TG80960JT100 [ROCHESTER]

32-BIT, 100MHz, RISC PROCESSOR, PQFP132, PLASTIC, QFP-132;
TG80960JT100
型号: TG80960JT100
厂家: Rochester Electronics    Rochester Electronics
描述:

32-BIT, 100MHz, RISC PROCESSOR, PQFP132, PLASTIC, QFP-132

文件: 总87页 (文件大小:5542K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80960JA/JF/JD/JS/JC/JT 3.3 V  
Embedded 32-Bit Microprocessor  
Datasheet  
Product Features  
Code Compatible with all 80960Jx  
On-Chip Data RAM  
Processors  
—1 Kbyte Critical Variable Storage  
Single-Cycle Access  
High-Performance Embedded Architecture  
One Instruction/Clock Execution  
3.3 V Supply Voltage  
Core Clock Rate is:  
—5 V Tolerant Inputs  
1x the Bus Clock for 80960JA/JF/JS  
2x the Bus Clock for 80960JD/JC  
3x the Bus Clock for 80960JT  
TTL Compatible Outputs  
High Bandwidth Burst Bus  
32-Bit Multiplexed Address/Data  
Programmable Memory Configuration  
Selectable 8-, 16-, 32-Bit Bus Widths  
Supports Unaligned Accesses  
Big or Little Endian Byte Ordering  
High-Speed Interrupt Controller  
31 Programmable Priorities  
Eight Maskable Pins plus NMI#  
Up to 240 Vectors in Expanded Mode  
Two On-Chip Timers  
Load/Store Programming Model  
Sixteen 32-Bit Global Registers  
Sixteen 32-Bit Local Registers (8 sets)  
Nine Addressing Modes  
User/Supervisor Protection Model  
Two-Way Set Associative Instruction  
Cache  
80960JA - 2 Kbyte  
80960JF/JD - 4 Kbyte  
80960JS/JC/JT - 16 Kbyte  
Programmable Cache-Locking  
Mechanism  
Independent 32-Bit Counting  
Clock Prescaling by 1, 2, 4 or 8  
Internal Interrupt Sources  
Direct Mapped Data Cache  
80960JA - 1 Kbyte  
Halt Mode for Low Power  
IEEE 1149.1 (JTAG) Boundary Scan  
Compatibility  
Packages  
80960JF/JD - 2 Kbyte  
80960JS/JC/JT - 4 Kbyte  
Write Through Operation  
On-Chip Stack Frame Cache  
Seven Register Sets May Be Saved  
Automatic Allocation on Call/Return  
132-Lead Pin Grid Array (PGA)  
132-Lead Plastic Quad Flat Pack  
(PQFP)  
196-Ball Mini Plastic Ball Grid Array  
(MPBGA)  
0-7 Frames Reserved for High-Priority  
Interrupts  
Order Number: 273159-006  
August 2004  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The 80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor may contain design defects or errors known as errata which may cause the  
product to deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.  
AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress,  
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share,  
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel  
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX  
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your  
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside,  
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United  
States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © Intel Corporation, 2002, 2004  
2
Datasheet  
Contents  
Contents  
1.0 Introduction....................................................................................................................................7  
2.0 80960Jx Overview..........................................................................................................................9  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
80960 Processor Core........................................................................................................10  
Burst Bus ............................................................................................................................11  
Timer Unit ...........................................................................................................................11  
Priority Interrupt Controller..................................................................................................11  
Instruction Set Summary ....................................................................................................12  
Faults and Debugging.........................................................................................................12  
Low Power Operation .........................................................................................................12  
Test Features......................................................................................................................12  
Memory-Mapped Control Registers....................................................................................13  
2.10 Data Types and Memory Addressing Modes......................................................................13  
3.0 Packaging Information................................................................................................................15  
3.1  
3.2  
Available Processors and Packages ..................................................................................15  
Pin Descriptions..................................................................................................................16  
3.2.1 Functional Pin Definitions ......................................................................................16  
3.2.2 80960Jx 132-Lead PGA Pinout .............................................................................23  
3.2.3 80960Jx 132-Lead PQFP Pinout ...........................................................................27  
3.2.4 80960Jx 196-Ball MPBGA Pinout..........................................................................30  
4.0 Electrical Specifications .............................................................................................................35  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Absolute Maximum Ratings................................................................................................35  
Operating Conditions..........................................................................................................35  
Connection Recommendations...........................................................................................36  
VCC5 Pin Requirements (VDIFF).......................................................................................36  
VCCPLL Pin Requirements ................................................................................................37  
D.C. Specifications .............................................................................................................38  
A.C. Specifications..............................................................................................................42  
4.7.1 A.C. Test Conditions and Derating Curves............................................................45  
4.7.1.1 Output Delay or Hold vs. Load Capacitance..........................................46  
4.7.1.2  
TLX vs. AD Bus Load Capacitance.........................................................47  
4.7.1.3 ICC Active vs. Frequency ......................................................................49  
4.7.2 A.C. Timing Waveforms.........................................................................................53  
5.0 Device Identification....................................................................................................................59  
5.1  
5.2  
5.3  
80960JS/JC/JT Device Identification Register....................................................................60  
80960JD Device Identification Register..............................................................................61  
80960JA/JF Device Identification Register.........................................................................62  
