1) to support either the SD or MS  
interface. The SKT_SEL1 and SKT_SEL0 terminal configurations are:  
SKT_SEL1  
SKT_SEL0  
INTERFACE SELECTED  
Reserved  
0
0
1
1
0
1
0
1
SD/MMC  
Memory Stick  
None (test mode)  
Use a pullup and/or pulldown resistor combination to configure SKT_SEL1 and SKT_SEL0 to select one of the three  
interfaces.  
3.3 I/O Characteristics  
The PCI7410 controller meets the ac specifications of the PC Card Standard (release 8.0) and PCI Local Bus  
Specification. Figure 3−2 shows a 3-state bidirectional buffer. Section 12.2, Recommended Operating Conditions,  
provides the electrical characteristics of the inputs and outputs.  
V
CCP  
Tied for Open Drain  
OE  
Pad  
Figure 3−2. 3-State Bidirectional Buffer  
3.4 Clamping Voltages  
The clamping voltages are set to match whatever external environment the PCI7410 controller is interfaced with:  
3.3 V or 5 V. The I/O sites can be pulled through a clamping diode to a voltage rail that protects the core from external  
signals. The core power supply is 1.8 V and is independent of the clamping voltages. For example, PCI signaling can  
be either 3.3 V or 5 V, and the PCI7410 controller must reliably accommodate both voltage levels. This is  
accomplished by using a 3.3-V I/O buffer that is 5-V tolerant, with the applicable clamping voltage applied. If a system  
designer desires a 5-V PCI bus, then V  
can be connected to a 5-V power supply.  
CCP  
3.5 Peripheral Component Interconnect (PCI) Interface  
The PCI7410 controller is fully compliant with the PCI Local Bus Specification. The PCI7410 controller provides all  
required signals for PCI master or slave operation, and may operate in either a 5-V or 3.3-V signaling environment  
by connecting the V  
terminals to the desired voltage level. In addition to the mandatory PCI signals, the PCI7410  
CCP  
controller provides the optional interrupt signals INTA, INTB, and INTC for functions 0, 1, and 2, respectively.  
3−3  
 
3.5.1 1394 PCI Bus Master  
As a bus master, the 1394 function of the PCI7410 controller supports the memory commands specified in Table 3−1  
below. The PCI master supports the memory read, memory read line, and memory read multiple commands. The  
read command usage for read transactions of greater than two data phases are determined by the selection in  
bits 9−8 (MR_ENHANCE field) of the PCI miscellaneous configuration register (refer to Section 7.23 for details). For  
read transactions of one or two data phases, a memory read command is used.  
Table 3−1. PCI Bus Master Command Support  
COMMAND  
C/BE3−C/BE0  
PCI  
OHCI MASTER FUNCTION  
Memory read  
0110  
DMA read from memory  
DMA write to memory  
DMA read from memory  
DMA read from memory  
DMA write to memory  
Memory write  
0111  
Memory read multiple  
Memory read line  
1100  
1110  
Memory write and invalidate  
1111  
3.5.2 PCI Bus Lock (LOCK)  
The bus-locking protocol defined in the PCI Local Bus Specification is not highly recommended, but is provided on  
the PCI7410 controller as an additional compatibility feature. The PCI LOCK signal can be routed to the MFUNC4  
terminal by setting the appropriate values in bits 19−16 of the multifunction routing status register. See Section 4.37,  
Multifunction Routing Status Register, for details. Note that the use of LOCK is only supported by PCI-to-CardBus  
bridges in the downstream direction (away from the processor).  
PCI LOCK indicates an atomic operation that may require multiple transactions to complete. When LOCK is asserted,  
nonexclusive transactions can proceed to an address that is not currently locked. A grant to start a transaction on  
the PCI bus does not assure control of LOCK; control of LOCK is obtained under its own protocol. It is possible for  
different initiators to use the PCI bus while a single master retains ownership of LOCK. Note that the CardBus signal  
for this protocol is CBLOCK to avoid confusion with the bus clock.  
An agent may need to do an exclusive operation because a critical access to memory might be broken into several  
transactions, but the master wants exclusive rights to a region of memory. The granularity of the lock is defined by  
PCI to be 16 bytes, aligned. The LOCK protocol defined by the PCI Local Bus Specification allows a resource lock  
without interfering with nonexclusive real-time data transfer, such as video.  
The PCI bus arbiter may be designed to support only complete bus locks using the LOCK protocol. In this scenario,  
the arbiter does not grant the bus to any other agent (other than the LOCK master) while LOCK is asserted. A  
complete bus lock may have a significant impact on the performance of the video. The arbiter that supports complete  
bus LOCK must grant the bus to the cache to perform a writeback due to a snoop to a modified line when a locked  
operation is in progress.  
The PCI7410 controller supports all LOCK protocols associated with PCI-to-PCI bridges, as also defined for  
PCI-to-CardBus bridges. This includes disabling write posting while a locked operation is in progress, which can solve  
a potential deadlock when using devices such as PCI-to-PCI bridges. The potential deadlock can occur if a CardBus  
target supports delayed transactions and blocks access to the target until it completes a delayed read. This target  
characteristic is prohibited by the PCI Local Bus Specification, and the issue is resolved by the PCI master using  
LOCK.  
2
3.5.3 Serial EEPROM I C Bus  
The PCI7410 controller offers many choices for modes of operation, and these choices are selected by programming  
several configuration registers. For system board applications, these registers are normally programmed through the  
BIOS routine. For add-in card and docking-station/port-replicator applications, the PCI7410 controller provides a  
2
two-wire inter-integrated circuit (IIC or I C) serial bus for use with an external serial EEPROM.  
3−4  
 
The PCI7410 controller is always the bus master, and the EEPROM is always the slave. Either device can drive the  
bus low, but neither device drives the bus high. The high level is achieved through the use of pullup resistors on the  
SCL and SDA signal lines. The PCI7410 controller is always the source of the clock signal, SCL.  
System designers who wish to load register values with a serial EEPROM must use a pullup resistor on the SCL  
terminal. If the PCI7410 controller detects a logic-high level on the SCL terminal at the end of GRST, then it initiates  
2
incremental reads from the external EEPROM. Any size serial EEPROM up to the I C limit of 16 Kbits can be used,  
but only the first 67 bytes (from offset 00h to offset 42h) are required to configure the PCI7410 controller. Figure 3−3  
shows a 2-Kbit serial EEPROM application.  
2
In addition to loading configuration data from an EEPROM, the PCI7410 I C bus can be used to read and write from  
2
2
other I C serial devices. A system designer can control the I C bus, using the PCI7410 controller as bus master, by  
reading and writing PCI configuration registers. Setting bit 3 (SBDETECT) in the serial bus control/status register (PCI  
offset B3h, see Section 4.51) causes the PCI7410 controller to route the SDA and SCL signals to the SDA and SCL  
terminals, respectively. The read/write data, slave address, and byte addresses are manipulated by accessing the  
serial bus data, serial bus index, and serial bus slave address registers (PCI offsets B0h, B1h, and B2h; see Sections  
4.48, 4.49, and 4.50, respectively).  
EEPROM interface status information is communicated through the serial bus control and status register (PCI offset  
B3h, see Section 4.51). Bit 2 (EEDETECT) in this register indicates whether or not the PCI7410 serial ROM circuitry  
detects the pullup resistor on SCL. Any undefined condition, such as a missing acknowledge, results in bit 1  
(DATAERR) being set. Bit 0 (EEBUSY) is set while the subsystem ID register is loading (serial ROM interface is busy).  
The subsystem vendor ID for functions 2 and 3 is also loaded through EEPROM. The EEPROM load data goes to  
all four functions from the serial EEPROM loader.  
V
CC  
Serial  
ROM  
A0  
SCL  
SDA  
A1 SCL  
A2 SDA  
PCI7410  
Figure 3−3. Serial ROM Application  
3.5.4 Loading Subsystem Identification  
The subsystem vendor ID register (PCI offset 40h, see Section 4.27) and subsystem ID register (PCI offset 42h, see  
Section 4.28) make up a doubleword of PCI configuration space for function 0. This doubleword register is used for  
system and option card (mobile dock) identification purposes and is required by some operating systems.  
Implementation of this unique identifier register is a PC 99/PC 2001 requirement.  
The PCI7410 controller offers two mechanisms to load a read-only value into the subsystem registers. The first  
mechanism relies upon the system BIOS providing the subsystem ID value. The default access mode to the  
subsystem registers is read-only, but can be made read/write by setting bit 5 (SUBSYSRW) in the system control  
register (PCI offset 80h, see Section 4.30). Once this bit is set, the BIOS can write a subsystem identification value  
3−5  
 
into the registers at PCI offset 40h. The BIOS must clear the SUBSYSRW bit such that the subsystem vendor ID  
register and subsystem ID register is limited to read-only access. This approach saves the added cost of  
implementing the serial electrically erasable programmable ROM (EEPROM).  
In some conditions, such as in a docking environment, the subsystem vendor ID register and subsystem ID register  
must be loaded with a unique identifier via a serial EEPROM. The PCI7410 controller loads the data from the serial  
EEPROM after a reset of the primary bus. Note that the SUSPEND input gates the PCI reset from the entire PCI7410  
core, including the serial-bus state machine (see Section 3.9.6, Suspend Mode, for details on using SUSPEND).  
The PCI7410 controller provides a two-line serial-bus host controller that can interface to a serial EEPROM. See  
Section 3.7, Serial EEPROM Interface, for details on the two-wire serial-bus controller and applications.  
3.5.4.1 Function 2 Subsystem Identification  
The subsystem identification register is used for system and option card identification purposes. This register can  
be initialized from the serial EEPROM or programmed via the subsystem access register at offset F8h in the PCI  
configuration space (see Section 7.25, Subsystem Access Register). See Table 7−22 for a complete description of  
the register contents.  
Write access to the subsystem access register updates the subsystem identification registers identically to  
OHCI-Lynx. The system ID value written to this register may also be read back from this register. See Table 7−22  
for a complete description of the register contents.  
3.5.4.2 Function 3 Subsystem Identification  
The subsystem identification register is used for system and option card identification purposes. This register can  
be initialized from the serial EEPROM or programmed via the subsystem access register at offset F8h in the PCI  
configuration space (see Section 11.25, Subsystem Access Register). See Table 11−9 for a complete description of  
the register contents.  
3.6 PC Card Applications  
The PCI7410 controller supports all the PC Card features and applications as described below.  
Card insertion/removal and recognition per the PC Card Standard (release 8.0)  
Zoomed video support  
Speaker and audio applications  
LED socket activity indicators  
PC Card controller programming model  
CardBus socket registers  
3.6.1 PC Card Insertion/Removal and Recognition  
The PC Card Standard (release 8.0) addresses the card-detection and recognition process through an interrogation  
procedure that the socket must initiate on card insertion into a cold, nonpowered socket. Through this interrogation,  
card voltage requirements and interface (16-bit versus CardBus) are determined.  
The scheme uses the card-detect and voltage-sense signals. The configuration of these four terminals identifies the  
card type and voltage requirements of the PC Card interface.  
3.6.2 Low Voltage CardBus Card Detection  
The card detection logic of the PCI7410 controller includes the detection of Cardbus cards with V  
= 3.3 V and  
CC  
V
= 1.8 V. The reporting of the 1.8-V CardBus card (V  
= 3.3 V, V = 1.8 V) is reported through the socket present  
PP  
CC PP  
state register as follows based on bit 10 (12V_SW_SEL) in the general control register (PCI offset 86h, see Section  
4.32):  
If the 12V_SW_SEL bit is 0 (TPS2221 is used), then the 1.8-V CardBus card causes the 3VCARD bit in the  
socket present state register to be set.  
If the 12V_SW_SEL bit is 1 (TPS2211A is used), then the 1.8-V CardBus card causes the XVCARD bit in  
the socket present state register to be set.  
3−6  
 
3.6.3 Card Detection With A PCI7410 Controller  
The PC Card Standard addresses the card detection and recognition process through an interrogation procedure that  
the socket must initiate upon card insertion into a cold, unpowered socket. Through this interrogation, card voltage  
requirements and interface type (16-bit vs. CardBus) are determined. The scheme uses the CD1, CD2, VS1, and VS2  
signals (CCD1, CCD2, CVS1, CVS2 for CardBus). A PC Card designer connects these four terminals in a certain  
configuration to indicate the type of card and its supply voltage requirements. The encoding scheme for this, defined  
in the PC Card Standard, is shown in Table 3−2.  
Table 3−2. PC Card—Card Detect and Voltage Sense Connections  
CD2//CCD2  
Ground  
CD1//CCD1  
Ground  
VS2//CVS2  
Open  
VS1//CVS1  
Open  
Key  
5 V  
5 V  
Interface  
V
V
/V  
CC  
PP CORE  
16-bit PC Card  
16-bit PC Card  
5 V  
5 V and 3.3 V  
5 V, 3.3 V, and  
X.X V  
Per CIS (V  
Per CIS (V  
Per CIS (V  
)
)
)
PP  
PP  
PP  
Ground  
Ground  
Open  
Ground  
Ground  
Ground  
Ground  
Ground  
5 V  
16-bit PC Card  
Ground  
Ground  
Ground  
Ground  
Open  
Open  
Ground  
LV  
LV  
LV  
LV  
16-bit PC Card  
CardBus PC Card  
16-bit PC Card  
3.3 V  
Per CIS (V  
Per CIS (V  
Per CIS (V  
Per CIS (V  
Per CIS (V  
)
)
)
)
)
PP  
PP  
PP  
PP  
PP  
Connect to  
CVS1  
Connect to  
CCD1  
3.3 V  
Ground  
Ground  
Ground  
Ground  
Ground  
3.3 V and X.X V  
3.3 V and X.X V  
Connect to  
CVS2  
Connect to  
CCD2  
CardBus PC Card  
Connect to  
CVS1  
Connect to  
CCD2  
3.3 V, X.X V,  
and Y.Y V  
Ground  
Ground  
Ground  
LV  
CardBus PC Card  
Ground  
Ground  
Ground  
Open  
Open  
LV  
LV  
16-bit PC Card  
Y.Y V  
Y.Y V  
Per CIS (V  
)
PP  
Connect to  
CVS2  
Connect to  
CCD2  
CardBus PC Card  
1.8 V (V )  
CORE  
Connect to  
CVS2  
Connect to  
CCD1  
Ground  
Open  
LV  
LV  
LV  
CardBus PC Card  
CardBus PC Card  
Reserved  
X.X V and Y.Y V  
Y.Y V  
Per CIS (V  
)
PP  
Connect to  
CVS1  
Connect to  
CCD2  
Ground  
Open  
Per CIS (V  
)
PP  
Connect to  
CVS1  
Connect to  
CCD1  
Ground  
Ground  
Ground  
Per query terminals  
Reserved  
Connect to  
CVS2  
Connect to  
CCD1  
Ground  
Reserved  
3−7  
 
3.6.4 Power Switch Interface  
The power switch interface of the PCI7410 controller is a 4-pin parallel interface. This 4-pin interface is implemented  
such that the PCI7410 controller can connect to both the TPS2211A and TPS2221 power switches. Bit 10  
(12V_SW_SEL) in the general control register (PCI offset 86h, see Section 4.32) selects the power switch that is  
implemented. The PCI7410 controller defaults to use the control logic for the TPS2221 power switch. See Table 3−3  
and Table 3−4 below for the power switch control logic.  
Table 3−3. TPS2221 Control Logic  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
V
CC  
V
/V  
PP CORE  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 V  
Hi-Z  
Hi-Z  
Hi-Z  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
0 V  
Hi-Z  
Hi-Z  
Hi-Z  
0 V  
3.3 V  
5 V  
1.8 V  
0V  
5 V  
3.3V  
5 V  
5 V  
5 V  
1.8 V  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
3.3 V  
5 V  
Hi-Z  
Table 3−4. TPS2211A Control Logic  
VD0/VCCD1  
VD1/VCCD0  
VD2/VPPD1  
VD3/VPPD0  
V
CC  
V
/V  
PP CORE  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 V  
0 V  
0 V  
12 V  
0 V  
0 V  
0 V  
Hi-Z  
0 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
12 V  
3.3 V  
Hi-Z  
0 V  
5 V  
12 V  
5 V  
5 V  
5 V  
Hi-Z  
0 V  
0 V  
0 V  
12 V  
0 V  
0 V  
0 V  
Hi-Z  
3−8  
 
3.6.5 Zoomed Video Support  
The PCI7410 controller allows for the implementation of zoomed video (ZV) for PC Cards. Zoomed video is supported  
by setting bit 6 (ZVENABLE) in the card control register (PCI offset 91h, see Section 4.39) on a per-socket function  
basis. Setting this bit puts 16-bit PC Card address lines A25−A4 of the PC Card interface in the high-impedance state.  
These lines can then transfer video and audio data directly to the appropriate controller. Card address lines A3−A0  
can still access PC Card CIS registers for PC Card configuration. Figure 3−4 illustrates a PCI7410 ZV  
implementation.  
Speakers  
CRT  
Motherboard  
PCI Bus  
VGA  
Controller  
Audio  
Codec  
Zoomed Video  
Port  
PCM  
Audio  
Input  
PC Card  
19  
19  
4
Video  
Audio  
4
PC Card  
Interface  
PCI7410  
Figure 3−4. Zoomed Video Implementation Using the PCI7410 Controller  
Not shown in Figure 3−4 is the multiplexing scheme used to route the socket ZV source to the graphics controller.  
The PCI7410 controller provides ZVSTAT and ZVSEL0 signals on the multifunction terminals to switch external bus  
drivers. Figure 3−5 shows an implementation for switching between two ZV streams using external logic.  
1
PCI7410  
ZVSTAT  
ZVSEL0  
0
Figure 3−5. Zoomed Video Switching Application  
Figure 3−5 illustrates an implementation using standard three-state bus drivers with active-low output enables.  
ZVSEL0 is an active-low output indicating that the CardBus socket ZV mode is enabled. Table 3−5 illustrates the  
functionality of the ZV output signals.  
3−9  
 
Table 3−5. Functionality of the ZV Output Signals  
INPUTS  
SOCKET ENABLE  
OUTPUTS  
PORTSEL  
ZVSEL0  
ZVSTAT  
X
0
0
1
1
0
1
0
X
1
1
0
1
1
0
0
1
1
1
1
3.6.6 Standardized Zoomed-Video Register Model  
The standardized zoomed-video register model is defined for the purpose of standardizing the ZV port control for PC  
Card controllers across the industry. The following list summarizes the standardized zoomed-video register model  
changes to the existing PC Card register set.  
Socket present state register (CardBus socket address + 08h, see Section 6.3)  
Bit 27 (ZVSUPPORT) has been added. The platform BIOS can set this bit via the socket force event register  
(CardBus socket address + 0Ch, see Section 6.4) to define whether zoomed video is supported on that  
socket by the platform.  
Socket force event register (CardBus socket address + 0Ch, see Section 6.4)  
Bit 27 (FZVSUPPORT) has been added. The platform BIOS can use this bit to set bit 27 (ZVSUPPORT)  
in the socket present state register (CardBus socket address + 08h, see Section 6.3) to define whether  
zoomed video is supported on that socket by the platform.  
Socket control register (CardBus socket address +10h, see Section 6.5)  
Bit 11 (ZV_ACTIVITY) has been added. This bit is set when zoomed video is enabled for either of the PC  
Card sockets.  
Bit 10 (STANDARDZVREG) has been added. This bit defines whether the PC Card controller supports the  
standardized zoomed-video register model.  
Bit 9 (ZVEN) is provided for software to enable or disable zoomed video, per socket.  
If the ZV_EN bit (bit 0) in the diagnostic register (PCI offset 93h, see Section 4.41) is 1, then the standardized zoomed  
video register model is disabled. For backward compatibility, even if the ZV_EN bit is 0 (enabled), the PCI7410  
controller allows software to access zoomed video through the legacy address in the card control register (PCI offset  
91h, see Section 4.39), or through the new register model in the socket control register (CardBus socket address +  
10h, see Section 6.5).  
3.6.7 Internal Ring Oscillator  
The internal ring oscillator provides an internal clock source for the PCI7410 controller so that neither the PCI clock  
nor an external clock is required in order for the PCI7410 controller to power down a socket or interrogate a PC Card.  
This internal oscillator, operating nominally at 16 kHz, is always enabled.  
3.6.8 Integrated Pullup Resistors for PC Card Interface  
The PC Card Standard requires pullup resistors on various terminals to support both CardBus and 16-bit PC Card  
configurations. Table 3−6 lists these terminals. The PCI7410 controller has integrated all of these pullup resistors and  
requires no additional external components. The I/O buffer on the BVD1(STSCHG)/CSTSCHG terminal has the  
capability to switch to an internal pullup resistor when a 16-bit PC Card is inserted, or switch to an internal pulldown  
resistor when a CardBus card is inserted. This prevents inadvertent CSTSCHG events.  
3−10  
 
Table 3−6. Terminals With Integrated Pullup Resistors  
TERMINAL NUMBER  
SIGNAL NAME  
TERMINAL NUMBER  
SIGNAL NAME  
PDV  
154  
160  
153  
155  
157  
159  
185  
184  
125  
GHK  
F15  
F13  
E18  
E17  
A16  
E14  
A09  
F10  
L17  
PDV  
187  
173  
182  
169  
181  
167  
183  
186  
GHK  
C09  
B12  
C10  
B13  
B10  
F12  
E10  
B09  
A14 // CPERR  
A15 // CIRDY  
CD2 // CCD2  
INPACK // CREQ  
READY // CINT  
RESET // CRST  
VS1 // CVS1  
A19 // CBLOCK  
A20 // CSTOP  
A21 // CDEVSEL  
A22 // CTRDY  
VS2 // CVS2  
BVD1(STSCHG/RI) // CSTSCHG  
BVD2(SPKR) // CAUDIO  
CD1 // CCD1  
WAIT // CSERR  
WP(IOIS16) // CCLKRUN  
3.6.9 SPKROUT and CAUDPWM Usage  
The SPKROUT terminal carries the digital audio signal from the PC Card to the system. When a 16-bit PC Card is  
configured for I/O mode, the BVD2 terminal becomes the SPKR input terminal from the card. This terminal, in  
CardBus applications, is referred to as CAUDIO. SPKR passes a TTL-level binary audio signal to the PCI7410  
controller. The CardBus CAUDIO signal also can pass a single-amplitude binary waveform as well as a PWM signal.  
The binary audio signal from each PC Card sockets is enabled by bit 1 (SPKROUTEN) of the card control register  
(PCI offset 91h, see Section 4.39).  
Older controllers support CAUDIO in binary or PWM mode but use the same output terminal (SPKROUT). Some  
audio chips may not support both modes on one terminal and may have a separate terminal for binary and PWM.  
The PCI7410 implementation includes a signal for PWM, CAUDPWM, which can be routed to an MFUNC terminal.  
Bit 2 (AUD2MUX), located in the card control register, is programmed to route a CardBus CAUDIO PWM terminal  
to CAUDPWM. See Section 4.37, Multifunction Routing Register, for details on configuring the MFUNC terminals.  
Figure 3−6 illustrates the SPKROUT connection.  
System  
Core Logic  
BINARY_SPKR  
SPKROUT  
Speaker  
Subsystem  
PWM_SPKR  
PCI7410  
CAUDPWM  
Figure 3−6. SPKROUT Connection to Speaker Driver  
3.6.10 LED Socket Activity Indicators  
The socket activity LEDs are provided to indicate when a PC Card is being accessed. The LEDA1 signal can be routed  
to the multifunction terminals. When configured for LED output, this terminal outputs an active high signal to indicate  
socket activity. The LED_SKT output indicates socket activity to the CardBus socket. See Section 4.37, Multifunction  
Routing Status Register, for details on configuring the multifunction terminals.  
The active-high LED signal is driven for 64 ms. When the LED is not being driven high, it is driven to a low state. Either  
of the two circuits shown in Figure 3−7 can be implemented to provide LED signaling, and the board designer must  
implement the circuit that best fits the application.  
The LED activity signals are valid when a card is inserted, powered, and not in reset. For PC Card-16, the LED activity  
signals are pulsed when READY(IREQ) is low. For CardBus cards, the LED activity signals are pulsed if CFRAME,  
IRDY, or CREQ are active.  
3−11  
 
Current Limiting  
R 500 Ω  
LED  
PCI7410  
Current Limiting  
R 500 Ω  
Application-  
Specific Delay  
LED  
PCI7410  
Figure 3−7. Two Sample LED Circuits  
As indicated, the LED signals are driven for a period of 64 ms by a counter circuit. To avoid the possibility of the LEDs  
appearing to be stuck when the PCI clock is stopped, the LED signaling is cut off when the SUSPEND signal is  
asserted, when the PCI clock is to be stopped during the clock run protocol, or when in the D2 or D1 power state.  
If any additional socket activity occurs during this counter cycle, then the counter is reset and the LED signal remains  
driven. If socket activity is frequent (at least once every 64 ms), then the LED signals remain driven.  
3.6.11 CardBus Socket Registers  
The PCI7410 controller contains all registers for compatibility with the PCI Local Bus Specification and the PC Card  
Standard. These registers, which exist as the CardBus socket registers, are listed in Table 3−7.  
Table 3−7. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event  
Socket mask  
04h  
Socket present state  
Socket force event  
Socket control  
08h  
0Ch  
10h  
Reserved  
14h−1Ch  
20h  
Socket power management  
3.6.12 PCI Firmware Loading Function Programming Model  
Function 3 of the PCI7410 controller is a firmware loader function. This function provides an I/O window that a  
software driver uses to load the PCI7410 firmware into the internal RAM. A simplified method of operation follows:  
1. GRST assertions reset the internal RAM and the function 3 firmware loader.  
2. While loading the firmware, the controller holds the UltraMedia core in reset.  
3. The firmware loading software driver interfaces to function 3 and loads the firmware.  
4. The software driver indicates load completion to UltraMedia via bit 2 (DONE) of the firmware loader control  
register (offset 04h, see Section 3.6.12.2) in the function 3 I/O window.  
The software driver that interfaces with PCI function 3 of the PCI7410 controller loads the firmware into the program  
RAM via the allocated I/O window for that function. Two I/O addresses are allocated, and these are used to load  
firmware to the PCI7410 program RAM. The functionality of these I/O registers is listed in Table 3−8.  
3−12  
 
Table 3−8. Firmware Loader I/O Register Map  
REGISTER NAME  
Data/address  
OFFSET  
00h  
Firmware loader control  
04h  
3.6.12.1Data/Address Register  
When bit 3 (ADDR_RST) is set in the firmware loader control register (offset 04h, see Section 3.6.12.2), the next data  
written to this register is a doubleword that specifies the start address of the next block of internal RAM to be loaded.  
When the doubleword of address information is written to this field, the ADDR_RST bit is automatically cleared and  
the following writes to this register represent the internal RAM data. Because the internal RAM in the PCI7410  
controller is 16 bits wide, the internal RAM data written to this register is written one word at a time. The internal RAM  
address is autoincremented after each word of internal RAM data is written to this location. It is appropriate to buffer  
requests to the internal RAM and retry PCI writes to this register when the buffer is full. If the firmware loader is unable  
to update the RAM, then a PCI slave retry time-out occurs, data is lost, and bit 0 (ERR) in the control register is set.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Data address  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Data address  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Register:  
Offset:  
Type:  
Data address  
00h  
Read/Write  
FFFF FFFFh  
Default:  
3.6.12.2Firmware Loader Control Register  
This register contains various control and status bits for the firmware loader. Bit descriptions are given in Table 3−9.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Firmware loader control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Firmware loader control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
W
0
RW  
0
R
0
RU  
0
Register:  
Offset:  
Type:  
Firmware loader control  
04h  
Read-only, Write-only, Read/Update, Read/Write  
0000 0000h  
Default:  
3−13  
 
Table 3−9. Firmware Loader Control Register Description  
BIT  
31−4  
3
SIGNAL  
RSVD  
TYPE  
FUNCTION  
R
Reserved. These bits are read-only and return 0s when read.  
ADDR_RST  
W
Address reset. When set, this bit indicates that the next data written to the data/address register will be a  
doubleword that specifies the start address of the next block of internal RAM to be loaded. This bit is self-  
cleared when the address is written to the data/address register.  
2
DONE  
RW  
RAM load done. Setting this bit to 1 indicates to the firmware loader function that the firmware loading is  
complete for the RAM selected by the address written when ADDR_RST was set, and embedded control-  
lers can begin accessing the RAM.  
1
0
RSVD  
ERR  
R
Reserved. This bit is read-only and returns 0 when read.  
RU  
When set, this bit indicates that there was an error during the loading of the internal RAM. This field indicates  
all loading errors. Software must check this bit after loading each RAM to ensure that the data was loaded  
successfully. This bit is cleared by a read of this register.  
3.7 Serial EEPROM Interface  
The PCI7410 controller has a dedicated serial bus interface that can be used with an EEPROM to load certain  
registers in the PCI7410 controller. The EEPROM is detected by a pullup resistor on the SCL terminal. See Table 3−11  
for the EEPROM loading map.  
3.7.1 Serial-Bus Interface Implementation  
The PCI7410 controller drives SCL at nearly 100 kHz during data transfers, which is the maximum specified frequency  
2
for standard mode I C. The serial EEPROM must be located at address A0h.  
Some serial device applications may include PC Card power switches, ZV source switches, card ejectors, or other  
devices that may enhance the user’s PC Card experience. The serial EEPROM device and PC Card power switches  
are discussed in the sections that follow.  
3.7.2 Accessing Serial-Bus Devices Through Software  
The PCI7410 controller provides a programming mechanism to control serial bus devices through software. The  
programming is accomplished through a doubleword of PCI configuration space at offset B0h. Table 3−10 lists the  
registers used to program a serial-bus device through software.  
Table 3−10. PCI7410 Registers Used to Program Serial-Bus Devices  
PCI OFFSET  
REGISTER NAME  
DESCRIPTION  
B0h  
Serial-bus data  
Contains the data byte to send on write commands or the received data byte on read commands.  
The content of this register is sent as the word address on byte writes or reads. This register is not used  
in the quick command protocol.  
B1h  
B2h  
B3h  
Serial-bus index  
Serial-bus slave  
address  
Write transactions to this register initiate a serial-bus transaction. The slave device address and the  
R/W command selector are programmed through this register.  
Serial-bus control  
and status  
Read data valid, general busy, and general error status are communicated through this register. In  
addition, the protocol-select bit is programmed through this register.  
3.7.3 Serial-Bus Interface Protocol  
The SCL and SDA signals are bidirectional, open-drain signals and require pullup resistors as shown in Figure 3−3.  
2
The PCI7410 controller, which supports up to 100-Kb/s data-transfer rate, is compatible with standard mode I C using  
7-bit addressing.  
All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a start  
condition, which is signaled when the SDA line transitions to the low state while SCL is in the high state, as shown  
in Figure 3−8. The end of a requested data transfer is indicated by a stop condition, which is signaled by a low-to-high  
3−14  
 
transition of SDA while SCL is in the high state, as shown in Figure 3−8. Data on SDA must remain stable during the  
high state of the SCL signal, as changes on the SDA signal during the high state of SCL are interpreted as control  
signals, that is, a start or a stop condition.  
SDA  
SCL  
Start  
Stop  
Change of  
Condition  
Condition  
Data Allowed  
Data Line Stable,  
Data Valid  
Figure 3−8. Serial-Bus Start/Stop Conditions and Bit Transfers  
Data is transferred serially in 8-bit bytes. The number of bytes that may be transmitted during a data transfer is  
unlimited; however, each byte must be completed with an acknowledge bit. An acknowledge (ACK) is indicated by  
the receiver pulling the SDA signal low, so that it remains low during the high state of the SCL signal. Figure 3−9  
illustrates the acknowledge protocol.  
SCL From  
1
2
3
7
8
9
Master  
SDA Output  
By Transmitter  
SDA Output  
By Receiver  
Figure 3−9. Serial-Bus Protocol Acknowledge  
The PCI7410 controller is a serial bus master; all other devices connected to the serial bus external to the PCI7410  
controller are slave devices. As the bus master, the PCI7410 controller drives the SCL clock at nearly 100 kHz during  
bus cycles and places SCL in a high-impedance state (zero frequency) during idle states.  
Typically, the PCI7410 controller masters byte reads and byte writes under software control. Doubleword reads are  
performed by the serial EEPROM initialization circuitry upon a PCI reset and may not be generated under software  
control. See Section 3.7.4, Serial-Bus EEPROM Application, for details on how the PCI7410 controller automatically  
loads the subsystem identification and other register defaults through a serial-bus EEPROM.  
Figure 3−10 illustrates a byte write. The PCI7410 controller issues a start condition and sends the 7-bit slave device  
address and the command bit zero. A 0 in the R/W command bit indicates that the data transfer is a write. The slave  
device acknowledges if it recognizes the address. If no acknowledgment is received by the PCI7410 controller, then  
an appropriate status bit is set in the serial-bus control/status register (PCI offset B3h, see Section 4.51). The word  
address byte is then sent by the PCI7410 controller, and another slave acknowledgment is expected. Then the  
PCI7410 controller delivers the data byte MSB first and expects a final acknowledgment before issuing the stop  
condition.  
3−15  
 
Slave Address  
Word Address  
Data Byte  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
P
R/W  
A = Slave Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−10. Serial-Bus Protocol—Byte Write  
Figure 3−11 illustrates a byte read. The read protocol is very similar to the write protocol, except the R/W command  
bit must be set to 1 to indicate a read-data transfer. In addition, the PCI7410 master must acknowledge reception  
of the read bytes from the slave transmitter. The slave transmitter drives the SDA signal during read data transfers.  
The SCL signal remains driven by the PCI7410 master.  
Slave Address  
Word Address  
Slave Address  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
b6 b5 b4 b3 b2 b1 b0  
1
A
Start  
R/W  
Restart  
R/W  
Data Byte  
b7 b6 b5 b4 b3 b2 b1 b0  
M
P
Stop  
A = Slave Acknowledgement  
M = Master Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−11. Serial-Bus Protocol—Byte Read  
Figure 3−12 illustrates EEPROM interface doubleword data collection protocol.  
Slave Address  
Word Address  
Slave Address  
S
1
0
1
0
0
0
0
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
1
0
1
0
0
0
0
1
A
Start  
R/W  
Restart  
R/W  
Data Byte 3  
M
Data Byte 2  
M
Data Byte 1  
M
Data Byte 0  
M
P
A = Slave Acknowledgement  
M = Master Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−12. EEPROM Interface Doubleword Data Collection  
3.7.4 Serial-Bus EEPROM Application  
When the PCI bus is reset and the serial-bus interface is detected, the PCI7410 controller attempts to read the  
subsystem identification and other register defaults from a serial EEPROM.  
This format must be followed for the PCI7410 controller to load initializations from a serial EEPROM. All bit fields must  
be considered when programming the EEPROM.  
The serial EEPROM is addressed at slave address 1010 000b by the PCI7410 controller. All hardware address bits  
for the EEPROM must be tied to the appropriate level to achieve this address. The serial EEPROM chip in the sample  
application (Figure 3−12) assumes the 1010b high-address nibble. The lower three address bits are terminal inputs  
to the chip, and the sample application shows these terminal inputs tied to GND.  
3−16  
 
Table 3−11. EEPROM Loading Map  
SERIAL ROM  
OFFSET  
BYTE DESCRIPTION  
00h  
01h  
02h  
CardBus function indicator (00h)  
Number of bytes (20h)  
PCI 04h, command register, function 0, bits 8, 6−5, 2−0  
[7]  
[6]  
[5]  
[4:3]  
[2]  
[1]  
[0]  
Command  
Command  
Command  
RSVD  
Command  
Command  
Command  
register, bit 8  
register, bit 6  
register, bit 5  
register, bit 2  
register, bit 1  
register, bit 0  
03h  
PCI 04h, command register, function 1, bits 8, 6−5, 2−0  
[7]  
[6]  
[5]  
[4:3]  
[2]  
[1]  
[0]  
Command  
Command  
Command  
RSVD  
Command  
Command  
Command  
register, bit 8  
register, bit 6  
register, bit 5  
register, bit 2  
register, bit 1  
register, bit 0  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
PCI 40h, subsystem vendor ID, byte 0  
PCI 41h, subsystem vendor ID, byte 1  
PCI 42h, subsystem ID, byte 0  
PCI 43h, subsystem ID, byte 1  
PCI 44h, PC Card 16-bit I/F legacy mode base address register, byte 0, bits 7−1  
PCI 45h, PC Card 16-bit I/F legacy mode base address register, byte 1  
PCI 46h, PC Card 16-bit I/F legacy mode base address register, byte 2  
PCI 47h, PC Card 16-bit I/F legacy mode base address register, byte 3  
PCI 80h, system control, function 0, byte 0, bits 6−0  
PCI 80h, system control, function 1, byte 0, bit 2  
PCI 81h, system control, byte 1  
Reserved load all 0s (PCI 82h, system control, byte 2)  
PCI 83h, system control, byte 3  
PCI 8Ch, MFUNC routing, byte 0  
PCI 8Dh, MFUNC routing, byte 1  
PCI 8Eh, MFUNC routing, byte 2  
PCI 8Fh, MFUNC routing, byte 3  
PCI 90h, retry status, bits 7, 6  
PCI 91h, card control, bit 7  
PCI 92h, device control, bits 6, 5, 3−0  
PCI 93h, diagnostic, bits 7, 4−0  
PCI A2h, power-management capabilities, function 0, bit 15 (bit 7 of EEPROM offset 16h corresponds to bit 15)  
PCI A2h, power-management capabilities, function 1, bit 15 (bit 7 of EEPROM offset 16h corresponds to bit 15)  
CB Socket + 0Ch, function 0 socket force event, bit 27 (bit 3 of EEPROM offset 17h corresponds to bit 27)  
CB Socket + 0Ch, function 1 socket force event, bit 27 (bit 3 of EEPROM offset 18h corresponds to bit 27)  
ExCA 00h, ExCA identification and revision, bits 7−0  
PCI 86h, general control, byte 0, bits 5, 4, 3, 1, 0  
PCI 87h, general control, byte 1, bits 4−2  
3−17  
 
Table 3−11. EEPROM Loading Map (Continued)  
SERIAL ROM  
OFFSET  
BYTE DESCRIPTION  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
PCI 89h, GPE enable, bits 7, 6, 4−0  
PCI 8Bh, general-purpose output, bits 4−0  
1394 OHCI function indicator (02h)  
Number of bytes (17h)  
PCI 3Fh, maximum latency bits 7−4  
PCI 3Eh, minimum grant, bits 3−0  
PCI 2Ch, subsystem vendor ID, byte 0  
PCI 2Dh, subsystem vendor ID, byte 1  
PCI 2Eh, subsystem ID, byte 0  
PCI 2Fh, subsystem ID, byte 1  
PCI F4h, Link_Enh, byte 0, bits 7, 2, 1  
OHCI 50h, host controller control, bit 23  
[7]  
[6]  
[5:3]  
[2]  
[1]  
[0]  
Link_Enh.  
enab_unfair  
HCControl.Program Phy  
Enable  
RSVD  
Link_Enh, bit 2  
Link_Enh.  
enab_accel  
RSVD  
2Ah  
Mini-ROM address, this byte indicates the MINI ROM offset into the EEPROM  
00h = No MINI ROM  
Other Values = MINI ROM offset  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
OHCI 24h, GUIDHi, byte 0  
OHCI 25h, GUIDHi, byte 1  
OHCI 26h, GUIDHi, byte 2  
OHCI 27h, GUIDHi, byte 3  
OHCI 28h, GUIDLo, byte 0  
OHCI 29h, GUIDLo, byte 1  
OHCI 2Ah, GUIDLo, byte 2  
OHCI 2Bh, GUIDLo, byte 3  
Checksum (Reserved—no bit loaded)  
PCI F5h, Link_Enh, byte 1, bits 7, 6, 5, 4  
PCI F0h, PCI miscellaneous, byte 0, bits 5, 4, 2, 1, 0  
PCI F1h, PCI miscellaneous, byte 1, bits 7, 3, 2, 1, 0  
Reserved  
Reserved (CardBus CIS pointer)  
Reserved  
PCI ECh, PCI PHY control, bits 7, 3, 1  
Firmware loader function indicator (03h)  
Number of bytes (05h)  
PCI 2Ch, subsystem vendor ID, byte 0  
PCI 2Dh, subsystem vendor ID, byte 1  
PCI 2Eh, subsystem ID, byte 0  
PCI 2Fh, subsystem ID, byte 1  
PCI 50h, miscellaneous control, bit 0  
End-of-list indicator (80h)  
3−18  
3.8 Programmable Interrupt Subsystem  
Interrupts provide a way for I/O devices to let the microprocessor know that they require servicing. The dynamic  
nature of PC Cards and the abundance of PC Card I/O applications require substantial interrupt support from the  
PCI7410 controller. The PCI7410 controller provides several interrupt signaling schemes to accommodate the needs  
of a variety of platforms. The different mechanisms for dealing with interrupts in this device are based on various  
specifications and industry standards. The ExCA register set provides interrupt control for some 16-bit PC Card  
functions, and the CardBus socket register set provides interrupt control for the CardBus PC Card functions. The  
PCI7410 controller is, therefore, backward compatible with existing interrupt control register definitions, and new  
registers have been defined where required.  
The PCI7410 controller detects PC Card interrupts and events at the PC Card interface and notifies the host controller  
using one of several interrupt signaling protocols. To simplify the discussion of interrupts in the PCI7410 controller,  
PC Card interrupts are classified either as card status change (CSC) or as functional interrupts.  
The method by which any type of PCI7410 interrupt is communicated to the host interrupt controller varies from  
system to system. The PCI7410 controller offers system designers the choice of using parallel PCI interrupt signaling,  
parallel ISA-type IRQ interrupt signaling, or the IRQSER serialized ISA and/or PCI interrupt protocol. It is possible  
to use the parallel PCI interrupts in combination with either parallel IRQs or serialized IRQs, as detailed in the sections  
that follow. All interrupt signaling is provided through the seven multifunction terminals, MFUNC0−MFUNC6.  
3.8.1 PC Card Functional and Card Status Change Interrupts  
PC Card functional interrupts are defined as requests from a PC Card application for interrupt service and are  
indicated by asserting specially-defined signals on the PC Card interface. Functional interrupts are generated by  
16-bit I/O PC Cards and by CardBus PC Cards.  
Card status change (CSC)-type interrupts are defined as events at the PC Card interface that are detected by the  
PCI7410 controller and may warrant notification of host card and socket services software for service. CSC events  
include both card insertion and removal from PC Card sockets, as well as transitions of certain PC Card signals.  
Table 3−12 summarizes the sources of PC Card interrupts and the type of card associated with them. CSC and  
functional interrupt sources are dependent on the type of card inserted in the PC Card socket. The four types of cards  
that can be inserted into any PC Card socket are:  
16-bit memory card  
16-bit I/O card  
CardBus cards  
Table 3−12. Interrupt Mask and Flag Registers  
CARD TYPE  
EVENT  
MASK  
FLAG  
Battery conditions (BVD1, BVD2)  
Wait states (READY)  
ExCA offset 05h/45h/805h bits 1 and 0 ExCA offset 04h/44h/804h bits 1 and 0  
16-bit memory  
ExCA offset 05h/45h/805h bit 2  
ExCA offset 05h/45h/805h bit 0  
Always enabled  
ExCA offset 04h/44h/804h bit 2  
ExCA offset 04h/44h/804h bit 0  
PCI configuration offset 91h bit 0  
16-bit I/O  
16-bit I/O  
Change in card status (STSCHG)  
Interrupt request (IREQ)  
All 16-bit PC  
Cards  
Power cycle complete  
ExCA offset 05h/45h/805h bit 3  
ExCA offset 04h/44h/804h bit 3  
Change in card status (CSTSCHG)  
Interrupt request (CINT)  
Socket mask bit 0  
Always enabled  
Socket event bit 0  
PCI configuration offset 91h bit 0  
Socket event bit 3  
CardBus  
Power cycle complete  
Socket mask bit 3  
Socket mask bits 2 and 1  
Card insertion or removal  
Socket event bits 2 and 1  
Functional interrupt events are valid only for 16-bit I/O and CardBus cards; that is, the functional interrupts are not  
valid for 16-bit memory cards. Furthermore, card insertion and removal-type CSC interrupts are independent of the  
card type.  
3−19  
 
Table 3−13. PC Card Interrupt Events and Description  
CARD TYPE  
EVENT  
TYPE  
SIGNAL  
DESCRIPTION  
A transition on BVD1 indicates a change in the  
PC Card battery conditions.  
BVD1(STSCHG)//CSTSCHG  
Battery conditions  
(BVD1, BVD2)  
CSC  
A transition on BVD2 indicates a change in the  
PC Card battery conditions.  
BVD2(SPKR)//CAUDIO  
READY(IREQ)//CINT  
16-bit  
memory  
A transition on READY indicates a change in the  
ability of the memory PC Card to accept or provide  
data.  
Wait states  
(READY)  
CSC  
Change in card  
status (STSCHG)  
The assertion of STSCHG indicates a status change  
on the PC Card.  
16-bit I/O  
16-bit I/O  
CSC  
Functional  
CSC  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
Interrupt request  
(IREQ)  
The assertion of IREQ indicates an interrupt request  
from the PC Card.  
Change in card  
status (CSTSCHG)  
The assertion of CSTSCHG indicates a status  
change on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
CardBus  
Interrupt request  
(CINT)  
The assertion of CINT indicates an interrupt request  
from the PC Card.  
Functional  
A transition on either CD1//CCD1 or CD2//CCD2  
indicates an insertion or removal of a 16-bit or  
CardBus PC Card.  
Card insertion  
or removal  
CD1//CCD1,  
CD2//CCD2  
CSC  
CSC  
All PC Cards  
Power cycle  
complete  
An interrupt is generated when a PC Card power-up  
cycle has completed.  
N/A  
The naming convention for PC Card signals describes the function for 16-bit memory, I/O cards, and CardBus. For  
example, READY(IREQ)//CINT includes READY for 16-bit memory cards, IREQ for 16-bit I/O cards, and CINT for  
CardBus cards. The 16-bit memory card signal name is first, with the I/O card signal name second, enclosed in  
parentheses. The CardBus signal name follows after a double slash (//).  
The 1997 PC Card Standard describes the power-up sequence that must be followed by the PCI7410 controller when  
an insertion event occurs and the host requests that the socket V  
and V be powered. Upon completion of this  
CC  
PP  
power-up sequence, the PCI7410 interrupt scheme can be used to notify the host system (see Table 3−13), denoted  
by the power cycle complete event. This interrupt source is considered a PCI7410 internal event, because it depends  
on the completion of applying power to the socket rather than on a signal change at the PC Card interface.  
3.8.2 Interrupt Masks and Flags  
Host software may individually mask (or disable) most of the potential interrupt sources listed in Table 3−13 by setting  
the appropriate bits in the PCI7410 controller. By individually masking the interrupt sources listed, software can  
control those events that cause a PCI7410 interrupt. Host software has some control over the system interrupt the  
PCI7410 controller asserts by programming the appropriate routing registers. The PCI7410 controller allows host  
software to route PC Card CSC and PC Card functional interrupts to separate system interrupts. Interrupt routing  
somewhat specific to the interrupt signaling method used is discussed in more detail in the following sections.  
When an interrupt is signaled by the PCI7410 controller, the interrupt service routine must determine which of the  
events listed in Table 3−12 caused the interrupt. Internal registers in the PCI7410 controller provide flags that report  
the source of an interrupt. By reading these status bits, the interrupt service routine can determine the action to be  
taken.  
Table 3−12 details the registers and bits associated with masking and reporting potential interrupts. All interrupts can  
be masked except the functional PC Card interrupts, and an interrupt status flag is available for all types of interrupts.  
Notice that there is not a mask bit to stop the PCI7410 controller from passing PC Card functional interrupts through  
to the appropriate interrupt scheme. These interrupts are not valid until the card is properly powered, and there must  
never be a card interrupt that does not require service after proper initialization.  
Table 3−12 lists the various methods of clearing the interrupt flag bits. The flag bits in the ExCA registers (16-bit PC  
Card-related interrupt flags) can be cleared using two different methods. One method is an explicit write of 1 to the  
3−20  
 
flag bit to clear and the other is by reading the flag bit register. The selection of flag bit clearing methods is made by  
bit 2 (IFCMODE) in the ExCA global control register (ExCA offset 1Eh/5Eh/81Eh, see Section 5.20), and defaults to  
the flag-cleared-on-read method.  
The CardBus-related interrupt flags can be cleared by an explicit write of 1 to the interrupt flag in the socket event  
register (see Section 6.1). Although some of the functionality is shared between the CardBus registers and the ExCA  
registers, software must not program the chip through both register sets when a CardBus card is functioning.  
3.8.3 Using Parallel IRQ Interrupts  
The seven multifunction terminals, MFUNC6−MFUNC0, implemented in the PCI7410 controller can be routed to  
obtain a subset of the ISA IRQs. The IRQ choices provide ultimate flexibility in PC Card host interruptions. To use  
the parallel ISA-type IRQ interrupt signaling, software must program the device control register (PCI offset 92h, see  
Section 4.40), to select the parallel IRQ signaling scheme. See Section 4.37, Multifunction Routing Status Register,  
for details on configuring the multifunction terminals.  
A system using parallel IRQs requires (at a minimum) one PCI terminal, INTA, to signal CSC events. This requirement  
is dictated by certain card and socket-services software. The INTA requirement calls for routing the MFUNC0 terminal  
for INTA signaling. The INTRTIE bit is used, in this case, to route socket interrupt events to INTA. This leaves (at a  
maximum) six different IRQs to support legacy 16-bit PC Card functions.  
As an example, suppose the six IRQs used by legacy PC Card applications are IRQ3, IRQ4, IRQ5, IRQ10, IRQ11,  
and IRQ15. The multifunction routing status register must be programmed to a value of 0FBA 5432h. This value  
routes the MFUNC0 terminal to INTA signaling and routes the remaining terminals as illustrated in Figure 3−13. Not  
shown is that INTA must also be routed to the programmable interrupt controller (PIC), or to some circuitry that  
provides parallel PCI interrupts to the host.  
PCI7410  
MFUNC1  
PIC  
IRQ3  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
IRQ4  
IRQ5  
IRQ10  
IRQ11  
IRQ15  
Figure 3−13. IRQ Implementation  
Power-on software is responsible for programming the multifunction routing status register to reflect the IRQ  
configuration of a system implementing the PCI7410 controller. The multifunction routing status register is a global  
register that is shared between the four PCI7410 functions. See Section 4.37, Multifunction Routing Status Register,  
for details on configuring the multifunction terminals.  
The parallel ISA-type IRQ signaling from the MFUNC6−MFUNC0 terminals is compatible with the input signal  
requirements of the 8259 PIC. The parallel IRQ option is provided for system designs that require legacy ISA IRQs.  
Design constraints may demand more MFUNC6−MFUNC0 IRQ terminals than the PCI7410 controller makes  
available.  
3.8.4 Using Parallel PCI Interrupts  
Parallel PCI interrupts are available when exclusively in parallel PCI interrupt/parallel ISA IRQ signaling mode, and  
when only IRQs are serialized with the IRQSER protocol. The INTA, INTB, and INTC can be routed to MFUNC  
terminals (MFUNC0, MFUNC1, and MFUNC2). If bit 29 (INTRTIE) is set in the system control register (PCI offset 80h,  
see Section 4.30) function 0 and function 1 share PCI INTA.  
The INTRTIE and TIEALL bits affect the read-only value provided through accesses to the interrupt pin register (PCI  
offset 3Dh, see Section 4.25). When the TIEALL bit is set, all three functions return a value of 01h on reads from the  
interrupt pin register for both parallel and serial PCI interrupts. Table 3−14 summarizes the interrupt signaling modes.  
3−21  
 
Table 3−14. Interrupt Pin Register Cross Reference  
INTPIN  
INTPIN  
INTPIN  
INTRTIE Bit  
TIEALL Bit  
Function 0  
(CardBus)  
Function 1  
(Dedicated Socket)  
Function 2  
(1394 OHCI)  
0
1
0
0
1
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x02 (INTB)  
0x01 (INTA)  
0x01 (INTA)  
0x03 (INTC)  
0x03 (INTC)  
0x01 (INTA)  
X
3.8.5 Using Serialized IRQSER Interrupts  
The serialized interrupt protocol implemented in the PCI7410 controller uses a single terminal to communicate all  
interrupt status information to the host controller. The protocol defines a serial packet consisting of a start cycle,  
multiple interrupt indication cycles, and a stop cycle. All data in the packet is synchronous with the PCI clock. The  
packet data describes 16 parallel ISA IRQ signals and the optional 4 PCI interrupts INTA, INTB, INTC, and INTD. For  
details on the IRQSER protocol, refer to the document Serialized IRQ Support for PCI Systems.  
3.8.6 SMI Support in the PCI7410 Controller  
The PCI7410 controller provides a mechanism for interrupting the system when power changes have been made to  
the PC Card socket interfaces. The interrupt mechanism is designed to fit into a system maintenance interrupt (SMI)  
scheme. SMI interrupts are generated by the PCI7410 controller, when enabled, after a write cycle to either the socket  
control register (CB offset 10h, see Section 6.5) of the CardBus register set, or the ExCA power control register (ExCA  
offset 02h/42h/802h, see Section 5.3) causes a power cycle change sequence to be sent on the power switch  
interface.  
The SMI control is programmed through three bits in the system control register (PCI offset 80h, see Section 4.30).  
These bits are SMIROUTE (bit 26), SMISTATUS (bit 25), and SMIENB (bit 24). Table 3−15 describes the SMI control  
bits function.  
Table 3−15. SMI Control  
BIT NAME  
SMIROUTE  
SMISTAT  
FUNCTION  
This shared bit controls whether the SMI interrupts are sent as a CSC interrupt or as IRQ2.  
This socket dependent bit is set when an SMI interrupt is pending. This status flag is cleared by writing back a 1.  
When set, SMI interrupt generation is enabled. This bit is shared by functions 0 and 1.  
SMIENB  
If CSC SMI interrupts are selected, then the SMI interrupt is sent as the CSC on a per-socket basis. The CSC interrupt  
can be either level or edge mode, depending upon the CSCMODE bit in the ExCA global control register (ExCA offset  
1Eh/5Eh/81Eh, see Section 5.20).  
If IRQ2 is selected by SMIROUTE, then the IRQSER signaling protocol supports SMI signaling in the IRQ2 IRQ/Data  
slot. In a parallel ISA IRQ system, the support for an active low IRQ2 is provided only if IRQ2 is routed to either  
MFUNC3 or MFUNC6 through the multifunction routing status register (PCI offset 8Ch, see Section 4.37).  
3.9 Power Management Overview  
In addition to the low-power CMOS technology process used for the PCI7410 controller, various features are  
designed into the device to allow implementation of popular power-saving techniques. These features and techniques  
are as follows:  
Clock run protocol  
Cardbus PC Card power management  
16-bit PC Card power management  
Suspend mode  
Ring indicate  
PCI power management  
3−22  
 
Cardbus bridge power management  
ACPI support  
PCI Bus  
Core Logic/  
Embedded  
Controller  
PRST  
GRST  
TPS2211A or  
4
CLKRUN  
PME  
TPS2221  
Power Switch  
PCI7410  
PC Card  
68  
Socket A  
TPS2020  
1394  
Socket  
Dedicated  
Socket B  
16  
The system connection to GRST is implementation-specific. GRST must be asserted on initial power up of the PCI7410 controller. PRST must  
be asserted for subsequent warm resets.  
Figure 3−14. System Diagram Implementing CardBus Device Class Power Management  
3.9.1 1394 Power Management (Function 1)  
The PCI7410 controller complies with PCI Bus Power Management Interface Specification. The device supports the  
D0 (uninitialized), D0 (active), D1, D2, and D3 power states as defined by the power-management definition in the  
1394 Open Host Controller Interface Specification, Appendix A.4 and PCI Bus Power Management Specification.  
PME is supported to provide notification of wake events. Per Section A.4.2, the 1394 OHCI sets PMCSR.PME_STS  
in the D0 state due to unmasked interrupt events. In previous OHCI implementations, unmasked interrupt events  
were interpreted as (IntEvent.n && IntMask.n && IntMask.masterIntEnable), where n represents a specific interrupt  
event. Based on feedback from Microsoft this implementation may cause problems with the existing Windows  
power-management arcitecture as a PME and an interrupt could be simultaneously signaled on a transition from the  
D1 to D0 state where interrupts were enabled to generate wake events. If bit 10 (ignore_mstrIntEna_for_pme) in the  
PCI miscellaneous configuration register (OHCI offset F0h, see Section 7.23) is set, then the PCI7410 controller  
implements the preferred behavior as (IntEvent.n && IntMask.n). Otherwise, the PCI7410 controller implements the  
preferred behavior as (IntEvent.n && IntMask.n && IntMask.masterIntEnable). In addition, when the  
ignore_mstrIntEna_for_pme bit is set, it causes bit 26 of the OHCI vendor ID register (OHCI offset 40h, see  
Section 8.15) to read 1, otherwise, bit 26 reads 0. An open drain buffer is used for PME. If PME is enabled in the power  
management control/status register (PCI offset A4h, see Section 4.45), then insertion of a PC Card causes the  
PCI7410 controller to assert PME which wakes the system from a low power state (D3, D2, or D1). The OS services  
PME and takes the PCI7410 controller to the D0 state.  
3.9.2 Integrated Low-Dropout Voltage Regulator (LDO-VR)  
The PCI7410 controller requires 1.8-V core voltage. The core power can be supplied by the PCI7410 controller itself  
using the internal LDO-VR. The core power can alternatively be supplied by an external power supply through the  
VR_PORT terminal. Table 3−16 lists the requirements for both the internal core power supply and the external core  
power supply.  
3−23  
 
Table 3−16. Requirements for Internal/External 1.8-V Core Power Supply  
SUPPLY  
V
CC  
VR_EN  
VR_PORT NOTE  
Internal  
3.3 V  
GND  
1.8-V output Internal 1.8-V LDO-VR is enabled. A 1.0-µF bypass capacitor is required on the VR_PORT  
terminal for decoupling. This output is not for external use.  
External  
3.3 V  
V
CC  
1.8-V input Internal 1.8-V LDO-VR is disabled. An external 1.8-V power supply, of minimum 50-mA  
capacity, is required. A 0.1-µF bypass capacitor on the VR_PORT terminal is required.  
3.9.3 Clock Run Protocol  
The PCI CLKRUN feature is the primary method of power management on the PCI interface of the PCI7410 controller.  
CLKRUN signaling is provided through the MFUNC6 terminal. Since some chip sets do not implement CLKRUN, this  
is not always available to the system designer, and alternate power-saving features are provided. For details on the  
CLKRUN protocol see the PCI Mobile Design Guide.  
The PCI7410 controller does not permit the central resource to stop the PCI clock under any of the following  
conditions:  
Bit 1 (KEEPCLK) in the system control register (PCI offset 80h, see Section 4.30) is set.  
The 16-bit PC Card resource manager is busy.  
The PCI7410 CardBus master state machine is busy. A cycle may be in progress on CardBus.  
The PCI7410 master is busy. There may be posted data from CardBus to PCI in the PCI7410 controller.  
Interrupts are pending.  
The CardBus CCLK for the socket has not been stopped by the PCI7410 CCLKRUN manager.  
The PCI7410 controller restarts the PCI clock using the CLKRUN protocol under any of the following conditions:  
A 16-bit PC Card IREQ or a CardBus CINT has been asserted by either card.  
A CardBus CBWAKE (CSTSCHG) or 16-bit PC Card STSCHG/RI event occurs in the socket.  
A CardBus attempts to start the CCLK using CCLKRUN.  
A CardBus card arbitrates for the CardBus bus using CREQ.  
3.9.4 CardBus PC Card Power Management  
The PCI7410 controller implements its own card power-management engine that can turn off the CCLK to a socket  
when there is no activity to the CardBus PC Card. The PCI clock-run protocol is followed on the CardBus CCLKRUN  
interface to control this clock management.  
3.9.5 16-Bit PC Card Power Management  
The COE bit (bit 7) of the ExCA power control register (ExCA offset 02h/42h/802h, see Section 5.3) and PWRDWN  
bit (bit 0) of the ExCA global control register (ExCA offset 1Eh/5Eh/81Eh, see Section 5.20) are provided for 16-bit  
PC Card power management. The COE bit places the card interface in a high-impedance state to save power. The  
power savings when using this feature are minimal. The COE bit resets the PC Card when used, and the PWRDWN  
bit does not. Furthermore, the PWRDWN bit is an automatic COE, that is, the PWRDWN performs the COE function  
when there is no card activity.  
NOTE: The 16-bit PC Card must implement the proper pullup resistors for the COE and  
PWRDWN modes.  
3.9.6 Suspend Mode  
The SUSPEND signal, provided for backward compatibility, gates the PRST (PCI reset) signal and the GRST (global  
reset) signal from the PCI7410 controller. Besides gating PRST and GRST, SUSPEND also gates PCLK inside the  
PCI7410 controller in order to minimize power consumption.  
3−24  
 
It should also be noted that asynchronous signals, such as card status change interrupts and RI_OUT, can be passed  
to the host system without a PCI clock. However, if card status change interrupts are routed over the serial interrupt  
stream, then the PCI clock must be restarted in order to pass the interrupt, because neither the internal oscillator nor  
an external clock is routed to the serial-interrupt state machine. Figure 3−15 is a signal diagram of the suspend  
function.  
RESET  
GNT  
SUSPEND  
PCLK  
External Terminals  
Internal Signals  
RESETIN  
SUSPENDIN  
PCLKIN  
Figure 3−15. Signal Diagram of Suspend Function  
3.9.7 Requirements for Suspend Mode  
The suspend mode prevents the clearing of all register contents on the assertion of reset (PRST or GRST) which  
would require the reconfiguration of the PCI7410 controller by software. Asserting the SUSPEND signal places the  
PCI outputs of the controller in a high-impedance state and gates the PCLK signal internally to the controller unless  
a PCI transaction is currently in process (GNT is asserted). It is important that the PCI bus not be parked on the  
PCI7410 controller when SUSPEND is asserted because the outputs are in a high-impedance state.  
The GPIOs, MFUNC signals, and RI_OUT signal are all active during SUSPEND, unless they are disabled in the  
appropriate PCI7410 registers.  
3.9.8 Ring Indicate  
The RI_OUT output is an important feature in power management, allowing a system to go into a suspended mode  
and wake-up on modem rings and other card events. TI-designed flexibility permits this signal to fit wide platform  
requirements. RI_OUT on the PCI7410 controller can be asserted under any of the following conditions:  
A 16-bit PC Card modem in a powered socket asserts RI to indicate to the system the presence of an  
incoming call.  
A powered down CardBus card asserts CSTSCHG (CBWAKE) requesting system and interface wake-up.  
A powered CardBus card asserts CSTSCHG from the insertion/removal of cards or change in battery  
voltage levels.  
3−25  
 
Figure 3−16 shows various enable bits for the PCI7410 RI_OUT function; however, it does not show the masking of  
CSC events. See Table 3−12 for a detailed description of CSC interrupt masks and flags.  
RI_OUT Function  
CSTSMASK  
CSC  
RIENB  
PC Card  
Socket  
RINGEN  
Card  
I/F  
RI_OUT  
RI  
CDRESUME  
CSC  
Figure 3−16. RI_OUT Functional Diagram  
RI from the 16-bit PC Card interface is masked by bit 7 (RINGEN) in the ExCA interrupt and general control register  
(ExCA offset 03h/43h/803h, see Section 5.4). This is programmed on a per-socket basis and is only applicable when  
a 16-bit card is powered in the socket.  
The CBWAKE signaling to RI_OUT is enabled through the same mask as the CSC event for CSTSCHG. The mask  
bit (bit 0, CSTSMASK) is programmed through the socket mask register (CB offset 04h, see Section 6.2) in the  
CardBus socket registers.  
RI_OUT can be routed through any of three different pins, RI_OUT/PME, MFUNC2, or MFUNC4. The RI_OUT  
function is enabled by setting bit 7 (RIENB) in the card control register (PCI offset 91h, see Section 4.39). The PME  
function is enabled by setting bit 8 (PME_ENABLE) in the power-management control/status register (PCI offset A4h,  
see Section 4.45). When bit 0 (RIMUX) in the system control register (PCI offset 80h, see Section 4.30) is set to 0,  
both the RI_OUT function and the PME function are routed to the RI_OUT/PME terminal. If both functions are enabled  
and RIMUX is set to 0, then the RI_OUT/PME terminal becomes RI_OUT only and PME assertions are never seen.  
Therefore, in a system using both the RI_OUT function and the PME function, RIMUX must be set to 1 and RI_OUT  
must be routed to either MFUNC2 or MFUNC4.  
3.9.9 PCI Power Management for CardBus (Function 0)  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges establishes the infrastructure  
required to let the operating system control the power of PCI functions. This is done by defining a standard PCI  
interface and operations to manage the power of PCI functions on the bus. The PCI bus and the PCI functions can  
be assigned one of seven power-management states, resulting in varying levels of power savings.  
The seven power-management states of PCI functions are:  
D0-uninitialized − Before device configuration, device not fully functional  
D0-active − Fully functional state  
D1 − Low-power state  
D2 − Low-power state  
D3 − Low-power state. Transition state before D3  
hot  
cold  
D3  
− PME signal-generation capable. Main power is removed and VAUX is available.  
cold  
D3 − No power and completely nonfunctional  
off  
NOTE 1: In the D0-uninitialized state, the PCI7410 controller does not generate PME and/or interrupts. When bits 0 (IO_EN) and 1 (MEM_EN)  
of the command register (PCI offset 04h, see Section 4.5) are both set, the PCI7410 controller switches the state to D0-active. Transition  
from D3  
to the D0-uninitialized state happens at the deassertion of PRST. The assertion of GRST forces the controller to the  
cold  
D0-uninitialized state immediately.  
NOTE 2: The PWR_STATE bits (bits 1−0) of the power-management control/status register (PCI offset A4h, see Section 4.45) only code for four  
power states, D0, D1, D2, and D3 . The differences between the three D3 states is invisible to the software because the controller  
hot  
is not accessible in the D3  
or D3 state.  
off  
cold  
Similarly, bus power states of the PCI bus are B0−B3. The bus power states B0−B3 are derived from the device power  
state of the originating bridge device.  
3−26  
 
For the operating system (OS) to manage the device power states on the PCI bus, the PCI function must support four  
power-management operations. These operations are:  
Capabilities reporting  
Power status reporting  
Setting the power state  
System wake-up  
The OS identifies the capabilities of the PCI function by traversing the new capabilities list. The presence of  
capabilities in addition to the standard PCI capabilities is indicated by a 1 in bit 4 (CAPLIST) of the status register (PCI  
offset 06h, see Section 4.6).  
The capabilities pointer provides access to the first item in the linked list of capabilities. For the PCI7410 controller,  
a CardBus bridge with PCI configuration space header type 2, the capabilities pointer is mapped to an offset of 14h.  
The first byte of each capability register block is required to be a unique ID of that capability. PCI power management  
has been assigned an ID of 01h. The next byte is a pointer to the next pointer item in the list of capabilities. If there  
are no more items in the list, then the next item pointer must be set to 0. The registers following the next item pointer  
are specific to the capability of the function. The PCI power-management capability implements the register block  
outlined in Table 3−17.  
Table 3−17. Power-Management Registers  
REGISTER NAME  
Power-management capabilities  
Power-management control/status register bridge support extensions  
OFFSET  
A0h  
Next item pointer  
Capability ID  
Data  
Power-management control/status (CSR)  
A4h  
The power-management capabilities register (PCI offset A2h, see Section 4.44) is a static read-only register that  
provides information on the capabilities of the function related to power management. The power-management  
control/status register (PCI offset A4h, see Section 4.45) enables control of power-management states and  
enables/monitors power-management events. The data register is an optional register that can provide dynamic data.  
For more information on PCI power management, see the PCI Bus Power Management Interface Specification for  
PCI to CardBus Bridges.  
3.9.9.1 Function 2 Power Management  
The PCI7410 controller complies with the PCI Bus Power Management Interface Specification. The device supports  
the D0 (unitialized), D0 (active), D1, D2, and D3 power states as defined by the power management definition in the  
1394 Open Host Controller Interface Specification, Appendix A4.  
Table 3−18. Function 2 Power-Management Registers  
REGISTER NAME  
Power-management capabilities  
Power-management control/status register bridge support extensions  
OFFSET  
44h  
Next item pointer  
Capability ID  
Data  
Power-management control/status (CSR)  
48h  
3.9.9.2 Function 3 Power Management  
The PCI Bus Power Management Interface Specification is applicable for the firmware loader. This function supports  
the D0 and D3 power states.  
Table 3−19. Function 3 Power-Management Registers  
REGISTER NAME  
Power-management capabilities  
Power-management control/status register bridge support extensions  
OFFSET  
44h  
Next item pointer  
Capability ID  
Data  
Power-management control/status (CSR)  
48h  
3.9.10 CardBus Bridge Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges was approved by PCMCIA in  
December of 1997. This specification follows the device and bus state definitions provided in the PCI Bus Power  
3−27  
 
Management Interface Specification published by the PCI Special Interest Group (SIG). The main issue addressed  
in the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges is wake-up from D3 or D3  
without losing wake-up context (also called PME context).  
hot  
cold  
The specific issues addressed by the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges  
for D3 wake-up are as follows:  
Preservation of device context. The specification states that a reset must occur during the transition from  
D3 to D0. Some method to preserve wake-up context must be implemented so that the reset does not clear  
the PME context registers.  
Power source in D3  
if wake-up support is required from this state.  
cold  
The Texas Instruments PCI7410 controller addresses these D3 wake-up issues in the following manner:  
Two resets are provided to handle preservation of PME context bits:  
Global reset (GRST) is used only on the initial boot up of the system after power up. It places the  
PCI7410 controller in its default state and requires BIOS to configure the device before becoming fully  
functional.  
PCI reset (PRST) has dual functionality based on whether PME is enabled or not. If PME is enabled,  
then PME context is preserved. If PME is not enabled, then PRST acts the same as a normal PCI reset.  
Please see the master list of PME context bits in Section 3.9.12.  
Power source in D3  
auxiliary power source must be supplied to the PCI7410 V  
if wake-up support is required from this state. Since V  
is removed in D3  
terminals. Consult the PCI14xx  
, an  
cold  
CC  
cold  
CC  
Implementation Guide for D3 Wake-Up or the PCI Power Management Interface Specification for PCI to  
CardBus Bridges for further information.  
3.9.11 ACPI Support  
The Advanced Configuration and Power Interface (ACPI) Specification provides a mechanism that allows unique  
pieces of hardware to be described to the ACPI driver. The PCI7410 controller offers a generic interface that is  
compliant with ACPI design rules.  
Two doublewords of general-purpose ACPI programming bits reside in PCI7410 PCI configuration space at offset  
88h. The programming model is broken into status and control functions. In compliance with ACPI, the top level event  
status and enable bits reside in the general-purpose event status register (PCI offset 88h, see Section 4.33) and  
general-purpose event enable register (PCI offset 89h, see Section 4.34). The status and enable bits are  
implemented as defined by ACPI and illustrated in Figure 3−17.  
Status Bit  
Event Input  
Event Output  
Enable Bit  
Figure 3−17. Block Diagram of a Status/Enable Cell  
The status and enable bits generate an event that allows the ACPI driver to call a control method associated with the  
pending status bit. The control method can then control the hardware by manipulating the hardware control bits or  
by investigating child status bits and calling their respective control methods. A hierarchical implementation would  
be somewhat limiting, however, as upstream devices would have to remain in some level of power state to report  
events.  
For more information of ACPI, see the Advanced Configuration and Power Interface (ACPI) Specification.  
3.9.12 Master List of PME Context Bits and Global Reset-Only Bits  
PME context bit means that the bit is cleared only by the assertion of GRST when the PME enable bit, bit 8 of the  
power management control/status register (PCI offset A4h, see Section 4.45) is set. If PME is not enabled, then these  
bits are cleared when either PRST or GRST is asserted.  
3−28  
 
The PME context bits (functions 0 and 1) are:  
Bridge control register (PCI offset 3Eh, see Section 4.26): bit 6  
System control register (PCI offset 80h, see Section 4.30): bits 10−8  
Power management control/status register (PCI offset A4h, see Section 4.45): bit 15  
ExCA power control register (ExCA 802h/842h, see Section 5.3): bits 7, 5 (82365SL mode only), 4−3, 1−0  
ExCA interrupt and general control (ExCA 803h/843h, see Section 5.4): bits 6, 5  
ExCA card status-change register (ExCA 804h/844h, see Section 5.5): bits 3−0  
ExCA card status-change interrupt configuration register (ExCA 805h/845h, see Section 5.6): bits 3−0  
ExCA card detect and general control register (ExCA 816h, see Section 5.19): bits 7−6  
Socket event register (CardBus offset 00h, see Section 6.1): bits 3−0  
Socket mask register (CardBus offset 04h, see Section 6.2): bits 3−0  
Socket present state register (CardBus offset 08h, see Section 6.3): bits 27, 13−7, 5−1  
Socket control register (CardBus offset 10h, see Section 6.5): bits 6−4, 2−0  
Global reset-only bits, as the name implies, are cleared only by GRST. These bits are never cleared by PRST,  
regardless of the setting of the PME enable bit. The GRST signal is gated only by the SUSPEND signal. This means  
that assertion of SUSPEND blocks the GRST signal internally, thus preserving all register contents. Figure 3−14 is  
a diagram showing the application of GRST and PRST.  
The global reset-only bits (functions 0 and 1) are:  
Status register (PCI offset 06h, see Section 4.6): bits 15−11, 8  
Secondary status register (PCI offset 16h, see Section 4.15): bits 15−11, 8  
Subsystem vendor ID register (PCI offset 40h, see Section 4.27): bits 15–0  
Subsystem ID register (PCI offset 42h, see Section 4.28): bits 15–0  
PC Card 16-bit I/F legacy-mode base-address register (PCI offset 44h, see Section 4.29): bits 31−0  
System control register (PCI offset 80h, see Section 4.30): bits 31−24, 22−13, 11, 6−0  
UM_CD debounce register (PCI offset 84h, see Section 4.31): bits 7−0  
General control register (PCI offset 86h, see Section 4.32): bits 15−10, 7, 5−3, 1−0  
General-purpose event status register (PCI offset 88h, see Section 4.33): bits 7−6, 4−0  
General-purpose event enable register (PCI offset 89h, see Section 4.34): bits 7−6, 4−0  
General-purpose output register (PCI offset 8Bh, see Section 4.36): bits 4−0  
Multifunction routing register (PCI offset 8Ch, see Section 4.37): bits 31−0  
Retry status register (PCI offset 90h, see Section 4.38): bits 7−5, 3, 1  
Card control register (PCI offset 91h, see Section 4.39): bits 7−5, 2−0  
Device control register (PCI offset 92h, see Section 4.40): bits 7−5, 3−0  
Diagnostic register (PCI offset 93h, see Section 4.41): bits 7−0  
Power management capabilities register (PCI offset A2h, see Section 4.44): bit 15  
Power management CSR register (PCI offset A4h, see Section 4.45): bit 8  
Serial bus data register (PCI offset B0h, see Section 4.48): bits 7−0  
Serial bus index register (PCI offset B1h, see Section 4.49): bits 7−0  
Serial bus slave address register (PCI offset B2h, see Section 4.50): bits 7−0  
Serial bus control/status register (PCI offset B3h, see Section 4.51): bits 7, 3−0  
ExCA identification and revision register (ExCA 800h, see Section 5.1): bits 7−0  
ExCA global control register (ExCA 81Eh, see Section 5.20): bits 2−0  
CardBus socket power management register (CardBus 20h, see Section 6.6): bits 25−24  
The global reset-only bit (function 2) is:  
Subsystem vendor ID register (PCI offset 2Ch, see Section 7.12): bits 15−0  
Subsystem ID register (PCI offset 2Eh, see Section 7.12): bits 31−16  
Minimum grant and maximum latency register (PCI offset 3Eh, see Section 7.16): bits 15−0  
Power management control and status register (PCI offset 48h, see Section 7.20): bits 15, 8, 1, 0  
PCI PHY control register (PCI offset ECh, see Section 7.22): bits 7, 4−0  
Miscellaneous configuration register (PCI offset F0h, see Section 7.23): bits 15, 11−8, 5−0  
3−29  
Link enhancement control register (PCI offset F4h, see Section 7.24): bits 15−12, 10, 8−7, 2−1  
Bus options register (OHCI offset 20h, see Section 8.9): bits 15−12  
GUID high register (OHCI offset 24h, see Section 8.10): bits 31−0  
GUID low register (OHCI offset 28h, see Section 8.11): bits 31−0  
Host controller control register (OHCI offset 50h/54h, see Section 8.16): bit 23  
Link control register (OHCI offset E0h/E4h, see Section 8.31): bit 6  
PHY-link loopback test register (Local offset C14h): bits 6−4, 0  
Link test control register (Local offset C00h): bits 12−8  
The global reset-only (function 3) register bits:  
Subsystem vendor ID register (PCI offset 2Ch, see Section 7.12): bits 15−0  
Subsystem ID register (PCI offset 2Eh, see Section 7.12): bits 31−16  
Power management control and status register (PCI offset 48h, see Section 7.20): bits 1, 0  
Miscellaneous control register (PCI offset 50h, see Section ): bit 0  
3.10 IEEE 1394 Application Information  
3.10.1 PHY Port Cable Connection  
PCI7410  
400 kΩ  
CPS  
Cable  
Power  
Pair  
1 µF  
TPBIAS  
56 Ω  
56 Ω  
TPA+  
TPA−  
Cable  
Pair  
A
Cable Port  
TPB+  
TPB−  
Cable  
Pair  
B
56 Ω  
56 Ω  
5 kΩ  
220 pF  
(see Note A)  
Outer Shield  
Termination  
NOTE A: IEEE Std 1394-1995 calls for a 250-pF capacitor, which is a nonstandard component value. A 220-pF capacitor is recommended.  
Figure 3−18. TP Cable Connections  
3−30  
 
Outer Cable Shield  
1 MΩ  
0.01 µF  
0.001 µF  
Chassis Ground  
Figure 3−19. Typical Compliant DC Isolated Outer Shield Termination  
Outer Cable Shield  
Chassis Ground  
Figure 3−20. Non-DC Isolated Outer Shield Termination  
3.10.2 Crystal Selection  
The PCI7410 controller is designed to use an external 24.576-MHz crystal connected between the XI and XO  
terminals to provide the reference for an internal oscillator circuit. This oscillator in turn drives a PLL circuit that  
generates the various clocks required for transmission and resynchronization of data at the S100 through S400 media  
data rates.  
A variation of less than 100 ppm from nominal for the media data rates is required by IEEE Std 1394-1995. Adjacent  
PHYs may therefore have a difference of up to 200 ppm from each other in their internal clocks, and PHY devices  
must be able to compensate for this difference over the maximum packet length. Large clock variations may cause  
resynchronization overflows or underflows, resulting in corrupted packet data.  
The following are some typical specifications for crystals used with the PHYs from TI in order to achieve the required  
frequency accuracy and stability:  
Crystal mode of operation: Fundamental  
Frequency tolerance @ 25°C: Total frequency variation for the complete circuit is 100 ppm. A crystal with  
30 ppm frequency tolerance is recommended for adequate margin.  
Frequency stability (over temperature and age): A crystal with 30 ppm frequency stability is recommended  
for adequate margin.  
NOTE: The total frequency variation must be kept below 100 ppm from nominal with some  
allowance for error introduced by board and device variations. Trade-offs between frequency  
tolerance and stability may be made as long as the total frequency variation is less than  
100 ppm. For example, the frequency tolerance of the crystal may be specified at 50 ppm and  
the temperature tolerance may be specified at 30 ppm to give a total of 80 ppm possible  
variation due to the crystal alone. Crystal aging also contributes to the frequency variation.  
Load capacitance: For parallel resonant mode crystal circuits, the frequency of oscillation is dependent  
upon the load capacitance specified for the crystal. Total load capacitance (C ) is a function of not only the  
L
discrete load capacitors, but also board layout and circuit. It is recommended that load capacitors with a  
maximum of 5% tolerance be used.  
3−31  
 
For example, load capacitors (C9 and C10 in Figure 3−21) of 16 pF each were appropriate for the layout of the  
PCI7410 evaluation module (EVM), which uses a crystal specified for 12-pF loading. The load specified for the crystal  
includes the load capacitors (C9 and C10), the loading of the PHY pins (C  
), and the loading of the board itself  
PHY  
(C ). The value of C  
is typically about 1 pF, and C  
is typically 0.8 pF per centimeter of board etch; a typical  
BD  
PHY  
BD  
board can have 3 pF to 6 pF or more. The load capacitors C9 and C10 combine as capacitors in series so that the  
total load capacitance is:  
C9   C10  
C9 ) C10  
C
+
) C  
) C  
L
PHY  
BD  
C9  
X1  
X0  
X1  
C
+ C  
BD  
PHY  
24.576 MHz  
I
S
C10  
Figure 3−21. Load Capacitance for the PCI7410 PHY  
The layout of the crystal portion of the PHY circuit is important for obtaining the correct frequency, minimizing noise  
introduced into the PHY phase-lock loop, and minimizing any emissions from the circuit. The crystal and two load  
capacitors must be considered as a unit during layout. The crystal and the load capacitors must be placed as close  
as possible to one another while minimizing the loop area created by the combination of the three components.  
Varying the size of the capacitors may help in this. Minimizing the loop area minimizes the effect of the resonant  
current (Is) that flows in this resonant circuit. This layout unit (crystal and load capacitors) must then be placed as  
close as possible to the PHY X1 and X0 terminals to minimize etch lengths, as shown in Figure 3−22.  
C9  
C10  
X1  
For more details on crystal selection, see application report SLLA051 available from the TI website:  
http://www.ti.com/sc/1394.  
Figure 3−22. Recommended Crystal and Capacitor Layout  
3.10.3 Bus Reset  
In the PCI7410 controller, the initiate bus reset (IBR) bit may be set to 1 in order to initiate a bus reset and initialization  
sequence. The IBR bit is located in PHY register 1, along with the root-holdoff bit (RHB) and Gap_Count field, as  
required by IEEE Std 1394a-2000. Therefore, whenever the IBR bit is written, the RHB and Gap_Count are also  
written.  
The RHB and Gap_Count may also be updated by PHY-config packets. The PCI7410 controller is IEEE 1394a-2000  
compliant, and therefore both the reception and transmission of PHY-config packets cause the RHB and Gap_Count  
to be loaded, unlike older IEEE 1394-1995 compliant PHY devices which decode only received PHY-config packets.  
The gap-count is set to the maximum value of 63 after 2 consecutive bus resets without an intervening write to the  
Gap_Count, either by a write to PHY register 1 or by a PHY-config packet. This mechanism allows a PHY-config  
3−32  
 
packet to be transmitted and then a bus reset initiated so as to verify that all nodes on the bus have updated their  
RHBs and Gap_Count values, without having the Gap_Count set back to 63 by the bus reset. The subsequent  
connection of a new node to the bus, which initiates a bus reset, then causes the Gap_Count of each node to be set  
to 63. Note, however, that if a subsequent bus reset is instead initiated by a write to register 1 to set the IBR bit, all  
other nodes on the bus have their Gap_Count values set to 63, while this node Gap_Count remains set to the value  
just loaded by the write to PHY register 1.  
Therefore, in order to maintain consistent gap-counts throughout the bus, the following rules apply to the use of the  
IBR bit, RHB, and Gap_Count in PHY register 1:  
Following the transmission of a PHY-config packet, a bus reset must be initiated in order to verify that all  
nodes have correctly updated their RHBs and Gap_Count values and to ensure that a subsequent new  
connection to the bus causes the Gap_Count to be set to 63 on all nodes in the bus. If this bus reset is  
initiated by setting the IBR bit to 1, then the RHB and Gap_Count field must also be loaded with the correct  
values consistent with the just transmitted PHY-config packet. In the PCI7410 controller, the RHB and  
Gap_Count are updated to their correct values upon the transmission of the PHY-config packet, so these  
values may first be read from register 1 and then rewritten.  
Other than to initiate the bus reset, which must follow the transmission of a PHY-config packet, whenever  
the IBR bit is set to 1 in order to initiate a bus reset, the Gap_Count value must also be set to 63 so as to  
be consistent with other nodes on the bus, and the RHB must be maintained with its current value.  
The PHY register 1 must not be written to except to set the IBR bit. The RHB and Gap_Count must not be  
written without also setting the IBR bit to 1.  
3−33  
3−34  
4 PC Card Controller Programming Model  
This chapter describes the PCI7410 PCI configuration registers that make up the 256-byte PCI configuration header  
for each PCI7410 function. There are some bits which affect both CardBus functions, but which, in order to work  
properly, must be accessed only through function 0. These are called global bits. Registers containing one or more  
global bits are denoted by § in Table 4−2.  
Any bit followed by a † is not cleared by the assertion of PRST (see CardBus Bridge Power Management,  
Section 3.9.10, for more details) if PME is enabled (PCI offset A4h, bit 8). In this case, these bits are cleared only by  
GRST. If PME is not enabled, then these bits are cleared by GRST or PRST. These bits are sometimes referred to  
as PME context bits and are implemented to allow PME context to be preserved during the transition from D3  
or  
hot  
D3  
to D0.  
cold  
If a bit is followed by a ‡, then this bit is cleared only by GRST in all cases (not conditional on PME being enabled).  
These bits are intended to maintain device context such as interrupt routing and MFUNC programming during warm  
resets.  
A bit description table, typically included when the register contains bits of more than one type or purpose, indicates  
bit field names, a detailed field description, and field access tags which appear in the type column. Table 4−1  
describes the field access tags.  
Table 4−1. Bit Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
Field can be read by software.  
R
W
S
Field can be written by software to any value.  
Field can be set by a write of 1. Writes of 0 have no effect.  
Field can be cleared by a write of 1. Writes of 0 have no effect.  
Field can be autonomously updated by the PCI7410 controller.  
C
U
Clear  
Update  
4.1 PCI Configuration Registers (Functions 0 and 1)  
The PCI7410 controller is a multifunction PCI device, and the PC Card controller is integrated as PCI functions 0 and  
1. The configuration header, compliant with the PCI Local Bus Specification as a CardBus bridge header, is  
PC99/PC2001 compliant as well. Table 4−2 illustrates the PCI configuration register map, which includes both the  
predefined portion of the configuration space and the user-definable registers.  
Table 4−2. Functions 0 and 1 PCI Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status ‡  
Vendor ID  
Command  
04h  
Class code  
Header type  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
CardBus socket registers/ExCA base address register  
Secondary status ‡  
CardBus latency timer Subordinate bus number  
Reserved  
Capability pointer  
PCI bus number  
14h  
CardBus bus number  
18h  
CardBus memory base register 0  
1Ch  
20h  
CardBus memory limit register 0  
CardBus memory base register 1  
CardBus memory limit register 1  
24h  
28h  
One or more bits in this register are cleared only by the assertion of GRST.  
4−1  
 
Table 4−2. Functions 0 and 1 PCI Configuration Register Map (Continued)  
REGISTER NAME  
OFFSET  
2Ch  
CardBus I/O base register 0  
CardBus I/O limit register 0  
CardBus I/O base register 1  
CardBus I/O limit register 1  
30h  
34h  
38h  
Bridge control †  
Subsystem ID ‡  
Interrupt pin  
Interrupt line  
3Ch  
Subsystem vendor ID ‡  
40h  
PC Card 16-bit I/F legacy-mode base-address ‡  
Reserved  
44h  
48h−7Ch  
80h  
System control †‡§  
General control ‡§  
General-purpose output ‡  
Reserved  
UM_CD debounce ‡  
84h  
General-purpose event  
enable ‡  
General-purpose event  
status ‡  
General-purpose input  
Device control ‡§  
88h  
Multifunction routing status ‡  
8Ch  
90h  
Diagnostic ‡§  
Card control ‡§  
Retry status ‡§  
Capability ID  
Reserved  
94h−9Ch  
A0h  
Power management capabilities ‡  
Next item pointer  
Power management  
control/status bridge support  
extensions  
Power management data  
(Reserved)  
A4h  
Power management control/status †‡  
Reserved  
Serial bus slave address ‡  
Reserved  
A8h−ACh  
B0h  
Serial bus control/status ‡  
Serial bus index ‡  
Serial bus data ‡  
B4h−FCh  
One or more bits in this register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then this bit is cleared by the assertion of PRST or GRST.  
§
One or more bits in this register are cleared only by the assertion of GRST.  
One or more bits in this register are global in nature and must be accessed only through function 0.  
4.2 Vendor ID Register  
The vendor ID register contains a value allocated by the PCI SIG that identifies the manufacturer of the PCI device.  
The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Vendor ID  
00h (Functions 0, 1)  
Read-only  
Default:  
104Ch  
4−2  
 
4.3 Device ID Register Function 0  
The device ID register contains a value assigned to the PCI7410 controller by Texas Instruments. The device  
identification for the PCI7410 controller is AC49h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
0
R
0
R
1
Register:  
Offset:  
Type:  
Device ID  
02h (Function 0)  
Read-only  
AC49h  
Default:  
4.4 Device ID Register Function 1  
This read-only register contains the device ID assigned by TI to the PCI7410 dedicated socket function (PCI function  
1). When the dedicated socket is SD/MMC, the device ID is AC4Bh. When the dedicated socket is Memory Stick, the  
device ID is AC4Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID—SD/MMC  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
0
R
1
R
1
Register:  
Offset:  
Type:  
Device ID (dedicated SD/MMC)  
02h (Function 1)  
Read-only  
Default:  
AC4Bh  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID—Memory Stick  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Device ID (dedicated Memory Stick)  
02h (Function 1)  
Read-only  
Default:  
AC4Ch  
4−3  
 
4.5 Command Register  
The PCI command register provides control over the PCI7410 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification (see Table 4−3). None of the bit functions in this register are shared  
among the PCI7410 PCI functions. Three command registers exist in the PCI7410 controller, one for each function.  
Software manipulates the PCI7410 functions as separate entities when enabling functionality through the command  
register. The SERR_EN and PERR_EN enable bits in this register are internally wired OR between the three  
functions, and these control bits appear to software to be separate for each function.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Command  
04h  
Read-only, Read/Write  
0000h  
Default:  
Table 4−3. Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−11  
RSVD  
R
Reserved. Bits 15−11 return 0s when read.  
INTx disable. When set to 1, this bit disables the function from asserting interrupts on the INTx signals.  
0 = INTx assertion is enabled (default)  
1 = INTx assertion is disabled  
10  
9
INT_DISABLE  
FBB_EN  
RW  
R
This bit is disabled (read-only 0) if bit 7 (PCI2_3_EN) in the general control register (PCI offset 86h, see  
Section 4.32) is 0.  
Fast back-to-back enable. The PCI7410 controller does not generate fast back-to-back transactions;  
therefore, this bit is read-only. This bit returns a 0 when read.  
System error (SERR) enable. This bit controls the enable for the SERR driver on the PCI interface. SERR  
can be asserted after detecting an address parity error on the PCI bus. Both this bit and bit 6 must be set  
for the PCI7410 controller to report address parity errors.  
8
7
6
SERR_EN  
RSVD  
RW  
R
0 = Disables the SERR output driver (default)  
1 = Enables the SERR output driver  
Reserved. Bit 7 returns 0 when read.  
Parity error response enable. This bit controls the PCI7410 response to parity errors through the PERR  
signal. Data parity errors are indicated by asserting PERR, while address parity errors are indicated by  
asserting SERR.  
PERR_EN  
RW  
0 = PCI7410 controller ignores detected parity errors (default).  
1 = PCI7410 controller responds to detected parity errors.  
VGA palette snoop. When set to 1, palette snooping is enabled (i.e., the PCI7410 controller does not  
respond to palette register writes and snoops the data). When the bit is 0, the PCI7410 controller treats  
all palette accesses like all other accesses.  
5
4
3
2
VGA_EN  
MWI_EN  
SPECIAL  
MAST_EN  
RW  
R
Memory write-and-invalidate enable. This bit controls whether a PCI initiator device can generate memory  
write-and-invalidate commands. The PCI7410 controller does not support memory write-and-invalidate  
commands, it uses memory write commands instead; therefore, this bit is hardwired to 0. This bit returns  
0 when read. Writes to this bit have no effect.  
Special cycles. This bit controls whether or not a PCI device ignores PCI special cycles. The PCI7410  
controller does not respond to special cycle operations; therefore, this bit is hardwired to 0. This bit returns  
0 when read. Writes to this bit have no effect.  
R
Bus master control. This bit controls whether or not the PCI7410 controller can act as a PCI bus initiator  
(master). The PCI7410 controller can take control of the PCI bus only when this bit is set.  
0 = Disables the PCI7410 ability to generate PCI bus accesses (default)  
RW  
1 = Enables the PCI7410 ability to generate PCI bus accesses  
4−4  
 
Table 4−3. Command Register Description (continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Memory space enable. This bit controls whether or not the PCI7410 controller can claim cycles in PCI  
memory space.  
1
MEM_EN  
RW  
RW  
0 = Disables the PCI7410 response to memory space accesses (default)  
1 = Enables the PCI7410 response to memory space accesses  
I/O space control. This bit controls whether or not the PCI7410 controller can claim cycles in PCI I/O space.  
0 = Disables the PCI7410 controller from responding to I/O space accesses (default)  
1 = Enables the PCI7410 controller to respond to I/O space accesses  
0
IO_EN  
4.6 Status Register  
The status register provides device information to the host system. Bits in this register can be read normally. A bit  
in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All bit  
functions adhere to the definitions in the PCI Bus Specification, as seen in the bit descriptions. PCI bus status is shown  
through each function. See Table 4−4 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
1
RW  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Status  
06h (Functions 0, 1)  
Read-only, Read/Write  
0210h  
Default:  
Table 4−4. Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Detected parity error. This bit is set when a parity error is detected, either an address or data parity error.  
Write a 1 to clear this bit.  
15 ‡  
PAR_ERR  
RW  
Signaled system error. This bit is set when SERR is enabled and the PCI7410 controller signaled a system  
error to the host. Write a 1 to clear this bit.  
14 ‡  
13 ‡  
12 ‡  
11 ‡  
10−9  
SYS_ERR  
MABORT  
RW  
RW  
RW  
RW  
R
Received master abort. This bit is set when a cycle initiated by the PCI7410 controller on the PCI bus has  
been terminated by a master abort. Write a 1 to clear this bit.  
Received target abort. This bit is set when a cycle initiated by the PCI7410 controller on the PCI bus was  
terminated by a target abort. Write a 1 to clear this bit.  
TABT_REC  
TABT_SIG  
PCI_SPEED  
Signaled target abort. This bit is set by the PCI7410 controller when it terminates a transaction on the PCI  
bus with a target abort. Write a 1 to clear this bit.  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired to 01b indicating that the  
PCI7410 controller asserts this signal at a medium speed on nonconfiguration cycle accesses.  
Data parity error detected. Write a 1 to clear this bit.  
0 = The conditions for setting this bit have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. PERR was asserted by any PCI device including the PCI7410.  
b. The PCI7410 controller was the bus master during the data parity error.  
c. The parity error response bit is set in the command register.  
8 ‡  
DATAPAR  
RW  
Fast back-to-back capable. The PCI7410 controller cannot accept fast back-to-back transactions; thus, this  
bit is hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
UDF supported. The PCI7410 controller does not support user-definable features; therefore, this bit is  
hardwired to 0.  
66-MHz capable. The PCI7410 controller operates at a maximum PCLK frequency of 33 MHz; therefore,  
this bit is hardwired to 0.  
66MHZ  
One or more bits in this register are cleared only by the assertion of GRST.  
4−5  
 
Table 4−4. Status Register Description (continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Capabilities list. This bit returns 1 when read. This bit indicates that capabilities in addition to standard PCI  
capabilities are implemented. The linked list of PCI power-management capabilities is implemented in this  
function.  
4
CAPLIST  
R
Interrupt status. This bit reflects the interrupt status of the function. Only when bit 10 (INT_DISABLE) in the  
command register (PCI offset 04h, see Section 4.5) is a 0 and this bit is a 1, will the function’s INTx signal  
be asserted. Setting the INT_DISABLE bit to a 1 has no effect on the state of this bit. This bit is disabled  
(read-only 0) if bit 7 (PCI2_3_EN) in the general control register (PCI offset 86h, see Section 4.32) is 0.  
3
INT_STATUS  
RSVD  
R
R
2−0  
Reserved. These bits return 0s when read.  
4.7 Revision ID Register  
The revision ID register indicates the silicon revision of the PCI7410 controller.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Revision ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Revision ID  
08h (functions 0, 1)  
Read-only  
00h  
Default:  
4.8 Class Code Register  
The class code register recognizes PCI7410 functions 0 and 1 as a bridge device (06h) and a CardBus bridge device  
(07h), with a 00h programming interface.  
Bit  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Name  
PCI class code  
Base class  
Subclass  
Programming interface  
Type  
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Default  
Register:  
Offset:  
Type:  
PCI class code  
09h (functions 0, 1)  
Read-only  
Default:  
06 0700h  
4.9 Cache Line Size Register  
The cache line size register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Cache line size  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Cache line size  
0Ch (Functions 0, 1)  
Read/Write  
00h  
Default:  
4−6  
 
4.10 Latency Timer Register  
The latency timer register specifies the latency timer for the PCI7410 controller, in units of PCI clock cycles. When  
the PCI7410 controller is a PCI bus initiator and asserts FRAME, the latency timer begins counting from zero. If the  
latency timer expires before the PCI7410 transaction has terminated, then the PCI7410 controller terminates the  
transaction when its GNT is deasserted.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Latency timer  
0Dh  
Read/Write  
00h  
Default:  
4.11 Header Type Register  
The header type register returns 82h when read, indicating that the PCI7410 functions 0 and 1 configuration spaces  
adhere to the CardBus bridge PCI header. The CardBus bridge PCI header ranges from PCI registers 00h−7Fh, and  
80h−FFh is user-definable extension registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type  
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Header type  
0Eh (Functions 0, 1)  
Read-only  
Default:  
82h  
4.12 BIST Register  
Because the PCI7410 controller does not support a built-in self-test (BIST), this register returns the value of 00h when  
read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
BIST  
0Fh (Functions 0, 1)  
Read-only  
Default:  
00h  
4−7  
 
4.13 CardBus Socket Registers/ExCA Base Address Register  
This register is programmed with a base address referencing the CardBus socket registers and the memory-mapped  
ExCA register set. Bits 31−12 are read/write, and allow the base address to be located anywhere in the 32-bit PCI  
memory address space on a 4-Kbyte boundary. Bits 11−0 are read-only, returning 0s when read. When software  
writes all 1s to this register, the value read back is FFFF F000h, indicating that at least 4K bytes of memory address  
space are required. The CardBus registers start at offset 000h, and the memory-mapped ExCA registers begin at  
offset 800h. This register is not shared by functions 0 and 1, so the system maps each socket control register  
separately.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
CardBus socket registers/ExCA base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus socket registers/ExCA base address  
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
CardBus socket registers/ExCA base address  
10h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.14 Capability Pointer Register  
The capability pointer register provides a pointer into the PCI configuration header where the PCI power management  
register block resides. PCI header doublewords at A0h and A4h provide the power management (PM) registers. Each  
socket has its own capability pointer register. This register is read-only and returns A0h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability pointer  
R
1
R
0
R
1
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Capability pointer  
14h  
Read-only  
A0h  
Default:  
4−8  
 