6.0 Thermal Specifications ...............................................................................................................63  
6.1  
Thermal Management Accessories ....................................................................................68  
6.1.1 Heatsinks...............................................................................................................68  
7.0 Bus Functional Waveforms ........................................................................................................69  
7.1  
7.2  
Basic Bus States.................................................................................................................79  
Boundary-Scan Register.....................................................................................................80  
Datasheet  
3
Contents  
Figures  
1
2
3
4
5
6
7
8
9
80960Jx Microprocessor Package Options..................................................................................7  
80960Jx Block Diagram..............................................................................................................10  
132-Lead Pin Grid Array Top View-Pins Facing Down...............................................................23  
132-Lead Pin Grid Array Bottom View-Pins Facing Up..............................................................24  
132-Lead PQFP - Top View .......................................................................................................27  
196-Ball Mini Plastic Ball Grid Array Top View-Balls Facing Down............................................30  
196-Ball Mini Plastic Ball Grid Array Bottom View-Balls Facing Up ...........................................31  
VCC5 Current-Limiting Resistor .................................................................................................36  
VCCPLL Lowpass Filter .............................................................................................................37  
10 A.C. Test Load............................................................................................................................45  
11 Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (3.3 V Signals) ..........................46  
12 Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (5 V Signals) .............................46  
13 Output Delay or Hold vs. Load Capacitance80960JA/JF/JD....................................................47  
14  
15  
16  
17  
T
T
T
LX vs. AD Bus Load Capacitance80960JS/JC/JT (3.3 V Signals) .........................................47  
LX vs. AD Bus Load Capacitance80960JS/JC/JT (5 V Signals) ............................................48  
LX vs. AD Bus Load Capacitance80960JA/JF/JD...................................................................48  
ICC Active (Power Supply) vs. Frequency80960JA/JF .............................................................49  
18 80960JA/JF ICC Active (Thermal) vs. Frequency .......................................................................49  
19 80960JD ICC Active (Power Supply) vs. Frequency...................................................................50  
20 80960JD ICC Active (Thermal) vs. Frequency ............................................................................50  
21 80960JC ICC Active (Power Supply) vs. Frequency...................................................................51  
22 80960JC ICC Active (Thermal) vs. Frequency ............................................................................51  
23 80960JS ICC Active (Power Supply) vs. Frequency ...................................................................52  
24 80960JS ICC Active (Thermal) vs. Frequency ............................................................................52  
25 CLKIN Waveform........................................................................................................................53  
26  
27  
28  
29  
30  
31  
32  
T
T
T
T
T
T
T
OV1 Output Delay Waveform ....................................................................................................53  
OF Output Float Waveform .......................................................................................................54  
IS1 and TIH1 Input Setup and Hold Waveform ..........................................................................54  
IS2 and TIH2 Input Setup and Hold Waveform ..........................................................................54  
IS3 and TIH3 Input Setup and Hold Waveform ..........................................................................55  
IS4 and TIH4 Input Setup and Hold Waveform ..........................................................................55  
LX, TLXL and TLXA Relative Timings Waveform........................................................................56  
33 DT/R# and DEN# Timings Waveform.........................................................................................56  
34 TCK Waveform...........................................................................................................................57  
35  
36  
37  
38  
T
T
T
T
BSIS1 and TBSIH1 Input Setup and Hold Waveforms.................................................................57  
BSOV1 and TBSOF1 Output Delay and Output Float Waveform.................................................57  
BSOV2 and TBSOF2 Output Delay and Output Float Waveform.................................................58  
BSIS2 and TBSIH2 Input Setup and Hold Waveform...................................................................58  
39 80960JS/JC/JT Device Identification Register Fields.................................................................60  
40 80960JD Device Identification Register Fields...........................................................................61  
41 80960JA/JF Device Identification Register Fields ......................................................................62  
42 Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus.................................69  
43 Burst Read and Write Transactions Without Wait States, 32-Bit Bus ........................................70  
44 Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus..................................................71  
45 Burst Read and Write Transactions Without Wait States, 8-Bit Bus ..........................................72  
46 Burst Read and Write Transactions With 1, 0 Wait States  
and Extra Tr State on Read, 16-Bit Bus .....................................................................................73  
47 Double Word Read Bus Request, Misaligned One Byte From  
Quad Word Boundary, 32-Bit Bus, Little Endian ........................................................................74  
4
Datasheet  
Contents  
48 HOLD/HOLDA Waveform For Bus Arbitration............................................................................75  
49 Cold Reset Waveform.................................................................................................................76  
50 Warm Reset Waveform ..............................................................................................................77  
51 Entering the ONCE State............................................................................................................78  
52 Bus States with Arbitration..........................................................................................................80  
53 Summary of Aligned and Unaligned Accesses (32-Bit Bus).......................................................84  