4.15 Secondary Status Register  
The secondary status register is compatible with the PCI-PCI bridge secondary status register. It indicates  
CardBus-related device information to the host system. This register is very similar to the PCI status register (PCI  
offset 06h, see Section 4.6), and status bits are cleared by a writing a 1. This register is not shared by the two socket  
functions, but is accessed on a per-socket basis. See Table 4−5 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Secondary status  
RC  
0
RC  
0
RC  
0
RC  
0
RC  
0
R
0
R
1
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Secondary status  
16h  
Read-only, Read/Clear  
0200h  
Default:  
Table 4−5. Secondary Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Detected parity error. This bit is set when a CardBus parity error is detected, either an address or data  
parity error. Write a 1 to clear this bit.  
15 ‡  
CBPARITY  
RC  
Signaled system error. This bit is set when CSERR is signaled by a CardBus card. The PCI7410 controller  
does not assert the CSERR signal. Write a 1 to clear this bit.  
14 ‡  
13 ‡  
12 ‡  
11 ‡  
10−9  
CBSERR  
CBMABORT  
REC_CBTA  
SIG_CBTA  
CB_SPEED  
RC  
RC  
RC  
RC  
R
Received master abort. This bit is set when a cycle initiated by the PCI7410 controller on the CardBus bus  
is terminated by a master abort. Write a 1 to clear this bit.  
Received target abort. This bit is set when a cycle initiated by the PCI7410 controller on the CardBus bus  
is terminated by a target abort. Write a 1 to clear this bit.  
Signaled target abort. This bit is set by the PCI7410 controller when it terminates a transaction on the  
CardBus bus with a target abort. Write a 1 to clear this bit.  
CDEVSEL timing. These bits encode the timing of CDEVSEL and are hardwired to 01b indicating that the  
PCI7410 controller asserts this signal at a medium speed.  
CardBus data parity error detected. Write a 1 to clear this bit.  
0 = The conditions for setting this bit have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. CPERR was asserted on the CardBus interface.  
8 ‡  
CB_DPAR  
RC  
b. The PCI7410 controller was the bus master during the data parity error.  
c. The parity error response enable bit (bit 0) is set in the bridge control register (PCI offset 3Eh,  
see Section 4.26).  
Fast back-to-back capable. The PCI7410 controller cannot accept fast back-to-back transactions;  
therefore, this bit is hardwired to 0.  
7
6
CBFBB_CAP  
CB_UDF  
R
R
User-definable feature support. The PCI7410 controller does not support user-definable features;  
therefore, this bit is hardwired to 0.  
66-MHz capable. The PCI7410 CardBus interface operates at a maximum CCLK frequency of 33 MHz;  
therefore, this bit is hardwired to 0.  
5
CB66MHZ  
RSVD  
R
R
4−0  
These bits return 0s when read.  
One or more bits in this register are cleared only by the assertion of GRST.  
4−9  
 
4.16 PCI Bus Number Register  
The PCI bus number register is programmed by the host system to indicate the bus number of the PCI bus to which  
the PCI7410 controller is connected. The PCI7410 controller uses this register in conjunction with the CardBus bus  
number and subordinate bus number registers to determine when to forward PCI configuration cycles to its secondary  
buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI bus number  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
PCI bus number  
18h (Functions 0, 1)  
Read/Write  
Default:  
00h  
4.17 CardBus Bus Number Register  
The CardBus bus number register is programmed by the host system to indicate the bus number of the CardBus bus  
to which the PCI7410 controller is connected. The PCI7410 controller uses this register in conjunction with the PCI  
bus number and subordinate bus number registers to determine when to forward PCI configuration cycles to its  
secondary buses. This register is separate for each PCI7410 controller function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus bus number  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
CardBus bus number  
19h  
Read/Write  
00h  
Default:  
4.18 Subordinate Bus Number Register  
The subordinate bus number register is programmed by the host system to indicate the highest numbered bus below  
the CardBus bus. The PCI7410 controller uses this register in conjunction with the PCI bus number and CardBus bus  
number registers to determine when to forward PCI configuration cycles to its secondary buses. This register is  
separate for each CardBus controller function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subordinate bus number  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Subordinate bus number  
1Ah  
Read/Write  
00h  
Default:  
4−10  
 
4.19 CardBus Latency Timer Register  
The CardBus latency timer register is programmed by the host system to specify the latency timer for the PCI7410  
CardBus interface, in units of CCLK cycles. When the PCI7410 controller is a CardBus initiator and asserts CFRAME,  
the CardBus latency timer begins counting. If the latency timer expires before the PCI7410 transaction has  
terminated, then the PCI7410 controller terminates the transaction at the end of the next data phase. A recommended  
minimum value for this register of 20h allows most transactions to be completed.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus latency timer  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
CardBus latency timer  
1Bh (Functions 0, 1)  
Read/Write  
Default:  
00h  
4.20 CardBus Memory Base Registers 0, 1  
These registers indicate the lower address of a PCI memory address range. They are used by the PCI7410 controller  
to determine when to forward a memory transaction to the CardBus bus, and likewise, when to forward a CardBus  
cycle to PCI. Bits 31−12 of these registers are read/write and allow the memory base to be located anywhere in the  
32-bit PCI memory space on 4-Kbyte boundaries. Bits 11−0 are read-only and always return 0s. Writes to these bits  
have no effect. Bits 8 and 9 of the bridge control register (PCI offset 3Eh, see Section 4.26) specify whether memory  
windows 0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must  
be nonzero in order for the PCI7410 controller to claim any memory transactions through CardBus memory windows  
(i.e., these windows by default are not enabled to pass the first 4 Kbytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Memory base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Memory base registers 0, 1  
1Ch, 24h  
Read-only, Read/Write  
0000 0000h  
Default:  
4−11  
 
4.21 CardBus Memory Limit Registers 0, 1  
These registers indicate the upper address of a PCI memory address range. They are used by the PCI7410 controller  
to determine when to forward a memory transaction to the CardBus bus, and likewise, when to forward a CardBus  
cycle to PCI. Bits 31−12 of these registers are read/write and allow the memory base to be located anywhere in the  
32-bit PCI memory space on 4-Kbyte boundaries. Bits 11−0 are read-only and always return 0s. Writes to these bits  
have no effect. Bits 8 and 9 of the bridge control register (PCI offset 3Eh, see Section 4.26) specify whether memory  
windows 0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must  
be nonzero in order for the PCI7410 controller to claim any memory transactions through CardBus memory windows  
(i.e., these windows by default are not enabled to pass the first 4 Kbytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Memory limit registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory limit registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Memory limit registers 0, 1  
20h, 28h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.22 CardBus I/O Base Registers 0, 1  
These registers indicate the lower address of a PCI I/O address range. They are used by the PCI7410 controller to  
determine when to forward an I/O transaction to the CardBus bus, and likewise, when to forward a CardBus cycle  
to the PCI bus. The lower 16 bits of this register locate the bottom of the I/O window within a 64-Kbyte page. The upper  
16 bits (31−16) are all 0s, which locates this 64-Kbyte page in the first page of the 32-bit PCI I/O address space. Bits  
31−2 are read/write and always return 0s forcing I/O windows to be aligned on a natural doubleword boundary in the  
first 64-Kbyte page of PCI I/O address space. Bits 1−0 are read-only, returning 00 or 01 when read, depending on  
the value of bit 11 (IO_BASE_SEL) in the general control register (PCI offset 86h, see Section 4.32). These I/O  
windows are enabled when either the I/O base register or the I/O limit register is nonzero. The I/O windows by default  
are not enabled to pass the first doubleword of I/O to CardBus.  
Either the I/O base register or the I/O limit register must be nonzero to enable any I/O transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
I/O base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
I/O base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
X
Register:  
Offset:  
Type:  
I/O base registers 0, 1  
2Ch, 34h  
Read-only, Read/Write  
0000 000Xh  
Default:  
4−12  
 
4.23 CardBus I/O Limit Registers 0, 1  
These registers indicate the upper address of a PCI I/O address range. They are used by the PCI7410 controller to  
determine when to forward an I/O transaction to the CardBus bus, and likewise, when to forward a CardBus cycle  
to PCI. The lower 16 bits of this register locate the top of the I/O window within a 64-Kbyte page, and the upper 16  
bits are a page register which locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 15−2 are read/write  
and allow the I/O limit address to be located anywhere in the 64-Kbyte page (indicated by bits 31−16 of the appropriate  
I/O base register) on doubleword boundaries.  
Bits 31−16 are read-only and always return 0s when read. The page is set in the I/O base register. Bits 15−2 are  
read/write and bits 1−0 are read-only, returning 00 or 01 when read, depending on the value of bit 12 (IO_LIMIT_SEL)  
in the general control register (PCI offset 86h, see Section 4.32). Writes to read-only bits have no effect.  
These I/O windows are enabled when either the I/O base register or the I/O limit register is nonzero. By default, the  
I/O windows are not enabled to pass the first doubleword of I/O to CardBus.  
Either the I/O base register or the I/O limit register must be nonzero to enable any I/O transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
I/O limit registers 0, 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
I/O limit registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
X
Register:  
Offset:  
Type:  
I/O limit registers 0, 1  
30h, 38h  
Read-only, Read/Write  
0000 000Xh  
Default:  
4.24 Interrupt Line Register  
The interrupt line register is a read/write register used by the host software. As part of the interrupt routing procedure,  
the host software writes this register with the value of the system IRQ assigned to the function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Register:  
Offset:  
Type:  
Interrupt line  
3Ch  
Read/Write  
FFh  
Default:  
4−13  
 
4.25 Interrupt Pin Register  
The value read from this register is function dependent. The default value for function 0 is 01h (INTA), and the default  
value for function 1 is 02h (INTB), and the default value for function 2 is 03h (INTC). The value also depends on the  
values of bits 28, the tie-all bit (TIEALL), and 29, the interrupt tie bit (INTRTIE), in the system control register (PCI  
offset 80h, see Section 4.30). The INTRTIE bit is compatible with previous TI CardBus controllers, and when set to  
1, ties INTB to INTA internally. The TIEALL bit ties INTA, INTB, and INTC together internally. The internal interrupt  
connections set by INTRTIE and TIEALL are communicated to host software through this standard register interface.  
This read-only register is described for all PCI7410 functions in Table 4−6.  
PCI function 0  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin − PCI function 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
PCI function 1  
Bit  
7
6
5
4
3
2
1
0
Name  
Interrupt pin − PCI function 1  
Type  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Default  
PCI function 2  
Bit  
7
6
5
4
3
2
1
0
Name  
Interrupt pin − PCI function 2  
Type  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
Default  
Register:  
Offset:  
Type:  
Interrupt pin  
3Dh  
Read-only  
Default:  
01h (function 0), 02h (function 1), 03h (function 2)  
Table 4−6. Interrupt Pin Register Cross Reference  
INTPIN  
FUNCTION 0  
(CARDBUS)  
INTPIN  
FUNCTION 1  
(DEDICATED SOCKET)  
INTPIN  
FUNCTION 2  
(1394 OHCI)  
INTRTIE BIT  
(BIT 29, OFFSET 80h)  
TIEALL BIT  
(BIT 28, OFFSET 80h)  
0
1
0
0
1
01h (INTA)  
01h (INTA)  
01h (INTA)  
02h (INTB)  
01h (INTA)  
01h (INTA)  
03h (INTC)  
03h (INTC)  
01h (INTA)  
X
4−14  
 
4.26 Bridge Control Register  
The bridge control register provides control over various PCI7410 bridging functions. Some bits in this register are  
global in nature and must be accessed only through function 0. See Table 4−7 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bridge control  
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
1
RW  
1
RW  
0
RW  
1
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Bridge control  
3Eh (Function 0, 1)  
Read-only, Read/Write  
0340h  
Default:  
Table 4−7. Bridge Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−11  
RSVD  
R
These bits return 0s when read.  
Write posting enable. Enables write posting to and from the CardBus sockets. Write posting enables the  
posting of write data on burst cycles. Operating with write posting disabled impairs performance on burst  
cycles. Note that burst write data can be posted, but various write transactions may not. This bit is socket  
dependent and is not shared between functions 0 and 1.  
10  
9
POSTEN  
PREFETCH1  
PREFETCH0  
INTR  
RW  
RW  
RW  
RW  
Memory window 1 type. This bit specifies whether or not memory window 1 is prefetchable. This bit is  
socket dependent. This bit is encoded as:  
0 = Memory window 1 is nonprefetchable.  
1 = Memory window 1 is prefetchable (default).  
Memory window 0 type. This bit specifies whether or not memory window 0 is prefetchable. This bit is  
socket dependent. This bit is encoded as:  
8
0 = Memory window 0 is nonprefetchable.  
1 = Memory window 0 is prefetchable (default).  
PCI interrupt − IREQ routing enable. This bit is used to select whether PC Card functional interrupts are  
routed to PCI interrupts or to the IRQ specified in the ExCA registers.  
0 = Functional interrupts are routed to PCI interrupts (default).  
7
1 = Functional interrupts are routed by ExCA registers.  
CardBus reset. When this bit is set, the CRST signal is asserted on the CardBus interface. The CRST  
signal can also be asserted by passing a PRST assertion to CardBus.  
0 = CRST is deasserted.  
6 †  
CRST  
RW  
RW  
1 = CRST is asserted (default).  
This bit is not cleared by the assertion of PRST. It is only cleared by the assertion of GRST.  
Master abort mode. This bit controls how the PCI7410 controller responds to a master abort when the  
PCI7410 controller is an initiator on the CardBus interface. This bit is common between each socket.  
0 = Master aborts not reported (default).  
5
MABTMODE  
1 = Signal target abort on PCI and signal SERR, if enabled.  
4
3
RSVD  
R
This bit returns 0 when read.  
VGA enable. This bit affects how the PCI7410 controller responds to VGA addresses. When this bit is set,  
accesses to VGA addresses will be forwarded.  
VGAEN  
RW  
ISA mode enable. This bit affects how the PCI7410 controller passes I/O cycles within the 64-Kbyte ISA  
range. This bit is not common between sockets. When this bit is set, the PCI7410 controller does not  
forward the last 768 bytes of each 1K I/O range to CardBus.  
2
1
ISAEN  
RW  
RW  
CSERR enable. This bit controls the response of the PCI7410 controller to CSERR signals on the CardBus  
bus. This bit is separate for each socket.  
CSERREN  
0 = CSERR is not forwarded to PCI SERR (default)  
1 = CSERR is forwarded to PCI SERR.  
One or more bits in this register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then this bit is cleared by the assertion of PRST or GRST.  
4−15  
 
Table 4−7. Bridge Control Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
CardBus parity error response enable. This bit controls the response of the PCI7410 to CardBus parity  
errors. This bit is separate for each socket.  
0
CPERREN  
RW  
0 = CardBus parity errors are ignored (default).  
1 = CardBus parity errors are reported using CPERR.  
4.27 Subsystem Vendor ID Register  
The subsystem vendor ID register, used for system and option card identification purposes, may be required for  
certain operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW)  
in the system control register (PCI offset 80h, See Section 4.30). When bit 5 is 0, this register is read/write; when bit  
5 is 1, this register is read-only. The default mode is read-only. All bits in this register are reset by GRST only.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem vendor ID  
40h (Functions 0, 1)  
Read-only, (Read/Write when bit 5 in the system control register is 0)  
0000h  
Default:  
4.28 Subsystem ID Register  
The subsystem ID register, used for system and option card identification purposes, may be required for certain  
operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW) in the  
system control register (PCI offset 80h, see Section 4.30). When bit 5 is 0, this register is read/write; when bit 5 is  
1, this register is read-only. The default mode is read-only. All bits in this register are reset by GRST only.  
If an EEPROM is present, then the subsystem ID and subsystem vendor ID is loaded from the EEPROM after a reset.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem ID  
42h (Functions 0, 1)  
Read-only, (Read/Write when bit 5 in the system control register is 0)  
0000h  
Default:  
4−16  
 
4.29 PC Card 16-Bit I/F Legacy-Mode Base-Address Register  
The PCI7410 controller supports the index/data scheme of accessing the ExCA registers, which is mapped by this  
register. An address written to this register is the address for the index register and the address+1 is the data address.  
Using this access method, applications requiring index/data ExCA access can be supported. The base address can  
be mapped anywhere in 32-bit I/O space on a word boundary; hence, bit 0 is read-only, returning 1 when read. As  
specified in the PCI to PCMCIA CardBus Bridge Register Description specification, this register is shared by functions  
0 and 1. See the ExCA register set description in Section 5 for register offsets. All bits in this register are reset by  
GRST only.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
PC Card 16-bit I/F legacy-mode base-address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PC Card 16-bit I/F legacy-mode base-address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
1
Register:  
Offset:  
Type:  
PC Card 16-bit I/F legacy-mode base-address  
44h (Functions 0, 1)  
Read-only, Read/Write  
Default:  
0000 0001h  
4−17  
 
4.30 System Control Register  
System-level initializations are performed through programming this doubleword register. Some of the bits are global  
in nature and must be accessed only through function 0. See Table 4−8 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
System control  
RW  
0
RW  
0
RW  
0
RW  
0
R
1
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
System control  
RW  
1
RW  
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
RW  
1
RW  
1
RW  
0
RW  
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
System control  
80h (Functions 0, 1)  
Read-only, Read/Write  
0800 9060h  
Default:  
Table 4−8. System Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial input stepping. In serial PCI interrupt mode, these bits are used to configure the serial stream PCI  
interrupt frames, and can be used to accomplish an even distribution of interrupts signaled on the four PCI  
interrupt slots.  
00 = INTA/INTB/INTC signal in INTA/INTB/INTC slots (default)  
01 = INTA/INTB/INTC signal in INTB/INTC/INTD slots  
31−30 ‡§ SER_STEP  
RW  
10 = INTA/INTB/INTC signal in INTC/INTD/INTA slots  
11 = INTA/INTB/INTC signal in INTD/INTA/INTB slots  
This bit ties INTA to INTB internally (to INTA), and reports this through the interrupt pin register (PCI offset  
3Dh, see Section 4.25). This bit has no effect on INTC.  
29 ‡§  
INTRTIE  
RW  
This bit ties INTA, INTB, and INTC internally (to INTA), and reports this through the interrupt pin register  
(PCI offset 3Dh, see Section 4.25).  
28 ‡  
27 ‡  
TIEALL  
RSVD  
RW  
RW  
Internal oscillator is always enabled.  
SMI interrupt routing. This bit is shared between functions 0 and 1, and selects whether IRQ2 or CSC is  
signaled when a write occurs to power a PC Card socket.  
26 ‡§  
25 ‡  
SMIROUTE  
SMISTATUS  
RW  
RW  
0 = PC Card power change interrupts are routed to IRQ2 (default).  
1 = A CSC interrupt is generated on PC Card power changes.  
SMI interrupt status. This socket-dependent bit is set when a write occurs to set the socket power, and  
the SMIENB bit is set. Writing a 1 to this bit clears the status.  
0 = SMI interrupt is signaled.  
1 = SMI interrupt is not signaled.  
SMI interrupt mode enable. When this bit is set, the SMI interrupt signaling generates an interrupt when  
a write to the socket power control occurs. This bit is shared and defaults to 0 (disabled).  
0 = SMI interrupt mode is disabled (default).  
24 ‡§  
23  
SMIENB  
RSVD  
RW  
R
1 = SMI interrupt mode is enabled.  
Reserved  
CardBus reserved terminals signaling. When this bit is set, the RSVD CardBus terminals are driven low  
when a CardBus card has been inserted. When this bit is low, these signals are placed in a high-impedance  
state.  
22 ‡  
CBRSVD  
RW  
0 = Place the CardBus RSVD terminals in a high-impedance state.  
1 = Drive the CardBus RSVD terminals low (default).  
§
One or more bits in this register are cleared only by the assertion of GRST.  
These bits are global in nature and must be accessed only through function 0.  
4−18  
 
Table 4−8. System Control Register Description (continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
V
CC  
protection enable. This bit is socket dependent.  
21 ‡  
VCCPROT  
RW  
0 = V  
protection is enabled for 16-bit cards (default).  
protection is disabled for 16-bit cards.  
CC  
CC  
1 = V  
Reduced zoomed video enable. When this bit is enabled, AD25−AD22 of the card interface for 16-bit  
PC Cards are placed in the high impedance state. This bit is encoded as:  
0 = Reduced zoomed video is disabled (default).  
20 ‡  
19−16 ‡  
15 ‡§  
REDUCEZV  
RSVD  
RW  
R
1 = Reduced zoomed video is enabled.  
Reserved. These bits return 0s when read.  
Memory read burst enable downstream. When this bit is set, the PCI7410 controller allows memory  
read transactions to burst downstream.  
MRBURSTDN  
RW  
0 = MRBURSTDN downstream is disabled.  
1 = MRBURSTDN downstream is enabled (default).  
Memory read burst enable upstream. When this bit is set, the PCI7410 controller allows memory read  
transactions to burst upstream.  
14 ‡§  
MRBURSTUP  
RW  
0 = MRBURSTUP upstream is disabled (default).  
1 = MRBURSTUP upstream is enabled.  
Socket activity status. When set, this bit indicates access has been performed to or from a PC Card.  
Reading this bit causes it to be cleared. This bit is socket dependent.  
0 = No socket activity (default)  
13 ‡  
12  
SOCACTIVE  
RSVD  
R
R
1 = Socket activity  
Reserved. This bit returns 1 when read.  
Power-stream-in-progress status bit. When set, this bit indicates that a power stream to the power  
switch is in progress and a powering change has been requested. When this bit is cleared, it indicates  
that the power stream is complete.  
11 ‡  
10 †  
9 †  
PWRSTREAM  
DELAYUP  
R
R
R
0 = Power stream is complete, delay has expired (default).  
1 = Power stream is in progress.  
Power-up delay-in-progress status bit. When set, this bit indicates that a power-up stream has been  
sent to the power switch, and proper power may not yet be stable. This bit is cleared when the power-up  
delay has expired.  
0 = Power-up delay has expired (default).  
1 = Power-up stream sent to switch. Power might not be stable.  
Power-down delay-in-progress status bit. When set, this bit indicates that a power-down stream has  
been sent to the power switch, and proper power may not yet be stable. This bit is cleared when the  
power-down delay has expired.  
DELAYDOWN  
0 = Power-down delay has expired (default).  
1 = Power-down stream sent to switch. Power might not be stable.  
Interrogation in progress. When set, this bit indicates an interrogation is in progress, and clears when  
the interrogation completes. This bit is socket-dependent.  
0 = Interrogation not in progress (default)  
8 †  
7
INTERROGATE  
RSVD  
R
R
1 = Interrogation in progress  
Reserved. This bit returns 0 when read.  
One or more bits in this register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then this bit is cleared by the assertion of PRST or GRST.  
§
One or more bits in this register are cleared only by the assertion of GRST.  
These bits are global in nature and must be accessed only through function 0.  
4−19  
Table 4−8. System Control Register Description (continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Power savings mode enable. When this bit is set, the PCI7410 controller consumes less power with  
no performance loss. This bit is shared between the two PCI7410 CardBus functions.  
0 = Power savings mode disabled  
6 ‡§  
PWRSAVINGS  
RW  
1 = Power savings mode enabled (default)  
Subsystem ID and subsystem vendor ID, ExCA ID and revision register read/write enable. This bit also  
controls read/write for the function 3 subsystem ID register.  
0 = Registers are read/write.  
5 ‡§  
4 ‡§  
SUBSYSRW  
CB_DPAR  
RW  
RW  
1 = Registers are read-only (default).  
CardBus data parity SERR signaling enable.  
0 = CardBus data parity not signaled on PCI SERR signal (default)  
1 = CardBus data parity signaled on PCI SERR signal  
PC/PCI DMA enable. Enables PC/PCI DMA when set. When PC/PCI DMA is enabled, PCREQ and  
PCGNT must be routed to a multifunction routing terminal. See Multifunction Routing Status Register  
(PCI offset 8Ch, see Section 4.37) for options.  
3 ‡§  
2 ‡  
CDMA_EN  
RW  
R
0 = Centralized DMA disabled (default)  
1 = Centralized DMA enabled  
ExCA power control bit.  
0 = Enables 3.3 V (defoult)  
1 = Enables 5 V  
EXCAPOWER  
Keep clock. When this bit is set, the PCI7410 controller follows the CLKRUN protocol to maintain the  
system PCLK and the CCLK (CardBus clock). This bit is global to the PCI7410 functions.  
0 = Allow system PCLK and CCLK to stop (default)  
1 = Never allow system PCLK or CCLK clock to stop  
1 ‡§  
KEEPCLK  
RW  
Note that the functionality of this bit has changed relative to that of the PCI12XX family of TI CardBus  
controllers. In these CardBus controllers, setting this bit only maintains the PCI clock, not the CCLK.  
In the PCI7410 controller, setting this bit maintains both the PCI clock and the CCLK.  
PME/RI_OUT select bit. When this bit is 1, the PME signal is routed to the PME/RI_OUT terminal (PDV  
21, GHK J03). When this bit is 0 and bit 7 (RIENB) of the card control register is 1, the RI_OUT signal  
is routed to the PME/RI_OUT terminal (PDV 21, GHK J03). If this bit is 0 and bit 7 (RIENB) of the card  
control register is 0, then the output (PDV 21, GHK J03) is placed in a high-impedance state. This  
terminal is encoded as:  
0 = RI_OUT signal is routed to the PME/RI_OUT terminal (PDV 21, GHK J03) if bit 7 of the card  
control register is 1. (default)  
0 ‡§  
RIMUX  
RW  
1 = PME signal is routed to the PME/RI_OUT terminal (PDV 21, GHK J03) of the PCI7410  
controller.  
NOTE: If this bit (bit 0) is 0 and bit 7 of the card control register (PCI offset 91h, see Section 4.39) is  
0, then the output on the PME/RI_OUT terminal (PDV 21, GHK J03) is placed in a high-impedance  
state.  
§
One or more bits in this register are cleared only by the assertion of GRST.  
These bits are global in nature and must be accessed only through function 0.  
4.31 UM_CD Debounce Register  
This register provides debounce time in units of 2 ms for the UM_CD signal on UltraMedia cards. This register defaults  
to19h, which gives a default debounce time of 50 ms. All bits in this register are reset by GRST only.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
UM_CD debounce  
RW  
0
RW  
0
RW  
0
RW  
1
RW  
1
RW  
0
RW  
0
RW  
1
Register:  
Offset:  
Type:  
UM_CD debounce  
84h (Functions 0, 1)  
Read/Write  
Default:  
19h  
4−20  
 
4.32 General Control Register  
The general control register provides top level PCI arbitration control. See Table 4−9 for a complete description of  
the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General control  
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
General control  
86h  
Read/Write, Read-only  
0000h  
Default:  
Table 4−9. General Control Register Description  
BIT  
15−13 ‡  
12 ‡  
SIGNAL  
RSVD  
TYPE  
RW  
FUNCTION  
These bits are for test purposes and must not be changed from their default values of 000b.  
IO_LIMIT_SEL  
RW  
When this bit is set, bit 0 in the I/O limit registers (PCI offsets 30h and 38h) for both CardBus functions  
is set.  
0 = Bit 0 in the I/O limit registers is 0 (default)  
1 = Bit 0 in the I/O limit registers is 1  
11 ‡  
10 ‡  
IO_BASE_SEL  
12V_SW_SEL  
RW  
RW  
When this bit is set, bit 0 in the I/O base registers (PCI offsets 2Ch and 34h) for both CardBus functions  
is set.  
0 = Bit 0 in the I/O base registers is 0 (default)  
1 = Bit 0 in the I/O base registers is 1  
Power switch select. This bit selects which power switch is implemented in the system.  
0 = A 1.8-V capable power switch (TPS2221) is used (default)  
1 = A 12-V capable power switch (TPS2211) is used  
9−8  
7 ‡  
RSVD  
R
Reserved. These bits return 0 when read.  
PCI2_3_EN  
RW  
PCI 2.3 enable. When this bit is set, the PCI7410 CardBus functions conform to the PCI 2.3  
specification. When in the PCI 2.3 mode, the INT_DISABLE and INT_STATUS bits per the PCI 2.3  
specification are functional. When this bit is cleared, the function conforms to the PCI 2.2 specification  
and all PCI 2.3 bits are disabled.  
0 = PCI 2.2 mode (default)  
1 = PCI 2.3 mode  
6
RSVD  
R
Reserved. This bit returns 0 when read.  
5 ‡  
4 ‡  
DISABLE_FWL  
RW  
RW  
When this bit is set, the firmware loader function is completely nonaccessible and nonfunctional.  
When this bit is set, the dedicated socket function is completely nonaccessible and nonfunctional.  
DISABLE_DED_  
SKT  
3 ‡  
2
DISABLE_OHCI  
RSVD  
RW  
R
When set, the OHCI 1394 controller function is completely nonaccessible and nonfunctional.  
Reserved. This bit returns 0 when read.  
1−0 ‡  
ARB_CTRL  
RW  
Controls top level PCI arbitration:  
00 = 1394 OHCI priority  
01 = CardBus priority  
10 = Fair round robin  
11 = Fair round robin  
One or more bits in this register are cleared only by the assertion of GRST.  
4−21  
 
4.33 General-Purpose Event Status Register  
The general-purpose event status register contains status bits that are set when general events occur, and can be  
programmed to generate general-purpose event signaling through GPE. See Table 4−10 for a complete description  
of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event status  
RCU  
0
RCU  
0
R
0
RCU  
0
RCU  
0
RCU  
0
RCU  
0
RCU  
0
Register:  
Offset:  
Type:  
General-purpose event status  
88h  
Read/Clear/Update, Read-only  
00h  
Default:  
Table 4−10. General-Purpose Event Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7 ‡  
PWR_STS  
RCU  
Power change status. This bit is set when software changes the V  
or V  
PP  
power state of either socket.  
level to or from 12 V  
CC  
12-V V  
for either socket.  
request status. This bit is set when software has changed the requested V  
PP  
PP  
6 ‡  
5
VPP12_STS  
RSVD  
RCU  
R
Reserved. This bit returns 0 when read. A write has no effect.  
GPI4 status. This bit is set on a change in status of the MFUNC5 terminal input level if configured as a  
general-purpose input, GPI4.  
4 ‡  
GP4_STS  
RCU  
GPI3 status. This bit is set on a change in status of the MFUNC4 terminal input level if configured as a  
general-purpose input, GPI3.  
3 ‡  
2 ‡  
1 ‡  
0 ‡  
GP3_STS  
GP2_STS  
GP1_STS  
GP0_STS  
RCU  
RCU  
RCU  
RCU  
GPI2 status. This bit is set on a change in status of the MFUNC2 terminal input level if configured as a  
general-purpose input, GPI2.  
GPI1 status. This bit is set on a change in status of the MFUNC1 terminal input level if configured as a  
general-purpose input, GPI1.  
GPI0 status. This bit is set on a change in status of the MFUNC0 terminal input level if configured as a  
general-purpose input, GPI0.  
One or more bits in this register are cleared only by the assertion of GRST.  
4−22  
 
4.34 General-Purpose Event Enable Register  
The general-purpose event enable register contains bits that are set to enable GPE signals. See Table 4−11 for a  
complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event enable  
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
General-purpose event enable  
89h  
Read-only, Read/Write  
00h  
Default:  
Table 4−11. General-Purpose Event Enable Register Description  
BIT  
7 ‡  
6 ‡  
5
SIGNAL  
PWR_EN  
VPP12_EN  
RSVD  
TYPE  
RW  
RW  
R
FUNCTION  
Power change GPE enable. When this bit is set, GPE is signaled on PWR_STS events.  
12-V V GPE enable. When this bit is set, GPE is signaled on VPP12_STS events.  
PP  
Reserved. This bit returns 0 when read. A write has no effect.  
4 ‡  
3 ‡  
2 ‡  
1 ‡  
0 ‡  
GP4_EN  
GP3_EN  
GP2_EN  
GP1_EN  
GP0_EN  
RW  
RW  
RW  
RW  
RW  
GPI4 GPE enable. When this bit is set, GPE is signaled on GP4_STS events.  
GPI3 GPE enable. When this bit is set, GPE is signaled on GP3_STS events.  
GPI2 GPE enable. When this bit is set, GPE is signaled on GP2_STS events.  
GPI1 GPE enable. When this bit is set, GPE is signaled on GP1_STS events.  
GPI0 GPE enable. When this bit is set, GPE is signaled on GP0_STS events.  
One or more bits in this register are cleared only by the assertion of GRST.  
4.35 General-Purpose Input Register  
The general-purpose input register contains the logical value of the data input to the GPI terminals. See Table 4−12  
for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose input  
R
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Offset:  
Type:  
General-purpose input  
8Ah  
Read/Update, Read-only  
XXh  
Default:  
Table 4−12. General-Purpose Input Register Description  
FUNCTION  
BIT  
7−5  
4
SIGNAL  
RSVD  
TYPE  
R
Reserved. These bits return 0s when read. Writes have no effect.  
GPI4_DATA  
GPI3_DATA  
GPI2_DATA  
GPI1_DATA  
GPI0_DATA  
RU  
RU  
RU  
RU  
RU  
GPI4 data input. This bit represents the logical value of the data input from GPI4.  
GPI3 data input. This bit represents the logical value of the data input from GPI3.  
GPI2 data input. This bit represents the logical value of the data input from GPI2.  
GPI1 data input. This bit represents the logical value of the data input from GPI1.  
GPI0 data input. This bit represents the logical value of the data input from GPI0.  
3
2
1
0
4−23  
 
4.36 General-Purpose Output Register  
The general-purpose output register is used to drive the GPO4−GPO0 outputs. See Table 4−13 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose output  
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
General-purpose output  
8Bh  
Read-only, Read/Write  
00h  
Default:  
Table 4−13. General-Purpose Output Register Description  
BIT  
7−5  
4 ‡  
3 ‡  
2 ‡  
1 ‡  
0 ‡  
SIGNAL  
RSVD  
TYPE  
FUNCTION  
Reserved. These bits return 0s when read. Writes have no effect.  
This bit represents the logical value of the data driven to GPO4.  
This bit represents the logical value of the data driven to GPO3.  
This bit represents the logical value of the data driven to GPO2.  
This bit represents the logical value of the data driven to GPO1.  
This bit represents the logical value of the data driven to GPO0.  
R
GPO4_DATA  
GPO3_DATA  
GPO2_DATA  
GPO1_DATA  
GPO0_DATA  
RW  
RW  
RW  
RW  
RW  
One or more bits in this register are cleared only by the assertion of GRST.  
4−24  
 
4.37 Multifunction Routing Status Register  
The multifunction routing status register is used to configure the MFUNC6−MFUNC0 terminals. These terminals may  
be configured for various functions. This register is intended to be programmed once at power-on initialization. The  
default value for this register can also be loaded through a serial EEPROM. See Table 4−14 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Multifunction routing status  
R
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Multifunction routing status  
R
0
RW  
0
RW  
0
RW  
1
R
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Multifunction routing status  
8Ch  
Read/Write, Read-only  
0000 1000h  
Default:  
Table 4−14. Multifunction Routing Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−28 ‡  
RSVD  
R
Bits 31−28 return 0s when read.  
Multifunction terminal 6 configuration. These bits control the internal signal mapped to the MFUNC6 terminal  
as follows:  
0000 = RSVD  
0001 = CLKRUN  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
27−24 ‡  
23−20 ‡  
MFUNC6  
MFUNC5  
RW  
Multifunction terminal 5 configuration. These bits control the internal signal mapped to the MFUNC5 terminal  
as follows:  
0000 = GPI4  
0001 = GPO4  
0010 = PCGNT  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = RSVD  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1100 = LEDA1  
1101 = LED_SKT  
1110 = GPE  
RW  
RW  
1011 = OHCI_LED  
1111 = IRQ15  
Multifunction terminal 4 configuration. These bits control the internal signal mapped to the MFUNC4 terminal  
as follows:  
0000 = GPI3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = RSVD  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = RSVD  
1011 = IRQ11  
1100 = RI_OUT  
1101 = LED_SKT  
1110 = GPE  
19−16 ‡  
MFUNC4  
0001 = GPO3  
0010 = LOCK PCI  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 3 configuration. These bits control the internal signal mapped to the MFUNC3 terminal  
as follows:  
0000 = RSVD  
0001 = IRQSER  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
15−12 ‡  
11−8 ‡  
MFUNC3  
MFUNC2  
RW  
RW  
Multifunction terminal 2 configuration. These bits control the internal signal mapped to the MFUNC2 terminal  
as follows:  
0000 = GPI2  
0001 = GPO2  
0010 = PCREQ  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = INTC  
1100 = RI_OUT  
1101 = TEST_MUX  
1110 = GPE  
1111 = IRQ7  
One or more bits in this register are cleared only by the assertion of GRST.  
4−25  
 
Table 4−14. Multifunction Routing Status Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Multifunction terminal 1 configuration. These bits control the internal signal mapped to the MFUNC1 terminal  
as follows:  
0000 = GPI1  
0001 = GPO1  
0010 = INTB  
0011 = IRQ3  
0100 = OHCI_LED 1000 = CAUDPWM  
1100 = LEDA1  
1101 = LEDA2  
1110 = GPE  
7−4 ‡  
MFUNC1  
RW  
0101 = IRQ5  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
0110 = ZVSTAT  
0111 = ZVSEL0  
1111 = IRQ15  
Multifunction terminal 0 configuration. These bits control the internal signal mapped to the MFUNC0 terminal  
as follows:  
0000 = GPI0  
0001 = GPO0  
0010 = INTA  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LEDA1  
1101 = LEDA2  
1110 = GPE  
3−0 ‡  
MFUNC0  
RW  
1111 = IRQ15  
One or more bits in this register are cleared only by the assertion of GRST.  
4.38 Retry Status Register  
The contents of the retry status register enable the retry time-out counters and display the retry expiration status. The  
15  
flags are set when the PCI7410 controller, as a master, receives a retry and does not retry the request within 2 clock  
cycles. The flags are cleared by writing a 1 to the bit. Access this register only through function 0. See Table 4−15  
for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Retry status  
RW  
1
RW  
1
RC  
0
R
0
RC  
0
R
0
RC  
0
R
0
Register:  
Offset:  
Type:  
Retry status  
90h (Functions 0, 1)  
Read-only, Read/Write, Read/Clear  
C0h  
Default:  
Table 4−15. Retry Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI retry time-out counter enable. This bit is encoded as:  
0 = PCI retry counter disabled  
7 ‡  
PCIRETRY  
RW  
1 = PCI retry counter enabled (default)  
CardBus retry time-out counter enable. This bit is encoded as:  
0 = CardBus retry counter disabled  
6 ‡§  
CBRETRY  
RW  
1 = CardBus retry counter enabled (default)  
CardBus target B retry expired. Write a 1 to clear this bit.  
0 = Inactive (default)  
5 ‡  
4
TEXP_CBB  
RSVD  
RC  
R
1 = Retry has expired.  
Reserved. This bit returns 0 when read.  
CardBus target A retry expired. Write a 1 to clear this bit.  
0 = Inactive (default)  
3 ‡§  
2
TEXP_CBA  
RSVD  
RC  
R
1 = Retry has expired.  
Reserved. This bit returns 0 when read.  
PCI target retry expired. Write a 1 to clear this bit.  
1 ‡  
0
TEXP_PCI  
RSVD  
RC  
R
0 = Inactive (default)  
1 = Retry has expired.  
Reserved. This bit returns 0 when read.  
§
One or more bits in this register are cleared only by the assertion of GRST.  
These bits are global in nature and must be accessed only through function 0.  
4−26  
 
4.39 Card Control Register  
The card control register is provided for PCI1130 compatibility. RI_OUT is enabled through this register, and the  
enable bit is shared between functions 0 and 1. See Table 4−16 for a complete description of the register contents.  
The RI_OUT signal is enabled through this register, and the enable bit is shared between functions 0 and 1.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Card control  
RW  
0
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Card control  
91h  
Read-only, Read/Write  
00h  
Default:  
Table 4−16. Card Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7 ‡§  
RIENB  
RW  
Ring indicate enable. When this bit is 1, the RI_OUT output is enabled. This bit defaults to 0.  
Compatibility ZV mode enable. When this bit is 1, the corresponding PC Card socket interface ZV  
terminals enter a high-impedance state. This bit defaults to 0.  
6 ‡  
ZVENABLE  
RW  
Port select. This bit controls the priority for the ZV_SEL0 and ZV_SEL1 signaling if bit 6 (ZVENABLE) is  
set in both functions.  
5 ‡  
4−3  
2 ‡  
PORT_SEL  
RSVD  
RW  
R
0 = Socket 0 takes priority, as signaled through ZV_SEL0, when both sockets are in ZV mode.  
1 = Socket 1 takes priority, as signaled through ZV_SEL1, when both sockets are in ZV mode.  
Reserved. These bits default to 0.  
CardBus audio-to-MFUNC. When this bit is set, the CAUDIO CardBus signal must be routed through an  
MFUNC terminal. If this bit is set for both functions, then function 0 is routed.  
AUD2MUX  
RW  
0 = CAUDIO set to CAUDPWM on MFUNC terminal (default)  
1 = CAUDIO is not routed.  
When bit 1 is set, the SPKR termijnal from the PC Card is enabled and is routed to tthe SPKROUT terminal.  
The SPKR signal from socket 0 is XORed with the SPKR signal from socket 1 and sent to SPKROUT. The  
SPKROUT terminal drives data only when the SPKROUTEN bit of either function is set. This bit is encoded  
as:  
1 ‡  
0 ‡  
SPKROUTEN  
RW  
RW  
0 = SPKR to SPKROUT not enabled (default)  
1 = SPKR to SPKROUT enabled  
Interrupt flag. This bit is the interrupt flag for 16-bit I/O PC Cards and for CardBus cards. This bit is set when  
a functional interrupt is signaled from a PC Card interface, and is socket dependent (i.e., not global). Write  
back a 1 to clear this bit.  
IFG  
0 = No PC Card functional interrupt detected (default)  
1 = PC Card functional interrupt detected  
§
One or more bits in this register are cleared only by the assertion of GRST.  
This bit is global in nature and must be accessed only through function 0.  
4−27  
 
4.40 Device Control Register  
The device control register is provided for PCI1130 compatibility. It contains bits that are shared between functions  
0 and 1. The interrupt mode select is programmed through this register. The socket-capable force bits are also  
programmed through this register. See Table 4−17 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device control  
RW  
0
RW  
1
RW  
1
R
0
RW  
0
RW  
1
RW  
1
RW  
0
Register:  
Offset:  
Type:  
Device control  
92h (Functions 0, 1)  
Read-only, Read/Write  
66h  
Default:  
Table 4−17. Device Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Socket power lock bit. When this bit is set to 1, software cannot power down the PC Card socket while  
in D3. It may be necessary to lock socket power in order to support wake on LAN or RING if the  
operating system is programmed to power down a socket when the CardBus controller is placed in the  
D3 state.  
7 ‡  
SKTPWR_LOCK  
RW  
3-V socket capable force bit.  
0 = Not 3-V capable  
6 ‡§  
3VCAPABLE  
RW  
1 = 3-V capable (default)  
5 ‡  
4
IO16R2  
RSVD  
TEST  
RW  
R
Diagnostic bit. This bit defaults to 1.  
Reserved. This bit returns 0 when read. A write has no effect.  
TI test bit. Write only 0 to this bit.  
3 ‡§  
RW  
Interrupt mode. These bits select the interrupt signaling mode. The interrupt mode bits are encoded:  
00 = Parallel PCI interrupts only  
01 = Reserved  
2−1 ‡§  
INTMODE  
RW  
10 = IRQ serialized interrupts and parallel PCI interrupts INTA and INTB  
11 = IRQ and PCI serialized interrupts (default)  
0 ‡§  
RSVD  
RW  
Reserved. Bit 0 is reserved for test purposes. Only a 0 must be written to this bit.  
§
One or more bits in this register are cleared only by the assertion of GRST.  
These bits are global in nature and must be accessed only through function 0.  
4−28  
 
4.41 Diagnostic Register  
The diagnostic register is provided for internal TI test purposes. It is a read/write register, but only 0s must be written  
to it. See Table 4−18 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Diagnostic  
RW  
0
R
1
RW  
1
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Diagnostic  
93h (functions 0, 1)  
Read/Write  
60h  
Default:  
Table 4−18. Diagnostic Register Description  
FUNCTION  
BIT  
7 ‡§  
6 ‡  
SIGNAL  
TRUE_VAL  
RSVD  
TYPE  
RW  
R
This bit defaults to 0. This bit is encoded as:  
0 = Reads true values in PCI vendor ID and PCI device ID registers (default)  
1 = Returns all 1s to reads from the PCI vendor ID and PCI device ID registers  
Reserved. This bit is read-only and returns 1 when read.  
CSC interrupt routing control  
0 = CSC interrupts routed to PCI if ExCA 803 bit 4 = 1  
1 = CSC interrupts routed to PCI if ExCA 805 bits 7−4 = 0000b (default).  
In this case, the setting of ExCA 803 bit 4 is a don’t care.  
5 ‡  
CSC  
RW  
4 ‡§  
3 ‡§  
2 ‡§  
1 ‡§  
DIAG4  
DIAG3  
DIAG2  
DIAG1  
RW  
RW  
RW  
RW  
Diagnostic RETRY_DIS. Delayed transaction disable.  
Diagnostic RETRY_EXT. Extends the latency from 16 to 64.  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_CB. Set = 2 , reset = 2  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_PCI. Set = 2 , reset = 2  
Zoomed video enable.  
0 ‡  
ZV_EN  
RW  
0 = Enable new ZV register model (default)  
1 = Disable new ZV register mode  
§
One or more bits in this register are cleared only by the assertion of GRST.  
This bit is global and is accessed only through function 0.  
4−29  
 
4.42 Capability ID Register  
The capability ID register identifies the linked list item as the register for PCI power management. The register returns  
01h when read, which is the unique ID assigned by the PCI SIG for the PCI location of the capabilities pointer and  
the value.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Offset:  
Type:  
Capability ID  
A0h  
Read-only  
01h  
Default:  
4.43 Next Item Pointer Register  
The contents of this register indicate the next item in the linked list of the PCI power management capabilities.  
Because the PCI7410 functions only include one capabilities item, this register returns 0s when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Next item pointer  
A1h  
Read-only  
00h  
Default:  
4−30  
 
4.44 Power Management Capabilities Register  
The power management capabilities register contains information on the capabilities of the PC Card function related  
to power management. Both PCI7410 CardBus bridge functions support D0, D1, D2, and D3 power states. Default  
register value is FE12h for operation in accordance with PCI Bus Power Management Interface Specification revision  
1.1. See Table 4−19 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
RW  
1
R
1
R
1
R
1
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Power management capabilities  
A2h (Functions 0, 1)  
Read-only, Read/Write  
FE12h  
Default:  
Table 4−19. Power Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This 5-bit field indicates the power states from which the PCI7410 controller functions can assert PME.  
A 0 for any bit indicates that the function cannot assert the PME signal while in that power state. These  
5 bits return 11111b when read. Each of these bits is described below:  
15 ‡  
RW  
R
Bit 15 − defaults to a 1 indicating the PME signal can be asserted from the D3  
because wake-up support from D3  
cold  
state. This bit is read/write  
is contingent on the system providing an auxiliary power source  
cold  
to the V  
terminals for D3  
cold  
terminals. If the system designer chooses not to provide an auxiliary power source to the V  
PME support  
CC  
CC  
wake-up support, then BIOS must write a 0 to this bit.  
14−11  
Bit 14 − contains the value 1 to indicate that the PME signal can be asserted from the D3 state.  
hot  
Bit 13 − contains the value 1 to indicate that the PME signal can be asserted from the D2 state.  
Bit 12 − contains the value 1 to indicate that the PME signal can be asserted from the D1 state.  
Bit 11 − contains the value 1 to indicate that the PME signal can be asserted from the D0 state.  
10  
9
D2_Support  
D1_Support  
RSVD  
R
R
R
R
This bit returns a 1 when read, indicating that the function supports the D2 device power state.  
This bit returns a 1 when read, indicating that the function supports the D1 device power state.  
Reserved. These bits return 000b when read.  
8−6  
5
DSI  
Device-specific initialization. This bit returns 0 when read.  
Auxiliary power source. This bit is meaningful only if bit 15 (D3  
supporting PME) is set. When this bit  
cold  
requires auxiliary power supplied by the system by way  
is set, it indicates that support for PME in D3  
of a proprietary delivery vehicle.  
cold  
4
AUX_PWR  
R
A 0 (zero) in this bit field indicates that the function supplies its own auxiliary power source.  
If the function does not support PME while in the D3  
0.  
state (bit 15=0), then this field must always return  
cold  
When this bit is 1, it indicates that the function relies on the presence of the PCI clock for PME operation.  
When this bit is 0, it indicates that no PCI clock is required for the function to generate PME.  
3
PMECLK  
Version  
R
R
Functions that do not support PME generation in any state must return 0 for this field.  
These 3 bits return 010b when read, indicating that there are 4 bytes of general-purpose power  
management (PM) registers as described in draft revision 1.1 of the PCI Bus Power Management Interface  
Specification.  
2−0  
One or more bits in this register are cleared only by the assertion of GRST.  
4−31  
 
4.45 Power Management Control/Status Register  
The power management control/status register determines and changes the current power state of the PCI7410  
CardBus function. The contents of this register are not affected by the internally generated reset caused by the  
transition from the D3  
to D0 state. See Table 4−20 for a complete description of the register contents.  
hot  
All PCI registers, ExCA registers, and CardBus registers are reset as a result of a D3 -to-D0 state transition, with  
hot  
the exception of the PME context bits (if PME is enabled) and the GRST only bits.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status  
RWC  
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Power management control/status  
A4h (Functions 0, 1)  
Read-only, Read/Write, Read/Write/Clear  
0000h  
Default:  
Table 4−20. Power Management Control/Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME status. This bit is set when the CardBus function would normally assert the PME signal, independent  
of the state of the PME_EN bit. This bit is cleared by a writeback of 1, and this also clears the PME signal  
if PME was asserted by this function. Writing a 0 to this bit has no effect.  
15 †  
PMESTAT  
RC  
14−13  
12−9  
DATASCALE  
DATASEL  
R
R
This 2-bit field returns 0s when read. The CardBus function does not return any dynamic data.  
Data select. This 4-bit field returns 0s when read. The CardBus function does not return any dynamic data.  
This bit enables the function to assert PME. If this bit is cleared, then assertion of PME is disabled. This  
bit is not cleared by the assertion of PRST. It is only cleared by the assertion of GRST.  
8 ‡  
PME_ENABLE  
RSVD  
RW  
R
7−2  
Reserved. These bits return 0s when read.  
Power state. This 2-bit field is used both to determine the current power state of a function and to set the  
function into a new power state. This field is encoded as:  
00 = D0  
01 = D1  
10 = D2  
1−0  
PWRSTATE  
RW  
11 = D3  
hot  
One or more bits in this register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then this bit is cleared by the assertion of PRST or GRST.  
One or more bits in this register are cleared only by the assertion of GRST.  
4−32  
 
4.46 Power Management Control/Status Bridge Support Extensions Register  
This register supports PCI bridge-specific functionality. It is required for all PCI-to-PCI bridges. See Table 4−21 for  
a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status bridge support extensions  
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power management control/status bridge support extensions  
A6h (Functions 0, 1)  
Read-only  
Default:  
C0h  
Table 4−21. Power Management Control/Status Bridge Support Extensions Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Bus power/clock control enable. This bit returns 1 when read. This bit is encoded as:  
0 = Bus power/clock control is disabled.  
1 = Bus power/clock control is enabled (default).  
A 0 indicates that the bus power/clock control policies defined in the PCI Bus Power Management Interface  
Specification are disabled. When the bus power/clock control enable mechanism is disabled, the power  
state field (bits 1−0) of the power management control/status register (PCI offset A4h, see Section 4.45)  
cannot be used by the system software to control the power or the clock of the secondary bus. A 1 indicates  
that the bus power/clock control mechanism is enabled.  
7
BPCC_EN  
R
B2/B3 support for D3 . The state of this bit determines the action that is to occur as a direct result of  
hot  
programming the function to D3 . This bit is only meaningful if bit 7 (BPCC_EN) is a 1. This bit is encoded  
hot  
as:  
6
B2_B3  
RSVD  
R
R
0 = When the bridge is programmed to D3 , its secondary bus has its power removed (B3).  
hot  
1 = When the bridge function is programmed to D3 , its secondary bus PCI clock is stopped (B2)  
hot  
(default).  
5−0  
Reserved. These bits return 0s when read.  
4.47 Power-Management Data Register  
The power-management data register returns 0s when read, because the CardBus functions do not report dynamic  
data.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power-management data  
A7h (functions 0, 1)  
Read-only  
Default:  
00h  
4−33  
 
4.48 Serial Bus Data Register  
The serial bus data register is for programmable serial bus byte reads and writes. This register represents the data  
when generating cycles on the serial bus interface. To write a byte, this register must be programmed with the data,  
the serial bus index register must be programmed with the byte address, the serial bus slave address must be  
programmed with the 7-bit slave address, and the read/write indicator bit must be reset.  
On byte reads, the byte address is programmed into the serial bus index register, the serial bus slave address register  
must be programmed with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the  
serial bus control and status register (see Section 4.51) must be polled until clear. Then the contents of this register  
are valid read data from the serial bus interface. See Table 4−22 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial bus data  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Serial bus data  
B0h (function 0)  
Read/Write  
00h  
Default:  
Table 4−22. Serial Bus Data Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial bus data. This bit field represents the data byte in a read or write transaction on the serial interface.  
On reads, the REQBUSY bit must be polled to verify that the contents of this register are valid.  
7−0 ‡  
SBDATA  
RW  
One or more bits in this register are cleared only by the assertion of GRST.  
4.49 Serial Bus Index Register  
The serial bus index register is for programmable serial bus byte reads and writes. This register represents the byte  
address when generating cycles on the serial bus interface. To write a byte, the serial bus data register must be  
programmed with the data, this register must be programmed with the byte address, and the serial bus slave address  
must be programmed with both the 7-bit slave address and the read/write indicator.  
On byte reads, the word address is programmed into this register, the serial bus slave address must be programmed  
with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the serial bus control and  
status register (see Section 4.51) must be polled until clear. Then the contents of the serial bus data register are valid  
read data from the serial bus interface. See Table 4−23 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial bus index  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Serial bus index  
B1h (function 0)  
Read/Write  
00h  
Default:  
Table 4−23. Serial Bus Index Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−0 ‡  
SBINDEX  
RW  
Serial bus index. This bit field represents the byte address in a read or write transaction on the serial interface.  
One or more bits in this register are cleared only by the assertion of GRST.  
4−34  
 
4.50 Serial Bus Slave Address Register  
The serial bus slave address register is for programmable serial bus byte read and write transactions. To write a byte,  
the serial bus data register must be programmed with the data, the serial bus index register must be programmed  
with the byte address, and this register must be programmed with both the 7-bit slave address and the read/write  
indicator bit.  
On byte reads, the byte address is programmed into the serial bus index register, this register must be programmed  
with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the serial bus control and  
status register (see Section 4.51) must be polled until clear. Then the contents of the serial bus data register are valid  
read data from the serial bus interface. See Table 4−24 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial bus slave address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Serial bus slave address  
B2h (function 0)  
Read/Write  
Default:  
00h  
Table 4−24. Serial Bus Slave Address Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial bus slave address. This bit field represents the slave address of a read or write transaction on the  
serial interface.  
7−1 ‡  
SLAVADDR  
RW  
RW  
Read/write command. Bit 0 indicates the read/write command bit presented to the serial bus on byte read  
and write accesses.  
0 ‡  
RWCMD  
0 = A byte write access is requested to the serial bus interface.  
1 = A byte read access is requested to the serial bus interface.  
One or more bits in this register are cleared only by the assertion of GRST.  
4−35  
 
4.51 Serial Bus Control/Status Register  
The serial bus control and status register communicates serial bus status information and selects the quick command  
protocol. Bit 5 (REQBUSY) in this register must be polled during serial bus byte reads to indicate when data is valid  
in the serial bus data register. See Table 4−25 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial bus control/status  
RW  
0
R
0
R
0
R
0
RW  
0
RW  
0
RC  
0
RC  
0
Register:  
Offset:  
Type:  
Serial bus control/status  
B3h (function 0)  
Read-only, Read/Write, Read/Clear  
00h  
Default:  
Table 4−25. Serial Bus Control/Status Register Description  
BIT  
7 ‡  
6
SIGNAL  
PROT_SEL  
RSVD  
TYPE  
FUNCTION  
Protocol select. When bit 7 is set, the send-byte protocol is used on write requests and the receive-byte  
protocol is used on read commands. The word address byte in the serial bus index register (see  
Section 4.49) is not output by the PCI7410 controller when bit 7 is set.  
RW  
R
Reserved. Bit 6 returns 0 when read.  
Requested serial bus access busy. Bit 5 indicates that a requested serial bus access (byte read or write)  
is in progress. A request is made, and bit 5 is set, by writing to the serial bus slave address register (see  
Section 4.50). Bit 5 must be polled on reads from the serial interface. After the byte read access has been  
completed, this bit is cleared and the read data is valid in the serial bus data register.  
5
4
REQBUSY  
ROMBUSY  
R
R
Serial EEPROM busy status. Bit 4 indicates the status of the PCI7410 serial EEPROM circuitry. Bit 4 is set  
during the loading of the subsystem ID and other default values from the serial bus EEPROM.  
0 = Serial EEPROM circuitry is not busy  
1 = Serial EEPROM circuitry is busy  
Serial bus detect. When the serial bus interface is detected through a pullup resistor on the SCL terminal  
after reset, this bit is set to 1.  
3 ‡  
2 ‡  
1 ‡  
SBDETECT  
SBTEST  
RW  
RW  
RC  
0 = Serial bus interface not detected  
1 = Serial bus interface detected  
Serial bus test. When bit 2 is set, the serial bus clock frequency is increased for test purposes.  
0 = Serial bus clock at normal operating frequency, 100 kHz (default)  
1 = Serial bus clock frequency increased for test purposes  
Requested serial bus access error. Bit 1 indicates when a data error occurs on the serial interface during  
a requested cycle and may be set due to a missing acknowledge. Bit 1 is cleared by a writeback of 1.  
0 = No error detected during user-requested byte read or write cycle  
REQ_ERR  
1 = Data error detected during user-requested byte read or write cycle  
EEPROM data error status. Bit 0 indicates when a data error occurs on the serial interface during the  
auto-load from the serial bus EEPROM and may be set due to a missing acknowledge. Bit 0 is also set on  
invalid EEPROM data formats. See Section 3.7.4, Serial Bus EEPROM Application, for details on  
EEPROM data format. Bit 0 is cleared by a writeback of 1.  
0 ‡  
ROM_ERR  
RC  
0 = No error detected during auto-load from serial bus EEPROM  
1 = Data error detected during auto-load from serial bus EEPROM  
One or more bits in this register are cleared only by the assertion of GRST.  
4−36  
 
5 ExCA Compatibility Registers (Functions 0 and 1)  
The ExCA (exchangeable card architecture) registers implemented in the PCI7410 controller are register-compatible  
with the Intel 82365SL-DF PCMCIA controller. ExCA registers are identified by an offset value, which is compatible  
with the legacy I/O index/data scheme used on the Intel82365 ISA controller. The ExCA registers are accessed  
through this scheme by writing the register offset value into the index register (I/O base), and reading or writing the  
data register (I/O base + 1). The I/O base address used in the index/data scheme is programmed in the PC Card 16-bit  
I/F legacy mode base address register, which is shared by both card sockets. The offsets from this base address run  
contiguously from 00h to 3Fh for socket A, and from 40h to 7Fh for socket B. See Figure 5−1 for an ExCA I/O mapping  
illustration. Table 5−1 identifies each ExCA register and its respective ExCA offset.  
The PCI7410 controller also provides a memory-mapped alias of the ExCA registers by directly mapping them into  
PCI memory space. They are located through the CardBus socket registers/ExCA registers base address register  
(PCI register 10h) at memory offset 800h. Each socket has a separate base address programmable by function. See  
Figure 5−2 for an ExCA memory mapping illustration. Note that memory offsets are 800h−844h for both functions  
0 and 1. This illustration also identifies the CardBus socket register mapping, which is mapped into the same 4K  
window at memory offset 0h.  
The interrupt registers in the ExCA register set, as defined by the 82365SL specification, control such card functions  
as reset, type, interrupt routing, and interrupt enables. Special attention must be paid to the interrupt routing registers  
and the host interrupt signaling method selected for the PCI7410 controller to ensure that all possible PCI7410  
interrupts can potentially be routed to the programmable interrupt controller. The ExCA registers that are critical to  
the interrupt signaling are at memory address ExCA offsets 803h and 805h.  
Access to I/O mapped 16-bit PC Cards is available to the host system via two ExCA I/O windows. These are regions  
of host I/O address space into which the card I/O space is mapped. These windows are defined by start, end, and  
offset addresses programmed in the ExCA registers described in this chapter. I/O windows have byte granularity.  
Access to memory-mapped 16-bit PC Cards is available to the host system via five ExCA memory windows. These  
are regions of host memory space into which the card memory space is mapped. These windows are defined by start,  
end, and offset addresses programmed in the ExCA registers described in this chapter. Memory windows have  
4-Kbyte granularity.  
A bit location followed by a means that this bit is not cleared by the assertion of PRST. This bit is only cleared by  
the assertion of GRST. This is necessary to retain device context during the transition from D3 to D0.  
5−1  
 
Host I/O Space  
Offset  
00h  
PCI7410 Configuration Registers  
Offset  
PC Card A  
ExCA  
Registers  
Card Bus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
10h  
44h  
Index  
Data  
3Fh  
40h  
PC Card B  
ExCA  
Registers  
7Fh  
Note: The 16-bit legacy-mode base address  
register is shared by function 0 and 1 as  
indicated by the shading.  
Offset of desired register is placed in the index register and the  
data from that location is returned in the data register.  
Figure 5−1. ExCA Register Access Through I/O  
Host  
Memory Space  
Host  
Memory Space  
PCI7410 Configuration Registers  
Offset  
00h  
Offset  
Offset  
CardBus  
Socket A  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
00h  
CardBus  
Socket B  
Registers  
800h  
ExCA  
Registers  
Card A  
20h  
844h  
800h  
ExCA  
Registers  
Card B  
Note: The CardBus socket/ExCA base  
address mode register is separate for  
functions 0 and 1.  
844h  
Offsets are from the CardBus socket/ExCA base  
address register’s base address.  
Figure 5−2. ExCA Register Access Through Memory  
5−2  
 
Table 5−1. ExCA Registers and Offsets  
PCI MEMORY ADDRESS EXCA OFFSET EXCA OFFSET  
EXCA REGISTER NAME  
OFFSET (HEX)  
(CARD A)  
(CARD B)  
Identification and revision ‡  
800  
00  
40  
Interface status  
801  
01  
41  
Power control †  
802†  
803†  
804†  
805†  
806  
02  
42  
Interrupt and general control †  
03  
43  
Card status change †  
04  
44  
Card status change interrupt configuration †  
Address window enable  
05  
45  
06  
46  
I / O window control  
807  
07  
47  
I / O window 0 start-address low-byte  
I / O window 0 start-address high-byte  
I / O window 0 end-address low-byte  
I / O window 0 end-address high-byte  
I / O window 1 start-address low-byte  
I / O window 1 start-address high-byte  
I / O window 1 end-address low-byte  
I / O window 1 end-address high-byte  
Memory window 0 start-address low-byte  
Memory window 0 start-address high-byte  
Memory window 0 end-address low-byte  
Memory window 0 end-address high-byte  
Memory window 0 offset-address low-byte  
Memory window 0 offset-address high-byte  
Card detect and general control †  
Reserved  
808  
08  
48  
809  
09  
49  
80A  
80B  
80C  
80D  
80E  
80F  
0A  
0B  
0C  
0D  
0E  
0F  
10  
4A  
4B  
4C  
4D  
4E  
4F  
50  
810  
811  
11  
51  
812  
12  
52  
813  
13  
53  
814  
14  
54  
815  
15  
55  
816  
16  
56  
817  
17  
57  
Memory window 1 start-address low-byte  
Memory window 1 start-address high-byte  
Memory window 1 end-address low-byte  
Memory window 1 end-address high-byte  
Memory window 1 offset-address low-byte  
Memory window 1 offset-address high-byte  
Global control ‡  
818  
18  
58  
819  
19  
59  
81A  
81B  
81C  
81D  
81E  
81F  
1A  
1B  
1C  
1D  
1E  
1F  
20  
5A  
5B  
5C  
5D  
5E  
5F  
60  
Reserved  
Memory window 2 start-address low-byte  
Memory window 2 start-address high-byte  
Memory window 2 end-address low-byte  
Memory window 2 end-address high-byte  
Memory window 2 offset-address low-byte  
Memory window 2 offset-address high-byte  
820  
821  
21  
61  
822  
22  
62  
823  
23  
63  
824  
24  
64  
825  
25  
65  
One or more bits in this register are cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared  
by the assertion of PRST or GRST.  
One or more bits in this register are cleared only by the assertion of GRST.  
5−3  
 
Table 5−1. ExCA Registers and Offsets (continued)  
PCI MEMORY ADDRESS EXCA OFFSET EXCA OFFSET  
EXCA REGISTER NAME  
OFFSET (HEX)  
(CARD A)  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
(CARD B)  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
Reserved  
826  
Reserved  
827  
Memory window 3 start-address low-byte  
Memory window 3 start-address high-byte  
Memory window 3 end-address low-byte  
Memory window 3 end-address high-byte  
Memory window 3 offset-address low-byte  
Memory window 3 offset-address high-byte  
Reserved  
828  
829  
82A  
82B  
82C  
82D  
82E  
82F  
830  
Reserved  
Memory window 4 start-address low-byte  
Memory window 4 start-address high-byte  
Memory window 4 end-address low-byte  
Memory window 4 end-address high-byte  
Memory window 4 offset-address low-byte  
Memory window 4 offset-address high-byte  
I/O window 0 offset-address low-byte  
I/O window 0 offset-address high-byte  
I/O window 1 offset-address low-byte  
I/O window 1 offset-address high-byte  
Reserved  
831  
832  
833  
834  
835  
836  
837  
838  
839  
83A  
83B  
83C  
83D  
83E  
83F  
840  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Memory window page register 0  
Memory window page register 1  
Memory window page register 2  
Memory window page register 3  
Memory window page register 4  
841  
842  
843  
844  
5−4  
5.1 ExCA Identification and Revision Register  
This register provides host software with information on 16-bit PC Card support and 82365SL-DF compatibility. See  
Table 5−2 for a complete description of the register contents.  
NOTE: If bit 5 (SUBSYRW) in the system control register is 1, then this register is read-only.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA identification and revision  
R
1
R
0
RW  
0
RW  
0
RW  
0
RW  
1
RW  
0
RW  
0
Register:  
Offset:  
ExCA identification and revision  
CardBus Socket Address + 800h:  
Card A ExCA Offset 00h  
Card B ExCA Offset 40h  
Type:  
Default:  
Read/Write, Read-only  
84h  
Table 5−2. ExCA Identification and Revision Register Description  
BIT  
SIGNAL  
IFTYPE  
RSVD  
TYPE  
FUNCTION  
Interface type. These bits, which are hardwired as 10b, identify the 16-bit PC Card support provided by the  
PCI7410 controller. The PCI7410 controller supports both I/O and memory 16-bit PC Cards.  
7−6 ‡  
5−4 ‡  
R
RW  
These bits can be used for 82365SL emulation.  
82365SL-DF revision. This field stores the Intel 82365SL-DF revision supported by the PCI7410 controller.  
Host software can read this field to determine compatibility to the 82365SL-DF register set. This field defaults  
to 0100b upon reset. Writing 0010b to this field puts the controller in the 82356SL mode.  
3−0 ‡  
365REV  
RW  
One or more bits in this register are cleared only by the assertion of GRST.  
5−5  
 
5.2 ExCA Interface Status Register  
This register provides information on current status of the PC Card interface. An X in the default bit values indicates  
that the value of the bit after reset depends on the state of the PC Card interface. See Table 5−3 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interface status  
R
0
R
0
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
ExCA interface status  
CardBus Socket Address + 801h:  
Card A ExCA Offset 01h  
Card B ExCA Offset 41h  
Type:  
Read-only  
Default:  
00XX XXXXb  
Table 5−3. ExCA Interface Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit returns 0 when read. A write has no effect.  
7
RSVD  
R
CARDPWR. Card power. This bit indicates the current power status of the PC Card socket. This bit reflects  
how the ExCA power control register has been programmed. The bit is encoded as:  
6
5
CARDPWR  
READY  
R
0 = V  
1 = V  
and V  
and V  
to the socket are turned off (default).  
to the socket are turned on.  
CC  
CC  
PP  
PP  
This bit indicates the current status of the READY signal at the PC Card interface.  
R
R
0 = PC Card is not ready for a data transfer.  
1 = PC Card is ready for a data transfer.  
Card write protect. This bit indicates the current status of the WP signal at the PC Card interface. This signal  
reports to the PCI7410 controller whether or not the memory card is write protected. Further, write  
protection for an entire PCI7410 16-bit memory window is available by setting the appropriate bit in the  
ExCA memory window offset-address high-byte register.  
4
CARDWP  
0 = WP signal is 0. PC Card is R/W.  
1 = WP signal is 1. PC Card is read-only.  
Card detect 2. This bit indicates the status of the CD2 signal at the PC Card interface. Software can use  
this and CDETECT1 to determine if a PC Card is fully seated in the socket.  
3
2
CDETECT2  
CDETECT1  
R
R
0 = CD2 signal is 1. No PC Card inserted.  
1 = CD2 signal is 0. PC Card at least partially inserted.  
Card detect 1. This bit indicates the status of the CD1 signal at the PC Card interface. Software can use  
this and CDETECT2 to determine if a PC Card is fully seated in the socket.  
0 = CD1 signal is 1. No PC Card inserted.  
1 = CD1 signal is 0. PC Card at least partially inserted.  
Battery voltage detect. When a 16-bit memory card is inserted, the field indicates the status of the battery  
voltage detect signals (BVD1, BVD2) at the PC Card interface, where bit 0 reflects the BVD1 status, and  
bit 1 reflects BVD2.  
00 = Battery is dead.  
01 = Battery is dead.  
10 = Battery is low; warning.  
11 = Battery is good.  
1−0  
BVDSTAT  
R
When a 16-bit I/O card is inserted, this field indicates the status of the SPKR (bit 1) signal and the STSCHG  
(bit 0) at the PC Card interface. In this case, the two bits in this field directly reflect the current state of these  
card outputs.  
5−6  
 
5.3 ExCA Power Control Register  
This register provides PC Card power control. Bit 7 of this register enables the 16-bit outputs on the socket interface,  
and can be used for power management in 16-bit PC Card applications. See Table 5−5 for a complete description  
of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA power control  
RW  
0
R
0
R
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA power control  
CardBus Socket Address + 802h:  
Card A ExCA Offset 02h  
Card B ExCA Offset 42h  
Type:  
Default:  
Read-only, Read/Write  
00h  
Table 5−4. ExCA Power Control Register Description—82365SL Support  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI7410 controller. This bit  
is encoded as:  
7
COE  
RW  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
6
RSVD  
R
Reserved. Bit 6 returns 0 when read.  
Auto power switch enable.  
5 †  
AUTOPWRSWEN  
RW  
0 = Automatic socket power switching based on card detects is disabled.  
1 = Automatic socket power switching based on card detects is enabled.  
PC Card power enable.  
0 = V  
1 = V  
= No connection  
CC  
CC  
4
CAPWREN  
RSVD  
RW  
R
is enabled and controlled by bit 2 (EXCAPOWER) of the system control register  
(PCI offset 80h, see Section 4.30).  
3−2  
1−0  
Reserved. Bits 3 and 2 return 0s when read.  
PC Card V  
PP  
ignores this field unless V  
power control. Bits 1 and 0 are used to request changes to card V . The PCI7410 controller  
PP  
to the socket is enabled. This field is encoded as:  
CC  
EXCAVPP  
RW  
00 = No connection (default)  
01 = V  
10 = 12 V  
11 = Reserved  
CC  
One or more bits in this register are cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared  
by the assertion of PRST or GRST.  
Table 5−5. ExCA Power Control Register Description—82365SL-DF Support  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card output enable. This bit controls the state of all of the 16-bit outputs on the PCI7410 controller. This  
bit is encoded as:  
7 †  
COE  
RW  
0 = 16-bit PC Card outputs are disabled (default).  
1 = 16-bit PC Card outputs are enabled.  
6−5  
4−3 †  
2
RSVD  
EXCAVCC  
RSVD  
R
RW  
R
Reserved. These bits return 0s when read. Writes have no effect.  
V
. These bits are used to request changes to card V . This field is encoded as:  
CC  
CC  
00 = 0 V (default)  
01 = 0 V reserved  
10 = 5 V  
11 = 3.3 V  
This bit returns 0 when read. A write has no effect.  
V
V
. These bits are used to request changes to card V . The PCI7410 controller ignores this field unless  
PP  
PP  
to the socket is enabled (i.e., 5 Vdc or 3.3 Vdc). This field is encoded as:  
CC  
1−0 †  
EXCAVPP  
RW  
00 = 0 V (default)  
01 = V  
10 = 12 V  
11 = 0 V reserved  
CC  
This bit is cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared by the assertion of PRST  
or GRST.  
5−7  
 
5.4 ExCA Interrupt and General Control Register  
This register controls interrupt routing for I/O interrupts as well as other critical 16-bit PC Card functions. See  
Table 5−6 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interrupt and general control  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA interrupt and general control  
CardBus Socket Address + 803h:  
Card A ExCA Offset 03h  
Card B ExCA Offset 43h  
Type:  
Default:  
Read/Write  
00h  
Table 5−6. ExCA Interrupt and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card ring indicate enable. Enables the ring indicate function of the BVD1/RI terminals. This bit is encoded  
as:  
7
RINGEN  
RW  
0 = Ring indicate disabled (default)  
1 = Ring indicate enabled  
Card reset. This bit controls the 16-bit PC Card RESET signal, and allows host software to force a card  
reset. This bit affects 16-bit cards only. This bit is encoded as:  
0 = RESET signal asserted (default)  
6 †  
5 †  
RESET  
RW  
RW  
1 = RESET signal deasserted.  
Card type. This bit indicates the PC Card type. This bit is encoded as:  
CARDTYPE  
0 = Memory PC Card is installed (default)  
1 = I/O PC Card is installed  
PCI interrupt − CSC routing enable bit. This bit has meaning only if the CSC interrupt routing control bit  
(PCI offset 93h, bit 5) is 0. In this case, when this bit is set (high), the card status change interrupts are  
routed to PCI interrupts. When low, the card status change interrupts are routed using bits 7−4 in the ExCA  
card status-change interrupt configuration register (ExCA offset 805h, see Section 5.6). This bit is encoded  
as:  
4
CSCROUTE  
RW  
0 = CSC interrupts routed by ExCA registers (default)  
1 = CSC interrupts routed to PCI interrupts  
If the CSC interrupt routing control bit (bit 5) of the diagnostic register (PCI offset 93h, see Section 4.41)  
is set to 1, this bit has no meaning, which is the default case.  
Card interrupt select for I/O PC Card functional interrupts. These bits select the interrupt routing for I/O  
PC Card functional interrupts. This field is encoded as:  
0000 = No IRQ selected (default). CSC interrupts are routed to PCI Interrupts. This bit setting is ORed  
with bit 4 (CSCROUTE) for backward compatibility.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
3−0  
INTSELECT  
RW  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
This bit is cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared by the assertion of PRST  
or GRST.  
5−8  
 
5.5 ExCA Card Status-Change Register  
The ExCA card status-change register controls interrupt routing for I/O interrupts and other critical 16-bit PC Card  
functions. The register enables these interrupt sources to generate an interrupt to the host. When the interrupt source  
is disabled, the corresponding bit in this register always reads 0. When an interrupt source is enabled, the  
corresponding bit in this register is set to indicate that the interrupt source is active. After generating the interrupt to  
the host, the interrupt service routine must read this register to determine the source of the interrupt. The interrupt  
service routine is responsible for resetting the bits in this register as well. Resetting a bit is accomplished by one of  
two methods: a read of this register or an explicit writeback of 1 to the status bit. The choice of these two methods  
is based on bit 2 (interrupt flag clear mode select) in the ExCA global control register (CB offset 81Eh, see  
Section 5.20). See Table 5−7 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
ExCA card status-change  
Read-only  
Offset:  
CardBus socket address + 804h; Card A ExCA offset 04h  
Card B ExCA offset 44h  
00h  
Default:  
Table 5−7. ExCA Card Status-Change Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−4  
RSVD  
R
Reserved. Bits 7−4 return 0s when read.  
Card detect change. Bit 3 indicates whether a change on CD1 or CD2 occurred at the PC Card  
interface. This bit is encoded as:  
3 †  
2 †  
CDCHANGE  
R
R
0 = No change detected on either CD1 or CD2  
1 = Change detected on either CD1 or CD2  
Ready change. When a 16-bit memory is installed in the socket, bit 2 includes whether the source of  
a PCI7410 interrupt was due to a change on READY at the PC Card interface, indicating that the  
PC Card is now ready to accept new data. This bit is encoded as:  
READYCHANGE  
0 = No low-to-high transition detected on READY (default)  
1 = Detected low-to-high transition on READY  
When a 16-bit I/O card is installed, bit 2 is always 0.  
Battery warning change. When a 16-bit memory card is installed in the socket, bit 1 indicates whether  
the source of a PCI7410 interrupt was due to a battery-low warning condition. This bit is encoded as:  
0 = No battery warning condition (default)  
1 †  
0 †  
BATWARN  
BATDEAD  
R
R
1 = Detected battery warning condition  
When a 16-bit I/O card is installed, bit 1 is always 0.  
Battery dead or status change. When a 16-bit memory card is installed in the socket, bit 0 indicates  
whether the source of a PCI7410 interrupt was due to a battery dead condition. This bit is encoded as:  
0 = STSCHG deasserted (default)  
1 = STSCHG asserted  
Ring indicate. When the PCI7410 is configured for ring indicate operation, bit 0 indicates the status of  
RI.  
These are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then these bits are  
cleared by the assertion of PRST or GRST.  
5−9  
 
5.6 ExCA Card Status-Change Interrupt Configuration Register  
This register controls interrupt routing for CSC interrupts, as well as masks/unmasks CSC interrupt sources. See  
Table 5−8 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change interrupt configuration  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA card status-change interrupt configuration  
CardBus Socket Address + 805h:  
Card A ExCA Offset 05h  
Card B ExCA Offset 45h  
Type:  
Default:  
Read/Write  
00h  
Table 5−8. ExCA Card Status-Change Interrupt Configuration Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt select for card status change. These bits select the interrupt routing for card status-change  
interrupts. This field is encoded as:  
0000 = CSC interrupts routed to PCI interrupts if bit 5 of the diagnostic register (PCI offset 93h) is set  
to 1b. In this case bit 4 of ExCA 803 is a don’t care. This is the default setting.  
0000 = No ISA interrupt routing if bit 5 of the diagnostic register (PCI offset 93h) is set to 0b. In this case,  
CSC interrupts are routed to PCI interrupts by setting bit 4 of ExCA 803h to 1b.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
7−4  
CSCSELECT  
RW  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
Card detect enable. Enables interrupts on CD1 or CD2 changes. This bit is encoded as:  
3†  
2†  
CDEN  
RW  
RW  
0 = Disables interrupts on CD1 or CD2 line changes (default)  
1 = Enables interrupts on CD1 or CD2 line changes  
Ready enable. This bit enables/disables a low-to-high transition on the PC Card READY signal to generate  
a host interrupt. This interrupt source is considered a card status change. This bit is encoded as:  
READYEN  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery warning enable. This bit enables/disables a battery warning condition to generate a CSC interrupt.  
This bit is encoded as:  
1†  
0†  
BATWARNEN  
BATDEADEN  
RW  
RW  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery dead enable. This bit enables/disables a battery dead condition on a memory PC Card or assertion  
of the STSCHG I/O PC Card signal to generate a CSC interrupt.  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
This bit is cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared by the assertion of PRST  
or GRST.  
5−10  
 
5.7 ExCA Address Window Enable Register  
The ExCA address window enable register enables/disables the memory and I/O windows to the 16-bit PC Card. By  
default, all windows to the card are disabled. The PCI7410 controller does not acknowledge PCI memory or I/O cycles  
to the card if the corresponding enable bit in this register is 0, regardless of the programming of the memory or I/O  
window start/end/offset address registers. See Table 5−9 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA address window enable  
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Type:  
ExCA address window enable  
Read-only, Read/Write  
Offset:  
CardBus socket address + 806h; Card A ExCA offset 06h  
Card B ExCA offset 46h  
00h  
Default:  
Table 5−9. ExCA Address Window Enable Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 enable. Bit 7 enables/disables I/O window 1 for the PC Card. This bit is encoded as:  
0 = I/O window 1 disabled (default)  
7
IOWIN1EN  
RW  
1 = I/O window 1 enabled  
I/O window 0 enable. Bit 6 enables/disables I/O window 0 for the PC Card. This bit is encoded as:  
0 = I/O window 0 disabled (default)  
6
5
IOWIN0EN  
RSVD  
RW  
R
1 = I/O window 0 enabled  
Reserved. Bit 5 returns 0 when read.  
Memory window 4 enable. Bit 4 enables/disables memory window 4 for the PC Card. This bit is  
encoded as:  
4
3
2
1
0
MEMWIN4EN  
MEMWIN3EN  
MEMWIN2EN  
MEMWIN1EN  
MEMWIN0EN  
RW  
RW  
RW  
RW  
RW  
0 = Memory window 4 disabled (default)  
1 = Memory window 4 enabled  
Memory window 3 enable. Bit 3 enables/disables memory window 3 for the PC Card. This bit is  
encoded as:  
0 = Memory window 3 disabled (default)  
1 = Memory window 3 enabled  
Memory window 2 enable. Bit 2 enables/disables memory window 2 for the PC Card. This bit is  
encoded as:  
0 = Memory window 2 disabled (default)  
1 = Memory window 2 enabled  
Memory window 1 enable. Bit 1 enables/disables memory window 1 for the PC Card. This bit is  
encoded as:  
0 = Memory window 1 disabled (default)  
1 = Memory window 1 enabled  
Memory window 0 enable. Bit 0 enables/disables memory window 0 for the PC Card. This bit is  
encoded as:  
0 = Memory window 0 disabled (default)  
1 = Memory window 0 enabled  
5−11  
 
5.8 ExCA I/O Window Control Register  
The ExCA I/O window control register contains parameters related to I/O window sizing and cycle timing. See  
Table 5−10 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O window control  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Type:  
ExCA I/O window control  
Read/Write  
Offset:  
CardBus socket address + 807h: Card A ExCA offset 07h  
Card B ExCA offset 47h  
00h  
Default:  
SIGNAL  
Table 5−10. ExCA I/O Window Control Register Description  
BIT  
TYPE  
FUNCTION  
I/O window 1 wait state. Bit 7 controls the I/O window 1 wait state for 16-bit I/O accesses. Bit 7 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
7
WAITSTATE1  
RW  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 1 zero wait state. Bit 6 controls the I/O window 1 wait state for 8-bit I/O accesses. Bit 6 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
6
ZEROWS1  
RW  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/O window 1 IOIS16 source. Bit 5 controls the I/O window 1 automatic data-sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width determined by DATASIZE1, bit 4 (default).  
5
4
IOSIS16W1  
DATASIZE1  
RW  
RW  
1 = Window data width determined by IOIS16.  
I/O window 1 data size. Bit 4 controls the I/O window 1 data size. Bit 4 is ignored if bit 5 (IOSIS16W1) is  
set. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
I/O window 0 wait state. Bit 3 controls the I/O window 0 wait state for 16-bit I/O accesses. Bit 3 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
3
2
WAITSTATE0  
ZEROWS0  
RW  
RW  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 0 zero wait state. Bit 2 controls the I/O window 0 wait state for 8-bit I/O accesses. Bit 2 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/O window 0 IOIS16 source. Bit 1 controls the I/O window 0 automatic data sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width is determined by DATASIZE0, bit 0 (default).  
1
0
IOSIS16W0  
DATASIZE0  
RW  
RW  
1 = Window data width is determined by IOIS16.  
I/O window 0 data size. Bit 0 controls the I/O window 0 data size. Bit 0 is ignored if bit 1 (IOSIS16W0) is  
set. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
5−12  
 
5.9 ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 start-address low-byte  
CardBus Socket Address + 808h:  
Card A ExCA Offset 08h  
Card B ExCA Offset 48h  
Register:  
Offset:  
ExCA I/O window 1 start-address low-byte  
CardBus Socket Address + 80Ch:  
Card A ExCA Offset 0Ch  
Card B ExCA Offset 4Ch  
Type:  
Default:  
Read/Write  
00h  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 start-address high-byte  
CardBus Socket Address + 809h:  
Card A ExCA Offset 09h  
Card B ExCA Offset 49h  
Register:  
Offset:  
ExCA I/O window 1 start-address high-byte  
CardBus Socket Address + 80Dh:  
Card A ExCA Offset 0Dh  
Card B ExCA Offset 4Dh  
Type:  
Default:  
Read/Write  
00h  
5−13  
 
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 end-address low-byte  
CardBus Socket Address + 80Ah:  
Card A ExCA Offset 0Ah  
Card B ExCA Offset 4Ah  
Register:  
Offset:  
ExCA I/O window 1 end-address low-byte  
CardBus Socket Address + 80Eh:  
Card A ExCA Offset 0Eh  
Card B ExCA Offset 4Eh  
Type:  
Default:  
Read/Write  
00h  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the upper 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 end-address high-byte  
CardBus Socket Address + 80Bh:  
Card A ExCA Offset 0Bh  
Card B ExCA Offset 4Bh  
Register:  
Offset:  
ExCA I/O window 1 end-address high-byte  
CardBus Socket Address + 80Fh:  
Card A ExCA Offset 0Fh  
Card B ExCA Offset 4Fh  
Type:  
Default:  
Read/Write  
00h  
5−14  
 
5.13 ExCA Memory Windows 0−4 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window start address for memory windows 0, 1, 2, 3, and 4.  
The 8 bits of these registers correspond to bits A19−A12 of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 start-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 start-address low-byte  
CardBus Socket Address + 810h:  
Card A ExCA Offset 10h  
Card B ExCA Offset 50h  
Register:  
Offset:  
ExCA memory window 1 start-address low-byte  
CardBus Socket Address + 818h: Card A ExCA Offset 18h  
Card B ExCA Offset 58h  
ExCA memory window 2 start-address low-byte  
CardBus Socket Address + 820h: Card A ExCA Offset 20h  
Card B ExCA Offset 60h  
ExCA memory window 3 start-address low-byte  
CardBus Socket Address + 828h: Card A ExCA Offset 28h  
Card B ExCA Offset 68h  
ExCA memory window 4 start-address low-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 830h:  
Card A ExCA Offset 30h  
Card B ExCA Offset 70h  
Type:  
Default:  
Read/Write  
00h  
5−15  
 
5.14 ExCA Memory Windows 0−4 Start-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window start address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23−A20 of the start address. In addition, the memory  
window data width and wait states are set in this register. See Table 5−11 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 start-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 start-address high-byte  
CardBus Socket Address + 811h:  
Card A ExCA Offset 11h  
Card B ExCA Offset 51h  
Register:  
Offset:  
ExCA memory window 1 start-address high-byte  
CardBus Socket Address + 819h: Card A ExCA Offset 19h  
Card B ExCA Offset 59h  
ExCA memory window 2 start-address high-byte  
CardBus Socket Address + 821h: Card A ExCA Offset 21h  
Card B ExCA Offset 61h  
ExCA memory window 3 start-address high-byte  
CardBus Socket Address + 829h: Card A ExCA Offset 29h  
Card B ExCA Offset 69h  
ExCA memory window 4 start-address high-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 831h:  
Card A ExCA Offset 31h  
Card B ExCA Offset 71h  
Type:  
Default:  
Read/Write  
00h  
Table 5−11. ExCA Memory Windows 0−4 Start-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit controls the memory window data width. This bit is encoded as:  
7
DATASIZE  
RW  
0 = Window data width is 8 bits (default)  
1 = Window data width is 16 bits  
Zero wait-state. This bit controls the memory window wait state for 8- and 16-bit accesses. This wait-state  
timing emulates the ISA wait state used by the 82365SL-DF. This bit is encoded as:  
6
ZEROWAIT  
RW  
0 = 8- and 16-bit cycles have standard length (default).  
1 = 8-bit cycles reduced to equivalent of three ISA cycles  
16-bit cycles reduced to the equivalent of two ISA cycles  
5−4  
3−0  
SCRATCH  
STAHN  
RW  
RW  
Scratch pad bits. These bits have no effect on memory window operation.  
Start address high-nibble. These bits represent the upper address bits A23−A20 of the memory window  
start address.  
5−16  
 
5.15 ExCA Memory Windows 0−4 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window end address for memory windows 0, 1, 2, 3, and 4.  
The 8 bits of these registers correspond to bits A19−A12 of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 end-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 end-address low-byte  
CardBus Socket Address + 812h:  
Card A ExCA Offset 12h  
Card B ExCA Offset 52h  
Register:  
Offset:  
ExCA memory window 1 end-address low-byte  
CardBus Socket Address + 81Ah: Card A ExCA Offset 1Ah  
Card B ExCA Offset 5Ah  
ExCA memory window 2 end-address low-byte  
CardBus Socket Address + 822h: Card A ExCA Offset 22h  
Card B ExCA Offset 62h  
ExCA memory window 3 end-address low-byte  
CardBus Socket Address + 82Ah: Card A ExCA Offset 2Ah  
Card B ExCA Offset 6Ah  
ExCA memory window 4 end-address low-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 832h:  
Card A ExCA Offset 32h  
Card B ExCA Offset 72h  
Type:  
Default:  
Read/Write  
00h  
5−17  
 
5.16 ExCA Memory Windows 0−4 End-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window end address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23−A20 of the end address. In addition, the memory  
window wait states are set in this register. See Table 5−12 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 end-address high-byte  
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 end-address high-byte  
CardBus Socket Address + 813h:  
Card A ExCA Offset 13h  
Card B ExCA Offset 53h  
Register:  
Offset:  
ExCA memory window 1 end-address high-byte  
CardBus Socket Address + 81Bh: Card A ExCA Offset 1Bh  
Card B ExCA Offset 5Bh  
ExCA memory window 2 end-address high-byte  
CardBus Socket Address + 823h: Card A ExCA Offset 23h  
Card B ExCA Offset 63h  
ExCA memory window 3 end-address high-byte  
CardBus Socket Address + 82Bh: Card A ExCA Offset 2Bh  
Card B ExCA Offset 6Bh  
ExCA Memory window 4 end-address high-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 833h:  
Card A ExCA Offset 33h  
Card B ExCA Offset 73h  
Type:  
Default:  
Read/Write, Read-only  
00h  
Table 5−12. ExCA Memory Windows 0−4 End-Address High-Byte Registers Description  
BIT  
7−6  
5−4  
3−0  
SIGNAL  
MEMWS  
RSVD  
TYPE  
RW  
R
FUNCTION  
Wait state. These bits specify the number of equivalent ISA wait states to be added to 16-bit memory  
accesses. The number of wait states added is equal to the binary value of these 2 bits.  
Reserved. These bits return 0s when read. Writes have no effect.  
End-address high nibble. These bits represent the upper address bits A23−A20 of the memory window end  
address.  
ENDHN  
RW  
5−18  
 
5.17 ExCA Memory Windows 0−4 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The 8 bits of these registers correspond to bits A19−A12 of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 offset-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 offset-address low-byte  
CardBus Socket Address + 814h:  
Card A ExCA Offset 14h  
Card B ExCA Offset 54h  
Register:  
Offset:  
ExCA memory window 1 offset-address low-byte  
CardBus Socket Address + 81Ch: Card A ExCA Offset 1Ch  
Card B ExCA Offset 5Ch  
ExCA memory window 2 offset-address low-byte  
CardBus Socket Address + 824h: Card A ExCA Offset 24h  
Card B ExCA Offset 64h  
ExCA memory window 3 offset-address low-byte  
CardBus Socket Address + 82Ch: Card A ExCA Offset 2Ch  
Card B ExCA Offset 6Ch  
ExCA memory window 4 offset-address low-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 834h:  
Card A ExCA Offset 34h  
Card B ExCA Offset 74h  
Type:  
Default:  
Read/Write  
00h  
5−19  
 
5.18 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers  
These registers contain the high 6 bits of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The lower 6 bits of these registers correspond to bits A25−A20 of the offset address. In addition, the write  
protection and common/attribute memory configurations are set in this register. See Table 5−13 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory window 0−4 offset-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 offset-address high-byte  
CardBus Socket Address + 815h:  
Card A ExCA Offset 15h  
Card B ExCA Offset 55h  
Register:  
Offset:  
ExCA memory window 1 offset-address high-byte  
CardBus Socket Address + 81Dh: Card A ExCA Offset 1Dh  
Card B ExCA Offset 5Dh  
ExCA memory window 2 offset-address high-byte  
CardBus Socket Address + 825h: Card A ExCA Offset 25h  
Card B ExCA Offset 65h  
ExCA memory window 3 offset-address high-byte  
CardBus Socket Address + 82Dh: Card A ExCA Offset 2Dh  
Card B ExCA Offset 6Dh  
ExCA memory window 4 offset-address high-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 835h:  
Card A ExCA Offset 35h  
Card B ExCA Offset 75h  
Type:  
Default:  
Read/Write  
00h  
Table 5−13. ExCA Memory Windows 0−4 Offset-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Write protect. This bit specifies whether write operations to this memory window are enabled.  
This bit is encoded as:  
7
WINWP  
RW  
0 = Write operations are allowed (default).  
1 = Write operations are not allowed.  
This bit specifies whether this memory window is mapped to card attribute or common memory.  
This bit is encoded as:  
6
REG  
RW  
RW  
0 = Memory window is mapped to common memory (default).  
1 = Memory window is mapped to attribute memory.  
Offset-address high byte. These bits represent the upper address bits A25−A20 of the memory window offset  
address.  
5−0  
OFFHB  
5−20  
 
5.19 ExCA Card Detect and General Control Register  
This register controls how the ExCA registers for the socket respond to card removal. It also reports the status of the  
VS1 and VS2 signals at the PC Card interface. Table 5−14 describes each bit in the ExCA card detect and general  
control register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card detect and general control  
R
X
R
X
W
0
RW  
0
R
0
R
0
RW  
0
R
0
Register:  
Offset:  
ExCA card detect and general control  
CardBus Socket Address + 816h:  
Card A ExCA Offset 16h  
Card B ExCA Offset 56h  
Type:  
Default:  
Read-only, Write-only, Read/Write  
XX00 0000b  
Table 5−14. ExCA Card Detect and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
VS2. This bit reports the current state of the VS2 signal at the PC Card interface, and, therefore, does not  
have a default value.  
7 †  
VS2STAT  
R
0 = VS2 is low.  
1 = VS2 is high.  
VS1. This bit reports the current state of the VS1 signal at the PC Card interface, and, therefore, does not  
have a default value.  
6 †  
VS1STAT  
SWCSC  
R
0 = VS1 is low.  
1 = VS1 is high.  
Software card detect interrupt. If card detect enable, bit 3 in the ExCA card status change interrupt  
configuration register (ExCA offset 805h, see Section 5.6) is set, then writing a 1 to this bit causes a  
card-detect card-status-change interrupt for the associated card socket.  
If the card-detect enable bit is cleared to 0 in the ExCA card status-change interrupt configuration register  
(ExCA offset 805h, see Section 5.6), then writing a 1 to the software card-detect interrupt bit has no effect.  
This bit is write-only.  
5
W
A read operation of this bit always returns 0. Writing a 1 to this bit also clears it. If bit 2 of the ExCA global  
control register (ExCA offset 81Eh, see Section 5.20) is set and a 1 is written to clear bit 3 of the ExCA  
card status change interrupt register, then this bit also is cleared.  
Card detect resume enable. If this bit is set to 1 and a card detect change has been detected on the CD1  
and CD2 inputs, then the RI_OUT output goes from high to low. The RI_OUT remains low until the card  
status change bit in the ExCA card status-change register (ExCA offset 804h, see Section 5.5) is cleared.  
If this bit is a 0, then the card detect resume functionality is disabled.  
4
CDRESUME  
RW  
0 = Card detect resume disabled (default)  
1 = Card detect resume enabled  
3−2  
1
RSVD  
REGCONFIG  
RSVD  
R
RW  
R
These bits return 0s when read. Writes have no effect.  
Register configuration upon card removal. This bit controls how the ExCA registers for the socket react  
to a card removal event. This bit is encoded as:  
0 = No change to ExCA registers upon card removal (default)  
1 = Reset ExCA registers upon card removal  
0
This bit returns 0 when read. A write has no effect.  
One or more bits in this register are cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared  
by the assertion of PRST or GRST.  
5−21  
 
5.20 ExCA Global Control Register  
This register controls both PC Card sockets, and is not duplicated for each socket. The host interrupt mode bits in  
this register are retained for 82365SL-DF compatibility. See Table 5−15 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA global control  
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA global control  
CardBus Socket Address + 81Eh:  
Card A ExCA Offset 1Eh  
Card B ExCA Offset 5Eh  
Type:  
Default:  
Read-only, Read/Write  
00h  
Table 5−15. ExCA Global Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
These bits return 0s when read. Writes have no effect.  
7−5  
RSVD  
R
Level/edge interrupt mode select, card B. This bit selects the signaling mode for the PCI7410 host interrupt  
for card B interrupts. This bit is encoded as:  
4
INTMODEB  
INTMODEA  
IFCMODE  
CSCMODE  
RW  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Level/edge interrupt mode select, card A. This bit selects the signaling mode for the PCI7410 host interrupt  
for card A interrupts. This bit is encoded as:  
3
RW  
RW  
RW  
0 = Host interrupt is edge-mode (default).  
1 = Host interrupt is level-mode.  
Interrupt flag clear mode select. This bit selects the interrupt flag clear mechanism for the flags in the ExCA  
card status change register. This bit is encoded as:  
2 ‡  
1 ‡  
0 = Interrupt flags cleared by read of CSC register (default)  
1 = Interrupt flags cleared by explicit writeback of 1  
Card status change level/edge mode select. This bit selects the signaling mode for the PCI7410 host  
interrupt for card status changes. This bit is encoded as:  
0 = Host interrupt is edge-mode (default).  
1 = Host interrupt is level-mode.  
Power-down mode select. When this bit is set to 1, the PCI7410 controller is in power-down mode. In  
power-down mode the PCI7410 card outputs are placed in a high-impedance state until an active cycle  
is executed on the card interface. Following an active cycle the outputs are again placed in a  
high-impedance state. The PCI7410 controller still receives functional interrupts and/or card status  
change interrupts; however, an actual card access is required to wake up the interface. This bit is encoded  
as:  
0 ‡  
PWRDWN  
RW  
0 = Power-down mode disabled (default)  
1 = Power-down mode enabled  
One or more bits in this register are cleared only by the assertion of GRST.  
5−22  
 
5.21 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the lower 8 bits of the offset address, and bit 0 is always 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
Register:  
Offset:  
ExCA I/O window 0 offset-address low-byte  
CardBus Socket Address + 836h:  
Card A ExCA Offset 36h  
Card B ExCA Offset 76h  
Register:  
Offset:  
ExCA I/O window 1 offset-address low-byte  
CardBus Socket Address + 838h:  
Card A ExCA Offset 38h  
Card B ExCA Offset 78h  
Type:  
Default:  
Read/Write, Read-only  
00h  
5.22 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 offset-address high-byte  
CardBus Socket Address + 837h:  
Card A ExCA Offset 37h  
Card B ExCA Offset 77h  
Register:  
Offset:  
ExCA I/O window 1 offset-address high-byte  
CardBus Socket Address + 839h:  
Card A ExCA Offset 39h  
Card B ExCA Offset 79h  
Type:  
Default:  
Read/Write  
00h  
5−23  
 
5.23 ExCA Memory Windows 0−4 Page Registers  
The upper 8 bits of a 4-byte PCI memory address are compared to the contents of this register when decoding  
addresses for 16-bit memory windows. Each window has its own page register, all of which default to 00h. By  
programming this register to a nonzero value, host software can locate 16-bit memory windows in any one of 256  
16-Mbyte regions in the 4-gigabyte PCI address space. These registers are only accessible when the ExCA registers  
are memory-mapped, that is, these registers may not be accessed using the index/data I/O scheme.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 page  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
Register:  
Offset:  
Type:  
ExCA memory windows 0−4 page  
CardBus Socket Address + 840h, 841h, 842h, 843h, 844h  
Read/Write  
00h  
Default:  
5−24  
 