54 Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)...................................85  
Tables  
1
80960Jx 3.3-V Microprocessor Family .........................................................................................7  
2
3
4
5
6
7
8
9
80960Jx Instruction Set ..............................................................................................................14  
80960Jx Processors Available in 132-Pin PGA Package...........................................................15  
80960Jx Processors Available in 132-Pin PQFP Package.........................................................15  
80960Jx Processors Available in Extended Temperature .........................................................16  
80960Jx Processors Available in 196-Ball MPBGA Package.....................................................16  
Pin Description Nomenclature ....................................................................................................17  
Pin DescriptionExternal Bus Signals.......................................................................................18  
Pin DescriptionProcessor Control Signals, Test Signals, and Power .....................................21  
10 Pin DescriptionInterrupt Unit Signals ......................................................................................22  
11 132-Lead PGA PinoutIn Signal Order.....................................................................................25  
12 132-Lead PGA PinoutIn Pin Order..........................................................................................26  
13 132-Lead PQFP PinoutIn Signal Order...................................................................................28  
14 132-Lead PQFP PinoutIn Pin Order........................................................................................29  
15 196-Ball MPBGA PinoutIn Signal Order..................................................................................32  
16 196-Ball MPBGA PinoutIn Pin Order ......................................................................................33  
17 Absolute Maximum Ratings........................................................................................................35  
18 80960Jx Operating Conditions ...................................................................................................35  
19 VDIFF Parameters......................................................................................................................37  
20 80960Jx D.C. Characteristics .....................................................................................................38  
21 80960Jx ICC Characteristics .......................................................................................................39  
22 80960Jx A.C. Characteristics .....................................................................................................42  
23 Note Definitions for Table 22, 80960Jx AC Characteristics........................................................45  
24 80960Jx Device Type and Stepping Reference .........................................................................59  
25 80960JS/JC/JT Device ID Register Field Definitions..................................................................60  
26 80960JS/JC/JT Device ID Model Types.....................................................................................60  
27 80960JD Device ID Field Definitions ..........................................................................................61  
28 80960JD Device ID Model Types ...............................................................................................61  
29 80960JA/JF Device ID Field Definitions .....................................................................................62  
30 80960JA/JF Device ID Model Types ..........................................................................................62  
31 Thermal Resistance for qCA and qJC Reference Table ..............................................................63  
32 Maximum Ambient Temperature Reference Table.....................................................................63  
33 132-Lead PGA Package Thermal Characteristics......................................................................64  
34 80960JA/JF/JD 196-Ball MPBGA Package Thermal Characteristics.........................................64  
35 80960JS/JC/JT 196-Ball MPBGA Package Thermal Characteristics.........................................65  
36 132-Lead PQFP Package Thermal Characteristics....................................................................65  
37 Maximum TA at Various Airflows in °C (80960JT) ......................................................................66  
38 Maximum TA at Various Airflows in °C (80960JC)......................................................................66  
39 Maximum TA at Various Airflows in °C (80960JD)......................................................................67  
40 Maximum TA at Various Airflows in °C (80960JS)......................................................................67  
41 Maximum TA at Various Airflows in °C (80960JA/JF).................................................................68  
Datasheet  
5
Contents  
42 Boundary-Scan Register—Bit Order ..........................................................................................81  
43 Natural Boundaries for Load and Store Accesses......................................................................81  
44 Summary of Byte Load and Store Accesses..............................................................................82  
45 Summary of Short Word Load and Store Accesses...................................................................82  
46 Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)..................................................83  
Revision History  
Date  
Revision  
Description  
To address the fact that many of the package prefix variables have  
changed, all package prefix variables in this document are now  
indicated with an "x".  
August 2004  
006  
Removed reference to A80960JF-16 from Table 3 on page 15.  
Removed reference to NG80960JC-40, NG80960JC-33, NG80960JS-16,  
and NG80960JF-16 from Table 4 on page 15.  
Removed reference to GD80960JC-40, GD80960JC-33, and 80960JS-16  
in Table 6 on page 16.  
September 2002  
005  
Removed reference to 80960JC-40, 80960JC-33, 80960JS-16, and  
80960JF-16 in Table 18 on page 35.  
Removed reference to 80960JC-40, 80960JC-33, 80960JS-16, and  
80960JF-16 from Table 21 on page 39.  
Removed reference to 80960JC-40, 80960JC-33, 80960JS-16 and  
80960JF-16 from Table 22 on page 42.  
Added new extended temp device offerings. See Table 5 on page 16.  
Removed PGA package availability from JS/JC/JT processors.  
September 1999  
June 1999  
004  
003  
Changed AC timing parameter T  
See Table 22 on page 42.  
(min) for extended temp devices only.  
OV1  
Merged the 80960JS/JC datasheet information into this datasheet  
(previously named 80960JA/JF/JD/JT 3.3 V Embedded 32-Bit  
Microprocessor datasheet).  
Updated I values for the 80960JS/JC/JT processors.  
CC  
Increased TIH1 specification for the 80960JS/JC/JT processors.  
Updated MPBGA thermal specifications.  
Corrected orientation of MPBGA package diagrams (Figure 6 on page 30  
and Figure 7 on page 31).  
December 1998  
002  
001  
Added Figure 11 on page 46, Figure 12 on page 46, Figure 14 on page 47,  
and Figure 15 on page 48 to distinguish 80960JT 3.3-V and 5-V signal  
derating curves from the 80960JA/JF/JD derating curves.  