6 CardBus Socket Registers (Functions 0 and 1)  
The 1997 PC Card Standard requires a CardBus socket controller to provide five 32-bit registers that report and  
control socket-specific functions. The PCI7410 controller provides the CardBus socket/ExCA base address register  
(PCI offset 10h, see Section 4.13) to locate these CardBus socket registers in PCI memory address space. Each  
function has a separate base address register for accessing the CardBus socket registers (see Figure 6−1).  
Table 6−1 gives the location of the socket registers in relation to the CardBus socket/ExCA base address.  
In addition to the five required registers, the PCI7410 controller implements a register at offset 20h that provides  
power management control for the socket.  
Host  
Memory Space  
Host  
Memory Space  
PCI7410 Configuration Registers  
Offset  
00h  
Offset  
Offset  
CardBus  
Socket A  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
00h  
CardBus  
Socket B  
Registers  
800h  
ExCA  
Registers  
Card A  
20h  
844h  
800h  
ExCA  
Registers  
Card B  
Note: The CardBus socket/ExCA base  
address mode register is separate for  
functions 0 and 1.  
844h  
Offsets are from the CardBus socket/ExCA base  
address register’s base address.  
Figure 6−1. Accessing CardBus Socket Registers Through PCI Memory  
Table 6−1. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event †  
Socket mask †  
04h  
Socket present state †  
Socket force event  
Socket control †  
08h  
0Ch  
10h  
Reserved  
14h−1Ch  
20h  
Socket power management ‡  
One or more bits in the register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then these bits are cleared by the assertion of PRST or GRST.  
One or more bits in this register are cleared only by the assertion of GRST.  
6−1  
 
6.1 Socket Event Register  
This register indicates a change in socket status has occurred. These bits do not indicate what the change is, only  
that one has occurred. Software must read the socket present state register for current status. Each bit in this register  
can be cleared by writing a 1 to that bit. The bits in this register can be set to a 1 by software through writing a 1 to  
the corresponding bit in the socket force event register. All bits in this register are cleared by PCI reset. They can be  
immediately set again, if, when coming out of PC Card reset, the bridge finds the status unchanged (i.e., CSTSCHG  
reasserted or card detect is still true). Software needs to clear this register before enabling interrupts. If it is not cleared  
and interrupts are enabled, then an unmasked interrupt is generated based on any bit that is set. See Table 6−2 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RWC RWC RWC RWC  
0
0
0
0
Register:  
Offset:  
Type:  
Socket event  
CardBus Socket Address + 00h  
Read-only, Read/Write to Clear  
0000 0000h  
Default:  
Table 6−2. Socket Event Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31−4  
RSVD  
R
These bits return 0s when read.  
Power cycle. This bit is set when the PCI7410 controller detects that the PWRCYCLE bit in the socket  
present state register (offset 08h, see Section 6.3) has changed. This bit is cleared by writing a 1.  
3
2
1
PWREVENT  
CD2EVENT  
CD1EVENT  
RWC  
RWC  
RWC  
CCD2. This bit is set when the PCI7410 controller detects that the CDETECT2 field in the socket present  
state register (offset 08h, see Section 6.3) has changed. This bit is cleared by writing a 1.  
CCD1. This bit is set when the PCI7410 controller detects that the CDETECT1 field in the socket present  
state register (offset 08h, see Section 6.3) has changed. This bit is cleared by writing a 1.  
CSTSCHG. This bit is set when the CARDSTS field in the socket present state register (offset 08h, see  
Section 6.3) has changed state. For CardBus cards, this bit is set on the rising edge of the CSTSCHG  
signal. For 16-bit PC Cards, this bit is set on both transitions of the CSTSCHG signal. This bit is reset by  
writing a 1.  
0
CSTSEVENT  
RWC  
This bit is cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared by the assertion of PRST  
or GRST.  
6−2  
 
6.2 Socket Mask Register  
This register allows software to control the CardBus card events which generate a status change interrupt. The state  
of these mask bits does not prevent the corresponding bits from reacting in the socket event register (offset 00h, see  
Section 6.1). See Table 6−3 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Socket mask  
CardBus Socket Address + 04h  
Read-only, Read/Write  
0000 0000h  
Default:  
Table 6−3. Socket Mask Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31−4  
RSVD  
R
These bits return 0s when read.  
Power cycle. This bit masks the PWRCYCLE bit in the socket present state register (offset 08h, see  
Section 6.3) from causing a status change interrupt.  
3
PWRMASK  
CDMASK  
RW  
RW  
RW  
0 = PWRCYCLE event does not cause a CSC interrupt (default).  
1 = PWRCYCLE event causes a CSC interrupt.  
Card detect mask. These bits mask the CDETECT1 and CDETECT2 bits in the socket present state  
register (offset 08h, see Section 6.3) from causing a CSC interrupt.  
00 = Insertion/removal does not cause a CSC interrupt (default).  
01 = Reserved (undefined)  
10 = Reserved (undefined)  
2−1  
11 = Insertion/removal causes a CSC interrupt.  
CSTSCHG mask. This bit masks the CARDSTS field in the socket present state register (offset 08h, see  
Section 6.3) from causing a CSC interrupt.  
0
CSTSMASK  
0 = CARDSTS event does not cause a CSC interrupt (default).  
1 = CARDSTS event causes a CSC interrupt.  
This bit is cleared only by the assertion of GRST when PME is enabled. If PME is not enabled, then this bit is cleared by the assertion of PRST  
or GRST.  
6−3  
 
6.3 Socket Present State Register  
This register reports information about the socket interface. Writes to the socket force event register (offset 0Ch, see  
Section 6.4), as well as general socket interface status, are reflected here. Information about PC Card V  
support  
CC  
and card type is only updated at each insertion. Also note that the PCI7410 controller uses the CCD1 and CCD2  
signals during card identification, and changes on these signals during this operation are not reflected in this register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket present state  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket present state  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
0
R
0
R
0
R
X
R
X
R
X
Register:  
Offset:  
Type:  
Socket present state  
CardBus Socket Address + 08h  
Read-only  
Default:  
3000 00XXh  
Table 6−4. Socket Present State Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
YV socket. This bit indicates whether or not the socket can supply V  
PCI7410 controller does not support Y.Y-V V ; therefore, this bit is always reset unless overridden  
CC  
by the socket force event register (offset 0Ch, see Section 6.4). This bit defaults to 0.  
= Y.Y V to PC Cards. The  
CC  
31  
YVSOCKET  
R
R
R
R
XV socket. This bit indicates whether or not the socket can supply V  
PCI7410 controller does not support X.X-V V ; therefore, this bit is always reset unless overridden  
CC  
by the socket force event register (offset 0Ch, see Section 6.4). This bit defaults to 0.  
= X.X V to PC Cards. The  
CC  
30  
29  
28  
XVSOCKET  
3VSOCKET  
5VSOCKET  
3-V socket. This bit indicates whether or not the socket can supply V  
PCI7410 controller does support 3.3-V V ; therefore, this bit is always set unless overridden by the  
CC  
socket force event register (offset 0Ch, see Section 6.4).  
= 3.3 Vdc to PC Cards. The  
CC  
5-V socket. This bit indicates whether or not the socket can supply V  
PCI7410 controller does support 5-V V ; therefore, this bit is always set unless overridden by bit 6  
CC  
of the device control register (PCI offset 92h, see Section 4.40).  
= 5 Vdc to PC Cards. The  
CC  
Zoomed video support. This bit indicates whether or not the socket has support for zoomed video.  
27 †  
26−14  
13 †  
ZVSUPPORT  
RSVD  
R
R
R
0 = ZV support disabled  
1 = ZV support enabled  
These bits return 0s when read.  
YV card. This bit indicates whether or not the PC Card inserted in the socket supports V  
CC  
This bit can be set by writing a 1 to the corresponding bit in the socket force event register (offset 0Ch,  
see Section 6.4).  
= Y.Y Vdc.  
YVCARD  
XV card. This bit indicates whether or not the PC Card inserted in the socket supports V  
CC  
= X.X Vdc.  
12 †  
11 †  
10 †  
XVCARD  
3VCARD  
5VCARD  
R
R
R
This bit can be set by writing a 1 to the corresponding bit in the socket force event register (offset 0Ch,  
see Section 6.4).  
3-V card. This bit indicates whether or not the PC Card inserted in the socket supports V  
CC  
This bit can be set by writing a 1 to the corresponding bit in the socket force event register (offset 0Ch,  
see Section 6.4).  
= 3.3 Vdc.  
5-V card. This bit indicates whether or not the PC Card inserted in the socket supports V  
CC  
This bit can be set by writing a 1 to the corresponding bit in the socket force event register (offset 0Ch,  
see Section 6.4).  
= 5 Vdc.  
One or more bits in the register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then these bits are cleared by the assertion of PRST or GRST.  
6−4  
 
Table 6−4. Socket Present State Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Bad V  
an invalid voltage.  
request. This bit indicates that the host software has requested that the socket be powered at  
CC  
9 †  
BADVCCREQ  
R
0 = Normal operation (default)  
1 = Invalid V  
CC  
request by host software  
Data lost. This bit indicates that a PC Card removal event may have caused lost data because the cycle  
did not terminate properly or because write data still resides in the PCI7410 controller.  
0 = Normal operation (default)  
8 †  
7 †  
6
DATALOST  
NOTACARD  
IREQCINT  
R
R
R
1 = Potential data loss due to card removal  
Not a card. This bit indicates that an unrecognizable PC Card has been inserted in the socket. This bit is  
not updated until a valid PC Card is inserted into the socket.  
0 = Normal operation (default)  
1 = Unrecognizable PC Card detected  
READY(IREQ)//CINT. This bit indicates the current status of the READY(IREQ)//CINT signal at the PC  
Card interface.  
0 = READY(IREQ)//CINT is low.  
1 = READY(IREQ)//CINT is high.  
CardBus card detected. This bit indicates that a CardBus PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
5 †  
4 †  
CBCARD  
R
R
16-bit card detected. This bit indicates that a 16-bit PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
16BITCARD  
Power cycle. This bit indicates the status of each card powering request. This bit is encoded as:  
0 = Socket is powered down (default).  
3 †  
2 †  
PWRCYCLE  
CDETECT2  
R
R
1 = Socket is powered up.  
CCD2. This bit reflects the current status of the CCD2 signal at the PC Card interface. Changes to this  
signal during card interrogation are not reflected here.  
0 = CCD2 is low (PC Card may be present)  
1 = CCD2 is high (PC Card not present)  
CCD1. This bit reflects the current status of the CCD1 signal at the PC Card interface. Changes to this  
signal during card interrogation are not reflected here.  
1 †  
0
CDETECT1  
CARDSTS  
R
R
0 = CCD1 is low (PC Card may be present).  
1 = CCD1 is high (PC Card not present).  
CSTSCHG. This bit reflects the current status of the CSTSCHG signal at the PC Card interface.  
0 = CSTSCHG is low.  
1 = CSTSCHG is high.  
One or more bits in the register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then these bits are cleared by the assertion of PRST or GRST.  
6.4 Socket Force Event Register  
This register is used to force changes to the socket event register (offset 00h, see Section 6.1) and the socket present  
state register (offset 08h, see Section 6.3). The CVSTEST bit (bit 14) in this register must be written when forcing  
changes that require card interrogation. See Table 6−5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket force event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket force event  
R
X
W
X
W
X
W
X
W
X
W
X
W
X
W
X
W
X
R
X
W
X
W
X
W
X
W
X
W
X
W
X
Register:  
Offset:  
Type:  
Socket force event  
CardBus Socket Address + 0Ch  
Read-only, Write-only  
0000 XXXXh  
Default:  
6−5  
 
Table 6−5. Socket Force Event Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−28  
RSVD  
R
Reserved. These bits return 0s when read.  
FZVSUPPORT  
(function 0)  
Force zoomed video support. Writes to this bit cause the ZVSUPPORT bit in the socket present state  
register to be written.  
27  
W
RSVD  
Reserved. This bit returns 0 when read.  
(function 1)  
26−15  
14  
RSVD  
R
These bits return 0s when read.  
Card VS test. When this bit is set, the PCI7410 controller reinterrogates the PC Card, updates the  
socket present state register (offset 08h, see Section 6.3), and re-enables the socket power control.  
CVSTEST  
W
Force YV card. Writes to this bit cause the YVCARD bit in the socket present state register (offset 08h,  
see Section 6.3) to be written. When set, this bit disables the socket power control.  
13  
12  
11  
10  
9
FYVCARD  
FXVCARD  
W
W
W
W
W
W
Force XV card. Writes to this bit cause the XVCARD bit in the socket present state register (offset 08h,  
see Section 6.3) to be written. When set, this bit disables the socket power control.  
Force 3-V card. Writes to this bit cause the 3VCARD bit in the socket present state register (offset 08h,  
see Section 6.3) to be written. When set, this bit disables the socket power control.  
F3VCARD  
Force 5-V card. Writes to this bit cause the 5VCARD bit in the socket present state register (offset 08h,  
see Section 6.3) to be written. When set, this bit disables the socket power control.  
F5VCARD  
Force BadVccReq. Changes to the BADVCCREQ bit in the socket present state register (offset 08h,  
see Section 6.3) can be made by writing this bit.  
FBADVCCREQ  
FDATALOST  
Force data lost. Writes to this bit cause the DATALOST bit in the socket present state register (offset  
08h, see Section 6.3) to be written.  
8
Force not a card. Writes to this bit cause the NOTACARD bit in the socket present state register (offset  
08h, see Section 6.3) to be written.  
7
6
5
FNOTACARD  
RSVD  
W
R
This bit returns 0 when read.  
Force CardBus card. Writes to this bit cause the CBCARD bit in the socket present state register (offset  
08h, see Section 6.3) to be written.  
FCBCARD  
W
Force 16-bit card. Writes to this bit cause the 16BITCARD bit in the socket present state register (offset  
08h, see Section 6.3) to be written.  
4
3
F16BITCARD  
FPWRCYCLE  
W
W
Force power cycle. Writes to this bit cause the PWREVENT bit in the socket event register (offset 00h,  
see Section 6.1) to be written, and the PWRCYCLE bit in the socket present state register (offset 08h,  
see Section 6.3) is unaffected.  
Force CCD2. Writes to this bit cause the CD2EVENT bit in the socket event register (offset 00h, see  
Section 6.1) to be written, and the CDETECT2 bit in the socket present state register (offset 08h, see  
Section 6.3) is unaffected.  
2
1
0
FCDETECT2  
FCDETECT1  
FCARDSTS  
W
W
W
Force CCD1. Writes to this bit cause the CD1EVENT bit in the socket event register (offset 00h, see  
Section 6.1) to be written, and the CDETECT1 bit in the socket present state register (offset 08h, see  
Section 6.3) is unaffected.  
Force CSTSCHG. Writes to this bit cause the CSTSEVENT bit in the socket event register (offset 00h,  
see Section 6.1) to be written. The CARDSTS bit in the socket present state register (offset 08h, see  
Section 6.3) is unaffected.  
6−6  
 
6.5 Socket Control Register  
This register provides control of the voltages applied to the socket V and V . The PCI7410 controller ensures that  
PP  
CC  
the socket is powered up only at acceptable voltages when a CardBus card is inserted. See Table 6−6 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Socket control  
CardBus Socket Address + 10h  
Read-only, Read/Write  
0000 0000h  
Default:  
Table 6−6. Socket Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−12  
RSVD  
R
These bits return 0s when read.  
This bit returns 0 when the ZVEN bits (bit 0) for both sockets are 0 (disabled). If either ZVEN bit is  
set to 1, the ZV_ACTIVITY bit returns 1.  
11  
10  
ZV_ACTIVITY  
R
Standardized zoomed video register model supported. Because the PCI7410 controller supports  
this register model, this bit is hardwired to 1.  
STANDARDZVREG  
R
9
8
ZVEN  
RSVD  
RW  
R
Zoomed video enable. This bit enables zoomed video for the socket.  
These bits return 0s when read.  
This bit controls how the CardBus clock run state machine decides when to stop the CardBus clock  
to the CardBus card:  
0 = The CardBus CLKRUN protocol can only attempt to stop/slow the CaredBus clock if the  
sockethas been idle for 8 clocks and the PCI CLKRUN protocol is preparing to stop/slow the  
PCI bus clock.  
7
STOPCLK  
RW  
1 = The CardBus CLKRUN protocol can only attempt to stop/slow the CaredBus clock if the  
socket has been idle for 8 clocks, regardless of the state of the PCI CLKRUN signal.  
V
CC  
control. These bits are used to request card V changes.  
CC  
000 = Request power off (default)  
001 = Reserved  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
CC  
CC  
6−4 †  
3
VCCCTRL  
RSVD  
RW  
R
010 = Request V  
011 = Request V  
= 5 V  
= 3.3 V  
CC  
CC  
This bit returns 0 when read.  
control. These bits are used to request card V  
V
changes.  
PP  
PP  
000 = Request power off (default)  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
PP  
PP  
2−0 †  
VPPCTRL  
RW  
001 = Request V  
010 = Request V  
011 = Request V  
= 12 V  
= 5 V  
= 3.3 V  
PP  
PP  
PP  
One or more bits in the register are PME context bits and can be cleared only by the assertion of GRST when PME is enabled. If PME is not  
enabled, then this bit is cleared by the assertion of PRST or GRST.  
6−7  
 
6.6 Socket Power Management Register  
This register provides power management control over the socket through a mechanism for slowing or stopping the  
clock on the card interface when the card is idle. See Table 6−7 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
Register:  
Offset:  
Type:  
Socket power management  
CardBus Socket Address + 20h  
Read-only, Read/Write  
0000 0000h  
Default:  
Table 6−7. Socket Power Management Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−26  
RSVD  
R
Reserved. These bits return 0s when read.  
Socket access status. This bit provides information on whether a socket access has occurred. This bit is  
cleared by a read access.  
25 ‡  
SKTACCES  
R
0 = No PC Card access has occurred (default).  
1 = PC Card has been accessed.  
Socket mode status. This bit provides clock mode information.  
24 ‡  
23−17  
16  
SKTMODE  
RSVD  
R
R
0 = Normal clock operation  
1 = Clock frequency has changed.  
These bits return 0s when read.  
CardBus clock control enable. This bit, when set, enables clock control according to bit 0 (CLKCTRL).  
CLKCTRLEN  
RSVD  
RW  
R
0 = Clock control disabled (default)  
1 = Clock control enabled  
15−1  
These bits return 0s when read.  
CardBus clock control. This bit determines whether the CardBus CLKRUN protocol attempts to stop or  
slow the CardBus clock during idle states. The CLKCTRLEN bit enables this bit.  
0
CLKCTRL  
RW  
0 = Allows the CardBus CLKRUN protocol to attempt to stop the CardBus clock (default)  
1 = Allows the CardBus CLKRUN protocol to attempt to slow the CardBus clock by a factor of 16  
One or more bits in this register are cleared only by the assertion of GRST.  
6−8  
 
7 OHCI Controller Programming Model  
This section describes the internal PCI configuration registers used to program the PCI7410 1394 open host  
controller interface. All registers are detailed in the same format: a brief description for each register is followed by  
the register offset and a bit table describing the reset state for each register.  
A bit description table, typically included when the register contains bits of more than one type or purpose, indicates  
bit field names, a detailed field description, and field access tags which appear in the type column. Table 4−1  
describes the field access tags.  
The PCI7410 controller is a multifunction PCI device. The 1394 OHCI is integrated as PCI function 2. The function  
2 configuration header is compliant with the PCI Local Bus Specification as a standard header. Table 7−1 illustrates  
the configuration header that includes both the predefined portion of the configuration space and the user-definable  
registers.  
Table 7−1. Function 2 Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
OHCI base address  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
TI extension base address  
CardBus CIS base address  
Reserved  
14h  
18h  
1Ch−27h  
28h  
CardBus CIS pointer ‡  
Subsystem ID ‡  
Subsystem vendor ID ‡  
2Ch  
Reserved  
30h  
PCI power  
management  
34h  
Reserved  
capabilities pointer  
Reserved  
38h  
3Ch  
Maximum latency ‡  
Minimum grant ‡  
Interrupt pin  
Interrupt line  
Capability ID  
PCI OHCI control  
40h  
Power management capabilities  
PM data PMCSR_BSE  
Reserved  
Next item pointer  
44h  
Power management control and status ‡  
48h  
4Ch−EBh  
ECh  
F0h  
PCI PHY control ‡  
PCI miscellaneous configuration ‡  
Link enhancement control ‡  
Subsystem access  
F4h  
F8h  
Reserved  
FCh  
One or more bits in this register are cleared only by the assertion of GRST.  
7−1  
 
7.1 Vendor ID Register  
The vendor ID register contains a value allocated by the PCI SIG and identifies the manufacturer of the PCI device.  
The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Vendor ID  
00h  
Read-only  
104Ch  
Default:  
7.2 Device ID Register  
The device ID register contains a value assigned to the PCI7410 controller by Texas Instruments. The device  
identification for the PCI7410 controller is 802Bh.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
1
R
0
R
1
R
1
Register:  
Offset:  
Type:  
Device ID  
02h  
Read-only  
802Bh  
Default:  
7−2  
 
7.3 Command Register  
The command register provides control over the PCI7410 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification, as seen in the following bit descriptions. See Table 7−2 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
RW  
0
R
0
Register:  
Offset:  
Type:  
Command  
04h  
Read/Write, Read-only  
0000h  
Default:  
Table 7−2. Command Register Description  
BIT  
15−11  
10  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 15−10 return 0s when read.  
INT_DISABLE  
RW  
INTx disable. When set to 1, this bit disables the function from asserting interrupts on the INTx signals.  
0 = INTx assertion is enabled (default)  
1 = INTx assertion is disabled  
This bit is disabled (read-only 0) if bit 11 (PCI2_3_EN) in the PCI miscellaneous configuration  
register (see Section 7.23) is 0.  
9
8
FBB_ENB  
R
Fast back-to-back enable. The PCI7410 controller does not generate fast back-to-back transactions;  
therefore, bit 9 returns 0 when read.  
SERR_ENB  
RW  
SERR enable. When bit 8 is set to 1, the PCI7410 SERR driver is enabled. SERR can be asserted after  
detecting an address parity error on the PCI bus.  
7
6
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
PERR_ENB  
RW  
Parity error enable. When bit 6 is set to 1, the PCI7410 controller is enabled to drive PERR response  
to parity errors through the PERR signal.  
5
4
VGA_ENB  
MWI_ENB  
R
VGA palette snoop enable. The PCI7410 controller does not feature VGA palette snooping; therefore,  
bit 5 returns 0 when read.  
RW  
Memory write and invalidate enable. When bit 4 is set to 1, the PCI7410 controller is enabled to  
generate MWI PCI bus commands. If this bit is cleared, then the PCI7410 controller generates memory  
write commands instead.  
3
2
1
0
SPECIAL  
MASTER_ENB  
MEMORY_ENB  
IO_ENB  
R
RW  
RW  
R
Special cycle enable. The PCI7410 function does not respond to special cycle transactions; therefore,  
bit 3 returns 0 when read.  
Bus master enable. When bit 2 is set to 1, the PCI7410 controller is enabled to initiate cycles on the  
PCI bus.  
Memory response enable. Setting bit 1 to 1 enables the PCI7410 controller to respond to memory  
cycles on the PCI bus. This bit must be set to access OHCI registers.  
I/O space enable. The PCI7410 controller does not implement any I/O-mapped functionality; therefore,  
bit 0 returns 0 when read.  
7−3  
 
7.4 Status Register  
The status register provides status over the PCI7410 interface to the PCI bus. All bit functions adhere to the definitions  
in the PCI Local Bus Specification, as seen in the following bit descriptions. See Table 7−3 for a complete description  
of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
RCU RCU RCU RCU RCU  
R
0
R
1
RCU  
0
R
0
R
0
R
0
R
1
RU  
0
R
0
R
0
R
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Status  
06h  
Read/Clear/Update, Read-only  
0210h  
Default:  
Table 7−3. Status Register Description  
BIT  
15  
FIELD NAME  
PAR_ERR  
TYPE  
RCU  
RCU  
DESCRIPTION  
Detected parity error. Bit 15 is set to 1 when either an address parity or data parity error is detected.  
14  
SYS_ERR  
Signaled system error. Bit 14 is set to 1 when SERR is enabled and the PCI7410 controller has signaled  
a system error to the host.  
13  
12  
MABORT  
TABORT_REC  
TABORT_SIG  
PCI_SPEED  
DATAPAR  
RCU  
RCU  
RCU  
R
Received master abort. Bit 13 is set to 1 when a cycle initiated by the PCI7410 controller on the PCI  
bus has been terminated by a master abort.  
Received target abort. Bit 12 is set to 1 when a cycle initiated by the PCI7410 controller on the PCI  
bus was terminated by a target abort.  
11  
Signaled target abort. Bit 11 is set to 1 by the PCI7410 controller when it terminates a transaction on  
the PCI bus with a target abort.  
10−9  
8
DEVSEL timing. Bits 10 and 9 encode the timing of DEVSEL and are hardwired to 01b, indicating that  
the PCI7410 controller asserts this signal at a medium speed on nonconfiguration cycle accesses.  
RCU  
Data parity error detected. Bit 8 is set to 1 when the following conditions have been met:  
a. PERR was asserted by any PCI device including the PCI7410 controller.  
b. The PCI7410 controller was the bus master during the data parity error.  
c. Bit 6 (PERR_EN) in the command register at offset 04h in the PCI configuration space  
(see Section 7.3) is set to 1.  
7
6
5
4
3
FBB_CAP  
UDF  
R
R
Fast back-to-back capable. The PCI7410 controller cannot accept fast back-to-back transactions;  
therefore, bit 7 is hardwired to 0.  
User-definable features (UDF) supported. The PCI7410 controller does not support the UDF;  
therefore, bit 6 is hardwired to 0.  
66MHZ  
R
66-MHz capable. The PCI7410 controller operates at a maximum PCLK frequency of 33 MHz;  
therefore, bit 5 is hardwired to 0.  
CAPLIST  
INT_STATUS  
R
Capabilities list. Bit 4 returns 1 when read, indicating that capabilities additional to standard PCI are  
implemented. The linked list of PCI power-management capabilities is implemented in this function.  
RU  
Interrupt status. This bit reflects the interrupt status of the function. Only when bit 10 (INT_DISABLE)  
in the command register (see Section 7.3) is a 0 and this bit is 1, will the function’s INTx signal be  
asserted. Setting the INT_DISABLE bit to 1 has no effect on the state of this bit. This bit is disabled  
(read-only 0) if bit 11 (PCI2_3_EN) in the PCI miscellaneous configuration register (see Section 7.23)  
is 0.  
2−0  
RSVD  
R
Reserved. Bits 3−0 return 0s when read.  
7−4  
 
7.5 Class Code and Revision ID Register  
The class code and revision ID register categorizes the PCI7410 controller as a serial bus controller (0Ch), controlling  
an IEEE 1394 bus (00h), with an OHCI programming model (10h). Furthermore, the TI chip revision is indicated in  
the least significant byte. See Table 7−4 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
1
R
1
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Class code and revision ID  
08h  
Read-only  
0C00 1000h  
Default:  
Table 7−4. Class Code and Revision ID Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−24  
BASECLASS  
R
Base class. This field returns 0Ch when read, which broadly classifies the function as a serial bus  
controller.  
23−16  
15−8  
7−0  
SUBCLASS  
PGMIF  
R
R
R
Subclass. This field returns 00h when read, which specifically classifies the function as controlling an  
IEEE 1394 serial bus.  
Programming interface. This field returns 10h when read, which indicates that the programming model  
is compliant with the 1394 Open Host Controller Interface Specification.  
CHIPREV  
Silicon revision. This field returns 00h when read, which indicates the silicon revision of the PCI7410  
controller.  
7.6 Latency Timer and Class Cache Line Size Register  
The latency timer and class cache line size register is programmed by host BIOS to indicate system cache line size  
and the latency timer associated with the PCI7410 controller. See Table 7−5 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer and class cache line size  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Latency timer and class cache line size  
0Ch  
Read/Write  
0000h  
Default:  
Table 7−5. Latency Timer and Class Cache Line Size Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15−8  
LATENCY_TIMER  
RW  
PCI latency timer. The value in this register specifies the latency timer for the PCI7410 controller, in  
units of PCI clock cycles. When the PCI7410 controller is a PCI bus initiator and asserts FRAME, the  
latency timer begins counting from zero. If the latency timer expires before the PCI7410 transaction  
has terminated, then the PCI7410 controller terminates the transaction when its GNT is deasserted.  
7−0  
CACHELINE_SZ  
RW  
Cache line size. This value is used by the PCI7410 controller during memory write and invalidate,  
memory-read line, and memory-read multiple transactions.  
7−5  
 
7.7 Header Type and BIST Register  
The header type and built-in self-test (BIST) register indicates the PCI7410 PCI header type and no built-in self-test.  
See Table 7−6 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type and BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Header type and BIST  
0Eh  
Read-only  
0000h  
Default:  
Table 7−6. Header Type and BIST Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15−8  
BIST  
R
Built-in self-test. The PCI7410 controller does not include a BIST; therefore, this field returns 00h when  
read.  
7−0  
HEADER_TYPE  
R
PCI header type. The PCI7410 controller includes the standard PCI header, which is communicated by  
returning 00h when this field is read.  
7.8 OHCI Base Address Register  
The OHCI base address register is programmed with a base address referencing the memory-mapped OHCI control.  
When BIOS writes all 1s to this register, the value read back is FFFF F800h, indicating that at least 2K bytes of  
memory address space are required for the OHCI registers. See Table 7−7 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
OHCI base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
OHCI base address  
10h  
Read/Write, Read-only  
0000 0000h  
Default:  
Table 7−7. OHCI Base Address Register Description  
BIT  
FIELD NAME  
OHCIREG_PTR  
OHCI_SZ  
TYPE  
DESCRIPTION  
31−11  
10−4  
RW  
R
OHCI register pointer. This field specifies the upper 21 bits of the 32-bit OHCI base address register.  
OHCI register size. This field returns 0s when read, indicating that the OHCI registers require a  
2K-byte region of memory.  
3
2−1  
0
OHCI_PF  
OHCI_MEMTYPE  
OHCI_MEM  
R
R
R
OHCI register prefetch. Bit 3 returns 0 when read, indicating that the OHCI registers are  
nonprefetchable.  
OHCI memory type. This field returns 0s when read, indicating that the OHCI base address register  
is 32 bits wide and mapping can be done anywhere in the 32-bit memory space.  
OHCI memory indicator. Bit 0 returns 0 when read, indicating that the OHCI registers are mapped  
into system memory space.  
7−6  
 
7.9 TI Extension Base Address Register  
The TI extension base address register is programmed with a base address referencing the memory-mapped TI  
extension registers. When BIOS writes all 1s to this register, the value read back is FFFF C000h, indicating that at  
least 16K bytes of memory address space are required for the TI registers. See Table 7−8 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
TI extension base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
TI extension base address  
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
TI extension base address  
14h  
Read/Write, Read-only  
0000 0000h  
Default:  
Table 7−8. TI Base Address Register Description  
BIT  
FIELD NAME  
TIREG_PTR  
TI_SZ  
TYPE  
DESCRIPTION  
TI register pointer. This field specifies the upper 18 bits of the 32-bit TI base address register.  
31−14  
13−4  
RW  
R
TI register size. This field returns 0s when read, indicating that the TI registers require a 16K-byte  
region of memory.  
3
TI_PF  
R
R
TI register prefetch. Bit 3 returns 0 when read, indicating that the TI registers are nonprefetchable.  
2−1  
TI_MEMTYPE  
TI memory type. This field returns 0s when read, indicating that the TI base address register is 32 bits  
wide and mapping can be done anywhere in the 32-bit memory space.  
0
TI_MEM  
R
TI memory indicator. Bit 0 returns 0 when read, indicating that the TI registers are mapped into system  
memory space.  
7−7  
 
7.10 CardBus CIS Base Address Register  
The internal CARDBUS input to the TSB43AB22 core is tied high such that this register returns 0s when read. See  
Table 7−9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
CardBus CIS base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus CIS base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
CardBus CIS base address  
18h  
Read/Write, Read-only  
0000 0000h  
Default:  
Table 7−9. CardBus CIS Base Address Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−11  
CIS_BASE  
RW  
CIS base address. This field specifies the upper 21 bits of the 32-bit CIS base address. If CARDBUS  
is sampled high on a GRST, then this field is read-only, returning 0s when read.  
10−4  
3
CIS_SZ  
CIS_PF  
R
R
CIS address space size. This field returns 0s when read, indicating that the CIS space requires a  
2K-byte region of memory.  
CIS prefetch. Bit 3 returns 0 when read, indicating that the CIS is nonprefetchable. Furthermore, the  
CIS is a byte-accessible address space, and either a doubleword or 16-bit word access yields  
indeterminate results.  
2−1  
0
CIS_MEMTYPE  
CIS_MEM  
R
R
CIS memory type. This field returns 0s when read, indicating that the CardBus CIS base address  
register is 32 bits wide and mapping can be done anywhere in the 32-bit memory space.  
CIS memory indicator. Bit 0 returns 0 when read, indicating that the CIS is mapped into system  
memory space.  
7.11 CardBus CIS Pointer Register  
The internal CARDBUS input to the TSB43AB22 core is tied high such that this register returns 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
CardBus CIS pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus CIS pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
CardBus CIS pointer  
28h  
Read-only  
Default:  
0000 0000h  
7−8  
 
7.12 Subsystem Identification Register  
The subsystem identification register is used for system and option card identification purposes. This register can  
be initialized from the serial EEPROM or programmed via the subsystem access register at offset F8h in the PCI  
configuration space (see Section 7.25). See Table 7−10 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
Register:  
Offset:  
Type:  
Subsystem identification  
2Ch  
Read/Update  
0000 0000h  
Default:  
Table 7−10. Subsystem Identification Register Description  
BIT  
FIELD NAME  
TYPE  
RU  
DESCRIPTION  
31−16 ‡  
15−0 ‡  
OHCI_SSID  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
OHCI_SSVID  
RU  
One or more bits in this register are cleared only by the assertion of GRST.  
7.13 Power Management Capabilities Pointer Register  
The power management capabilities pointer register provides a pointer into the PCI configuration header where the  
power-management register block resides. The PCI7410 configuration header doublewords at offsets 44h and 48h  
provide the power-management registers. This register is read-only and returns 44h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities pointer  
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Power management capabilities pointer  
34h  
Read-only  
44h  
Default:  
7−9  
 
7.14 Interrupt Line Register  
The interrupt line register communicates interrupt line routing information. See Table 7−11 for a complete description  
of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Interrupt line  
3Ch  
Read/Write  
00h  
Default:  
Table 7−11. Interrupt Line Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
7−0  
INTR_LINE  
RW  
Interrupt line. This field is programmed by the system and indicates to software which interrupt line the  
PCI7410 PCI_INTA is connected to.  
7.15 Interrupt Pin Register  
The value read from this register is function dependent and depends on the values of bits 28, the tie-all bit (TIEALL),  
and 29, the interrupt tie bit (INTRTIE), in the system control register (PCI offset 80h, see Section 4.30). The INTRTIE  
bit is compatible with previous TI CardBus controllers, and when set to 1, ties INTB to INTA internally. The TIEALL  
bit ties INTA, INTB, and INTC together internally. The internal interrupt connections set by INTRTIE and TIEALL are  
communicated to host software through this standard register interface. This read-only register is described for all  
PCI7410 functions in Table 7−12.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Interrupt pin  
3Dh  
Read-only  
02h  
Default:  
Table 7−12. PCI Interrupt Pin Register—Read-Only INTPIN Per Function  
INTPIN  
FUNCTION 0  
(CARDBUS)  
INTPIN  
FUNCTION 1  
(DEDICATED SOCKET)  
INTPIN  
FUNCTION 2  
(1394 OHCI)  
INTRTIE BIT  
(BIT 29, OFFSET 80h)  
TIEALL BIT  
(BIT 28, OFFSET 80h)  
0
1
0
0
1
01h (INTA)  
01h (INTA)  
01h (INTA)  
02h (INTB)  
01h (INTA)  
01h (INTA)  
03h (INTC)  
03h (INTC)  
01h (INTA)  
X
NOTE: When configuring the PCI7410 functions to share PCI interrupts, multifunction terminal MFUNC3 must be configured as IRQSER prior  
to setting the INTRTIE bit.  
7−10  
 
7.16 Minimum Grant and Maximum Latency Register  
The minimum grant and maximum latency register communicates to the system the desired setting of bits 15−8 in  
the latency timer and class cache line size register at offset 0Ch in the PCI configuration space (see Section 7.6).  
If a serial EEPROM is detected, then the contents of this register are loaded through the serial EEPROM interface  
after a GRST. If no serial EEPROM is detected, then this register returns a default value that corresponds to the  
MAX_LAT = 4, MIN_GNT = 2. See Table 7−13 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Minimum grant and maximum latency  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
Register:  
Offset:  
Type:  
Minimum grant and maximum latency  
3Eh  
Read/Update  
0402h  
Default:  
Table 7−13. Minimum Grant and Maximum Latency Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15−8 ‡  
MAX_LAT  
RU  
Maximum latency. The contents of this field may be used by host BIOS to assign an arbitration priority level  
to the PCI7410 controller. The default for this register indicates that the PCI7410 controller may need to  
access the PCI bus as often as every 0.25 µs; thus, an extremely high priority level is requested. The  
contents of this field may also be loaded through the serial EEPROM.  
7−0 ‡  
MIN_GNT  
RU  
Minimum grant. The contents of this field may be used by host BIOS to assign a latency timer register value  
to the PCI7410 controller. The default for this register indicates that the PCI7410 controller may need to  
sustain burst transfers for nearly 64 µs and thus request a large value be programmed in bits 15−8 of the  
PCI7410 latency timer and class cache line size register at offset 0Ch in the PCI configuration space (see  
Section 7.6).  
One or more bits in this register are cleared only by the assertion of GRST.  
7.17 OHCI Control Register  
The PCI OHCI control register is defined by the 1394 Open Host Controller Interface Specification and provides a  
bit for big endian PCI support. See Table 7−14 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
Register:  
Offset:  
Type:  
OHCI control  
40h  
Read/Write, Read-only  
0000 0000h  
Default:  
Table 7−14. OHCI Control Register Description  
BIT  
31−1  
0
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−1 return 0s when read.  
GLOBAL_SWAP  
RW  
When bit 0 is set to 1, all quadlets read from and written to the PCI interface are byte-swapped (big  
endian).  
7−11  
 
7.18 Capability ID and Next Item Pointer Registers  
The capability ID and next item pointer register identifies the linked-list capability item and provides a pointer to the  
next capability item. See Table 7−15 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID and next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Offset:  
Type:  
Capability ID and next item pointer  
44h  
Read-only  
0001h  
Default:  
Table 7−15. Capability ID and Next Item Pointer Registers Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15−8  
NEXT_ITEM  
R
Next item pointer. The PCI7410 controller supports only one additional capability that is  
communicated to the system through the extended capabilities list; therefore, this field returns 00h  
when read.  
7−0  
CAPABILITY_ID  
R
Capability identification. This field returns 01h when read, which is the unique ID assigned by the PCI  
SIG for PCI power-management capability.  
7−12  
 
7.19 Power Management Capabilities Register  
The power management capabilities register indicates the capabilities of the PCI7410 controller related to PCI power  
management. See Table 7−16 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
RU  
0
R
1
R
1
R
1
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Power management capabilities  
46h  
Read/Update, Read-only  
7E02h  
Default:  
Table 7−16. Power Management Capabilities Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15  
PME_D3COLD  
RU  
PME support from D3  
cold  
. This bit can be set to 1 or cleared to 0 via bit 15 (PME_D3COLD) in the PCI  
miscellaneous configuration register at offset F0h in the PCI configuration space (see Section 7.23).  
The PCI miscellaneous configuration register is loaded from ROM. When this bit is set to 1, it indicates  
that the PCI7410 controller is capable of generating a PME wake event from D3  
dependent upon the PCI7410 V  
AUX  
(PME_D3COLD) in the PCI miscellaneous configuration register (see Section 7.23).  
. This bit state is  
implementation and may be configured by using bit 15  
cold  
14−11  
PME_SUPPORT  
R
PME support. This 4-bit field indicates the power states from which the PCI7410 controller may assert  
PME. This field returns a value of 1111b by default, indicating that PME may be asserted from  
the D3 , D2, D1, and D0 power states.  
hot  
10  
9
D2_SUPPORT  
D1_SUPPORT  
AUX_CURRENT  
R
R
R
D2 support. Bit 10 is hardwired to 1, indicating that the PCI7410 controller supports the D2 power state.  
D1 support. Bit 9 is hardwired to 1, indicating that the PCI7410 controller supports the D1 power state.  
8−6  
Auxiliary current. This 3-bit field reports the 3.3-V auxiliary current requirements. When bit 15  
AUX  
(PME_D3COLD) is cleared, this field returns 000b; otherwise, it returns 001b.  
000b = Self-powered  
001b = 55 mA (3.3-V  
AUX  
maximum current required)  
5
DSI  
R
Device-specific initialization. This bit returns 0 when read, indicating that the PCI7410 controller does  
not require special initialization beyond the standard PCI configuration header before a generic class  
driver is able to use it.  
4
3
RSVD  
R
R
Reserved. Bit 4 returns 0 when read.  
PME_CLK  
PME clock. This bit returns 0 when read, indicating that no host bus clock is required for the PCI7410  
controller to generate PME.  
2−0  
PM_VERSION  
R
Power-management version. This field returns 010b when read, indicating that the PCI7410 controller  
is compatible with the registers described in the PCI Bus Power Management Interface Specification  
(Revision 1.1).  
7−13  
 
7.20 Power Management Control and Status Register  
The power management control and status register implements the control and status of the PCI power-management  
function. This register is not affected by the internally generated reset caused by the transition from the D3  
state. See Table 7−17 for a complete description of the register contents.  
to D0  
hot  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control and status  
RWC  
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Power management control and status  
48h  
Read/Clear, Read/Write, Read-only  
0000h  
Default:  
Table 7−17. Power Management Control and Status Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15 ‡  
PME_STS  
RWC  
Bit 15 is set to 1 when the PCI7410 controller normally asserts the PME signal independent of the state  
of bit 8 (PME_ENB). This bit is cleared by a writeback of 1, which also clears the PME signal driven  
by the PCI7410 controller. Writing a 0 to this bit has no effect.  
14−13  
12−9  
8 ‡  
DATA_SCALE  
DATA_SELECT  
PME_ENB  
R
R
This field returns 0s, because the data register is not implemented.  
This field returns 0s, because the data register is not implemented.  
RW  
When bit 8 is set to 1, PME assertion is enabled. When bit 8 is cleared, PME assertion is disabled. This  
bit defaults to 0 if the function does not support PME generation from D3  
. If the function supports  
cold  
PME from D3 , then this bit is sticky and must be explicitly cleared by the operating system each  
cold  
time it is initially loaded.  
7−2  
RSVD  
R
Reserved. Bits 7−2 return 0s when read.  
1−0 ‡  
PWR_STATE  
RW  
Power state. This 2-bit field sets the PCI7410 controller power state and is encoded as follows:  
00 = Current power state is D0.  
01 = Current power state is D1.  
10 = Current power state is D2.  
11 = Current power state is D3.  
One or more bits in this register are cleared only by the assertion of GRST.  
7.21 Power Management Extension Registers  
The power management extension register provides extended power-management features not applicable to the  
PCI7410 controller; thus, it is read-only and returns 0 when read. See Table 7−18 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management extension  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power management extension  
4Ah  
Read-only  
0000h  
Default:  
Table 7−18. Power Management Extension Registers Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15−0  
RSVD  
R
Reserved. Bits 15−0 return 0s when read.  
7−14  
 
7.22 PCI PHY Control Register  
The PCI PHY control register provides a method for enabling the PHY CNA output. See Table 7−19 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI PHY control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI PHY control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
Register:  
Offset:  
Type:  
PCI PHY control  
ECh  
Read/Write, Read-only  
0000 0008h  
Default:  
Table 7−19. PCI PHY Control Register  
BIT  
31−8  
7 ‡  
FIELD NAME  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−8 return 0s when read.  
RSVD  
CNAOUT  
RW  
When bit 7 is set to 1, the PHY CNA output is routed to terminal 96. When implementing a serial  
EEPROM, this bit can be set by programming bit 7 of offset 16h in the EEPROM to 1. See  
Table 3−11, EEPROM Loading Map.  
6−5  
4 ‡  
RSVD  
RSVD  
RSVD  
R
R
R
Reserved. Bits 6−4 return 0s when read. These bits are affected when implementing a serial  
EEPROM; thus, bits 6−4 at EEPROM byte offset 16h must be programmed to 0. See Table 3−11,  
EEPROM Loading Map.  
3 ‡  
Reserved. Bit 3 defaults to 1 to indicate compliance with IEEE Std 1394a-2000. If a serial  
EEPROM is implemented, then bit 3 at EEPROM byte offset 16h must be set to 1. See Table 3−11,  
EEPROM Loading Map.  
2−0  
Reserved. Bits 2−0 return 0s when read. These bits are affected when implementing a serial  
EEPROM; thus, bits 2−0 at EEPROM byte offset 16h must be programmed to 0. See Table 3−11,  
EEPROM Loading Map.  
One or more bits in this register are cleared only by the assertion of GRST.  
7.23 PCI Miscellaneous Configuration Register  
The PCI miscellaneous configuration register provides miscellaneous PCI-related configuration. See Table 7−20 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI miscellaneous configuration  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI miscellaneous configuration  
RW  
0
R
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
PCI miscellaneous configuration  
F0h  
Read/Write, Read-only  
0000 0000h  
Default:  
7−15  
 
Table 7−20. PCI Miscellaneous Configuration Register  
BIT  
31−16  
15 ‡  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−16 return 0s when read.  
PME support from D3 . This bit programs bit 15 (PME_D3COLD) in the power management  
PME_D3COLD  
RW  
cold  
capabilities register at offset 46h in the PCI configuration space (see Section 7.19).  
14−12  
11 ‡  
RSVD  
R
Reserved. Bits 14−12 return 0s when read.  
PCI2_3_EN  
RW  
PCI 2.3 Enable. When this bit is set to 1, the 1394 OHCI function conforms to the PCI 2.3  
specification. When in the PCI 2.3 mode, the INT_DISABLE and INT_STATUS bits per the PCI 2.3  
specification are functional. When this bit is cleared, the function conforms to the PCI 2.2  
specification and all PCI 2.3 bits are disabled.  
0 = PCI 2.2 mode (default)  
1 = PCI 2.3 mode  
10 ‡  
ignore_mstrIntEna  
_for_pme  
RW  
RW  
Ignore IntMask.msterIntEnable bit for PME generation. When set, this bit causes the PME generation  
behavior to be changed as described in Section 3.9. When set, this bit also causes bit 26 of the OHCI  
vendor ID register at OHCI offset 40h (see Section 8.15) to read 1, otherwise, bit 26 reads 0.  
0 = PME behavior generated from unmasked interrupt bits and IntMask.masterIntEnable bit  
(default)  
1 = PME generation does not depend on the value of IntMask.masterIntEnable  
9−8 ‡  
MR_ENHANCE  
This field selects the read command behavior of the PCI master for read transactions of greater than  
two data phases. For read transactions of one or two data phases, a memory read command is used.  
The default of this field is 00. This register is loaded by the serial EEPROM word 12, bits 1−0.  
00 = Memory read line (default)  
01 = Memory read  
10 = Memory read multiple  
11 = Reserved, behavior reverts to default  
7−6  
5 ‡  
4 ‡  
RSVD  
RSVD  
R
R
Reserved. Bits 7−6 return 0s when read.  
Reserved. Bit 5 returns 0 when read.  
DIS_TGT_ABT  
RW  
Bit 4 defaults to 0, which provides OHCI-Lynxcompatible target abort signaling. When this bit is  
set to 1, it enables the no-target-abort mode, in which the PCI7410 controller returns indeterminate  
data instead of signaling target abort.  
The PCI7410 LLC is divided into the PCLK and SCLK domains. If software tries to access registers  
in the link that are not active because the SCLK is disabled, then a target abort is issued by the link.  
On some systems, this can cause a problem resulting in a fatal system error. Enabling this bit allows  
the link to respond to these types of requests by returning FFh.  
It is recommended that this bit be set to 1.  
3 ‡  
2 ‡  
1 ‡  
0 ‡  
GP2IIC  
RW  
RW  
RW  
RW  
When bit 3 is set to 1, the GPIO3 and GPIO2 signals are internally routed to the SCL and SDA,  
respectively. The GPIO3 and GPIO2 terminals are also placed in the high-impedance state.  
DISABLE_  
SCLKGATE  
When bit 2 is set to 1, the internal SCLK runs identically with the chip input. This is a test feature only  
and must be cleared to 0 (all applications).  
DISABLE_  
PCIGATE  
When bit 1 is set to 1, the internal PCI clock runs identically with the chip input. This is a test feature  
only and must be cleared to 0 (all applications).  
KEEP_PCLK  
When bit 0 is set to 1, the PCI clock is always kept running through the CLKRUN protocol. When this  
bit is cleared, the PCI clock can be stopped using CLKRUN on MFUNC6.  
One or more bits in this register are cleared only by the assertion of GRST.  
7−16  
 
7.24 Link Enhancement Control Register  
The link enhancement control register implements TI proprietary bits that are initialized by software or by a serial  
EEPROM, if present. After these bits are set to 1, their functionality is enabled only if bit 22 (aPhyEnhanceEnable)  
in the host controller control register at OHCI offset 50h/54h (see Section 8.16) is set to 1. See Table 7−21 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link enhancement control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Link enhancement control  
RW  
0
R
0
RW  
0
RW  
1
R
0
RW  
0
R
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
Register:  
Offset:  
Type:  
Link enhancement control  
F4h  
Read/Write, Read-only  
0000 1000h  
Default:  
Table 7−21. Link Enhancement Control Register Description  
BIT  
31−16  
15 ‡  
FIELD NAME  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−16 return 0s when read.  
RSVD  
dis_at_pipeline  
RSVD  
RW  
R
Disable AT pipelining. When bit 15 is set to 1, out-of-order AT pipelining is disabled.  
Reserved.  
14 ‡  
13−12 ‡  
atx_thresh  
RW  
This field sets the initial AT threshold value, which is used until the AT FIFO is underrun. When the  
PCI7410 controller retries the packet, it uses a 2K-byte threshold, resulting in a store-and-forward  
operation.  
00 = Threshold ~ 2K bytes resulting in a store-and-forward operation  
01 = Threshold ~ 1.7K bytes (default)  
10 = Threshold ~ 1K bytes  
11 = Threshold ~ 512 bytes  
These bits fine-tune the asynchronous transmit threshold. For most applications the 1.7K-byte  
threshold is optimal. Changing this value may increase or decrease the 1394 latency depending on  
the average PCI bus latency.  
Setting the AT threshold to 1.7K, 1K, or 512 bytes results in data being transmitted at these thresholds  
or when an entire packet has been checked into the FIFO. If the packet to be transmitted is larger  
than the AT threshold, then the remaining data must be received before the AT FIFO is emptied;  
otherwise, an underrun condition occurs, resulting in a packet error at the receiving node. As a result,  
the link then commences store-and-forward operation. Wait until it has the complete packet in the  
FIFO before retransmitting it on the second attempt to ensure delivery.  
An AT threshold of 2K results in store-and-forward operation, which means that asynchronous data  
will not be transmitted until an end-of-packet token is received. Restated, setting the AT threshold  
to 2K results in only complete packets being transmitted.  
Note that this device always uses store-and-forward when the asynchronous transmit retries register  
at OHCI offset 08h (see Section 8.3) is cleared.  
11  
RSVD  
R
Reserved. Bit 11 returns 0 when read.  
10 ‡  
enab_mpeg_ts  
RW  
Enable MPEG CIP timestamp enhancement. When bit 9 is set to 1, the enhancement is enabled for  
MPEG CIP transmit streams (FMT = 20h).  
9
RSVD  
R
Reserved. Bit 9 returns 0 when read.  
8 ‡  
enab_dv_ts  
RW  
Enable DV CIP timestamp enhancement. When bit 8 is set to 1, the enhancement is enabled for DV  
CIP transmit streams (FMT = 00h).  
One or more bits in this register are cleared only by the assertion of GRST.  
7−17  
 
Table 7−21. Link Enhancement Control Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
7 ‡  
enab_unfair  
RW  
Enable asynchronous priority requests. OHCI-Lynxcompatible. Setting bit 7 to 1 enables the link to  
respond to requests with priority arbitration. It is recommended that this bit be set to 1.  
6
RSVD  
R
This bit is not assigned in the PCI7410 follow-on products, because this bit location loaded by the serial  
EEPROM from the enhancements field corresponds to bit 23 (programPhyEnable) in the host  
controller control register at OHCI offset 50h/54h (see Section 8.16).  
5−3  
2 ‡  
1 ‡  
RSVD  
RSVD  
R
R
Reserved. Bits 5−3 return 0s when read.  
Reserved. Bit 2 returns 0 when read.  
enab_accel  
RW  
Enable acceleration enhancements. OHCI-Lynxcompatible. When bit 1 is set to 1, the PHY layer  
is notified that the link supports the IEEE Std 1394a-2000 acceleration enhancements, that is,  
ack-accelerated, fly-by concatenation, etc. It is recommended that this bit be set to 1.  
0
RSVD  
R
Reserved. Bit 0 returns 0 when read.  
One or more bits in this register are cleared only by the assertion of GRST.  
7.25 Subsystem Access Register  
Write access to the subsystem access register updates the subsystem identification registers identically to  
OHCI-Lynx. The system ID value written to this register may also be read back from this register. See Table 7−22  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem access  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem access  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Subsystem access  
F8h  
Read/Write  
0000 0000h  
Default:  
Table 7−22. Subsystem Access Register Description  
BIT  
FIELD NAME  
SUBDEV_ID  
SUBVEN_ID  
TYPE  
DESCRIPTION  
31−16  
15−0  
RW  
RW  
Subsystem device ID alias. This field indicates the subsystem device ID.  
Subsystem vendor ID alias. This field indicates the subsystem vendor ID.  
7−18  
 
8 OHCI Registers  
The OHCI registers defined by the 1394 Open Host Controller Interface Specification are memory-mapped into a  
2K-byte region of memory pointed to by the OHCI base address register at offset 10h in PCI configuration space (see  
Section 7.8). These registers are the primary interface for controlling the PCI7410 IEEE 1394 link function.  
This section provides the register interface and bit descriptions. Several set/clear register pairs in this programming  
model are implemented to solve various issues with typical read-modify-write control registers. There are two  
addresses for a set/clear register: RegisterSet and RegisterClear. See Table 8−1 for a register listing. A 1 bit written  
to RegisterSet causes the corresponding bit in the set/clear register to be set to 1; a 0 bit leaves the corresponding  
bit unaffected. A 1 bit written to RegisterClear causes the corresponding bit in the set/clear register to be cleared;  
a 0 bit leaves the corresponding bit in the set/clear register unaffected.  
Typically, a read from either RegisterSet or RegisterClear returns the contents of the set or clear register, respectively.  
However, sometimes reading the RegisterClear provides a masked version of the set or clear register. The interrupt  
event register is an example of this behavior.  
Table 8−1. OHCI Register Map  
DMA CONTEXT  
REGISTER NAME  
OHCI version  
ABBREVIATION  
Version  
OFFSET  
00h  
GUID ROM  
GUID_ROM  
ATRetries  
04h  
Asynchronous transmit retries  
CSR data  
08h  
CSRData  
0Ch  
CSR compare  
CSRCompareData  
CSRControl  
ConfigROMhdr  
BusID  
10h  
CSR control  
14h  
Configuration ROM header  
Bus identification  
Bus options ‡  
18h  
1Ch  
BusOptions  
GUIDHi  
20h  
GUID high ‡  
24h  
GUID low ‡  
GUIDLo  
28h  
Reserved  
2Ch−30h  
34h  
Configuration ROM mapping  
Posted write address low  
Posted write address high  
Vendor ID  
ConfigROMmap  
PostedWriteAddressLo  
PostedWriteAddressHi  
VendorID  
38h  
3Ch  
40h  
Reserved  
44h−4Ch  
50h  
HCControlSet  
HCControlClr  
Host controller control ‡  
Reserved  
54h  
58h−5Ch  
One or more bits in this register are cleared only by the assertion of GRST.  
8−1  
 
Table 8−1. OHCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
60h  
Self-ID  
Reserved  
Self-ID buffer pointer  
Self-ID count  
SelfIDBuffer  
64h  
SelfIDCount  
68h  
Reserved  
6Ch  
IRChannelMaskHiSet  
IRChannelMaskHiClear  
IRChannelMaskLoSet  
IRChannelMaskLoClear  
IntEventSet  
70h  
Isochronous receive channel mask high  
Isochronous receive channel mask low  
Interrupt event  
74h  
78h  
7Ch  
80h  
IntEventClear  
84h  
IntMaskSet  
88h  
Interrupt mask  
IntMaskClear  
8Ch  
IsoXmitIntEventSet  
IsoXmitIntEventClear  
IsoXmitIntMaskSet  
IsoXmitIntMaskClear  
IsoRecvIntEventSet  
IsoRecvIntEventClear  
IsoRecvIntMaskSet  
IsoRecvIntMaskClear  
InitialBandwidthAvailable  
InitialChannelsAvailableHi  
InitialChannelsAvailableLo  
90h  
Isochronous transmit interrupt event  
Isochronous transmit interrupt mask  
Isochronous receive interrupt event  
Isochronous receive interrupt mask  
94h  
98h  
9Ch  
A0h  
A4h  
A8h  
ACh  
B0h  
Initial bandwidth available  
Initial channels available high  
Initial channels available low  
Reserved  
B4h  
B8h  
BCh−D8h  
DCh  
E0h  
Fairness control  
FairnessControl  
LinkControlSet  
Link control ‡  
LinkControlClear  
NodeID  
E4h  
Node identification  
PHY layer control  
Isochronous cycle timer  
Reserved  
E8h  
PhyControl  
ECh  
F0h  
Isocyctimer  
F4h−FCh  
100h  
104h  
108h  
10Ch  
110h  
114h  
118h  
11Ch  
120h  
124h−17Ch  
AsyncRequestFilterHiSet  
AsyncRequestFilterHiClear  
AsyncRequestFilterLoSet  
AsyncRequestFilterLoClear  
PhysicalRequestFilterHiSet  
PhysicalRequestFilterHiClear  
PhysicalRequestFilterLoSet  
PhysicalRequestFilterLoClear  
PhysicalUpperBound  
Asynchronous request filter high  
Asynchronous request filter low  
Physical request filter high  
Physical request filter low  
Physical upper bound  
Reserved  
One or more bits in this register are cleared only by the assertion of GRST.  
8−2  
Table 8−1. OHCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
180h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
184h  
Asynchronous  
Request Transmit  
[ ATRQ ]  
Reserved  
188h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
18Ch  
190h−19Ch  
1A0h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
1A4h  
Asynchronous  
Response Transmit  
[ ATRS ]  
Reserved  
1A8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1ACh  
1B0h−1BCh  
1C0h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
1C4h  
Asynchronous  
Request Receive  
[ ARRQ ]  
Reserved  
1C8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1CCh  
1D0h−1DCh  
1E0h  
ContextControlSet  
Asynchronous context control  
ContextControlClear  
1E4h  
Asynchronous  
Response Receive  
[ ARRS ]  
Reserved  
1E8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1ECh  
1F0h−1FCh  
200h + 16*n  
204h + 16*n  
208h + 16*n  
ContextControlSet  
ContextControlClear  
Isochronous transmit context control  
Reserved  
Isochronous  
Transmit Context n  
n = 0, 1, 2, 3, , 7  
Isochronous transmit context command  
pointer  
CommandPtr  
20Ch + 16*n  
Reserved  
210h−3FCh  
400h + 32*n  
404h + 32*n  
408h + 32*n  
ContextControlSet  
ContextControlClear  
Isochronous receive context control  
Reserved  
Isochronous  
Receive Context n  
n = 0, 1, 2, 3  
Isochronous receive context command  
pointer  
CommandPtr  
ContextMatch  
40Ch + 32*n  
410h + 32*n  
Isochronous receive context match  
8−3  
8.1 OHCI Version Register  
The OHCI version register indicates the OHCI version support and whether or not the serial EEPROM is present. See  
Table 8−2 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
X
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
OHCI version  
00h  
Read-only  
0X01 0010h  
Default:  
Table 8−2. OHCI Version Register Description  
BIT  
31−25  
24  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
R
R
Reserved. Bits 31−25 return 0s when read.  
GUID_ROM  
The PCI7410 controller sets bit 24 to 1 if the serial EEPROM is detected. If the serial EEPROM is  
present, then the Bus_Info_Block is automatically loaded on system (hardware) reset.  
23−16  
version  
R
Major version of the OHCI. The PCI7410 controller is compliant with the 1394 Open Host Controller  
Interface Specification (Release 1.1); thus, this field reads 01h.  
15−8  
7−0  
RSVD  
R
R
Reserved. Bits 15−8 return 0s when read.  
revision  
Minor version of the OHCI. The PCI7410 controller is compliant with the 1394 Open Host Controller  
Interface Specification (Release 1.1); thus, this field reads 10h.  
8−4  
 
8.2 GUID ROM Register  
The GUID ROM register accesses the serial EEPROM, and is only applicable if bit 24 (GUID_ROM) in the OHCI  
version register at OHCI offset 00h (see Section 8.1) is set to 1. See Table 8−3 for a complete description of the  
register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID ROM  
RSU  
0
R
0
R
0
R
0
R
0
R
0
RSU  
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
0
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
Name  
Type  
Default  
GUID ROM  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
GUID ROM  
04h  
Read/Set/Update, Read/Update, Read-only  
00XX 0000h  
Default:  
Table 8−3. GUID ROM Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
addrReset  
RSU  
Software sets bit 31 to 1 to reset the GUID ROM address to 0. When the PCI7410 controller completes  
the reset, it clears this bit. The PCI7410 controller does not automatically fill bits 23−16 (rdData field)  
with the 0 byte.  
th  
30−26  
25  
RSVD  
rdStart  
R
Reserved. Bits 30−26 return 0s when read.  
RSU  
A read of the currently addressed byte is started when bit 25 is set to 1. This bit is automatically cleared  
when the PCI7410 controller completes the read of the currently addressed GUID ROM byte.  
24  
RSVD  
rdData  
R
RU  
R
Reserved. Bit 24 returns 0 when read.  
23−16  
15−8  
7−0  
This field contains the data read from the GUID ROM.  
Reserved. Bits 15−8 return 0s when read.  
RSVD  
miniROM  
R
The miniROM field defaults to 0 indicating that no mini-ROM is implemented. If bit 5 of EEPROM offset  
6h is set to 1, then this field returns 20h indicating that valid mini-ROM data begins at offset 20h of the  
GUID ROM.  
8−5  
 
8.3 Asynchronous Transmit Retries Register  
The asynchronous transmit retries register indicates the number of times the PCI7410 controller attempts a retry for  
asynchronous DMA request transmit and for asynchronous physical and DMA response transmit. See Table 8−4 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Asynchronous transmit retries  
08h  
Read/Write, Read-only  
0000 0000h  
Default:  
Table 8−4. Asynchronous Transmit Retries Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−29  
secondLimit  
R
The second limit field returns 0s when read, because outbound dual-phase retry is not  
implemented.  
28−16  
15−12  
11−8  
cycleLimit  
RSVD  
R
R
The cycle limit field returns 0s when read, because outbound dual-phase retry is not implemented.  
Reserved. Bits 15−12 return 0s when read.  
maxPhysRespRetries  
RW  
This field tells the physical response unit how many times to attempt to retry the transmit operation  
for the response packet when a busy acknowledge or ack_data_error is received from the target  
node.  
7−4  
3−0  
maxATRespRetries  
maxATReqRetries  
RW  
RW  
This field tells the asynchronous transmit response unit how many times to attempt to retry the  
transmit operation for the response packet when a busy acknowledge or ack_data_error is  
received from the target node.  
This field tells the asynchronous transmit DMA request unit how many times to attempt to retry the  
transmit operation for the response packet when a busy acknowledge or ack_data_error is  
received from the target node.  
8.4 CSR Data Register  
The CSR data register accesses the bus management CSR registers from the host through compare-swap  
operations. This register contains the data to be stored in a CSR if the compare is successful.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR data  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR data  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
Type:  
CSR data  
0Ch  
Read-only  
XXXX XXXXh  
Default:  
8−6  
 
8.5 CSR Compare Register  
The CSR compare register accesses the bus management CSR registers from the host through compare-swap  
operations. This register contains the data to be compared with the existing value of the CSR resource.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR compare  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR compare  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
Type:  
CSR compare  
10h  
Read-only  
XXXX XXXXh  
Default:  
8.6 CSR Control Register  
The CSR control register accesses the bus management CSR registers from the host through compare-swap  
operations. This register controls the compare-swap operation and selects the CSR resource. See Table 8−5 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR control  
RU  
1
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
X
RW  
X
Register:  
Offset:  
Type:  
CSR control  
14h  
Read/Write, Read/Update, Read-only  
8000 000Xh  
Default:  
Table 8−5. CSR Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
csrDone  
RU  
Bit 31 is set to 1 by the PCI7410 controller when a compare-swap operation is complete. It is cleared  
whenever this register is written.  
30−2  
1−0  
RSVD  
csrSel  
R
Reserved. Bits 30−2 return 0s when read.  
RW  
This field selects the CSR resource as follows:  
00 = BUS_MANAGER_ID  
01 = BANDWIDTH_AVAILABLE  
10 = CHANNELS_AVAILABLE_HI  
11 = CHANNELS_AVAILABLE_LO  
8−7  
 
8.7 Configuration ROM Header Register  
The configuration ROM header register externally maps to the first quadlet of the 1394 configuration ROM, offset  
FFFF F000 0400h. See Table 8−6 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM header  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM header  
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
Register:  
Offset:  
Type:  
Configuration ROM header  
18h  
Read/Write  
Default:  
0000 XXXXh  
Table 8−6. Configuration ROM Header Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−24  
info_length  
RW  
IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in the host controller control  
register at OHCI offset 50h/54h (see Section 8.16) is set to 1.  
23−16  
15−0  
crc_length  
RW  
RW  
IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in the host controller control  
register at OHCI offset 50h/54h (see Section 8.16) is set to 1.  
rom_crc_value  
IEEE 1394 bus-management field. Must be valid at any time bit 17 (linkEnable) in the host controller  
control register at OHCI offset 50h/54h (see Section 8.16) is set to 1. The reset value is undefined if  
no serial EEPROM is present. If a serial EEPROM is present, then this field is loaded from the serial  
EEPROM.  
8.8 Bus Identification Register  
The bus identification register externally maps to the first quadlet in the Bus_Info_Block and contains the constant  
3133 3934h, which is the ASCII value of 1394.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus identification  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
1
8
R
0
7
R
0
6
R
1
5
R
1
4
R
0
3
R
0
2
R
1
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Bus identification  
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Bus identification  
1Ch  
Read-only  
Default:  
3133 3934h  
8−8  
 
8.9 Bus Options Register  
The bus options register externally maps to the second quadlet of the Bus_Info_Block. See Table 8−7 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus options  
RW  
X
RW  
X
RW  
X
RW  
X
RW  
0
R
0
R
0
9
R
0
8
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bus options  
RW  
1
RW  
0
RW  
1
RW  
0
R
0
R
0
R
0
R
0
RW  
X
RW  
X
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Bus options  
20h  
Read/Write, Read-only  
X0XX A0X2h  
Default:  
Table 8−7. Bus Options Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
irmc  
RW  
Isochronous resource-manager capable. IEEE 1394 bus-management field. Must be valid when  
bit 17 (linkEnable) in the host controller control register at OHCI offset 50h/54h (see Section 8.16)  
is set to 1.  
30  
29  
cmc  
isc  
RW  
RW  
Cycle master capable. IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in  
the host controller control register at OHCI offset 50h/54h (see Section 8.16) is set to 1.  
Isochronous support capable. IEEE 1394 bus-management field. Must be valid when bit 17  
(linkEnable) in the host controller control register at OHCI offset 50h/54h (see Section 8.16) is set  
to 1.  
28  
27  
bmc  
pmc  
RW  
RW  
Bus manager capable. IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in  
the host controller control register at OHCI offset 50h/54h (see Section 8.16) is set to 1.  
Power-management capable. IEEE 1394 bus-management field. When bit 27 is set to 1, this  
indicates that the node is power-management capable. Must be valid when bit 17 (linkEnable) in the  
host controller control register at OHCI offset 50h/54h (see Section 8.16) is set to 1.  
26−24  
23−16  
RSVD  
R
Reserved. Bits 26−24 return 0s when read.  
cyc_clk_acc  
RW  
Cycle master clock accuracy, in parts per million. IEEE 1394 bus-management field. Must be valid  
when bit 17 (linkEnable) in the host controller control register at OHCI offset 50h/54h (see  
Section 8.16) is set to 1.  
15−12 ‡  
max_rec  
RW  
Maximum request. IEEE 1394 bus-management field. Hardware initializes this field to indicate the  
maximum number of bytes in a block request packet that is supported by the implementation. This  
value, max_rec_bytes, must be 512 or greater, and is calculated by 2^(max_rec + 1). Software may  
change this field; however, this field must be valid at any time bit 17 (linkEnable) in the host controller  
control register at OHCI offset 50h/54h (see Section 8.16) is set to 1. A received block write request  
packet with a length greater than max_rec_bytes may generate an ack_type_error. This field is not  
affected by a software reset, and defaults to value indicating 2048 bytes on a system (hardware)  
reset.  
11−8  
7−6  
RSVD  
g
R
Reserved. Bits 11−8 return 0s when read.  
RW  
Generation counter. This field is incremented if any portion of the configuration ROM has been  
incremented since the prior bus reset.  
5−3  
2−0  
RSVD  
R
R
Reserved. Bits 5−3 return 0s when read.  
Lnk_spd  
Link speed. This field returns 010, indicating that the link speeds of 100M bits/s, 200M bits/s, and  
400M bits/s are supported.  
One or more bits in this register are cleared only by the assertion of GRST.  
8−9  
 
8.10 GUID High Register  
The GUID high register represents the upper quadlet in a 64-bit global unique ID (GUID) which maps to the third  
quadlet in the Bus_Info_Block. This register contains node_vendor_ID and chip_ID_hi fields. This register initializes  
to 0s on a system (hardware) reset, which is an illegal GUID value. If a serial EEPROM is detected, then the contents  
of this register are loaded through the serial EEPROM interface after a PRST. At that point, the contents of this register  
cannot be changed. If no serial EEPROM is detected, then the contents of this register are loaded by the BIOS after  
a PRST. At that point, the contents of this register cannot be changed. All bits in this register are reset by GRST only.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
GUID high  
24h  
Read-only  
0000 0000h  
Default:  
8.11 GUID Low Register  
The GUID low register represents the lower quadlet in a 64-bit global unique ID (GUID) which maps to chip_ID_lo  
in the Bus_Info_Block. This register initializes to 0s on a system (hardware) reset and behaves identical to the GUID  
high register at OHCI offset 24h (see Section 8.10). All bits in this register are reset by GRST only.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
GUID low  
28h  
Read-only  
0000 0000h  
Default:  
8−10  
 
8.12 Configuration ROM Mapping Register  
The configuration ROM mapping register contains the start address within system memory that maps to the start  
address of 1394 configuration ROM for this node. See Table 8−8 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM mapping  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM mapping  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Configuration ROM mapping  
34h  
Read/Write  
0000 0000h  
Default:  
Table 8−8. Configuration ROM Mapping Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−10  
configROMaddr  
RW  
If a quadlet read request to 1394 offset FFFF F000 0400h through offset FFFF F000 07FFh is  
received, then the low-order 10 bits of the offset are added to this register to determine the host memory  
address of the read request.  
9−0  
RSVD  
R
Reserved. Bits 9−0 return 0s when read.  
8.13 Posted Write Address Low Register  
The posted write address low register communicates error information if a write request is posted and an error occurs  
while the posted data packet is being written. See Table 8−9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Offset:  
Type:  
Posted write address low  
38h  
Read/Update  
XXXX XXXXh  
Default:  
Table 8−9. Posted Write Address Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
The lower 32 bits of the 1394 destination offset of the write request that failed.  
31−0  
offsetLo  
RU  
8−11  
 
8.14 Posted Write Address High Register  
The posted write address high register communicates error information if a write request is posted and an error occurs  
while writing the posted data packet. See Table 8−10 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Offset:  
Type:  
Posted write address high  
3Ch  
Read/Update  
Default:  
XXXX XXXXh  
Table 8−10. Posted Write Address High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−16  
sourceID  
RU  
This field is the 10-bit bus number (bits 31−22) and 6-bit node number (bits 21−16) of the node that  
issued the write request that failed.  
15−0  
offsetHi  
RU  
The upper 16 bits of the 1394 destination offset of the write request that failed.  
8.15 Vendor ID Register  
The vendor ID register holds the company ID of an organization that specifies any vendor-unique registers. The  
PCI7410 controller implements Texas Instruments unique behavior with regards to OHCI. Thus, this register is  
read-only and returns 0108 0028h when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
1
8
R
0
7
R
0
6
R
0
5
R
0
4
R
1
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
1
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Vendor ID  
40h  
Read-only  
0108 0028h  
Default:  
8−12  
 
8.16 Host Controller Control Register  
The host controller control set/clear register pair provides flags for controlling the PCI7410 controller. See Table 8−11  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Host controller control  
RSU  
0
RSC  
X
RSC  
0
R
0
R
0
R
0
R
0
R
0
R
1
RSC  
0
R
0
R
0
RSC  
0
RSC  
X
RSC RSCU  
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Host controller control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Host controller control  
50h  
54h  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Clear, Read/Clear, Read-only  
X08X 0000h  
Table 8−11. Host Controller Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
BIBimage Valid  
RSU  
When bit 31 is set to 1, the PCI7410 physical response unit is enabled to respond to block read  
requests to host configuration ROM and to the mechanism for atomically updating configuration  
ROM. Software creates a valid image of the bus_info_block in host configuration ROM before  
setting this bit.  
When this bit is cleared, the PCI7410 controller returns ack_type_error on block read requests  
to host configuration ROM. Also, when this bit is cleared and a 1394 bus reset occurs, the  
configuration ROM mapping register at OHCI offset 34h (see Section 8.12), configuration ROM  
header register at OHCI offset 18h (see Section 8.7), and bus options register at OHCI offset 20h  
(see Section 8.9) are not updated.  
Software can set this bit only when bit 17 (linkEnable) is 0. Once bit 31 is set to 1, it can be cleared  
by a system (hardware) reset, a software reset, or if a fetch error occurs when the PCI7410  
controller loads bus_info_block registers from host memory.  
30  
29  
noByteSwapData  
AckTardyEnable  
RSC  
RSC  
Bit 30 controls whether physical accesses to locations outside the PCI7410 controller itself, as  
well as any other DMA data accesses are byte swapped.  
Bit 29 controls the acknowledgement of ack_tardy. When bit 29 is set to 1, ack_tardy may be  
returned as an acknowledgment to accesses from the 1394 bus to the PCI7410 controller,  
including accesses to the bus_info_block. The PCI7410 controller returns ack_tardy to all other  
asynchronous packets addressed to the PCI7410 node. When the PCI7410 controller sends  
ack_tardy, bit 27 (ack_tardy) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) is set to 1 to indicate the attempted asynchronous access.  
Software ensures that bit 27 (ack_tardy) in the interrupt event register is 0. Software also unmasks  
wake-up interrupt events such as bit 19 (phy) and bit 27 (ack_tardy) in the interrupt event register  
before placing the PCI7410 controller into the D1 power mode.  
Software must not set this bit if the PCI7410 node is the 1394 bus manager.  
Reserved. Bits 28−24 return 0s when read.  
28−24  
23 ‡  
RSVD  
R
R
programPhyEnable  
Bit 23 informs upper-level software that lower-level software has consistently configured the IEEE  
1394a-2000 enhancements in the link and PHY layers. When this bit is 1, generic software such  
as the OHCI driver is responsible for configuring IEEE 1394a-2000 enhancements in the PHY  
layer and bit 22 (aPhyEnhanceEnable). When this bit is 0, the generic software may not modify  
the IEEE 1394a-2000 enhancements in the PHY layer and cannot interpret the setting of bit 22  
(aPhyEnhanceEnable). This bit is initialized from serial EEPROM. This bit defaults to 1.  
One or more bits in this register are cleared only by the assertion of GRST.  
8−13  
 
Table 8−11. Host Controller Control Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
22  
aPhyEnhanceEnable  
RSC  
When bits 23 (programPhyEnable) and 17 (linkEnable) are 1, the OHCI driver can set bit 22 to  
1 to use all IEEE 1394a-2000 enhancements. When bit 23 (programPhyEnable) is cleared to 0,  
the software does not change PHY enhancements or this bit.  
21−20  
19  
RSVD  
LPS  
R
Reserved. Bits 21 and 20 return 0s when read.  
RSC  
Bit 19 controls the link power status. Software must set this bit to 1 to permit the link-PHY  
communication. A 0 prevents link-PHY communication.  
The OHCI-link is divided into two clock domains (PCLK and PHY_SCLK). If software tries to  
access any register in the PHY_SCLK domain while the PHY_SCLK is disabled, then a target  
abort is issued by the link. This problem can be avoided by setting bit 4 (DIS_TGT_ABT) to 1 in  
the PCI miscellaneous configuration register at offset F0h in the PCI configuration space (see  
Section 7.23). This allows the link to respond to these types of request by returning all Fs (hex).  
OHCI registers at offsets DCh−F0h and 100h−11Ch are in the PHY_SCLK domain.  
After setting LPS, software must wait approximately 10 ms before attempting to access any of  
the OHCI registers. This gives the PHY_SCLK time to stabilize.  
18  
17  
postedWriteEnable  
linkEnable  
RSC  
RSC  
Bit 18 enables (1) or disables (0) posted writes. Software changes this bit only when bit 17  
(linkEnable) is 0.  
Bit 17 is cleared to 0 by either a system (hardware) or software reset. Software must set this bit  
to 1 when the system is ready to begin operation and then force a bus reset. This bit is necessary  
to keep other nodes from sending transactions before the local system is ready. When this bit is  
cleared, the PCI7410 controller is logically and immediately disconnected from the 1394 bus, no  
packets are received or processed, nor are packets transmitted.  
16  
SoftReset  
RSVD  
RSCU When bit 16 is set to 1, all PCI7410 states are reset, all FIFOs are flushed, and all OHCI registers  
are set to their system (hardware) reset values, unless otherwise specified. PCI registers are not  
affected by this bit. This bit remains set to 1 while the software reset is in progress and reverts  
back to 0 when the reset has completed.  
15−0  
R
Reserved. Bits 15−0 return 0s when read.  
8.17 Self-ID Buffer Pointer Register  
The self-ID buffer pointer register points to the 2K-byte aligned base address of the buffer in host memory where the  
self-ID packets are stored during bus initialization. Bits 31−11 are read/write accessible. Bits 10−0 are reserved, and  
return 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self-ID buffer pointer  
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self-ID buffer pointer  
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Self-ID buffer pointer  
64h  
Read/Write, Read-only  
XXXX XX00h  
Default:  
8−14  
 
8.18 Self-ID Count Register  
The self-ID count register keeps a count of the number of times the bus self-ID process has occurred, flags self-ID  
packet errors, and keeps a count of the self-ID data in the self-ID buffer. See Table 8−12 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self-ID count  
RU  
X
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self-ID count  
R
0
R
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
R
0
R
0
Register:  
Offset:  
Type:  
Self-ID count  
68h  
Read/Update, Read-only  
X0XX 0000h  
Default:  
Table 8−12. Self-ID Count Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
selfIDError  
RU  
When bit 31 is set to 1, an error was detected during the most recent self-ID packet reception. The  
contents of the self-ID buffer are undefined. This bit is cleared after a self-ID reception in which no  
errors are detected. Note that an error can be a hardware error or a host bus write error.  
30−24  
23−16  
RSVD  
R
Reserved. Bits 30−24 return 0s when read.  
selfIDGeneration  
RU  
The value in this field increments each time a bus reset is detected. This field rolls over to 0 after  
reaching 255.  
15−11  
10−2  
RSVD  
R
Reserved. Bits 15−11 return 0s when read.  
selfIDSize  
RU  
This field indicates the number of quadlets that have been written into the self-ID buffer for the current  
bits 23−16 (selfIDGeneration field). This includes the header quadlet and the self-ID data. This field  
is cleared to 0s when the self-ID reception begins.  
1−0  
RSVD  
R
Reserved. Bits 1 and 0 return 0s when read.  
8−15  
 
8.19 Isochronous Receive Channel Mask High Register  
The isochronous receive channel mask high set/clear register enables packet receives from the upper 32  
isochronous data channels. A read from either the set register or clear register returns the content of the isochronous  
receive channel mask high register. See Table 8−13 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Offset:  
Isochronous receive channel mask high  
70h  
74h  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear  
XXXX XXXXh  
Table 8−13. Isochronous Receive Channel Mask High Register Description  
BIT  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
FIELD NAME  
isoChannel63  
isoChannel62  
isoChannel61  
isoChannel60  
isoChannel59  
isoChannel58  
isoChannel57  
isoChannel56  
isoChannel55  
isoChannel54  
isoChannel53  
isoChannel52  
isoChannel51  
isoChannel50  
isoChannel49  
isoChannel48  
isoChannel47  
isoChannel46  
isoChannel45  
isoChannel44  
isoChannel43  
isoChannel42  
isoChannel41  
isoChannel40  
isoChannel39  
TYPE  
DESCRIPTION  
RSC When bit 31 is set to 1, the controller is enabled to receive from isochronous channel number 63.  
RSC When bit 30 is set to 1, the controller is enabled to receive from isochronous channel number 62.  
RSC When bit 29 is set to 1, the controller is enabled to receive from isochronous channel number 61.  
RSC When bit 28 is set to 1, the controller is enabled to receive from isochronous channel number 60.  
RSC When bit 27 is set to 1, the controller is enabled to receive from isochronous channel number 59.  
RSC When bit 26 is set to 1, the controller is enabled to receive from isochronous channel number 58.  
RSC When bit 25 is set to 1, the controller is enabled to receive from isochronous channel number 57.  
RSC When bit 24 is set to 1, the controller is enabled to receive from isochronous channel number 56.  
RSC When bit 23 is set to 1, the controller is enabled to receive from isochronous channel number 55.  
RSC When bit 22 is set to 1, the controller is enabled to receive from isochronous channel number 54.  
RSC When bit 21 is set to 1, the controller is enabled to receive from isochronous channel number 53.  
RSC When bit 20 is set to 1, the controller is enabled to receive from isochronous channel number 52.  
RSC When bit 19 is set to 1, the controller is enabled to receive from isochronous channel number 51.  
RSC When bit 18 is set to 1, the controller is enabled to receive from isochronous channel number 50.  
RSC When bit 17 is set to 1, the controller is enabled to receive from isochronous channel number 49.  
RSC When bit 16 is set to 1, the controller is enabled to receive from isochronous channel number 48.  
RSC When bit 15 is set to 1, the controller is enabled to receive from isochronous channel number 47.  
RSC When bit 14 is set to 1, the controller is enabled to receive from isochronous channel number 46.  
RSC When bit 13 is set to 1, the controller is enabled to receive from isochronous channel number 45.  
RSC When bit 12 is set to 1, the controller is enabled to receive from isochronous channel number 44.  
RSC When bit 11 is set to 1, the controller is enabled to receive from isochronous channel number 43.  
RSC When bit 10 is set to 1, the controller is enabled to receive from isochronous channel number 42.  
RSC When bit 9 is set to 1, the controller is enabled to receive from isochronous channel number 41.  
RSC When bit 8 is set to 1, the controller is enabled to receive from isochronous channel number 40.  
RSC When bit 7 is set to 1, the controller is enabled to receive from isochronous channel number 39.  
8
7
8−16  
 
Table 8−13. Isochronous Receive Channel Mask High Register Description (Continued)  
BIT  
6
FIELD NAME  
isoChannel38  
isoChannel37  
isoChannel36  
isoChannel35  
isoChannel34  
isoChannel33  
isoChannel32  
TYPE  
DESCRIPTION  
RSC When bit 6 is set to 1, the controller is enabled to receive from isochronous channel number 38.  
RSC When bit 5 is set to 1, the controller is enabled to receive from isochronous channel number 37.  
RSC When bit 4 is set to 1, the controller is enabled to receive from isochronous channel number 36.  
RSC When bit 3 is set to 1, the controller is enabled to receive from isochronous channel number 35.  
RSC When bit 2 is set to 1, the controller is enabled to receive from isochronous channel number 34.  
RSC When bit 1 is set to 1, the controller is enabled to receive from isochronous channel number 33.  
RSC When bit 0 is set to 1, the controller is enabled to receive from isochronous channel number 32.  
5
4
3
2
1
0
8.20 Isochronous Receive Channel Mask Low Register  
The isochronous receive channel mask low set/clear register enables packet receives from the lower 32 isochronous  
data channels. See Table 8−14 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Offset:  
Isochronous receive channel mask low  
78h  
7Ch  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear  
XXXX XXXXh  
Table 8−14. Isochronous Receive Channel Mask Low Register Description  
BIT  
31  
FIELD NAME  
isoChannel31  
isoChannel30  
isoChanneln  
isoChannel1  
isoChannel0  
TYPE  
DESCRIPTION  
RSC When bit 31 is set to 1, the controller is enabled to receive from isochronous channel number 31.  
RSC When bit 30 is set to 1, the controller is enabled to receive from isochronous channel number 30.  
30  
29−2  
1
RSC Bits 29 through 2 (isoChanneln, where n = 29, 28, 27, , 2) follow the same pattern as bits 31 and 30.  
RSC When bit 1 is set to 1, the controller is enabled to receive from isochronous channel number 1.  
RSC When bit 0 is set to 1, the controller is enabled to receive from isochronous channel number 0.  
0
8−17  
 
8.21 Interrupt Event Register  
The interrupt event set/clear register reflects the state of the various PCI7410 interrupt sources. The interrupt bits  
are set to 1 by an asserting edge of the corresponding interrupt signal or by writing a 1 in the corresponding bit in the  
set register. The only mechanism to clear a bit in this register is to write a 1 to the corresponding bit in the clear register.  
This register is fully compliant with the 1394 Open Host Controller Interface Specification, and the PCI7410 controller  
adds a vendor-specific interrupt function to bit 30. When the interrupt event register is read, the return value is the  
bit-wise AND function of the interrupt event and interrupt mask registers. See Table 8−15 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Interrupt event  
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
R
0
RSC RSC  
R
0
X
0
0
X
X
X
X
X
X
X
X
0
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt event  
RSCU  
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Offset:  
Interrupt event  
80h  
84h  
set register  
clear register [returns the content of the interrupt event register bit-wise ANDed with  
the interrupt mask register when read]  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
XXXX 0XXXh  
Table 8−15. Interrupt Event Register Description  
BIT  
31−30  
29  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31 and 30 return 0 when read.  
SoftInterrupt  
RSVD  
RSC  
R
Bit 29 is used by software to generate a PCI7410 interrupt for its own use.  
Reserved. Bit 28 returns 0 when read.  
28  
27  
ack_tardy  
RSCU Bit 27 is set to 1 when bit 29 (AckTardyEnable) in the host controller control register at OHCI offset  
50h/54h (see Section 8.16) is set to 1 and any of the following conditions occur:  
a. Data is present in a receive FIFO that is to be delivered to the host.  
b. The physical response unit is busy processing requests or sending responses.  
c. The PCI7410 controller sent an ack_tardy acknowledgment.  
26  
25  
phyRegRcvd  
cycleTooLong  
RSCU The PCI7410 controller has received a PHY register data byte which can be read from bits 23−16  
in the PHY layer control register at OHCI offset ECh (see Section 8.33).  
RSCU If bit 21 (cycleMaster) in the link control register at OHCI offset E0h/E4h (see Section 8.31) is set to  
1, then this indicates that over 125 µs has elapsed between the start of sending a cycle start packet  
and the end of a subaction gap. Bit 21 (cycleMaster) in the link control register is cleared by this event.  
24  
23  
unrecoverableError RSCU This event occurs when the PCI7410 controller encounters any error that forces it to stop operations  
on any or all of its subunits, for example, when a DMA context sets its dead bit to 1. While bit 24 is  
set to 1, all normal interrupts for the context(s) that caused this interrupt are blocked from being set  
to 1.  
cycleInconsistent  
RSCU A cycle start was received that had values for the cycleSeconds and cycleCount fields that are  
different from the values in bits 31−25 (cycleSeconds field) and bits 24−12 (cycleCount field) in the  
isochronous cycle timer register at OHCI offset F0h (see Section 8.34).  
8−18  
 
Table 8−15. Interrupt Event Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
22  
cycleLost  
RSCU A lost cycle is indicated when no cycle_start packet is sent or received between two successive  
cycleSynch events. A lost cycle can be predicted when a cycle_start packet does not immediately  
follow the first subaction gap after the cycleSynch event or if an arbitration reset gap is detected after  
a cycleSynch event without an intervening cycle start. Bit 22 may be set to 1 either when a lost cycle  
occurs or when logic predicts that one will occur.  
th  
21  
20  
cycle64Seconds  
cycleSynch  
RSCU Indicates that the 7 bit of the cycle second counter has changed.  
RSCU Indicates that a new isochronous cycle has started. Bit 20 is set to 1 when the low-order bit of the  
cycle count toggles.  
19  
18  
phy  
RSCU Indicates that the PHY layer requests an interrupt through a status transfer.  
regAccessFail  
RSCU Indicates that a PCI7410 register access has failed due to a missing SCLK clock signal from the PHY  
layer. When a register access fails, bit 18 is set to 1 before the next register access.  
17  
16  
busReset  
RSCU Indicates that the PHY layer has entered bus reset mode.  
selfIDcomplete  
RSCU A self-ID packet stream has been received. It is generated at the end of the bus initialization process.  
Bit 16 is turned off simultaneously when bit 17 (busReset) is turned on.  
15  
selfIDcomplete2  
RSCU Secondary indication of the end of a self-ID packet stream. Bit 15 is set to 1 by the PCI7410 controller  
when it sets bit 16 (selfIDcomplete), and retains the state, independent of bit 17 (busReset).  
14−10  
9
RSVD  
R
Reserved. Bits 14−10 return 0s when read.  
lockRespErr  
RSCU Indicates that the PCI7410 controller sent a lock response for a lock request to a serial bus register,  
but did not receive an ack_complete.  
8
7
postedWriteErr  
isochRx  
RSCU Indicates that a host bus error occurred while the PCI7410 controller was trying to write a 1394 write  
request, which had already been given an ack_complete, into system memory.  
RU  
Isochronous receive DMA interrupt. Indicates that one or more isochronous receive contexts have  
generated an interrupt. This is not a latched event; it is the logical OR of all bits in the isochronous  
receive interrupt event register at OHCI offset A0h/A4h (see Section 8.25) and isochronous receive  
interrupt mask register at OHCI offset A8h/ACh (see Section 8.26). The isochronous receive interrupt  
event register indicates which contexts have been interrupted.  
6
isochTx  
RU  
Isochronous transmit DMA interrupt. Indicates that one or more isochronous transmit contexts have  
generated an interrupt. This is not a latched event; it is the logical OR of all bits in the isochronous  
transmit interrupt event register at OHCI offset 90h/94h (see Section 8.23) and isochronous transmit  
interrupt mask register at OHCI offset 98h/9Ch (see Section 8.24). The isochronous transmit  
interrupt event register indicates which contexts have been interrupted.  
5
4
3
2
1
0
RSPkt  
RQPkt  
RSCU Indicates that a packet was sent to an asynchronous receive response context buffer and the  
descriptor xferStatus and resCount fields have been updated.  
RSCU Indicates that a packet was sent to an asynchronous receive request context buffer and the  
descriptor xferStatus and resCount fields have been updated.  
ARRS  
RSCU Asynchronous receive response DMA interrupt. Bit 3 is conditionally set to 1 upon completion of an  
ARRS DMA context command descriptor.  
ARRQ  
RSCU Asynchronous receive request DMA interrupt. Bit 2 is conditionally set to 1 upon completion of an  
ARRQ DMA context command descriptor.  
respTxComplete  
reqTxComplete  
RSCU Asynchronous response transmit DMA interrupt. Bit 1 is conditionally set to 1 upon completion of an  
ATRS DMA command.  
RSCU Asynchronous request transmit DMA interrupt. Bit 0 is conditionally set to 1 upon completion of an  
ATRQ DMA command.  
8−19  
8.22 Interrupt Mask Register  
The interrupt mask set/clear register enables the various PCI7410 interrupt sources. Reads from either the set  
register or the clear register always return the contents of the interrupt mask register. In all cases except  
masterIntEnable (bit 31) and vendorSpecific (bit 30), the enables for each interrupt event align with the interrupt event  
register bits detailed in Table 8−15.  
This register is fully compliant with the 1394 Open Host Controller Interface Specification and the PCI7410 controller  
adds an interrupt function to bit 30. See Table 8−16 for a complete description of bits 31 and 30.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Interrupt mask  
RSC RSC RSC RSC RSC RSC RSC RSC RSC RSC RSC RSC  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
RSCU RSC RSC  
R
0
X
X
0
0
X
X
X
X
X
X
X
X
0
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt mask  
RSC RSC RSC RSC RSC RSC RSC RSC RSC RSC  
RSC  
0
R
0
R
0
R
0
R
0
R
0
X
X
X
X
X
X
X
X
X
X
Register:  
Offset:  
Interrupt mask  
88h  
8Ch  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
XXXX 0XXXh  
Table 8−16. Interrupt Mask Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
masterIntEnable  
RSCU Master interrupt enable. If bit 31 is set to 1, then external interrupts are generated in accordance with  
the interrupt mask register. If this bit is cleared, then external interrupts are not generated regardless  
of the interrupt mask register settings.  
30  
29  
VendorSpecific  
SoftInterrupt  
RSC When this bit and bit 30 (vendorSpecific) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this vendor-specific interrupt mask enables interrupt generation.  
RSC When this bit and bit 29 (SoftInterrupt) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this soft-interrupt mask enables interrupt generation.  
28  
27  
RSVD  
R
Reserved. Bit 28 returns 0 when read.  
ack_tardy  
RSC When this bit and bit 27 (ack_tardy) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this acknowledge-tardy interrupt mask enables interrupt generation.  
26  
25  
24  
23  
22  
phyRegRcvd  
cycleTooLong  
unrecoverableError  
cycleInconsistent  
cycleLost  
RSC When this bit and bit 26 (phyRegRcvd) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this PHY-register interrupt mask enables interrupt generation.  
RSC When this bit and bit 25 (cycleTooLong) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this cycle-too-long interrupt mask enables interrupt generation.  
RSC When this bit and bit 24 (unrecoverableError) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this unrecoverable-error interrupt mask enables interrupt generation.  
RSC When this bit and bit 23 (cycleInconsistent) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this inconsistent-cycle interrupt mask enables interrupt generation.  
RSC When this bit and bit 22 (cycleLost) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this lost-cycle interrupt mask enables interrupt generation.  
21  
20  
19  
cycle64Seconds  
cycleSynch  
phy  
RSC When this bit and bit 21 (cycle64Seconds) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this 64-second-cycle interrupt mask enables interrupt generation.  
RSC When this bit and bit 20 (cycleSynch) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this isochronous-cycle interrupt mask enables interrupt generation.  
RSC When this bit and bit 19 (phy) in the interrupt event register at OHCI offset 80h/84h (see Section 8.21)  
are set to 1, this PHY-status-transfer interrupt mask enables interrupt generation.  
8−20  
 
Table 8−16. Interrupt Mask Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
18  
regAccessFail  
RSC When this bit and bit 18 (regAccessFail) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this register-access-failed interrupt mask enables interrupt generation.  
17  
16  
15  
busReset  
RSC When this bit and bit 17 (busReset) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this bus-reset interrupt mask enables interrupt generation.  
selfIDcomplete  
selfIDcomplete2  
RSC When this bit and bit 16 (selfIDcomplete) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this self-ID-complete interrupt mask enables interrupt generation.  
RSC When this bit and bit 15 (selfIDcomplete2) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this second-self-ID-complete interrupt mask enables interrupt generation.  
14−10  
9
RSVD  
R
Reserved. Bits 14−10 return 0s when read.  
lockRespErr  
RSC When this bit and bit 9 (lockRespErr) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this lock-response-error interrupt mask enables interrupt generation.  
8
7
6
5
4
3
2
1
postedWriteErr  
isochRx  
RSC When this bit and bit 8 (postedWriteErr) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this posted-write-error interrupt mask enables interrupt generation.  
RSC When this bit and bit 7 (isochRx) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this isochronous-receive-DMA interrupt mask enables interrupt generation.  
isochTx  
RSC When this bit and bit 6 (isochTx) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this isochronous-transmit-DMA interrupt mask enables interrupt generation.  
RSPkt  
RSC When this bit and bit 5 (RSPkt) in the interrupt event register at OHCI offset 80h/84h (see Section 8.21)  
are set to 1, this receive-response-packet interrupt mask enables interrupt generation.  
RQPkt  
RSC When this bit and bit 4 (RQPkt) in the interrupt event register at OHCI offset 80h/84h (see Section 8.21)  
are set to 1, this receive-request-packet interrupt mask enables interrupt generation.  
ARRS  
RSC When this bit and bit 3 (ARRS) in the interrupt event register at OHCI offset 80h/84h (see Section 8.21)  
are set to 1, this asynchronous-receive-response-DMA interrupt mask enables interrupt generation.  
ARRQ  
RSC When this bit and bit 2 (ARRQ) in the interrupt event register at OHCI offset 80h/84h (see Section 8.21)  
are set to 1, this asynchronous-receive-request-DMA interrupt mask enables interrupt generation.  
respTxComplete  
RSC When this bit and bit 1 (respTxComplete) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this response-transmit-complete interrupt mask enables interrupt  
generation.  
0
reqTxComplete  
RSC When this bit and bit 0 (reqTxComplete) in the interrupt event register at OHCI offset 80h/84h (see  
Section 8.21) are set to 1, this request-transmit-complete interrupt mask enables interrupt generation.  
8−21  
8.23 Isochronous Transmit Interrupt Event Register  
The isochronous transmit interrupt event set/clear register reflects the interrupt state of the isochronous transmit  
contexts. An interrupt is generated on behalf of an isochronous transmit context if an OUTPUT_LAST* command  
completes and its interrupt bits are set to 1. Upon determining that the isochTx (bit 6) interrupt has occurred in the  
interrupt event register at OHCI offset 80h/84h (see Section 8.21), software can check this register to determine which  
context(s) caused the interrupt. The interrupt bits are set to 1 by an asserting edge of the corresponding interrupt  
signal, or by writing a 1 in the corresponding bit in the set register. The only mechanism to clear a bit in this register  
is to write a 1 to the corresponding bit in the clear register. See Table 8−17 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Offset:  
Isochronous transmit interrupt event  
90h  
94h  
set register  
clear register [returns the contents of the isochronous transmit interrupt event  
register bit-wise ANDed with the isochronous transmit interrupt mask register  
when read]  
Type:  
Default:  
Read/Set/Clear, Read-only  
0000 00XXh  
Table 8−17. Isochronous Transmit Interrupt Event Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
31−8  
Reserved. Bits 31−8 return 0s when read.  
7
6
5
4
3
2
1
0
isoXmit7  
isoXmit6  
isoXmit5  
isoXmit4  
isoXmit3  
isoXmit2  
isoXmit1  
isoXmit0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Isochronous transmit channel 7 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 6 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 5 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 4 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 3 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 2 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 1 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 0 caused the interrupt event register bit 6 (isochTx) interrupt.  
8−22  
 
8.24 Isochronous Transmit Interrupt Mask Register  
The isochronous transmit interrupt mask set/clear register enables the isochTx interrupt source on a per-channel  
basis. Reads from either the set register or the clear register always return the contents of the isochronous transmit  
interrupt mask register. In all cases the enables for each interrupt event align with the isochronous transmit interrupt  
event register bits detailed in Table 8−17.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Offset:  
Isochronous transmit interrupt mask  
98h  
9Ch  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear, Read-only  
0000 00XXh  
8−23  
 