This datasheet supersedes revisions to the following 80960Jx datasheets:  
#273109 (JT), #272971-002 (JD), and #276146-001 (JA/JF). In addition to  
combining the documents into one, the following content was changed:  
Figure 1 on page 7: Added MPBGA package to diagram.  
March 1998  
Section 3.2.4, “80960Jx 196-Ball MPBGA Pinout” on page 30: Added new  
Figures 6 and 7, Tables 10, 11 and 13.  
Figure 16 on page 48: Added with the note that follows the figure.  
6
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
1.0  
Introduction  
This document contains information for the 80960Jx microprocessors, including electrical  
characteristics and package pinout information. Detailed functional descriptions, other than  
parametric performance, are published in the i960® Jx Microprocessor Developers Manual  
(272483) and may be viewed online at http://developer.intel.com/design/i960/Techinfo/80960JX/.  
Figure 1. 80960Jx Microprocessor Package Options  
x80960JX  
XXXXXXXXSS  
M
i
®
x80960JX  
XXXXXXXSS  
M
i960  
i
© 19xx  
©
19xx  
x80960JX  
XXXXXXXX SS  
M
©
19xx  
i
196-Ball MPBGA  
132-Pin PQFP  
132-Pin PGA  
Throughout this datasheet, references to ‘80960Jx’ indicate features that apply to the 3.3-V Jx  
processors only:  
NOTE: To address the fact that many of the package prefix variables have changed, all package prefix  
variables in this document are now indicated with an "x".  
Table 1. 80960Jx 3.3-V Microprocessor Family  
Instruction  
Cache  
Data  
Cache  
Processor  
Voltage  
Core Clock  
80960JA  
80960JF  
80960JD  
80960JS  
80960JC  
80960JT  
3.3 V (5 V Tolerant)  
3.3 V (5 V Tolerant)  
3.3 V (5 V Tolerant)  
3.3 V (5 V Tolerant)  
3.3 V (5 V Tolerant)  
3.3 V (5 V Tolerant)  
2 Kbyte  
4 Kbyte  
4 Kbyte  
16 Kbyte  
16 Kbyte  
16 Kbyte  
1 Kbyte  
2 Kbyte  
2 Kbyte  
4 Kbyte  
4 Kbyte  
4 Kbyte  
1x  
1x  
2x  
1x  
2x  
3x  
Datasheet  
7
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
This page intentionally left blank.  
8
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
2.0  
80960Jx Overview  
The 80960Jx processor offers high performance to cost-sensitive 32-bit embedded applications.  
The 80960Jx is object code compatible with the 80960 core architecture and is capable of sustained  
execution at the rate of one instruction per clock. This processors features include generous  
instruction cache, data cache, and data RAM. It also boasts a fast interrupt mechanism and  
dual-programmable timer units.  
The 80960Jx processors clock multiplication operates the processor core at two or three times the  
bus clock rate to improve execution performance without increasing the complexity of board  
designs.  
Memory subsystems for cost-sensitive embedded applications often impose substantial wait state  
penalties. The 80960Jx integrates considerable storage resources on-chip to decouple CPU  
execution from the external bus.  
The 80960Jx rapidly allocates and de-allocates local register sets during context switches. The  
processor must flush a register set to the stack only when it saves more than seven sets to its local  
register cache.  
A 32-bit multiplexed burst bus provides a high-speed interface to system memory and I/O. A full  
complement of control signals simplifies the connection of the 80960Jx to external components.  
The user programs physical and logical memory attributes through memory-mapped control  
registers (MMRs), an extension not found on the i960® Kx, Sx or Cx processors. Physical and  
logical configuration registers enable the processor to operate with all combinations of bus width  
and data object alignment. The processor supports a homogeneous byte ordering model.  
This processor integrates two important peripherals: a timer unit and an interrupt controller. These  
and other hardware resources are programmed through memory-mapped control registers, an  
extension to the familiar i960 processor architecture.  
The timer unit (TU) offers two independent 32-bit timers for use as real-time system clocks and  
general-purpose system timing. These operate in either single-shot or auto-reload mode and may  
generate interrupts.  
The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.  
The ICU provides full programmability of up to 240 interrupt sources into 31 priority levels. The  
ICU takes advantage of a cached priority table and optional routine caching to minimize interrupt  
latency. Clock doubling on the 80960JD/JC processors reduces interrupt latency by 40% compared  
to the 80960JA/JF, and clock tripling on the 80960JT reduces interrupt latency by 20% compared  
to the 80960JD/JC. Local registers may be dedicated to high-priority interrupts to further reduce  
latency. Acting independently from the core, the ICU compares the priorities of posted interrupts  
with the current process priority, off-loading this task from the core. The ICU also supports the  
integrated timer interrupts.  
The 80960Jx features a Halt mode designed to support applications where low power consumption  
is critical. The halt instruction shuts down instruction execution, resulting in a power savings of up  
to 90 percent.  
The 80960Jxs testability features, including ONCE (On-Circuit Emulation) mode and Boundary  
Scan (JTAG), provide a powerful environment for design debug and fault diagnosis.  
Datasheet  
9
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
The Solutions960® program features a wide variety of development tools which support the i960  
processor family. Many of these tools are developed by partner companies; some are developed by  
Intel, such as profile-driven optimizing compilers. For more information on these products, contact  
your local Intel representative.  
Figure 2. 80960Jx Block Diagram  
Control  
Physical Region  
32-bit buses  
address / data  
CLKIN  
Configuration  
PLL, Clocks,  
Power Mgmt  
21  
Instruction Cache  
80960JA - 2K  
Bus  
Control Unit  
Address/  
Data Bus  
80960JF/JD - 4K  
80960JS/JC/JT - 16K  
Bus Request  
Queues  
TAP  
5
Boundary Scan  
Controller  
32  
Two 32-Bit  
Timers  
Instruction Sequencer  
Interrupt  
Port  
Constants  
Control  
Programmable  
Interrupt Controller  
9
8-Set  
Local Register Cache  
Execution  
and  
Memory  
Interface  
Unit  
Memory-Mapped  
Register Interface  
Multiply  
Divide  
Unit  
Address  
Generation  
128  
Unit  
32-bit Address  
32-bit Data  
1K Data RAM  
Global / Local  
Register File  
effective  
address  
SRC1 SRC2 DEST  
Direct Mapped  
Data Cache  
80960JA - 1K  
80960JF/JD - 2K  
80960JS/JC/JT -  
3 Independent 32-Bit SRC1, SRC2, and DEST Buses  
2.1  
80960 Processor Core  
The 80960Jx family is a scalar implementation of the 80960 core architecture. Intel designed this  
processor core as a very high performance device that is also cost-effective. Factors that contribute  
to the cores performance include:  
Core operates at the bus speed with the 80960JA/JF/JS  
Core operates at two or three times the bus speed with the 80960JD/JC and 80960JT,  
respectively  
Single-clock execution of most instructions  
Independent Multiply/Divide Unit  
Efficient instruction pipeline minimizes pipeline break latency  
Register and resource scoreboarding allow overlapped instruction execution  
128-bit register bus speeds local register caching  
Two-way set associative, integrated instruction cache  
Direct-mapped, integrated data cache  
1-Kbyte integrated data RAM delivers zero wait state program data  
10  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
2.2  
Burst Bus  
A 32-bit high-performance Bus Controller Unit (BCU) interfaces the 80960Jx to external memory  
and peripherals. The BCU fetches instructions and transfers data at the rate of up to four 32-bit  
words per six clock cycles. The external address/data bus is multiplexed.  
Users may configure the 80960Jxs bus controller to match an applications fundamental memory  
organization. Physical bus width is register-programmed for up to eight regions. Byte ordering and  
data caching are programmed through a group of logical memory templates and a defaults register.  
The BCUs features include:  
Multiplexed external bus to minimize pin count  
32-, 16-, and 8-bit bus widths to simplify I/O interfaces  
External ready control for address-to-data, data-to-data and data-to-next-address wait state  
types  
Support for big or little endian byte ordering to facilitate the porting of existing program code  
Unaligned bus accesses performed transparently  
Three-deep load/store queue to decouple the bus from the core  
Upon reset, the 80960Jx conducts an internal self-test. Then, before executing its first instruction, it  
performs an external bus confidence test by performing a checksum on the first words of the  
initialization boot record (IBR).  
2.3  
2.4  
Timer Unit  
The timer unit (TU) contains two independent 32-bit timers that are capable of counting at several  
clock rates and generating interrupts. Each is programmed by use of the TU registers. These  
memory-mapped registers are addressable on 32-bit boundaries. The timers have a single-shot  
mode and auto-reload capabilities for continuous operation. Each timer has an independent  
interrupt request to the 80960Jxs interrupt controller. The TU may generate a fault when  
unauthorized writes from user mode are detected. Clock prescaling is supported.  
Priority Interrupt Controller  
A programmable interrupt controller manages up to 240 external sources through an 8-bit external  
interrupt port. Alternatively, the interrupt inputs may be configured for individual edge- or level-  
triggered inputs. The interrupt unit (IU) also accepts interrupts from the two on-chip timer channels  
and a single Non-Maskable Interrupt (NMI#) pin. Interrupts are serviced according to their priority  
levels relative to the current process priority.  
Low interrupt latency is critical to many embedded applications. As part of its highly flexible  
interrupt mechanism, the 80960Jx exploits several techniques to minimize latency:  
Interrupt vectors and interrupt handler routines may be reserved on-chip.  
Register frames for high-priority interrupt handlers may be cached on-chip.  
The interrupt stack may be placed in cacheable memory space.  
Interrupt microcode executes at two or three times the bus frequency for the 80960JD/JC and  
80960JT, respectively.  
Datasheet  
11  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
2.5  
Instruction Set Summary  
The 80960Jx adds several new instructions to the i960 processor core architecture. The new  
instructions are:  
Conditional Move  
Conditional Add  
Conditional Subtract  
Byte Swap  
Halt  
Cache Control  
Interrupt Control  
Table 2 identifies the instructions that the 80960Jx supports. Refer to the i960® Jx Microprocessor  
Developers Manual (272483) for a detailed description of each instruction.  
2.6  
Faults and Debugging  
The 80960Jx employs a comprehensive fault model. The processor responds to faults by making  
implicit calls to a fault handling routine. Specific information collected for each fault allows the  
fault handler to diagnose exceptions and recover appropriately.  