8.25 Isochronous Receive Interrupt Event Register  
The isochronous receive interrupt event set/clear register reflects the interrupt state of the isochronous receive  
contexts. An interrupt is generated on behalf of an isochronous receive context if an INPUT_* command completes  
and its interrupt bits are set to 1. Upon determining that the isochRx (bit 7) interrupt in the interrupt event register at  
OHCI offset 80h/84h (see Section 8.21) has occurred, software can check this register to determine which context(s)  
caused the interrupt. The interrupt bits are set to 1 by an asserting edge of the corresponding interrupt signal or by  
writing a 1 in the corresponding bit in the set register. The only mechanism to clear a bit in this register is to write a  
1 to the corresponding bit in the clear register. See Table 8−18 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Offset:  
Isochronous receive interrupt event  
A0h  
A4h  
set register  
clear register [returns the contents of isochronous receive interrupt event register  
bit-wise ANDed with the isochronous receive mask register when read]  
Type:  
Default:  
Read/Set/Clear, Read-only  
0000 000Xh  
Table 8−18. Isochronous Receive Interrupt Event Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
31−4  
Reserved. Bits 31−4 return 0s when read.  
3
2
1
0
isoRecv3  
isoRecv2  
isoRecv1  
isoRecv0  
RSC  
RSC  
RSC  
RSC  
Isochronous receive channel 3 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 2 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 1 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 0 caused the interrupt event register bit 7 (isochRx) interrupt.  
8−24  
 
8.26 Isochronous Receive Interrupt Mask Register  
The isochronous receive interrupt mask set/clear register enables the isochRx interrupt source on a per-channel  
basis. Reads from either the set register or the clear register always return the contents of the isochronous receive  
interrupt mask register. In all cases the enables for each interrupt event align with the isochronous receive interrupt  
event register bits detailed in Table 8−18.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Offset:  
Isochronous receive interrupt mask  
A8h  
ACh  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear, Read-only  
0000 000Xh  
8.27 Initial Bandwidth Available Register  
The initial bandwidth available register value is loaded into the corresponding bus management CSR register on a  
system (hardware) or software reset. See Table 8−19 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Initial bandwidth available  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Initial bandwidth available  
R
0
R
0
R
0
RW  
1
RW  
0
RW  
0
RW  
1
RW  
1
RW  
0
RW  
0
RW  
1
RW  
1
RW  
0
RW  
0
RW  
1
RW  
1
Register:  
Offset:  
Type:  
Initial bandwidth available  
B0h  
Read-only, Read/Write  
0000 1333h  
Default:  
Table 8−19. Initial Bandwidth Available Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−13 return 0s when read.  
31−13  
12−0  
InitBWAvailable  
RW  
This field is reset to 1333h on a system (hardware) or software reset, and is not affected by a 1394  
bus reset. The value of this field is loaded into the BANDWIDTH_AVAILABLE CSR register upon  
a GRST, PRST, or a 1394 bus reset.  
8−25  
 
8.28 Initial Channels Available High Register  
The initial channels available high register value is loaded into the corresponding bus management CSR register on  
a system (hardware) or software reset. See Table 8−20 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Initial channels available high  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Initial channels available high  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Register:  
Offset:  
Type:  
Initial channels available high  
B4h  
Read/Write  
FFFF FFFFh  
Default:  
Table 8−20. Initial Channels Available High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−0  
InitChanAvailHi  
RW  
This field is reset to FFFF_FFFFh on a system (hardware) or software reset, and is not affected by  
a 1394 bus reset. The value of this field is loaded into the CHANNELS_AVAILABLE_HI CSR  
register upon a GRST, PRST, or a 1394 bus reset.  
8.29 Initial Channels Available Low Register  
The initial channels available low register value is loaded into the corresponding bus management CSR register on  
a system (hardware) or software reset. See Table 8−21 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Initial channels available low  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Initial channels available low  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Register:  
Offset:  
Type:  
Initial channels available low  
B8h  
Read/Write  
FFFF FFFFh  
Default:  
Table 8−21. Initial Channels Available Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31−0  
InitChanAvailLo  
RW  
This field is reset to FFFF_FFFFh on a system (hardware) or software reset, and is not affected by  
a 1394 bus reset. The value of this field is loaded into the CHANNELS_AVAILABLE_LO CSR  
register upon a GRST, PRST, or a 1394 bus reset.  
8−26  
 
8.30 Fairness Control Register  
The fairness control register provides a mechanism by which software can direct the host controller to transmit  
multiple asynchronous requests during a fairness interval. See Table 8−22 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Fairness control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Fairness control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Fairness control  
DCh  
Read-only  
0000 0000h  
Default:  
Table 8−22. Fairness Control Register Description  
BIT  
31−8  
7−0  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
Reserved. Bits 31−8 return 0s when read.  
R
pri_req  
RW  
This field specifies the maximum number of priority arbitration requests for asynchronous request  
packets that the link is permitted to make of the PHY layer during a fairness interval.  
8−27  
 
8.31 Link Control Register  
The link control set/clear register provides the control flags that enable and configure the link core protocol portions  
of the PCI7410 controller. It contains controls for the receiver and cycle timer. See Table 8−23 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
RSC RSCU RSC  
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
6
5
4
Name  
Type  
Default  
Link control  
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
R
0
R
0
RS  
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Link control  
E0h  
E4h  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Clear, Read-only  
00X0 0X00h  
Table 8−23. Link Control Register Description  
BIT  
31−23  
22  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−23 return 0s when read.  
cycleSource  
RSC  
When bit 22 is set to 1, the cycle timer uses an external source (CYCLEIN) to determine when to roll  
over the cycle timer. When this bit is cleared, the cycle timer rolls over when the timer reaches  
3072 cycles of the 24.576-MHz clock (125 µs).  
21  
cycleMaster  
RSCU When bit 21 is set to 1, the PCI7410 controller is root and it generates a cycle start packet every time  
the cycle timer rolls over, based on the setting of bit 22 (cycleSource). When bit 21 is cleared, the  
OHCI-Lynxaccepts received cycle start packets to maintain synchronization with the node which  
is sending them. Bit 21 is automatically cleared when bit 25 (cycleTooLong) in the interrupt event  
register at OHCI offset 80h/84h (see Section 8.21) is set to 1. Bit 21 cannot be set to 1 until bit 25  
(cycleTooLong) is cleared.  
20  
CycleTimerEnable  
RSC  
When bit 20 is set to 1, the cycle timer offset counts cycles of the 24.576-MHz clock and rolls over  
at the appropriate time, based on the settings of the above bits. When this bit is cleared, the cycle  
timer offset does not count.  
19−11  
10  
RSVD  
R
Reserved. Bits 19−11 return 0s when read.  
RcvPhyPkt  
RSC  
When bit 10 is set to 1, the receiver accepts incoming PHY packets into the AR request context if  
the AR request context is enabled. This bit does not control receipt of self-identification packets.  
9
RcvSelfID  
RSC  
When bit 9 is set to 1, the receiver accepts incoming self-identification packets. Before setting this  
bit to 1, software must ensure that the self-ID buffer pointer register contains a valid address.  
8−7  
6 ‡  
RSVD  
R
Reserved. Bits 8 and 7 return 0s when read.  
tag1SyncFilterLock  
RS  
When bit 6 is set to 1, bit 6 (tag1SyncFilter) in the isochronous receive context match register (see  
Section 8.46) is set to 1 for all isochronous receive contexts. When bit 6 is cleared, bit 6  
(tag1SyncFilter) in the isochronous receive context match register has read/write access. This bit is  
cleared when GRST is asserted.  
5−0  
RSVD  
R
Reserved. Bits 5−0 return 0s when read.  
One or more bits in this register are cleared only by the assertion of GRST.  
8−28  
 
8.32 Node Identification Register  
The node identification register contains the address of the node on which the OHCI-Lynxchip resides, and  
indicates the valid node number status. The 16-bit combination of the busNumber field (bits 15−6) and the  
NodeNumber field (bits 5−0) is referred to as the node ID. See Table 8−24 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Node identification  
RU  
0
RU  
0
R
0
R
0
RU  
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Node identification  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
1
1
1
1
1
1
1
1
1
1
Register:  
Offset:  
Type:  
Node identification  
E8h  
Read/Write/Update, Read/Update, Read-only  
0000 FFXXh  
Default:  
Table 8−24. Node Identification Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
iDValid  
RU  
Bit 31 indicates whether or not the PCI7410 controller has a valid node number. It is cleared when a  
1394 bus reset is detected and set to 1 when the PCI7410 controller receives a new node number from  
its PHY layer.  
30  
root  
RSVD  
RU  
R
Bit 30 is set to 1 during the bus reset process if the attached PHY layer is root.  
Reserved. Bits 29 and 28 return 0s when read.  
29−28  
27  
CPS  
RU  
R
Bit 27 is set to 1 if the PHY layer is reporting that cable power status is OK.  
Reserved. Bits 26−16 return 0s when read.  
26−16  
15−6  
RSVD  
busNumber  
RWU  
This field identifies the specific 1394 bus the PCI7410 controller belongs to when multiple  
1394-compatible buses are connected via a bridge.  
5−0  
NodeNumber  
RU  
This field is the physical node number established by the PHY layer during self-identification. It is  
automatically set to the value received from the PHY layer after the self-identification phase. If the PHY  
layer sets the nodeNumber to 63, then software must not set bit 15 (run) in the asynchronous context  
control register (see Section 8.40) for either of the AT DMA contexts.  
8−29  
 
8.33 PHY Layer Control Register  
The PHY layer control register reads from or writes to a PHY register. See Table 8−25 for a complete description of  
the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PHY layer control  
RU  
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PHY layer control  
RWU RWU  
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
0
0
Register:  
Offset:  
Type:  
PHY layer control  
ECh  
Read/Write/Update, Read/Write, Read/Update, Read-only  
0000 0000h  
Default:  
Table 8−25. PHY Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
rdDone  
RU  
Bit 31 is cleared to 0 by the PCI7410 controller when either bit 15 (rdReg) or bit 14 (wrReg) is set to  
1. This bit is set to 1 when a register transfer is received from the PHY layer.  
30−28  
27−24  
23−16  
15  
RSVD  
rdAddr  
rdData  
rdReg  
R
Reserved. Bits 30−28 return 0s when read.  
RU  
This field is the address of the register most recently received from the PHY layer.  
This field is the contents of a PHY register that has been read.  
RU  
RWU  
Bit 15 is set to 1 by software to initiate a read request to a PHY register, and is cleared by hardware  
when the request has been sent. Bits 14 (wrReg) and 15 (rdReg) must not both be set to 1  
simultaneously.  
14  
wrReg  
RWU  
Bit 14 is set to 1 by software to initiate a write request to a PHY register, and is cleared by hardware  
when the request has been sent. Bits 14 (wrReg) and 15 (rdReg) must not both be set to 1  
simultaneously.  
13−12  
11−8  
7−0  
RSVD  
regAddr  
wrData  
R
Reserved. Bits 13 and 12 return 0s when read.  
RW  
RW  
This field is the address of the PHY register to be written or read.  
This field is the data to be written to a PHY register and is ignored for reads.  
8−30  
 
8.34 Isochronous Cycle Timer Register  
The isochronous cycle timer register indicates the current cycle number and offset. When the PCI7410 controller is  
cycle master, this register is transmitted with the cycle start message. When the PCI7410 controller is not cycle  
master, this register is loaded with the data field in an incoming cycle start. In the event that the cycle start message  
is not received, the fields can continue incrementing on their own (if programmed) to maintain a local time reference.  
See Table 8−26 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Offset:  
Type:  
Isochronous cycle timer  
F0h  
Read/Write/Update  
XXXX XXXXh  
Default:  
Table 8−26. Isochronous Cycle Timer Register Description  
BIT  
FIELD NAME  
cycleSeconds  
cycleCount  
TYPE  
RWU  
RWU  
RWU  
DESCRIPTION  
31−25  
24−12  
11−0  
This field counts seconds [rollovers from bits 24−12 (cycleCount field)] modulo 128.  
This field counts cycles [rollovers from bits 11−0 (cycleOffset field)] modulo 8000.  
cycleOffset  
This field counts 24.576-MHz clocks modulo 3072, that is, 125 µs. If an external 8-kHz clock  
configuration is being used, then this field must be cleared to 0s at each tick of the external clock.  
8−31  
 
8.35 Asynchronous Request Filter High Register  
The asynchronous request filter high set/clear register enables asynchronous receive requests on a per-node basis,  
and handles the upper node IDs. When a packet is destined for either the physical request context or the ARRQ  
context, the source node ID is examined. If the bit corresponding to the node ID is not set to 1 in this register, then  
the packet is not acknowledged and the request is not queued. The node ID comparison is done if the source node  
is on the same bus as the PCI7410 controller. Nonlocal bus-sourced packets are not acknowledged unless bit 31 in  
this register is set to 1. See Table 8−27 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Offset:  
Asynchronous request filter high  
100h set register  
104h clear register  
Read/Set/Clear  
Type:  
Default:  
0000 0000h  
Table 8−27. Asynchronous Request Filter High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
asynReqAllBuses  
asynReqResource62  
asynReqResource61  
asynReqResource60  
asynReqResource59  
asynReqResource58  
asynReqResource57  
asynReqResource56  
asynReqResource55  
asynReqResource54  
asynReqResource53  
asynReqResource52  
asynReqResource51  
RSC  
If bit 31 is set to 1, all asynchronous requests received by the controller from nonlocal bus nodes  
are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 30 is set to 1 for local bus node number 62, asynchronous requests received by the controller  
from that node are accepted.  
If bit 29 is set to 1 for local bus node number 61, asynchronous requests received by the controller  
from that node are accepted.  
If bit 28 is set to 1 for local bus node number 60, asynchronous requests received by the controller  
from that node are accepted.  
If bit 27 is set to 1 for local bus node number 59, asynchronous requests received by the controller  
from that node are accepted.  
If bit 26 is set to 1 for local bus node number 58, asynchronous requests received by the controller  
from that node are accepted.  
If bit 25 is set to 1 for local bus node number 57, asynchronous requests received by the controller  
from that node are accepted.  
If bit 24 is set to 1 for local bus node number 56, asynchronous requests received by the controller  
from that node are accepted.  
If bit 23 is set to 1 for local bus node number 55, asynchronous requests received by the controller  
from that node are accepted.  
If bit 22 is set to 1 for local bus node number 54, asynchronous requests received by the controller  
from that node are accepted.  
If bit 21 is set to 1 for local bus node number 53, asynchronous requests received by the controller  
from that node are accepted.  
If bit 20 is set to 1 for local bus node number 52, asynchronous requests received by the controller  
from that node are accepted.  
If bit 19 is set to 1 for local bus node number 51, asynchronous requests received by the controller  
from that node are accepted.  
8−32  
 
Table 8−27. Asynchronous Request Filter High Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
18  
asynReqResource50  
RSC  
If bit 18 is set to 1 for local bus node number 50, asynchronous requests received by the controller  
from that node are accepted.  
17  
16  
15  
14  
13  
12  
11  
10  
9
asynReqResource49  
asynReqResource48  
asynReqResource47  
asynReqResource46  
asynReqResource45  
asynReqResource44  
asynReqResource43  
asynReqResource42  
asynReqResource41  
asynReqResource40  
asynReqResource39  
asynReqResource38  
asynReqResource37  
asynReqResource36  
asynReqResource35  
asynReqResource34  
asynReqResource33  
asynReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 17 is set to 1 for local bus node number 49, asynchronous requests received by the controller  
from that node are accepted.  
If bit 16 is set to 1 for local bus node number 48, asynchronous requests received by the controller  
from that node are accepted.  
If bit 15 is set to 1 for local bus node number 47, asynchronous requests received by the controller  
from that node are accepted.  
If bit 14 is set to 1 for local bus node number 46, asynchronous requests received by the controller  
from that node are accepted.  
If bit 13 is set to 1 for local bus node number 45, asynchronous requests received by the controller  
from that node are accepted.  
If bit 12 is set to 1 for local bus node number 44, asynchronous requests received by the controller  
from that node are accepted.  
If bit 11 is set to 1 for local bus node number 43, asynchronous requests received by the controller  
from that node are accepted.  
If bit 10 is set to 1 for local bus node number 42, asynchronous requests received by the controller  
from that node are accepted.  
If bit 9 is set to 1 for local bus node number 41, asynchronous requests received by the controller  
from that node are accepted.  
8
If bit 8 is set to 1 for local bus node number 40, asynchronous requests received by the controller  
from that node are accepted.  
7
If bit 7 is set to 1 for local bus node number 39, asynchronous requests received by the controller  
from that node are accepted.  
6
If bit 6 is set to 1 for local bus node number 38, asynchronous requests received by the controller  
from that node are accepted.  
5
If bit 5 is set to 1 for local bus node number 37, asynchronous requests received by the controller  
from that node are accepted.  
4
If bit 4 is set to 1 for local bus node number 36, asynchronous requests received by the controller  
from that node are accepted.  
3
If bit 3 is set to 1 for local bus node number 35, asynchronous requests received by the controller  
from that node are accepted.  
2
If bit 2 is set to 1 for local bus node number 34, asynchronous requests received by the controller  
from that node are accepted.  
1
If bit 1 is set to 1 for local bus node number 33, asynchronous requests received by the controller  
from that node are accepted.  
0
If bit 0 is set to 1 for local bus node number 32, asynchronous requests received by the controller  
from that node are accepted.  
8−33  
8.36 Asynchronous Request Filter Low Register  
The asynchronous request filter low set/clear register enables asynchronous receive requests on a per-node basis,  
and handles the lower node IDs. Other than filtering different node IDs, this register behaves identically to the  
asynchronous request filter high register. See Table 8−28 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Offset:  
Asynchronous request filter low  
108h set register  
10Ch clear register  
Read/Set/Clear  
Type:  
Default:  
0000 0000h  
Table 8−28. Asynchronous Request Filter Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
asynReqResource31  
asynReqResource30  
asynReqResourcen  
asynReqResource1  
asynReqResource0  
RSC  
If bit 31 is set to 1 for local bus node number 31, asynchronous requests received by the controller  
from that node are accepted.  
30  
29−2  
1
RSC  
RSC  
RSC  
RSC  
If bit 30 is set to 1 for local bus node number 30, asynchronous requests received by the controller  
from that node are accepted.  
Bits 29 through 2 (asynReqResourcen, where n = 29, 28, 27, , 2) follow the same pattern as  
bits 31 and 30.  
If bit 1 is set to 1 for local bus node number 1, asynchronous requests received by the controller  
from that node are accepted.  
0
If bit 0 is set to 1 for local bus node number 0, asynchronous requests received by the controller  
from that node are accepted.  
8−34  
 
8.37 Physical Request Filter High Register  
The physical request filter high set/clear register enables physical receive requests on a per-node basis, and handles  
the upper node IDs. When a packet is destined for the physical request context, and the node ID has been compared  
against the ARRQ registers, then the comparison is done again with this register. If the bit corresponding to the node  
ID is not set to 1 in this register, then the request is handled by the ARRQ context instead of the physical request  
context. The node ID comparison is done if the source node is on the same bus as the PCI7410 controller. Nonlocal  
bus-sourced packets are not acknowledged unless bit 31 in this register is set to 1. See Table 8−29 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Offset:  
Physical request filter high  
110h set register  
114h clear register  
Read/Set/Clear  
Type:  
Default:  
0000 0000h  
Table 8−29. Physical Request Filter High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
physReqAllBusses  
physReqResource62  
physReqResource61  
physReqResource60  
physReqResource59  
physReqResource58  
physReqResource57  
physReqResource56  
physReqResource55  
physReqResource54  
physReqResource53  
physReqResource52  
physReqResource51  
RSC  
If bit 31 is set to 1, all asynchronous requests received by the controller from nonlocal bus nodes  
are accepted. Bit 31 is not cleared by a PRST.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 30 is set to 1 for local bus node number 62, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 29 is set to 1 for local bus node number 61, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 28 is set to 1 for local bus node number 60, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 27 is set to 1 for local bus node number 59, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 26 is set to 1 for local bus node number 58, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 25 is set to 1 for local bus node number 57, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 24 is set to 1 for local bus node number 56, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 23 is set to 1 for local bus node number 55, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 22 is set to 1 for local bus node number 54, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 21 is set to 1 for local bus node number 53, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 20 is set to 1 for local bus node number 52, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 19 is set to 1 for local bus node number 51, physical requests received by the controller  
from that node are handled through the physical request context.  
8−35  
 
Table 8−29. Physical Request Filter High Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
18  
physReqResource50  
RSC  
If bit 18 is set to 1 for local bus node number 50, physical requests received by the controller  
from that node are handled through the physical request context.  
17  
16  
15  
14  
13  
12  
11  
10  
9
physReqResource49  
physReqResource48  
physReqResource47  
physReqResource46  
physReqResource45  
physReqResource44  
physReqResource43  
physReqResource42  
physReqResource41  
physReqResource40  
physReqResource39  
physReqResource38  
physReqResource37  
physReqResource36  
physReqResource35  
physReqResource34  
physReqResource33  
physReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 17 is set to 1 for local bus node number 49, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 16 is set to 1 for local bus node number 48, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 15 is set to 1 for local bus node number 47, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 14 is set to 1 for local bus node number 46, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 13 is set to 1 for local bus node number 45, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 12 is set to 1 for local bus node number 44, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 11 is set to 1 for local bus node number 43, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 10 is set to 1 for local bus node number 42, physical requests received by the controller  
from that node are handled through the physical request context.  
If bit 9 is set to 1 for local bus node number 41, physical requests received by the controller from  
that node are handled through the physical request context.  
8
If bit 8 is set to 1 for local bus node number 40, physical requests received by the controller from  
that node are handled through the physical request context.  
7
If bit 7 is set to 1 for local bus node number 39, physical requests received by the controller from  
that node are handled through the physical request context.  
6
If bit 6 is set to 1 for local bus node number 38, physical requests received by the controller from  
that node are handled through the physical request context.  
5
If bit 5 is set to 1 for local bus node number 37, physical requests received by the controller from  
that node are handled through the physical request context.  
4
If bit 4 is set to 1 for local bus node number 36, physical requests received by the controller from  
that node are handled through the physical request context.  
3
If bit 3 is set to 1 for local bus node number 35, physical requests received by the controller from  
that node are handled through the physical request context.  
2
If bit 2 is set to 1 for local bus node number 34, physical requests received by the controller from  
that node are handled through the physical request context.  
1
If bit 1 is set to 1 for local bus node number 33, physical requests received by the controller from  
that node are handled through the physical request context.  
0
If bit 0 is set to 1 for local bus node number 32, physical requests received by the controller from  
that node are handled through the physical request context.  
8−36  
8.38 Physical Request Filter Low Register  
The physical request filter low set/clear register enables physical receive requests on a per-node basis, and handles  
the lower node IDs. When a packet is destined for the physical request context, and the node ID has been compared  
against the asynchronous request filter registers, then the node ID comparison is done again with this register. If the  
bit corresponding to the node ID is not set to 1 in this register, then the request is handled by the asynchronous request  
context instead of the physical request context. See Table 8−30 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Offset:  
Physical request filter low  
118h set register  
11Ch clear register  
Read/Set/Clear  
Type:  
Default:  
0000 0000h  
Table 8−30. Physical Request Filter Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
physReqResource31  
physReqResource30  
physReqResourcen  
physReqResource1  
physReqResource0  
RSC  
If bit 31 is set to 1 for local bus node number 31, physical requests received by the controller from  
that node are handled through the physical request context.  
30  
29−2  
1
RSC  
RSC  
RSC  
RSC  
If bit 30 is set to 1 for local bus node number 30, physical requests received by the controller from  
that node are handled through the physical request context.  
Bits 29 through 2 (physReqResourcen, where n = 29, 28, 27, , 2) follow the same pattern as  
bits 31 and 30.  
If bit 1 is set to 1 for local bus node number 1, physical requests received by the controller from  
that node are handled through the physical request context.  
0
If bit 0 is set to 1 for local bus node number 0, physical requests received by the controller from  
that node are handled through the physical request context.  
8.39 Physical Upper Bound Register (Optional Register)  
The physical upper bound register is an optional register and is not implemented. This register returns all 0s when  
read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Physical upper bound  
120h  
Read-only  
Default:  
0000 0000h  
8−37  
 
8.40 Asynchronous Context Control Register  
The asynchronous context control set/clear register controls the state and indicates status of the DMA context. See  
Table 8−31 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous context control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Offset:  
Asynchronous context control  
180h set register [ATRQ]  
184h clear register [ATRQ]  
1A0h set register [ATRS]  
1A4h clear register [ATRS]  
1C0h set register [ARRQ]  
1C4h clear register [ARRQ]  
1E0h set register [ARRS]  
1E4h clear register [ARRS]  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Update, Read/Update, Read-only  
0000 X0XXh  
Table 8−31. Asynchronous Context Control Register Description  
BIT  
31−16  
15  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
Reserved. Bits 31−16 return 0s when read.  
R
run  
RSCU Bit 15 is set to 1 by software to enable descriptor processing for the context and cleared by software  
to stop descriptor processing. The PCI7410 controller changes this bit only on a system (hardware)  
or software reset.  
14−13  
12  
RSVD  
wake  
R
Reserved. Bits 14 and 13 return 0s when read.  
RSU  
Software sets bit 12 to 1 to cause the PCI7410 controller to continue or resume descriptor processing.  
The PCI7410 controller clears this bit on every descriptor fetch.  
11  
dead  
RU  
The PCI7410 controller sets bit 11 to 1 when it encounters a fatal error, and clears the bit when software  
clears bit 15 (run). Asynchronous contexts supporting out-of-order pipelining provide unique  
ContextControl.dead functionality. See Section 7.7 in the 1394 Open Host Controller Interface  
Specification (Release 1.1) for more information.  
10  
active  
RSVD  
spd  
RU  
R
The PCI7410 controller sets bit 10 to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0s when read.  
9−8  
7−5  
RU  
This field indicates the speed at which a packet was received or transmitted and only contains  
meaningful information for receive contexts. This field is encoded as:  
000 = 100M bits/sec  
001 = 200M bits/sec  
010 = 400M bits/sec  
All other values are reserved.  
4−0  
eventcode  
RU  
This field holds the acknowledge sent by the link core for this packet or an internally generated error  
code if the packet was not transferred successfully.  
8−38  
 
8.41 Asynchronous Context Command Pointer Register  
The asynchronous context command pointer register contains a pointer to the address of the first descriptor block  
that the PCI7410 controller accesses when software enables the context by setting bit 15 (run) in the asynchronous  
context control register (see Section 8.40) to 1. See Table 8−32 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Offset:  
Asynchronous context command pointer  
18Ch [ATRQ]  
1ACh [ATRS]  
1CCh [ARRQ]  
1ECh [ARRS]  
Type:  
Default:  
Read/Write/Update  
XXXX XXXXh  
Table 8−32. Asynchronous Context Command Pointer Register Description  
BIT  
31−4  
3−0  
FIELD NAME  
descriptorAddress  
Z
TYPE  
RWU  
RWU  
DESCRIPTION  
Contains the upper 28 bits of the address of a 16-byte aligned descriptor block.  
Indicates the number of contiguous descriptors at the address pointed to by the descriptor address.  
If Z is 0, then it indicates that the descriptorAddress field (bits 31−4) is not valid.  
8−39  
 
8.42 Isochronous Transmit Context Control Register  
The isochronous transmit context control set/clear register controls options, state, and status for the isochronous  
transmit DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3,  
, 7). See Table 8−33 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context control  
RSCU RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous transmit context control  
RSC  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Offset:  
Isochronous transmit context control  
200h + (16 * n)  
204h + (16 * n)  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Clear, Read/Set/Update, Read/Update, Read-only  
XXXX X0XXh  
Table 8−33. Isochronous Transmit Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
cycleMatchEnable  
RSCU When bit 31 is set to 1, processing occurs such that the packet described by the context first  
descriptor block is transmitted in the cycle whose number is specified in the cycleMatch field  
(bits 30−16). The cycleMatch field (bits 30−16) must match the low-order two bits of cycleSeconds  
and the 13-bit cycleCount field in the cycle start packet that is sent or received immediately before  
isochronous transmission begins. Since the isochronous transmit DMA controller may work ahead,  
the processing of the first descriptor block may begin slightly in advance of the actual cycle in which  
the first packet is transmitted.  
The effects of this bit, however, are impacted by the values of other bits in this register and are  
explained in the 1394 Open Host Controller Interface Specification. Once the context has become  
active, hardware clears this bit.  
30−16  
cycleMatch  
RSC  
RSC  
This field contains a 15-bit value, corresponding to the low-order two bits of the isochronous cycle  
timer register at OHCI offset F0h (see Section 8.34) cycleSeconds field (bits 31−25) and the  
cycleCount field (bits 24−12). If bit 31 (cycleMatchEnable) is set to 1, then this isochronous transmit  
DMA context becomes enabled for transmits when the low-order two bits of the isochronous cycle  
timer register at OHCI offset F0h cycleSeconds field (bits 31−25) and the cycleCount field  
(bits 24−12) value equal this field (cycleMatch) value.  
15  
run  
Bit 15 is set to 1 by software to enable descriptor processing for the context and cleared by software  
to stop descriptor processing. The PCI7410 controller changes this bit only on a system (hardware)  
or software reset.  
14−13  
12  
RSVD  
wake  
R
Reserved. Bits 14 and 13 return 0s when read.  
RSU  
Software sets bit 12 to 1 to cause the PCI7410 controller to continue or resume descriptor processing.  
The PCI7410 controller clears this bit on every descriptor fetch.  
11  
dead  
RU  
The PCI7410 controller sets bit 11 to 1 when it encounters a fatal error, and clears the bit when  
software clears bit 15 (run) to 0.  
10  
active  
RSVD  
RU  
R
The PCI7410 controller sets bit 10 to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0s when read.  
9−8  
7−5  
4−0  
spd  
RU  
RU  
This field in not meaningful for isochronous transmit contexts.  
event code  
Following an OUTPUT_LAST* command, the error code is indicated in this field. Possible values are:  
ack_complete, evt_descriptor_read, evt_data_read, and evt_unknown.  
On an overflow for each running context, the isochronous transmit DMA supports up to 7 cycle skips, when the following are true:  
1. Bit 11 (dead) in either the isochronous transmit or receive context control register is set to 1.  
2. Bits 4−0 (eventcode field) in either the isochronous transmit or receive context control register is set to evt_timeout.  
3. Bit 24 (unrecoverableError) in the interrupt event register at OHCI offset 80h/84h (see Section 8.21) is set to 1.  
8−40  
 
8.43 Isochronous Transmit Context Command Pointer Register  
The isochronous transmit context command pointer register contains a pointer to the address of the first descriptor  
block that the PCI7410 controller accesses when software enables an isochronous transmit context by setting bit 15  
(run) in the isochronous transmit context control register (see Section 8.42) to 1. The isochronous transmit DMA  
context command pointer can be read when a context is active. The n value in the following register addresses  
indicates the context number (n = 0, 1, 2, 3, , 7).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
Type:  
Isochronous transmit context command pointer  
20Ch + (16 * n)  
Read-only  
Default:  
XXXX XXXXh  
8.44 Isochronous Receive Context Control Register  
The isochronous receive context control set/clear register controls options, state, and status for the isochronous  
receive DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3).  
See Table 8−34 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context control  
RSC  
X
RSC RSCU RSC RSC  
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
X
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Offset:  
Isochronous receive context control  
400h + (32 * n)  
404h + (32 * n)  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear/Update, Read/Set/Clear, Read/Set/Update, Read/Update, Read-only  
XX00 X0XXh  
Table 8−34. Isochronous Receive Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
bufferFill  
RSC  
When bit 31 is set to 1, received packets are placed back-to-back to completely fill each receive  
buffer. When this bit is cleared, each received packet is placed in a single buffer. If bit 28  
(multiChanMode) is set to 1, then this bit must also be set to 1. The value of this bit must not be  
changed while bit 10 (active) or bit 15 (run) is set to 1.  
30  
isochHeader  
RSC  
When bit 30 is set to 1, received isochronous packets include the complete 4-byte isochronous  
packet header seen by the link layer. The end of the packet is marked with a xferStatus in the first  
doublet, and a 16-bit timeStamp indicating the time of the most recently received (or sent) cycleStart  
packet.  
When this bit is cleared, the packet header is stripped from received isochronous packets. The  
packet header, if received, immediately precedes the packet payload. The value of this bit must not  
be changed while bit 10 (active) or bit 15 (run) is set to 1.  
8−41  
 
Table 8−34. Isochronous Receive Context Control Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
29  
cycleMatchEnable  
RSCU When bit 29 is set to 1 and the 13-bit cycleMatch field (bits 24−12) in the isochronous receive context  
match register (See Section 8.46) matches the 13-bit cycleCount field in the cycleStart packet, the  
context begins running. The effects of this bit, however, are impacted by the values of other bits in  
this register. Once the context has become active, hardware clears this bit. The value of this bit must  
not be changed while bit 10 (active) or bit 15 (run) is set to 1.  
28  
multiChanMode  
RSC  
When bit 28 is set to 1, the corresponding isochronous receive DMA context receives packets for  
all isochronous channels enabled in the isochronous receive channel mask high register at OHCI  
offset 70h/74h (see Section 8.19) and isochronous receive channel mask low register at OHCI offset  
78h/7Ch (see Section 8.20). The isochronous channel number specified in the isochronous receive  
context match register (see Section 8.46) is ignored.  
When this bit is cleared, the isochronous receive DMA context receives packets for the single  
channel specified in the isochronous receive context match register (see Section 8.46). Only one  
isochronous receive DMA context may use the isochronous receive channel mask registers (see  
Sections 8.19, and 8.20). If more than one isochronous receive context control register has this bit  
set, then the results are undefined. The value of this bit must not be changed while bit 10 (active)  
or bit 15 (run) is set to 1.  
27  
dualBufferMode  
RSC  
When bit 27 is set to 1, receive packets are separated into first and second payload and streamed  
independently to the firstBuffer series and secondBuffer series as described in Section 10.2.3 in the  
1394 Open Host Controller Interface Specification. Also, when bit 27 is set to 1, both bits 28  
(multiChanMode) and 31 (bufferFill) are cleared to 0. The value of this bit does not change when  
either bit 10 (active) or bit 15 (run) is set to 1.  
26−16  
15  
RSVD  
run  
R
Reserved. Bits 26−16 return 0s when read.  
RSCU Bit 15 is set to 1 by software to enable descriptor processing for the context and cleared by software  
to stop descriptor processing. The PCI7410 controller changes this bit only on a system (hardware)  
or software reset.  
14−13  
12  
RSVD  
wake  
R
Reserved. Bits 14 and 13 return 0s when read.  
RSU  
Software sets bit 12 to 1 to cause the PCI7410 controller to continue or resume descriptor  
processing. The PCI7410 controller clears this bit on every descriptor fetch.  
11  
dead  
RU  
The PCI7410 controller sets bit 11 to 1 when it encounters a fatal error, and clears the bit when  
software clears bit 15 (run).  
10  
active  
RSVD  
spd  
RU  
R
The PCI7410 controller sets bit 10 to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0s when read.  
9−8  
7−5  
RU  
This field indicates the speed at which the packet was received.  
000 = 100M bits/sec  
001 = 200M bits/sec  
010 = 400M bits/sec  
All other values are reserved.  
4−0  
event code  
RU  
For bufferFill mode, possible values are: ack_complete, evt_descriptor_read, evt_data_write, and  
evt_unknown. Packets with data errors (either dataLength mismatches or dataCRC errors) and  
packets for which a FIFO overrun occurred are backed out. For packet-per-buffer mode, possible  
values are: ack_complete, ack_data_error, evt_long_packet, evt_overrun, evt_descriptor_read,  
evt_data_write, and evt_unknown.  
8−42  
8.45 Isochronous Receive Context Command Pointer Register  
The isochronous receive context command pointer register contains a pointer to the address of the first descriptor  
block that the PCI7410 controller accesses when software enables an isochronous receive context by setting bit 15  
(run) in the isochronous receive context control register (see Section 8.44) to 1. The n value in the following register  
addresses indicates the context number (n = 0, 1, 2, 3).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
Type:  
Isochronous receive context command pointer  
40Ch + (32 * n)  
Read-only  
Default:  
XXXX XXXXh  
8−43  
 
8.46 Isochronous Receive Context Match Register  
The isochronous receive context match register starts an isochronous receive context running on a specified cycle  
number, filters incoming isochronous packets based on tag values, and waits for packets with a specified sync value.  
The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3). See Table 8−35 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context match  
RW  
X
RW  
X
RW  
X
RW  
X
R
0
RW  
0
RW  
0
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive context match  
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
R
0
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
RW  
X
Register:  
Offset:  
Type:  
Isochronous receive context match  
410Ch + (32 * n)  
Read/Write, Read-only  
XXXX XXXXh  
Default:  
Table 8−35. Isochronous Receive Context Match Register Description  
BIT  
31  
FIELD NAME  
tag3  
TYPE  
RW  
RW  
RW  
RW  
R
DESCRIPTION  
If bit 31 is set to 1, this context matches on isochronous receive packets with a tag field of 11b.  
If bit 30 is set to 1, this context matches on isochronous receive packets with a tag field of 10b.  
If bit 29 is set to 1, this context matches on isochronous receive packets with a tag field of 01b.  
If bit 28 is set to 1, this context matches on isochronous receive packets with a tag field of 00b.  
Reserved. Bit 27 returns 0 when read.  
30  
tag2  
29  
tag1  
28  
tag0  
27  
RSVD  
26−12  
cycleMatch  
RW  
This field contains a 15-bit value corresponding to the two low-order bits of cycleSeconds and the 13-bit  
cycleCount field in the cycleStart packet. If cycleMatchEnable (bit 29) in the isochronous receive  
context control register (see Section 8.44) is set to 1, then this context is enabled for receives when  
the two low-order bits of the isochronous cycle timer register at OHCI offset F0h (see Section 8.34)  
cycleSeconds field (bits 31−25) and cycleCount field (bits 24−12) value equal this field (cycleMatch)  
value.  
11−8  
sync  
RW  
This 4-bit field is compared to the sync field of each isochronous packet for this channel when the  
command descriptor w field is set to 11b.  
7
6
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
tag1SyncFilter  
RW  
If bit 6 and bit 29 (tag1) are set to 1, then packets with tag 01b are accepted into the context if the two  
most significant bits of the packet sync field are 00b. Packets with tag values other than 01b are filtered  
according to bit 28 (tag0), bit 30 (tag2), and bit 31 (tag3) without any additional restrictions.  
If this bit is cleared, then this context matches on isochronous receive packets as specified in  
bits 28−31 (tag0−tag3) with no additional restrictions.  
5−0  
channelNumber  
RW  
This 6-bit field indicates the isochronous channel number for which this isochronous receive DMA  
context accepts packets.  
8−44  
 
9 TI Extension Registers  
The TI extension base address register provides a method of accessing memory-mapped TI extension registers. See  
Section 7.9, TI Extension Base Address Register, for register bit field details. See Table 9−1 for the TI extension  
register listing.  
Table 9−1. TI Extension Register Map  
REGISTER NAME  
OFFSET  
00h−A7Fh  
A80h  
Reserved  
Isochronous Receive DV Enhancement Set  
Isochronous Receive DV Enhancement Clear  
Link Enhancement Control Set  
A84h  
A88h  
Link Enhancement Control Clear  
A8Ch  
A90h  
Isochronous Transmit Context 0 Timestamp Offset  
Isochronous Transmit Context 1 Timestamp Offset  
Isochronous Transmit Context 2 Timestamp Offset  
Isochronous Transmit Context 3 Timestamp Offset  
Isochronous Transmit Context 4 Timestamp Offset  
Isochronous Transmit Context 5 Timestamp Offset  
Isochronous Transmit Context 6 Timestamp Offset  
Isochronous Transmit Context 7 Timestamp Offset  
A94h  
A98h  
A9Ch  
AA0h  
AA4h  
AA8h  
AA8h  
9.1 DV and MPEG2 Timestamp Enhancements  
The DV timestamp enhancements are enabled by bit 8 (enab_dv_ts) in the link enhancement control register located  
at PCI offset F4h and are aliased in TI extension register space at offset A88h (set) and A8Ch (clear).  
The DV and MPEG transmit enhancements are enabled separately by bits in the link enhancement control register  
located in PCI configuration space at PCI offset F4h. The link enhancement control register is also aliased as a  
set/clear register in TI extension space at offset A88h (set) and A8Ch (clear).  
Bit 8 (enab_dv_ts) of the link enhancement control register enables DV timestamp support. When enabled, the link  
calculates a timestamp based on the cycle timer and the timestamp offset register and substitutes it in the SYT field  
of the CIP once per DV frame.  
Bit 10 (enab_mpeg_ts) of the link enhancement control register enables MPEG timestamp support. Two MPEG time  
stamp modes are supported. The default mode calculates an initial delta that is added to the calculated timestamp  
in addition to a user-defined offset. The initial offset is calculated as the difference in the intended transmit cycle count  
and the cycle count field of the timestamp in the first TSP of the MPEG2 stream. The use of the initial delta can be  
controlled by bit 31 (DisableInitialOffset) in the timestamp offset register (see Section 9.5).  
The MPEG2 timestamp enhancements are enabled by bit 10 (enab_mpeg_ts) in the link enhancement control  
register located at PCI offset F4h and aliased in TI extension register space at offset A88h (set) and A8Ch (clear).  
When bit 10 (enab_mpeg_ts) is set to 1, the hardware applies the timestamp enhancements to isochronous transmit  
packets that have the tag field equal to 01b in the isochronous packet header and a FMT field equal to 10h.  
9−1  
 
9.2 Isochronous Receive Digital Video Enhancements  
The DV frame sync and branch enhancement provides a mechanism in buffer-fill mode to synchronize 1394 DV data  
that is received in the correct order to DV frame-sized data buffers described by several INPUT_MORE descriptors  
(see 1394 Open Host Controller Interface Specification, Release 1.1). This is accomplished by waiting for the  
start-of-frame packet in a DV stream before transferring the received isochronous stream into the memory buffer  
described by the INPUT_MORE descriptors. This can improve the DV capture application performance by reducing  
the amount of processing overhead required to strip the CIP header and copy the received packets into frame-sized  
buffers.  
The start of a DV frame is represented in the 1394 packet as a 16-bit pattern of 1FX7h (first byte 1Fh and second  
byte X7h) received as the first two bytes of the third quadlet in a DV isochronous packet.  
9.3 Isochronous Receive Digital Video Enhancements Register  
The isochronous receive digital video enhancements register enables the DV enhancements in the PCI7410  
controller. The bits in this register may only be modified when both the active (bit 10) and run (bit 15) bits of the  
corresponding context control register are 0. See Table 9−2 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive digital video enhancements  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive digital video enhancements  
R
0
R
0
RSC  
0
RSC  
0
R
0
R
0
RSC  
0
RSC  
0
R
0
R
0
RSC  
0
RSC  
0
R
0
R
0
RSC  
0
RSC  
0
Register:  
Offset:  
Isochronous receive digital video enhancements  
A80h  
A84h  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear, Read-only  
0000 0000h  
Table 9−2. Isochronous Receive Digital Video Enhancements Register Description  
BIT  
31−14  
13  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31−14 return 0s when read.  
DV_Branch3  
RSC  
When bit 13 is set to 1, the isochronous receive context 3 synchronizes reception to the DV frame start  
tag in bufferfill mode if input_more.b = 01b, and jumps to the descriptor pointed to by frameBranch if  
a DV frame start tag is received out of place. This bit is only interpreted when bit 12 (CIP_Strip3) is  
set to 1 and bit 30 (isochHeader) in the isochronous receive context control register at OHCI offset  
460h/464h (see Section 8.44) is cleared to 0.  
12  
CIP_Strip3  
RSC  
When bit 12 is set to 1, the isochronous receive context 3 strips the first two quadlets of payload. This  
bit is only interpreted when bit 30 (isochHeader) in the isochronous receive context control register at  
OHCI offset 460h/464h (see Section 8.44) is cleared to 0.  
11−10  
9
RSVD  
R
Reserved. Bits 11 and 10 return 0s when read.  
DV_Branch2  
RSC  
When bit 9 is set to 1, the isochronous receive context 2 synchronizes reception to the DV frame start  
tag in bufferfill mode if input_more.b = 01b, and jumps to the descriptor pointed to by frameBranch if  
a DV frame start tag is received out of place. This bit is only interpreted when bit 8 (CIP_Strip2) is set  
to 1 and bit 30 (isochHeader) in the isochronous receive context control register at OHCI offset  
440h/444h (see Section 8.44) is cleared to 0.  
8
CIP_Strip2  
RSC  
When bit 8 is set to 1, the isochronous receive context 2 strips the first two quadlets of payload. This  
bit is only interpreted when bit 30 (isochHeader) in the isochronous receive context control register at  
OHCI offset 440h/444h (see Section 8.44) is cleared to 0.  
9−2  
 
Table 9−2. Isochronous Receive Digital Video Enhancements Register Description (Continued)  
BIT  
7−6  
5
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 7 and 6 return 0s when read.  
DV_Branch1  
RSC  
When bit 5 is set to 1, the isochronous receive context 1 synchronizes reception to the DV frame start  
tag in bufferfill mode if input_more.b = 01b, and jumps to the descriptor pointed to by frameBranch if  
a DV frame start tag is received out of place. This bit is only interpreted when bit 4 (CIP_Strip1) is set  
to 1 and bit 30 (isochHeader) in the isochronous receive context control register at OHCI offset  
420h/424h (see Section 8.44) is cleared to 0.  
4
CIP_Strip1  
RSC  
When bit 4 is set to 1, the isochronous receive context 1 strips the first two quadlets of payload. This  
bit is only interpreted when bit 30 (isochHeader) in the isochronous receive context control register at  
OHCI offset 420h/424h (see Section 8.44) is cleared to 0.  
3−2  
1
RSVD  
R
Reserved. Bits 3 and 2 return 0s when read.  
DV_Branch0  
RSC  
When bit 1 is set to 1, the isochronous receive context 0 synchronizes reception to the DV frame start  
tag in bufferfill mode if input_more.b = 01b and jumps to the descriptor pointed to by frameBranch if  
a DV frame start tag is received out of place. This bit is only interpreted when bit 0 (CIP_Strip0) is set  
to 1 and bit 30 (isochHeader) in the isochronous receive context control register at OHCI offset  
400h/404h (see Section 8.44) is cleared to 0.  
0
CIP_Strip0  
RSC  
When bit 0 is set to 1, the isochronous receive context 0 strips the first two quadlets of payload. This  
bit is only interpreted when bit 30 (isochHeader) in the isochronous receive context control register at  
OHCI offset 400h/404h (see Section 8.44) is cleared to 0.  
9−3  
9.4 Link Enhancement Register  
This register is a memory-mapped set/clear register that is an alias of the link enhancement control register at PCI  
offset F4h. These bits may be initialized by software. Some of the bits may also be initialized by a serial EEPROM,  
if one is present, as noted in the bit descriptions below. If the bits are to be initialized by software, then the bits must  
be initialized prior to setting bit 19 (LPS) in the host controller control register at OHCI offset 50h/54h (see  
Section 8.16). See Table 9−3 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link enhancement  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Link enhancement  
RSC  
0
R
0
RSC  
0
RSC  
1
R
0
RSC  
0
R
0
RSC  
0
RSC  
0
R
0
R
0
R
0
R
0
R
0
RSC  
0
R
0
Register:  
Offset:  
Link enhancement  
A88h  
A8Ch  
set register  
clear register  
Type:  
Default:  
Read/Set/Clear, Read-only  
0000 0000h  
Table 9−3. Link Enhancement Register Description  
BIT  
31−16  
15  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
Reserved. Bits 31−16 return 0s when read.  
R
dis_at_pipeline  
RSVD  
RSC  
R
Disable AT pipelining. When bit 15 is set to 1, out-of-order AT pipelining is disabled.  
Reserved.  
14  
13−12  
atx_thresh  
RSC  
This field sets the initial AT threshold value, which is used until the AT FIFO is underrun. When the  
PCI7410 controller retries the packet, it uses a 2K-byte threshold, resulting in a store-and-forward  
operation.  
00 = Threshold ~ 2K bytes resulting in a store-and-forward operation  
01 = Threshold ~ 1.7K bytes (default)  
10 = Threshold ~ 1K bytes  
11 = Threshold ~ 512 bytes  
These bits fine-tune the asynchronous transmit threshold. For most applications the 1.7K-byte  
threshold is optimal. Changing this value may increase or decrease the 1394 latency depending on  
the average PCI bus latency.  
Setting the AT threshold to 1.7K, 1K, or 512 bytes results in data being transmitted at these thresholds  
or when an entire packet has been checked into the FIFO. If the packet to be transmitted is larger  
than the AT threshold, then the remaining data must be received before the AT FIFO is emptied;  
otherwise, an underrun condition occurs, resulting in a packet error at the receiving node. As a result,  
the link then commences store-and-forward operation. Wait until it has the complete packet in the  
FIFO before retransmitting it on the second attempt, to ensure delivery.  
An AT threshold of 2K results in store-and-forward operation, which means that asynchronous data  
will not be transmitted until an end-of-packet token is received. Restated, setting the AT threshold  
to 2K results in only complete packets being transmitted.  
Note that this device always uses store-and-forward when the asynchronous transmit retries register  
at OHCI offset 08h (see Section 8.3) is cleared.  
11  
10  
RSVD  
R
Reserved. Bit 11 returns 0 when read.  
enab_mpeg_ts  
RSC  
Enable MPEG timestamp enhancements. When bit 10 is set to 1, the enhancement is enabled for  
MPEG transmit streams (FMT = 20h).  
9
8
RSVD  
R
Reserved. Bit 9 returns 0 when read.  
enab_dv_ts  
RSC  
Enable DV CIP timestamp enhancement. When bit 8 is set to 1, the enhancement is enabled for DV  
CIP transmit streams (FMT = 00h).  
9−4  
 