The processor also has built-in debug capabilities. In software, the 80960Jx may be configured to  
detect as many as seven different trace event types. Alternatively, mark and fmark instructions  
may generate trace events explicitly in the instruction stream. Hardware breakpoint registers are  
also available to trap on execution and data addresses.  
2.7  
Low Power Operation  
Intel fabricates the 80960Jx using an advanced sub-micron manufacturing process. The processors  
sub-micron topology provides the circuit density for optimal cache size and high operating speeds  
while dissipating modest power. The processor also uses dynamic power management to turn off  
clocks to unused circuits.  
Users may program the 80960Jx to enter Halt mode for maximum power savings. In Halt mode,  
the processor core stops completely while the integrated peripherals continue to function, reducing  
overall power requirements up to 90 percent. Processor execution resumes from internally or  
externally generated interrupts.  
2.8  
Test Features  
The 80960Jx incorporates numerous features that enhance the users ability to test both the  
processor and the system to which it is attached. These features include ONCE (On-Circuit  
Emulation) mode and Boundary Scan (JTAG).  
12  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
The 80960Jx provides testability features compatible with IEEE Standard Test Access Port and  
Boundary Scan Architecture (IEEE Std. 1149.1).  
One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins  
(ONCE mode). ONCE mode may also be initiated at reset without using the boundary scan  
mechanism.  
ONCE mode is useful for board-level testing. This feature allows a mounted 80960Jx to  
electrically removeitself from a circuit board. This allows for system-level testing in which a  
remote tester, such as an in-circuit emulator, may exercise the processor system.  
The provided test logic does not interfere with component or circuit board behavior and ensures  
that components function correctly, connections between various components are correct, and  
various components interact correctly on the printed circuit board.  
The JTAG Boundary Scan feature is an attractive alternative to conventional bed-of-nailstesting.  
It may examine connections that might otherwise be inaccessible to a test system.  
2.9  
Memory-Mapped Control Registers  
The 80960Jx, although compliant with the i960 processor core, has the added advantage of  
memory-mapped, internal control registers not found on the i960 Kx, Sx or Cx processors. These  
registers give software the interface to easily read and modify internal control registers.  
Each of these registers is accessed as a memory-mapped, 32-bit register. Access is accomplished  
through regular memory-format instructions. The processor ensures that these accesses do not  
generate external bus cycles.  
2.10  
Data Types and Memory Addressing Modes  
As with all i960 processors, the 80960Jx instruction set supports several data types and formats:  
Bit  
Bit fields  
Integer (8-, 16-, 32-, 64-bit)  
Ordinal (8-, 16-, 32-, 64-bit unsigned integers)  
Triple word (96 bits)  
Quad word (128 bits)  
The 80960Jx provides a full set of addressing modes for C and assembly programming:  
Two Absolute modes  
Five Register Indirect modes  
Index with displacement  
IP with displacement  
Datasheet  
13  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 2. 80960Jx Instruction Set  
Data Movement  
Arithmetic  
Logical  
Bit, Bit Field and Byte  
Add  
Subtract  
Multiply  
And  
Set Bit  
Divide  
Not And  
And Not  
Or  
Clear Bit  
Remainder  
Not Bit  
Load  
Modulo  
Alter Bit  
Store  
Shift  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Move  
Conditional Select†  
Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
Conditional Add†  
Conditional Subtract†  
Rotate  
Or Not  
Load Address  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
Byte Swap†  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Call  
Conditional Compare  
Compare and Increment  
Compare and Decrement  
Test Condition Code  
Check Bit  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call Extended  
Call System  
Return  
Conditional Fault  
Synchronize Faults  
Branch and Link  
Debug  
Processor Management  
Atomic  
Flush Local Registers  
Modify Arithmetic  
Controls  
Modify Trace Controls  
Mark  
Modify Process Controls  
Halt†  
Atomic Add  
Atomic Modify  
Force Mark  
System Control  
Cache Control†  
Interrupt Control†  
Denotes new 80960 instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB processors.  
14  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
3.0  
Packaging Information  
3.1  
Available Processors and Packages  
The 80960Jx is offered in various speed grades and three package types.  
The 132-pin Pin Grid Array (PGA) device is specified for operation at VCC = 3.3 V ± 0.15 V over  
a case temperature range of 0° C to 100° C. The following processor versions are available in the  
PGA package:  
Table 3. 80960Jx Processors Available in 132-Pin PGA Package  
Processor  
x80960JD-66  
Core Speed  
Bus Speed  
66 MHz  
33 MHz  
33 MHz  
25 MHz  
33 MHz  
16 MHz  
33 MHz  
25 MHz  
x80960JD-33  
x80960JA/JF-33  
x80960JF-25  
For pinout diagrams for the PGA package, see Section 3.2.2, “80960Jx 132-Lead PGA Pinout” on  
page 23.  
The 132-pin Plastic Quad Flatpack (PQFP) devices are specified for operation at  
V
CC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. Table 4 presents 80960Jx  
processor versions that are available in the 132-pin PQFP package:  
Table 4. 80960Jx Processors Available in 132-Pin PQFP Package  
Processor  
Core Speed  
Bus Speed  
x80960JT-100  
x80960JC-66  
x80960JC-50  
x80960JS-33  
x80960JS-25  
x80960JD-66  
x80960JD-40  
x80960JA/JF-33  
x80960JA/JF-25  
x80960JA-16  
100 MHz  
66 MHz  
50 MHz  
33 MHz  
25 MHz  
66 MHz  
40 MHz  
33 MHz  
25 MHz  
16 MHz  
33 MHz  
33 MHz  
25 MHz  
33 MHz  
25 MHz  
33 MHz  
20 MHz  
33 MHz  
25 MHz  
16 MHz  
For pinout diagrams of the PQFP package, see Section 3.2.3, “80960Jx 132-Lead PQFP Pinout” on  
page 27.  
Extended temperature devices are specified for operation at VCC = 3.3 V ± 0.15 V over a case  
temperature range of -40° C to 100° C. Table 5 presents 80960Jx processor versions that are  
available in the extended temperature 132-pin PQFP package and MPBGA package:  
NOTE: To address the fact that many of the package prefix variables have changed, all package prefix  
variables in this document are now indicated with an "x".  
Datasheet  
15  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 5. 80960Jx Processors Available in Extended Temperature  
Processor  
Core Speed  
Bus Speed  
Package Type  
x80960JA-25  
x80960JS-25  
x80960JS-33  
x80960JC-66  
x80960JT-100  
x80960JC-66ET  
25 MHz  
25 MHz  
33 MHz  
66 Mhz  
100 MHz  
66 MHz  
25 MHz  
25 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
PQFP  
PQFP  
PQFP  
PQFP  
PQFP  
MPBGA  
The 196-ball Mini Plastic Ball Grid Array (MPBGA) device is specified for operation at  
VCC = 3.3 V ± 0.15 V over a case temperature range of 0° C to 100° C. Table 6 presents the  
80960Jx processor versions that are available in the 196-ball MPBGA package:  
Table 6. 80960Jx Processors Available in 196-Ball MPBGA Package  
Processor  
Core Speed  
Bus Speed  
x80960JT-100  
x80960JC-66  
x80960JS-33  
x80960JS-25  
x80960JD-50  
x80960JA/JF-33  
100 MHz  
66 MHz  
33 MHz  
25 MHz  
50 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
25 MHz  
25 MHz  
33 MHz  
For pinout diagrams of the PQFP package, see Section 3.2.4, “80960Jx 196-Ball MPBGA Pinout”  
on page 30.  
For additional package specifications and information, refer to the Intel Packaging Databook,  
available in individual chapters, at http://www.intel.com.  
NOTE: To address the fact that many of the package prefix variables have changed, all package prefix  
variables in this document are now indicated with an "x".  
3.2  
Pin Descriptions  
This section describes the pins for the 80960Jx processors. For a description of pin function, see  
Section 3.2.1, “Functional Pin Definitions” on page 16. Refer to the following sections for pinout  
information for the three package types:  
Section 3.2.2, “80960Jx 132-Lead PGA Pinout” on page 23.  
Section 3.2.3, “80960Jx 132-Lead PQFP Pinout” on page 27.  
Section 3.2.4, “80960Jx 196-Ball MPBGA Pinout” on page 30.  
3.2.1  
Functional Pin Definitions  
Table 7 presents the legend for interpreting the three pin description tables that follow. These tables  
define the pins associated with the bus interface, basic control and test functions, and the Interrupt  
Unit.  
16  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 7. Pin Description Nomenclature  
Symbol  
Description  
I
O
Input pin only.  
Output pin only.  
I/O  
Pin may be either an input or output.  
Pin must be connected as described.  
Synchronous. Inputs must meet setup and hold times relative to CLKIN for proper operation.  
S
S(E) Edge sensitive input  
S(L) Level sensitive input  
Asynchronous. Inputs may be asynchronous relative to CLKIN.  
A (...)  
A(E) Edge sensitive input  
A(L) Level sensitive input  
While the processors RESET# pin is asserted, the pin:  
R(1) is driven to V  
R(0) is driven to V  
CC  
R (...)  
SS  
R(Q) is a valid output  
R(X) is driven to unknown state  
R(H) is pulled up to V  
CC  
While the processor is in the hold state, the pin:  
H(1) is driven to V  
H(0) is driven to V  
H(Q) Maintains previous state or continues to be a valid output  
H(Z) Floats  
CC  
H (...)  
P (...)  
SS  
While the processor is halted, the pin:  
P(1) is driven to V  
P(0) is driven to V  
CC  
SS  
P(Q) Maintains previous state or continues to be a valid output  
Datasheet  
17  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 8. Pin DescriptionExternal Bus Signals (Sheet 1 of 4)  
NAME  
TYPE  
DESCRIPTION  
ADDRESS / DATA BUS carries 32-bit physical addresses and 8-, 16- or 32-bit data  
to and from memory. During an address (T ) cycle, bits 31:2 contain a physical word  
a
address (bits 0-1 indicate SIZE; see below). During a data (T ) cycle, read or write  
d
data is present on one or more contiguous bytes, comprising AD[31:24], AD[23:16],  
AD[15:8] and AD[7:0]. During write operations, unused pins are driven to  
determinate values.  