Table 9−3. Link Enhancement Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
7
enab_unfair  
RSC  
Enable asynchronous priority requests. OHCI-Lynxcompatible. Setting bit 7 to 1 enables the link  
to respond to requests with priority arbitration. It is recommended that this bit be set to 1.  
6
RSVD  
R
This bit is not assigned in the PCI7410 follow-on products, since this bit location loaded by the serial  
EEPROM from the enhancements field corresponds to bit 23 (programPhyEnable) in the host  
controller control register at OHCI offset 50h/54h (see Section 8.16).  
5−2  
1
RSVD  
R
Reserved. Bits 5−2 return 0s when read.  
enab_accel  
RSC  
Enable acceleration enhancements. OHCI-Lynxcompatible. When bit 1 is set to 1, the PHY layer  
is notified that the link supports the IEEE Std 1394a-2000 acceleration enhancements, that is,  
ack-accelerated, fly-by concatenation, etc. It is recommended that this bit be set to 1.  
0
RSVD  
R
Reserved. Bit 0 returns 0 when read.  
9.5 Timestamp Offset Register  
The value of this register is added as an offset to the cycle timer value when using the MPEG, DV, and CIP  
enhancements. A timestamp offset register is implemented per isochronous transmit context. The n value following  
the offset indicates the context number (n = 0, 1, 2, 3, , 7). These registers are programmed by software as  
appropriate. See Table 9−4 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Timestamp offset  
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
9
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
15  
14  
13  
12  
11  
10  
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Timestamp offset  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Timestamp offset  
A90h + (4*n)  
Read/Write, Read-only  
0000 0000h  
Default:  
Table 9−4. Timestamp Offset Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
DisableInitialOffset  
RW  
Bit 31 disables the use of the initial timestamp offset when the MPEG2 enhancements are enabled.  
A value of 0 indicates the use of the initial offset, a value of 1 indicates that the initial offset must not  
be applied to the calculated timestamp. This bit has no meaning for the DV timestamp  
enhancements.  
30−25  
24−12  
RSVD  
R
Reserved. Bits 30−25 return 0s when read.  
CycleCount  
RW  
This field adds an offset to the cycle count field in the timestamp when the DV or MPEG2  
enhancements are enabled. The cycle count field is incremented modulo 8000; therefore, values in  
this field must be limited between 0 and 7999.  
11−0  
CycleOffset  
RW  
This field adds an offset to the cycle offset field in the timestamp when the DV or MPEG2  
enhancements are enabled. The cycle offset field is incremented modulo 3072; therefore, values in  
this field must be limited between 0 and 3071.  
9−5  
 
9−6  
10 PHY Register Configuration  
There are 16 accessible internal registers in the PCI7410 controller. The configuration of the registers at addresses  
0h through 7h (the base registers) is fixed, whereas the configuration of the registers at addresses 8h through Fh (the  
paged registers) is dependent upon which one of eight pages, numbered 0h through 7h, is currently selected. The  
selected page is set in base register 7h.  
10.1 Base Registers  
Table 10−1 shows the configuration of the base registers, and Table 10−2 shows the corresponding field descriptions.  
The base register field definitions are unaffected by the selected page number.  
A reserved register or register field (marked as Reserved in the following register configuration tables) is read as 0,  
but is subject to future usage. All registers in address pages 2 through 6 are reserved.  
Table 10−1. Base Register Configuration  
BIT POSITION  
ADDRESS  
0
1
2
3
4
5
6
7
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Physical ID  
R
CPS  
RHB  
IBR  
Extended (111b)  
Max_Speed (010b)  
C
Gap_Count  
Reserved  
Reserved  
Jitter (000b)  
Pwr_fail  
Total_Ports (0010b)  
Delay (0000b)  
LCtrl  
Pwr_Class  
Watchdog  
ISBR  
Loop  
Timeout  
Port_event Enab_accel Enab_multi  
Port_Select  
Reserved  
Reserved  
Page_Select  
10−1  
 
Table 10−2. Base Register Field Descriptions  
FIELD  
SIZE TYPE  
DESCRIPTION  
Physical ID  
6
1
1
R
R
R
This field contains the physical address ID of this node determined during self-ID. The physical ID is invalid  
after a bus reset until self-ID has completed as indicated by an unsolicited register-0 status transfer.  
R
Root. This bit indicates that this node is the root node. The R bit is cleared to 0 by bus reset and is set to 1  
during tree-ID if this node becomes root.  
CPS  
Cable-power-status. This bit indicates the state of the CPS input terminal. The CPS terminal is normally tied  
to serial bus cable power through a 400-kresistor. A 0 in this bit indicates that the cable power voltage has  
dropped below its threshold for ensured reliable operation.  
RHB  
IBR  
1
1
R/W  
R/W  
Root-holdoff bit. This bit instructs the PHY layer to attempt to become root after the next bus reset. The RHB  
bit is cleared to 0 by a system (hardware) reset and is unaffected by a bus reset.  
Initiate bus reset. This bit instructs the PHY layer to initiate a long (166 µs) bus reset at the next opportunity.  
Any receive or transmit operation in progress when this bit is set completes before the bus reset is initiated.  
The IBR bit is cleared to 0 after a system (hardware) reset or a bus reset.  
Gap_Count  
6
R/W  
Arbitration gap count. This value sets the subaction (fair) gap, arb-reset gap, and arb-delay times. The gap  
count can be set either by a write to the register, or by reception or transmission of a PHY_CONFIG packet.  
The gap count is reset to 3Fh by system (hardware) reset or after two consecutive bus resets without an  
intervening write to the gap count register (either by a write to the PHY register or by a PHY_CONFIG  
packet).  
Extended  
3
4
R
R
Extended register definition. For the PCI7410 controller, this field is 111b, indicating that the extended  
register set is implemented.  
Total_Ports  
Number of ports. This field indicates the number of ports implemented in the PHY layer. For the PCI7410  
controller this field is 2.  
Max_Speed  
Delay  
3
4
R
R
PHY speed capability. For the PCI7410 PHY layer this field is 010b, indicating S400 speed capability.  
PHY repeater data delay. This field indicates the worst case repeater data delay of the PHY layer, expressed  
as 144+(delay × 20) ns. For the PCI7410 controller this field is 0.  
LCtrl  
1
R/W  
Link-active status control. This bit controls the active status of the LLC as indicated during self-ID. The  
logical AND of this bit and the LPS active status is replicated in the L field (bit 9) of the self-ID packet. The LLC  
is considered active only if both the LPS input is active and the LCtrl bit is set.  
The LCtrl bit provides a software controllable means to indicate the LLC active/status in lieu of using the LPS  
input.  
The LCtrl bit is set to 1 by a system (hardware) reset and is unaffected by a bus reset.  
NOTE: The state of the PHY-LLC interface is controlled solely by the LPS input, regardless of the state of the  
LCtrl bit. If the PHY-LLC interface is operational as determined by the LPS input being active, received  
packets and status information continue to be presented on the interface, and any requests indicated on the  
LREQ input are processed, even if the LCtrl bit is cleared to 0.  
C
1
3
3
R/W  
R
Contender status. This bit indicates that this node is a contender for the bus or isochronous resource  
manager. This bit is replicated in the c field (bit 20) of the self-ID packet.  
Jitter  
PHY repeater jitter. This field indicates the worst case difference between the fastest and slowest repeater  
data delay, expressed as (Jitter+1) × 20 ns. For the PCI7410 controller, this field is 0.  
Pwr_Class  
R/W  
Node power class. This field indicates this node power consumption and source characteristics and is  
replicated in the pwr field (bits 21−23) of the self-ID packet. This field is reset to the state specified by the  
PC0−PC2 input terminals upon a system (hardware) reset and is unaffected by a bus reset. See Table 10−9.  
Watchdog  
1
R/W  
Watchdog enable. This bit, if set to 1, enables the port event interrupt (Port_event) bit to be set whenever  
resume operations begin on any port. This bit is cleared to 0 by system (hardware) reset and is unaffected by  
bus reset.  
10−2  
 
Table 10−2. Base Register Field Descriptions (Continued)  
FIELD  
ISBR  
SIZE TYPE  
DESCRIPTION  
1
R/W  
Initiate short arbitrated bus reset. This bit, if set to 1, instructs the PHY layer to initiate a short (1.3 µs)  
arbitrated bus reset at the next opportunity. This bit is cleared to 0 by a bus reset.  
NOTE: Legacy IEEE Std 1394-1995 compliant PHY layers can not be capable of performing short bus  
resets. Therefore, initiation of a short bus reset in a network that contains such a legacy device results in a  
long bus reset being performed.  
Loop  
1
R/W  
Loop detect. This bit is set to 1 when the arbitration controller times out during tree-ID start and may indicate  
that the bus is configured in a loop. This bit is cleared to 0 by system (hardware) reset or by writing a 1 to this  
register bit.  
If the Loop and Watchdog bits are both set and the LLC is or becomes inactive, the PHY layer activates the  
LLC to service the interrupt.  
NOTE: If the network is configured in a loop, only those nodes which are part of the loop generate a  
configuration-timeout interrupt. All other nodes instead time out waiting for the tree-ID and/or self-ID process  
to complete and then generate a state time-out interrupt and bus-reset.  
Pwr_fail  
1
R/W  
Cable power failure detect. This bit is set to 1 whenever the CPS input transitions from high to low indicating  
that cable power may be too low for reliable operation. This bit is cleared to 0 by system (hardware) reset or  
by writing a 1 to this register bit.  
Timeout  
1
1
R/W  
R/W  
State time-out interrupt. This bit indicates that a state time-out has occurred (which also causes a bus reset  
to occur). This bit is cleared to 0 by system (hardware) reset or by writing a 1 to this register bit.  
Port_event  
Port event detect. This bit is set to 1 upon a change in the bias (unless disabled) connected, disabled, or fault  
bits for any port for which the port interrupt enable (Int_enable) bit is set. Additionally, if the Watchdog bit is  
set, the Port_event bit is set to 1 at the start of resume operations on any port. This bit is cleared to 0 by  
system (hardware) reset or by writing a 1 to this register bit.  
Enab_accel  
Enab_multi  
1
1
R/W  
R/W  
Enable accelerated arbitration. This bit enables the PHY layer to perform the various arbitration acceleration  
enhancements defined in IEEE Std 1394a-2000 (ACK-accelerated arbitration, asynchronous fly-by  
concatenation, and isochronous fly-by concatenation). This bit is cleared to 0 by system (hardware) reset  
and is unaffected by bus reset.  
Enable multispeed concatenated packets. This bit enables the PHY layer to transmit concatenated packets  
of differing speeds in accordance with the protocols defined in IEEE Std 1394a-2000. This bit is cleared to 0  
by system (hardware) reset and is unaffected by bus reset.  
Page_Select  
Port_Select  
3
4
R/W  
R/W  
Page_Select. This field selects the register page to use when accessing register addresses 8 through 15.  
This field is cleared to 0 by a system (hardware) reset and is unaffected by bus reset.  
Port_Select. This field selects the port when accessing per-port status or control (for example, when one of  
the port status/control registers is accessed in page 0). Ports are numbered starting at 0. This field is cleared  
to 0 by system (hardware) reset and is unaffected by bus reset.  
10−3  
10.2 Port Status Register  
The port status page provides access to configuration and status information for each of the ports. The port is selected  
by writing 0 to the Page_Select field and the desired port number to the Port_Select field in base register 7. Table 10−3  
shows the configuration of the port status page registers and Table 10−4 shows the corresponding field descriptions.  
If the selected port is not implemented, all registers in the port status page are read as 0.  
Table 10−3. Page 0 (Port Status) Register Configuration  
BIT POSITION  
ADDRESS  
1000  
0
1
2
3
4
5
6
7
AStat  
Peer_Speed  
BStat  
Int_enable  
Ch  
Con  
Bias  
Dis  
1001  
Fault  
Reserved  
1010  
Reserved  
1011  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1100  
1101  
1110  
1111  
Table 10−4. Page 0 (Port Status) Register Field Descriptions  
FIELD  
AStat  
SIZE TYPE  
DESCRIPTION  
2
R
TPA line state. This field indicates the TPA line state of the selected port, encoded as follows:  
Code  
11  
Arb Value  
Z
10  
01  
0
1
00  
invalid  
BStat  
Ch  
2
1
R
R
TPB line state. This field indicates the TPB line state of the selected port. This field has the same encoding as  
the AStat field.  
Child/parent status. A 1 indicates that the selected port is a child port. A 0 indicates that the selected port is  
the parent port. A disconnected, disabled, or suspended port is reported as a child port. The Ch bit is invalid  
after a bus reset until tree-ID has completed.  
Con  
1
R
Debounced port connection status. This bit indicates that the selected port is connected. The connection  
must be stable for the debounce time of approximately 341 ms for the Con bit to be set to 1. The Con bit is  
cleared to 0 by system (hardware) reset and is unaffected by bus reset.  
NOTE: The Con bit indicates that the port is physically connected to a peer PHY device, but the port is not  
necessarily active.  
Bias  
Dis  
1
1
R
Debounced incoming cable bias status. A 1 indicates that the selected port is detecting incoming cable bias.  
The incoming cable bias must be stable for the debounce time of 52 µs for the Bias bit to be set to 1.  
RW  
Port disabled control. If the Dis bit is set to 1, the selected port is disabled. The Dis bit is cleared to 0 by  
system (hardware) reset (all ports are enabled for normal operation following system (hardware) reset). The  
Dis bit is not affected by bus reset.  
Peer_Speed  
3
R
Port peer speed. This field indicates the highest speed capability of the peer PHY device connected to the  
selected port, encoded as follows:  
Code  
000  
Peer Speed  
S100  
001  
S200  
010  
S400  
011−111  
invalid  
The Peer_Speed field is invalid after a bus reset until self-ID has completed.  
NOTE: Peer speed codes higher than 010b (S400) are defined in IEEE Std 1394a-2000. However, the  
PCI7410 controller is only capable of detecting peer speeds up to S400.  
10−4  
 
Table 10−4. Page 0 (Port Status) Register Field Descriptions (Continued)  
FIELD  
SIZE TYPE  
DESCRIPTION  
Int_enable  
1
RW  
Port event interrupt enable. When the Int_enable bit is set to 1, a port event on the selected port sets the port  
event interrupt (Port_event) bit and notifies the link. This bit is cleared to 0 by a system (hardware) reset and  
is unaffected by bus reset.  
Fault  
1
RW  
Fault. This bit indicates that a resume-fault or suspend-fault has occurred on the selected port, and that the  
port is in the suspended state. A resume-fault occurs when a resuming port fails to detect incoming cable  
bias from its attached peer. A suspend-fault occurs when a suspending port continues to detect incoming  
cable bias from its attached peer. Writing 1 to this bit clears the fault bit to 0. This bit is cleared to 0 by system  
(hardware) reset and is unaffected by bus reset.  
10.3 Vendor Identification Register  
The vendor identification page identifies the vendor/manufacturer and compliance level. The page is selected by  
writing 1 to the Page_Select field in base register 7. Table 10−5 shows the configuration of the vendor identification  
page, and Table 10−6 shows the corresponding field descriptions.  
Table 10−5. Page 1 (Vendor ID) Register Configuration  
BIT POSITION  
ADDRESS  
1000  
0
1
2
3
4
5
6
7
Compliance  
Reserved  
1001  
1010  
Vendor_ID[0]  
Vendor_ID[1]  
Vendor_ID[2]  
Product_ID[0]  
Product_ID[1]  
Product_ID[2]  
1011  
1100  
1101  
1110  
1111  
Table 10−6. Page 1 (Vendor ID) Register Field Descriptions  
FIELD  
SIZE TYPE  
DESCRIPTION  
Compliance  
Vendor_ID  
8
R
R
Compliance level. For the PCI7410 controller this field is 01h, indicating compliance with IEEE Std 1394a-2000.  
24  
Manufacturer’s organizationally unique identifier (OUI). For the PCI7410 controller this field is 08 0028h (Texas  
Instruments) (the MSB is at register address 1010b).  
Product_ID  
24  
R
Product identifier. For the PCI7410 controller this field is 42 4499h (the MSB is at register address 1101b).  
10−5  
 
10.4 Vendor-Dependent Register  
The vendor-dependent page provides access to the special control features of the PCI7410 controller, as well as to  
configuration and status information used in manufacturing test and debug. This page is selected by writing 7 to the  
Page_Select field in base register 7. Table 10−7 shows the configuration of the vendor-dependent page, and  
Table 10−8 shows the corresponding field descriptions.  
Table 10−7. Page 7 (Vendor-Dependent) Register Configuration  
BIT POSITION  
ADDRESS  
1000  
0
1
2
3
4
5
6
7
NPA  
Reserved  
Link_Speed  
1001  
Reserved for test  
Reserved for test  
Reserved for test  
Reserved for test  
Reserved for test  
Reserved for test  
Reserved for test  
1010  
1011  
1100  
1101  
1110  
1111  
Table 10−8. Page 7 (Vendor-Dependent) Register Field Descriptions  
FIELD  
SIZE TYPE  
DESCRIPTION  
NPA  
1
RW  
Null-packet actions flag. This bit instructs the PHY layer to not clear fair and priority requests when a null  
packet is received with arbitration acceleration enabled. If this bit is set to 1, fair and priority requests are  
cleared only when a packet of more than 8 bits is received; ACK packets (exactly 8 data bits), null packets  
(no data bits), and malformed packets (less than 8 data bits) do not clear fair and priority requests. If this bit is  
cleared to 0, fair and priority requests are cleared when any non-ACK packet is received, including null  
packets or malformed packets of less than 8 bits. This bit is cleared to 0 by system (hardware) reset and is  
unaffected by bus reset.  
Link_Speed  
2
RW  
Link speed. This field indicates the top speed capability of the attached LLC. Encoding is as follows:  
Code  
00  
01  
10  
11  
Speed  
S100  
S200  
S400  
illegal  
This field is replicated in the sp field of the self-ID packet to indicate the speed capability of the node (PHY  
and LLC in combination). However, this field does not affect the PHY speed capability indicated to peer  
PHYs during self-ID; the PCI7410 PHY layer identifies itself as S400 capable to its peers regardless of the  
value in this field. This field is set to 10b (S400) by system (hardware) reset and is unaffected by bus reset.  
10−6  
 
10.5 Power-Class Programming  
The PC0–PC2 terminals are programmed to set the default value of the power-class indicated in the pwr field  
(bits 21–23) of the transmitted self-ID packet. Table 10−9 shows the descriptions of the various power classes. The  
default power-class value is loaded following a system (hardware) reset, but is overridden by any value subsequently  
loaded into the Pwr_Class field in register 4.  
Table 10−9. Power Class Descriptions  
PC0–PC2  
000  
DESCRIPTION  
Node does not need power and does not repeat power.  
001  
Node is self-powered and provides a minimum of 15 W to the bus.  
010  
Node is self-powered and provides a minimum of 30 W to the bus.  
011  
Node is self-powered and provides a minimum of 45 W to the bus.  
100  
Node may be powered from the bus and is using up to 3 W. No additional power is needed to enable the link.  
Reserved  
101  
110  
Node is powered from the bus and uses up to 3 W. An additional 3 W is needed to enable the link.  
Node is powered from the bus and uses up to 3 W. An additional 7 W is needed to enable the link.  
111  
10−7  
 
10−8  
11 PCI Firmware Loading Function Programming Model (Function 3)  
The PCI7410 controller is a multifunction PCI device. Function 3 is provided so that the firmware can be loaded into  
internal program memory. The configuration header is compliant with the PCI Local Bus Specification as a standard  
header. Table 11−1 illustrates the PCI configuration header for function 3.  
Table 11−1. Function 3 Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Base address register  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
Reserved  
Reserved  
Reserved  
Reserved  
14h−28h  
2Ch  
Subsystem ID  
Subsystem vendor ID  
30h  
Reserved  
Capabilities pointer  
34h  
38h  
Maximum latency  
Minimum grant  
Interrupt pin  
Interrupt line  
Capability ID  
3Ch  
40h  
Power management capabilities  
Next item pointer  
44h  
PM data (Reserved)  
PMCSR_BSE  
Power management CSR  
48h  
Reserved  
Reserved  
4Ch  
Reserved  
Miscellaneous control  
50h  
54h−F4h  
F8h  
Subsystem access  
Reserved  
FCh  
11.1 Vendor ID Register  
This 16-bit read-only register contains the value 104Ch, which is the vendor ID assigned to Texas Instruments.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Vendor ID  
00h  
Read-only  
104Ch  
Default:  
11−1  
 
11.2 Device ID Register  
This 16-bit read-only register contains the value 8204h assigned by TI to the PCI7410 firmware loading function.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Device ID  
02h  
Read-only  
8204h  
Default:  
11.3 Command Register  
This register provides control over the PCI7410 interface to the PCI bus. All bit functions adhere to the definitions in  
the PCI Local Bus Specification. See Table 11−2 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Command  
04h  
Read-only, Read/Write  
0000h  
Default:  
Table 11−2. Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−11  
RSVD  
R
Reserved. Bits 15−11 return 0s when read.  
INTx disable. When set, this bit disables the function from asserting interrupts on the INTx signals.  
Since the firmware loader function does not signal interrupts, this bit has no effect on the function.  
0 = INTx assertion is enabled (default)  
10  
INT_DISABLE  
RW  
1 = INTx assertion is disabled  
This bit is disabled (read-only 0) if bit 0 (PCI2_3_EN) in the miscellaneous control register (see  
Section 11.24) is 0.  
Fast back-to-back enable. The PCI7410 controller does not generate fast back-to-back transactions;  
thus, this bit returns 0 when read.  
9
FBB_EN  
R
SERR enable. When set, the PCI7410 SERR driver is enabled. SERR can be asserted after  
detecting an address parity error on the PCI bus.  
8
7
6
SERR_EN  
RSVD  
RW  
R
Reserved. Bit 7 returns 0 when read.  
Parity error enable. When set, the PCI7410 controller is enabled to drive the PERR response to  
parity errors through the PERR signal.  
PERR_EN  
RW  
VGA palette snoop enable. The PCI7410 controller does not feature VGA palette snooping; thus, this  
bit returns 0 when read.  
5
4
VGA_EN  
MWI_EN  
R
Memory write-and-invalidate (MWI) enable. This bit is hardwired to 0 since the firmware loader is a  
slave-only function.  
RW  
Special cycle enable. The PCI7410 controller does not respond to special cycle transactions. This bit  
returns 0 when read.  
3
2
1
SPECIAL  
R
MASTER_ENB  
MEMORY_ENB  
RW  
RW  
Bus master enable. This bit is hardwired to 0 since the firmware loader is a slave-only function.  
Memory response enable. This bit is hardwired to 0 since the firmware loader does not respond to  
memory cycles.  
I/O space enable. Setting this bit to 1 enables the PCI7410 controller to respond to I/O space  
accesses.  
0
IO_EN  
RW  
11−2  
 
11.4 Status Register  
This register provides device information to the host system. Bits in this register may be read normally. A bit in the  
status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All bit functions  
adhere to the definitions in the PCI Local Bus Specification. See Table 11−3 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
RCU RCU RCU RCU RCU  
R
0
R
1
RCU  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Status  
06h  
Read-only, Read/Clear/Update  
0210h  
Default:  
Table 11−3. Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Detected parity error. This bit is set when a parity error is detected, either an address- or data-parity  
error.  
15  
PAR_ERR  
RCU  
Signaled system error. This bit is set when SERR is enabled and the PCI7410 controller has  
signaled a system error to the host.  
14  
13  
SYS_ERR  
MABORT  
RCU  
RCU  
RCU  
RCU  
R
Received master abort. This bit is set when a cycle initiated by the PCI7410 controller on the PCI  
bus has been terminated by a master abort.  
Received target abort. This bit is set when a cycle initiated by the PCI7410 controller on the PCI bus  
has been terminated by a target abort.  
12  
TABORT_REC  
TABORT_SIG  
PCI_SPEED  
Signaled target abort. This bit is set by the PCI7410 controller when it terminates a transaction on  
the PCI bus with a target abort.  
11  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired 01b, indicating that the  
PCI7410 controller asserts this signal at a medium speed on nonconfiguration cycle accesses.  
10−9  
Data parity error detected. This bit is set when the following conditions have been met:  
a. PERR was asserted by any PCI device, including the PCI7410 controller.  
b. The PCI7410 controller was the bus master during the data parity error.  
c. The parity error response bit is set in the command register.  
8
DATAPAR  
RCU  
Fast back-to-back capable. The PCI7410 controller cannot accept fast back-to-back transactions;  
thus, this bit is hardwired to 0.  
7
6
5
4
FBB_CAP  
UDF  
R
R
R
R
UDF supported. The PCI7410 controller does not support the user definable features; thus, this bit is  
hardwired to 0.  
66-MHz capable. The PCI7410 controller operates at a maximum PCLK frequency of 33 MHz;  
therefore, this bit is hardwired to 0.  
66MHZ  
CAPLIST  
Capabilities list. This bit returns 1 when read, indicating that the firmware loading function of the  
PCI7410 controller supports additional PCI capabilities.  
Interrupt status. This bit reflects the interrupt status of the function. Since the firmware loader  
function does not signal interrupts, this bit is hardwired to 0. This bit is disabled (read-only 0) if bit 0  
(PCI2_3_EN) in the miscellaneous control register (see Section 11.24) is 0.  
3
INT_STATUS  
RSVD  
R
R
2−0  
Reserved. Bits 2−0 return 0s when read.  
11−3  
 
11.5 Class Code and Revision ID Register  
This read-only register categorizes the base class, subclass, and programming interface of the function. The base  
class is 08h, identifying the function as a generic system peripheral. The subclass is 80h, identifying the function as  
an other system peripheral. The programming interface is 00h. Furthermore, the TI chip revision (00h) is indicated  
in the lower byte. See Table 11−4 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Class code and revision ID  
08h  
Read-only  
0880 0000h  
Default:  
Table 11−4. Class Code and Revision ID Register Description  
BIT  
SIGNAL  
TYPE  
DESCRIPTION  
Base class. This field returns 08h when read, which broadly classifies the function as a generic  
system peripheral.  
31−24  
BASECLASS  
R
Subclass. This field returns 80h when read, which specifically classifies the function as other system  
peripheral.  
23−16  
SUBCLASS  
R
15−8  
7−0  
PGMIF  
R
R
Programming interface. This field returns 00h when read.  
CHIPREV  
Silicon revision. This field returns the silicon revision of PCI7410 controller.  
11.6 Cache Line Size Register  
This read/write register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Cache line size  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Cache line size  
0Ch  
Read-only  
00h  
Default:  
11.7 Latency Timer Register  
This read/write register specifies the latency timer for PCI7410 controller, in units of PCI clock cycles.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Latency timer  
0Dh  
Read-only  
00h  
Default:  
11−4  
 
11.8 Header Type Register  
This read-only register indicates that this function has a standard PCI header type.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type  
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Header type  
0Eh  
Read-only  
80h  
Default:  
11.9 BIST Register  
Because the PCI7410 controller does not support a built-in self test (BIST), this read-only register returns the value  
of 00h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
BIST  
0Fh  
Read-only  
00h  
Default:  
11.10 Base Address Register  
This register specifies the base address of a 4-byte I/O space used for loading the PCI7410 firmware. See Table 11−5  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
1
Register:  
Offset:  
Type:  
Base address  
10h  
Read-only, Read/Write  
0000 0001h  
Default:  
Table 11−5. Base Address Register Description  
BIT  
31−2  
1
SIGNAL  
BAR  
TYPE  
RW  
R
FUNCTION  
Base address. This field specifies the upper 30 bits of the 32-bit starting base address.  
Reserved. Bit 1 returns 0 when read.  
RSVD  
0
IO_INDICATOR  
R
I/O space indicator. This bit is hardwired to 1 to indicate that the base address maps into I/O space.  
11−5  
 
11.11 Subsystem Vendor ID Register  
This register, used for system and option card identification purposes, may be required for certain operating systems.  
This read-only register is initialized through the EEPROM and can be written through an alias register at PCI offset  
F8h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem vendor ID  
2Ch  
Read-only  
0000h  
Default:  
11.12 Subsystem ID Register  
This register, used for system and option card identification purposes, may be required for certain operating systems.  
This read-only register is initialized through the EEPROM and can be written through an alias register at PCI offset  
F8h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem ID  
2Eh  
Read-only  
0000h  
Default:  
11.13 Capabilities Pointer Register  
This read-only register provides a pointer into the PCI configuration header where the PCI power management  
block resides. Because the PCI power management registers begin at 44h, this register is hardwired to 44h.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capabilities pointer  
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Capabilities pointer  
34h  
Read-only  
44h  
Default:  
11−6  
 
11.14 Interrupt Line Register  
Since the firmware loader function does not signal interrupts, this register is implemented as read-only returning 00h.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Interrupt line  
3Ch  
Read-only  
00h  
Default:  
11.15 Interrupt Pin Register  
Since the firmware loader function does not signal interrupts, this register is implemented as read-only returning 00h.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Interrupt pin  
3Dh  
Read-only  
00h  
Default:  
11.16 Minimum Grant Register  
Since the firmware loader function is a slave-only function, this register is implemented as read-only returning 00h.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Minimum grant  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Minimum grant  
3Eh  
Read-only  
00h  
Default:  
11.17 Maximum Latency Register  
Since the firmware loader function is a slave-only function, this register is implemented as read-only returning 00h.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Maximum latency  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Maximum latency  
3Fh  
Read-only  
00h  
Default:  
11−7  
 
11.18 Capability ID Register  
This read-only register identifies the linked list item as the register for PCI power management. The register returns  
01h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Offset:  
Type:  
Capability ID  
44h  
Read-only  
01h  
Default:  
11.19 Next-Item Pointer Register  
The contents of this read-only register indicate the next item in the linked list of capabilities for the PCI7410 controller.  
Because PCI power management is the only entry in the capabilities list for the firmware loading function of the  
PCI7410 controller, this register returns 00h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Next-item pointer  
R
0
R
0
R
0
R
R
R
0
R
0
R
0
0
0
Register:  
Offset:  
Type:  
Next-item pointer  
45h  
Read-only  
00h  
Default:  
11−8  
 
11.20 Power-Management Capabilities Register  
This register indicates the capabilities of the firmware loading function of the PCI7410 controller related to PCI power  
management. See Table 11−6 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management capabilities  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power-management capabilities  
46h  
Read-only  
00h  
Default:  
Table 11−6. Power-Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support. This 5-bit field indicates the power states from which the PCI7410 controller can assert  
PME. These five bits return a value of 00000b by default, indicating that the firmware loading function  
does not assert PME.  
15−11 PME_SUPPORT  
R
This bit returns a 0 when read, indicating that the function does not support the D2 device power  
state.  
10  
9
D2_SUPPORT  
D1_SUPPORT  
AUX_CURRENT  
R
R
R
This bit returns a 0 when read, indicating that the function does not support the D1 device power  
state.  
3.3-Vaux auxiliary power requirements. Because this function does not support PME generation from  
8−6  
D3  
cold,  
this field returns 000b when read.  
Device specific initialization. This bit returns 0 when read, indicating that the PCI7410 controller does  
not require special initialization beyond the standard PCI configuration header before a generic class  
driver is able to use it.  
5
DSI  
R
4
3
RSVD  
R
R
R
Reserved. Bit 4 returns 0 when read.  
PME clock. This bit returns 0 when read, because the firmware loading function of the PCI7410  
controller does not support PME generation.  
PME_CLK  
2−0  
PM_VERSION  
Power management version. This field returns 010b, indicating revision 1.1 compatibility.  
11−9  
 
11.21 Power-Management Control/Status Register  
This register determines and changes the current power state of the firmware loading function of the PCI7410  
controller. The contents of this register are not affected by the internally generated reset caused by the transition from  
the D3  
to D0 state. See Table 11−7 for a complete description of the register contents.  
hot  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Power-management control/status  
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
Default  
Register:  
Offset:  
Type:  
Power-management control/status  
48h  
Read-only, Read/Clear, Read/Write  
0000h  
Default:  
Table 11−7. Power-Management Control/Status Register Description  
BIT  
SIGNAL  
TYPE  
DESCRIPTION  
PME status. This bit defaults to 0 because the firmware loading function does not support PME  
generation from any state.  
15  
PME_STAT  
RC  
Data scale. This 2-bit field returns 0s when read because the firmware loading function does not use  
the data register.  
14−13  
12−9  
DATA_SCALE  
DATA_SEL  
R
R
Data select. This 4-bit field returns 0s when read because the firmware loading function does not use  
the data register.  
PME enable. This bit defaults to 0 because the firmware loading function does not support PME  
generation from any state.  
8
PME_EN  
RSVD  
R
R
7−2  
Reserved. Bits 7−2 return 0s when read.  
Power state. This 2-bit field is used both to determine the current power state of the function and to  
set the function into a new power state. This field is encoded as follows:  
00 = D0  
01 = D1  
10 = D2  
1−0  
PWR_STATE  
RW  
11 = D3  
hot  
11.22 Power-Management Bridge Support Extension Register  
This read-only register is not applicable to the firmware loading function of the PCI7410 controller and returns 00h  
when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management bridge support extension  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power-management bridge support extension  
4Ah  
Read-only  
00h  
Default:  
11−10  
 
11.23 Power-Management Data Register  
The read-only register is not applicable to the firmware loading function of the PCI7410 controller and returns 00h  
when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power-management data  
4Bh  
Read-only  
00h  
Default:  
11.24 Miscellaneous Control Register  
This register contains the miscellaneous control bits for the firmware loader function. See Table 11−8 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Miscellaneous control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Miscellaneous control  
50h  
Read-only, Read/Write  
00h  
Default:  
Table 11−8. Miscellaneous Control Register Description  
BIT  
SIGNAL  
TYPE  
DESCRIPTION  
7−1  
RSVD  
R
Reserved. Bits 7−1 return 0s when read.  
PCI 2.3 enable. When this bit is set, the firmware loader function conforms to the PCI Local Bus  
Specification (Revision 2.3). When in the PCI 2.3 mode, bit 10 (INT_DISABLE) in the command  
register (see Section 11.3) and bit 3 (INT_STATUS) in the status register (see Section 11.4) are  
functional. When this bit is cleared, the function conforms to the PCI Local Bus Specification  
(Revision 2.2) and all PCI 2.3 bits are disabled.  
0
PCI2_3_EN  
RW  
0 = PCI 2.2 mode (default)  
1 = PCI 2.3 mode  
11−11  
 
11.25 Subsystem Access Register  
This register is a read/write register and the contents of this register are aliased to the subsystem vendor ID register  
at PCI offset 2Ch (see Section 11.11) and subsystem ID register at PCI offset 2Eh (see Section 11.12). See Table 11−9  
for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Subsystem access  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem access  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem access  
F8h  
Read/Write  
0000 0000h  
Default:  
Table 11−9. Subsystem Access Register Description  
BIT  
SIGNAL  
TYPE  
DESCRIPTION  
Subsystem ID. The value written to this field is aliased to the subsystem ID register at PCI offset  
2Eh.  
31−16  
SubsystemID  
RW  
RW  
Subsystem vendor ID. The value written to this field is aliased to the subsystem vendor ID  
register at PCI offset 2Ch.  
15−0  
SubsystemVendorID  
11−12  
 
12 Electrical Characteristics  
12.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, VR_PORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2.2 V  
ANALOGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
CC  
V
PLLV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 5.5 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 5.5 V  
CC  
V
V
CCCB  
CCP  
Clamping voltage range, V  
and V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6 V  
CCP  
CCCB  
Input voltage range, V : PCI, CardBus, PHY, miscellaneous . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
Output voltage range, V : PCI, CardBus, PHY, miscellaneous . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
+ 0.5 V  
I
CC  
CC  
O
IK  
OK  
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O O CC  
Operating free-air temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies for external input and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals and miscellaneous  
I
CC  
terminals are measured with respect to V  
limit specified applies for a dc condition.  
instead of V . PC Card terminals are measured with respect to CardBus V . The  
CC CC  
CCP  
2. Applies for external output and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals and miscellaneous  
O
CC  
terminals are measured with respect to V  
limit specified applies for a dc condition.  
instead of V . PC Card terminals are measured with respect to CardBus V . The  
CC CC  
CCP  
12.2 Recommended Operating Conditions (see Note 3)  
OPERATION  
MIN  
1.6  
NOM  
1.8  
MAX  
UNIT  
VR_PORT  
ANALOGV  
1.8 V  
3.3 V  
3.3 V  
2
V
V
V
V
(see Table 2−5 for description)  
3
3
3.3  
3.6  
3.6  
CC  
V
CC  
3.3  
PLLV  
3.3 V  
3.3 V  
5 V  
3
3
3.3  
3.3  
5
3.6  
3.6  
CC  
V
V
V
PCI and miscellaneous I/O clamp voltage  
PC Card I/O clamp voltage  
CCP  
4.75  
3
5.25  
3.6  
3.3 V  
5 V  
3.3  
5
V
CCCB  
4.75  
5.25  
NOTE 3: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
12−1  
 
Recommended Operating Conditions (continued)  
OPERATION  
MIN  
0.5 V  
NOM  
MAX  
UNIT  
3.3 V  
5 V  
V
CCP  
CCP  
PCI  
2
V
CCP  
V
3.3 V CardBus 0.475 V  
3.3 V 16-bit  
V
V
V
CC(A/B)  
2
CC(A/B)  
CC(A/B)  
CC(A/B)  
High-level input  
voltage  
V
V
V
V
PC Card  
V
IH  
5 V 16-bit  
2.4  
PC(0−2)  
0.7 V  
V
CC  
2
CC  
CC  
Miscellaneous  
V
3.3 V  
5 V  
0
0
0
0
0
0
0
0.3 V  
CCP  
PCI  
0.8  
V
3.3 V CardBus  
3.3 V 16-bit  
5 V 16-bit  
0.325 V  
CC(A/B)  
0.8  
V
IL  
V
V
V
V
Low-level input voltage  
PC Card  
0.8  
PC(0−2)  
0.2 V  
CC  
0.8  
Miscellaneous  
PCI  
0
0
0
V
CCP  
PC Card  
Miscellaneous  
V
CCCB  
V
V
Input voltage  
V
V
I
V
CC  
PCI  
0
0
0
V
CC  
V
CC  
V
CC  
4
§
PC Card  
Miscellaneous  
Output voltage  
O
PCI and PC Card  
1
0
Input transition time  
(t and t )  
t
I
ns  
t
Miscellaneous  
6
r
f
Output current  
TPBIAS outputs  
−5.6  
1.3  
mA  
O
Cable inputs during data reception  
Cable inputs during arbitration  
118  
168  
260  
265  
Differential input  
voltage  
V
ID  
mV  
TPB cable inputs, source power node  
TPB cable inputs, nonsource power node  
0.4706  
0.4706  
2.515  
Common-mode input  
voltage  
V
IC  
V
2.015  
t
Powerup reset time  
GRST input  
2
ms  
PU  
S100 operation  
1.08  
0.5  
S200 operation  
S400 operation  
Receive input jitter  
TPA, TPB cable inputs  
ns  
ns  
0.315  
S100 operation  
S200 operation  
S400 operation  
0.8  
0.55  
0.5  
Between TPA and TPB  
cable inputs  
Receive input skew  
T
Operating ambient temperature range  
Virtual junction temperature  
0
0
25  
25  
70  
°C  
°C  
A
T
J#  
115  
Applies to external inputs and bidirectional buffers without hysteresis  
Miscellaneous terminals are 1, 2, 12, 17, 111, 112, 125, 167, 181, and 187 for the PDV packaged device and B10, C09, D01, E03, F12, G03,  
H02, L17, P17, and P18 for the GHK packaged device (CNA, SCL, SDA, SUSPEND, GRST, CDx, PHY_TEST_MA, and VSx terminals).  
Applies to external output buffers  
§
#
For a node that does not source power, see Section 4.2.2.2 in IEEE Std 1394a−2000.  
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
12−2  
12.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
PARAMETER  
TERMINALS  
PCI  
OPERATION  
3.3 V  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
= −0.5 mA  
= −2 mA  
0.9 V  
OH  
OH  
OH  
OH  
OH  
CC  
2.4  
V
I
I
I
I
5 V  
3.3 V CardBus  
3.3 V 16-bit  
5 V 16-bit  
= −0.15 mA  
= −0.15 mA  
= −0.15 mA  
0.9 V  
CC  
2.4  
V
OH  
High-level output voltage  
PC Card  
2.8  
V
V
§
Miscellaneous  
I
I
I
I
I
I
I
= −4 mA  
= 1.5 mA  
= 6 mA  
V
CC  
−0.6  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
0.1 V  
3.3 V  
5 V  
CC  
PCI  
0.55  
= 0.7 mA  
= 0.7 mA  
= 0.7 mA  
= 4 mA  
0.1 V  
CC  
3.3 V CardBus  
3.3 V 16-bit  
5 V 16-bit  
Low-level output voltage  
V
I
OL  
0.4  
PC Card  
0.55  
0.5  
§
Miscellaneous  
Output terminals  
Output terminals  
3.6 V  
3.6 V  
5.25 V  
3.6 V  
V
= V  
or GND  
20  
−1  
−1  
10  
µA  
µA  
3-state output high-impedance  
OZ  
O CC  
V = V  
I CC  
High-impedance, low-level  
output current  
I
I
I
OZL  
OZH  
IL  
V = V  
I
CC  
CC  
CC  
V = V  
I
High-impedance, high-level  
output current  
Output terminals  
µA  
µA  
5.25 V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
25  
20  
V = V  
I
Input terminals  
I/O terminals  
PCI  
V = GND  
I
Low-level input current  
High-level input current  
V = GND  
I
20  
20  
20  
V = V  
I
CC  
CC  
CC  
Others  
V = V  
I
10  
V = V  
I
I
IH  
µA  
Input terminals  
I/O terminals  
5.25 V  
3.6 V  
20  
10  
25  
V = V  
I
CC  
CC  
CC  
V = V  
I
5.25 V  
V = V  
I
§
For PCI and miscellaneous terminals, V = V  
. For PC Card terminals, V = V .  
CC(A/B)  
I
CCP  
I
For I/O terminals, input leakage (I and I ) includes I  
leakage of the disabled output.  
IL IH OZ  
Miscellaneous terminals are 1, 2, 12, 17, 111, 112, 125, 167, 181, and 187 for the PDV packaged device and B10, C09, D01, E03, F12, G03,  
H02, L17, P17, and P18 for the GHK packaged device (CNA, SCL, SDA, SUSPEND, GRST, CDx, PHY_TEST_MA, and VSx terminals).  
12.4 Electrical Characteristics Over Recommended Ranges of Operating Conditions  
(unless otherwise noted)  
12.4.1 Device  
PARAMETER  
TEST CONDITION  
MIN  
MAX  
UNIT  
V
V
V
Power status threshold, CPS input  
TPBIAS output voltage  
400-kresistor  
4.7  
7.5  
TH  
At rated I current  
1.665 2.015  
5
V
O
O
I
I
Input current (PC0−PC2 inputs)  
V
CC  
= 3.6 V  
µA  
Measured at cable power side of resistor.  
12−3  
 
12.4.2 Driver  
PARAMETER  
Differential output voltage  
TEST CONDITION  
MIN  
MAX  
UNIT  
mV  
mA  
mA  
mA  
mV  
V
56 ,  
See Figure 12−1  
172  
265  
OD  
1.05  
I
I
I
Driver difference current, TPA+, TPA−, TPB+, TPB−  
Common-mode speed signaling current, TPB+, TPB−  
Common-mode speed signaling current, TPB+, TPB−  
Off state differential voltage  
Drivers enabled, speed signaling off  
S200 speed signaling enabled  
S400 speed signaling enabled  
−1.05  
DIFF  
−2.53  
−4.84  
SP200  
SP400  
−12.4  
−8.10  
V
OFF  
Drivers disabled,  
See Figure 12−1  
20  
Limits defined as algebraic sum of TPA+ and TPA− driver currents. Limits also apply to TPB+ and TPB− algebraic sum of driver currents.  
Limits defined as absolute limit of each of TPB+ and TPB− driver currents.  
TPAx+  
TPBx+  
56 Ω  
TPAx−  
TPBx−  
Figure 12−1. Test Load Diagram  
12.4.3 Receiver  
PARAMETER  
TEST CONDITION  
Drivers disabled  
MIN TYP  
MAX  
UNIT  
kΩ  
pF  
4
7
Z
Z
Differential impedance  
ID  
4
20  
kΩ  
pF  
Common-mode impedance  
Drivers disabled  
IC  
24  
30  
V
V
V
V
V
V
Receiver input threshold voltage  
Drivers disabled  
Drivers disabled  
Drivers disabled  
Drivers disabled  
−30  
0.6  
mV  
V
TH−R  
Cable bias detect threshold, TPBx cable inputs  
Positive arbitration comparator threshold voltage  
Negative arbitration comparator threshold voltage  
Speed signal threshold  
1.0  
TH−CB  
+
89  
168  
−89  
131  
396  
mV  
mV  
mV  
mV  
TH  
TH  
−168  
49  
TPBIAS−TPA common mode  
voltage, drivers disabled  
TH−SP200  
TH−SP400  
Speed signal threshold  
314  
12.5 PCI Clock/Reset Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, PCLK  
t
30  
11  
11  
1
ns  
ns  
c
cyc  
Pulse duration (width), PCLK high  
Pulse duration (width), PCLK low  
Slew rate, PCLK  
t
high  
w(H)  
w(L)  
t
ns  
low  
v/t  
t , t  
r
4
V/ns  
ms  
ms  
f
t
w
Pulse duration (width), GRST  
Setup time, PCLK active at end of PRST  
t
1
rst  
t
su  
t
100  
rst-clk  
12−4  
 
12.6 Switching Characteristics for PHY Port Interface  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.15  
0.10  
1.2  
UNIT  
ns  
Jitter, transmit  
Skew, transmit  
Between TPA and TPB  
Between TPA and TPB  
ns  
t
t
TP differential rise time, transmit  
TP differential fall time, transmit  
10% to 90%, at 1394 connector  
90% to 10%, at 1394 connector  
0.5  
0.5  
ns  
r
1.2  
ns  
f
12.7 Operating, Timing, and Switching Characteristics of XI  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
DD  
V
IH  
V
IL  
3.0  
3.3  
3.6 V (PLLV  
)
CC  
High-level input voltage  
Low-level input voltage  
Input clock frequency  
Input clock frequency tolerance  
Input slew rate  
0.63V  
CC  
V
0.33V  
V
CC  
24.576  
MHz  
PPM  
V/ns  
<100  
4
0.2  
Input clock duty cycle  
40%  
60%  
12.8 PCI Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature  
This data manual uses the following conventions to describe time ( t ) intervals. The format is t , where subscript A  
A
indicates the type of dynamic parameter being represented. One of the following is used: t = propagation delay time,  
pd  
t (t , t ) = delay time, t = setup time, and t = hold time.  
d
en dis  
su  
h
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK-to-shared signal  
valid delay time  
t
11  
val  
inv  
C
= 50 pF,  
L
t
Propagation delay time, See Note 4  
ns  
pd  
See Note 4  
PCLK-to-shared signal  
invalid delay time  
t
2
2
t
t
t
t
Enable time, high impedance-to-active delay time from PCLK  
Disable time, active-to-high impedance delay time from PCLK  
Setup time before PCLK valid  
t
ns  
ns  
ns  
ns  
en  
dis  
su  
h
on  
t
28  
off  
t
7
0
su  
Hold time after PCLK high  
t
h
NOTE 4: PCI shared signals are AD31−AD0, C/BE3−C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
12−5  
 
12−6  
13 Mechanical Information  
The PCI7410 controller is packaged in either a 209-ball GHK BGA or a 208-pin PDV package. The following shows  
the mechanical dimensions for the GHK and PDV packages.  
GHK (S-PBGA-N209)  
PLASTIC BALL GRID ARRAY  
16,10  
15,90  
SQ  
14,40 TYP  
0,80  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
0,80  
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,12  
0,08  
M
0,08  
0,45  
0,35  
4145273−2/B 12/98  
NOTES: B. All linear dimensions are in millimeters.  
C. This drawing is subject to change without notice.  
D. MicroStar BGAconfiguration.  
MicroStar BGA is a trademark of Texas Instruments.  
13−1  
 
PDV (S-PQFP-G208)  
PLASTIC QUAD FLATPACK  
156  
105  
157  
104  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
208  
53  
1
52  
Gage Plane  
25,50 TYP  
0,25  
28,05  
SQ  
0,05 MIN  
0°ā7°  
27,95  
30,10  
SQ  
29,90  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4087729/B 06/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
13−2  

相关型号:

PCI7410_10

PC Card, UltraMedia™
TI

PCI7411

DUAL SINGLE SOCKET CARDBUS AND ILTRAMEDIA CONTROLLER WITH INTEGRATED 1304-A - CONTROLLER WITH DEDICATED FLASH MEDIA SOCKET
TI

PCI7411GHK

Integrated single-socket UltraMedia PC Card controller, IEEE 1394 open HCI host controller and PHY, 288-BGA MICROSTAR 0 to 70
TI

PCI7420

DUAL SOCKET CARDBUS AND SMART CARD CONTROLLER
TI

PCI7420GHK

400Mbps, FLASH MEMORY DRIVE CONTROLLER, PBGA288, PLASTIC, BGA-288
ROCHESTER

PCI7420GHK

Integrated 2-Slot PC Card, Dedicated Flash Media Socket &amp; 1394a-2000 OHCI 2Port-PHY/Link-Layer Contr 288-BGA MICROSTAR 0 to 70
TI

PCI7420ZHK

Integrated 2-Slot PC Card, Dedicated Flash Media Socket &amp; 1394a-2000 OHCI 2Port-PHY/Link-Layer Contr 288-BGA MICROSTAR 0 to 70
TI

PCI7421

DUAL SINGLE SOCKET CARDBUS AND ILTRAMEDIA CONTROLLER WITH INTEGRATED 1304-A - CONTROLLER WITH DEDICATED FLASH MEDIA SOCKET
TI

PCI7421GHK

Integrated dual-socket UltraMedia PC Card controller, IEEE 1394 Open HCI host controller and PHY, an 288-BGA MICROSTAR 0 to 70
TI

PCI7510

PC Card, Smart Card and Integrated
TI

PCI7515GHK

PCMCIA BUS CONTROLLER, PBGA257, PLASTIC, BGA-257
TI

PCI7515ZHK

IC PCMCIA BUS CONTROLLER, PBGA257, LEAD FREE, PLASTIC, BGA-257, Bus Controller
TI