SIZE, which comprises bits 0-1 of the AD lines during a T cycle, specifies the  
a
number of data transfers during the bus transaction.  
AD1  
AD0  
Bus Transfers  
1 Transfer  
I/O  
S(L)  
R(X)  
H(Z)  
P(Q)  
0
0
1
1
0
1
0
1
AD[31:0]  
2 Transfers  
3 Transfers  
4 Transfers  
When the processor enters Halt mode, if the previous bus operation was a:  
write AD[31:2] are driven with the last data value on the AD bus.  
read AD[31:4] are driven with the last address value on the AD bus; AD[3:2]  
are driven with the value of A[3:2] from the last data cycle.  
Typically, AD[1:0] reflect the SIZE information of the last bus transaction (either  
instruction fetch or load/store) that was executed before entering Halt mode.  
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE is  
R(0)  
H(Z)  
P(0)  
ALE  
ALE#  
ADS#  
asserted during a T cycle and deasserted before the beginning of the T state. It is  
a
d
active HIGH and floats to a high impedance state during a hold cycle (T ).  
h
O
ADDRESS LATCH ENABLE indicates the transfer of a physical address. ALE# is  
the inverted version of ALE. This signal gives the 80960Jx a high degree of  
compatibility with existing 80960Kx systems.  
R(1)  
H(Z)  
P(1)  
O
ADDRESS STROBE indicates a valid address and the start of a new bus access.  
R(1)  
H(Z)  
P(1)  
The processor asserts ADS# for the entire T cycle. External bus control logic  
a
typically samples ADS# at the end of the cycle.  
ADDRESS[3:2] comprise a partial demultiplexed address bus.  
32-bit memory accesses: the processor asserts address bits A[3:2] during T . The  
a
partial word address increments with each assertion of RDYRCV# during a burst.  
O
R(X)  
H(Z)  
P(Q)  
16-bit memory accesses: the processor asserts address bits A[3:1] during T with A1  
driven on the BE1# pin. The partial short word address increments with each  
assertion of RDYRCV# during a burst.  
a
A[3:2]  
8-bit memory accesses: the processor asserts address bits A[3:0] during T , with  
a
A[1:0] driven on BE[1:0]#. The partial byte address increments with each assertion of  
RDYRCV# during a burst.  
18  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 8. Pin DescriptionExternal Bus Signals (Sheet 2 of 4)  
NAME  
TYPE  
DESCRIPTION  
BYTE ENABLES select which of up to four data bytes on the bus participate in the  
current bus access. Byte enable encoding is dependent on the bus width of the  
memory region accessed:  
32-bit bus:  
BE3# enables data on AD[31:24]  
BE2# enables data on AD[23:16]  
BE1# enables data on AD[15:8]  
BE0# enables data on AD[7:0]  
16-bit bus:  
BE3# becomes Byte High Enable (enables data on AD[15:8])  
BE2# is not used (state is high)  
O
R(1)  
H(Z)  
P(1)  
BE1# becomes Address Bit 1 (A1)  
BE0# becomes Byte Low Enable (enables data on AD[7:0])  
BE[3:0]#  
8-bit bus:  
BE3# is not used (state is high)  
BE2# is not used (state is high)  
BE1# becomes Address Bit 1 (A1)  
BE0# becomes Address Bit 0 (A0)  
The processor asserts byte enables, byte high enable and byte low enable during T .  
a
Since unaligned bus requests are split into separate bus transactions, these signals  
do not toggle during a burst. They remain active through the last T cycle.  
d
For accesses to 8- and 16-bit memory, the processor asserts the address bits in  
conjunction with A[3:2] described above.  
WIDTH/HALTED signals denote the physical memory attributes for a bus  
transaction:  
WIDTH/  
HLTD1  
WIDTH/  
HLTD0  
O
0
0
1
1
0
1
0
1
8 Bits Wide  
WIDTH/  
HLTD[1:0]  
R(0)  
H(Z)  
P(1)  
16 Bits Wide  
32 Bits Wide  
Processor Halted  
The processor floats the WIDTH/HLTD pins whenever it relinquishes the bus in  
response to a HOLD request, regardless of prior operating state.  
DATA/CODE indicates that a bus access is a data access (1) or an instruction  
access (0). D/C# has the same timing as W/R#.  
O
R(X)  
H(Z)  
P(Q)  
D/C#  
0 = instruction access  
1 = data access  
WRITE/READ specifies, during a T cycle, whether the operation is a write (1) or  
a
O
read (0). It is latched on-chip and remains valid during T cycles.  
d
R(0)  
H(Z)  
P(Q)  
W/R#  
0 = read  
1 = write  
DATA TRANSMIT / RECEIVE indicates the direction of data transfer to and from the  
O
address/data bus. It is low during T and T /T cycles for a read; it is high during T  
a
w
d
a
R(0)  
H(Z)  
P(Q)  
and T /T cycles for a write. DT/R# never changes state when DEN# is asserted.  
w d  
DT/R#  
0 = receive  
1 = transmit  
Datasheet  
19  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 8. Pin DescriptionExternal Bus Signals (Sheet 3 of 4)  
NAME  
TYPE  
DESCRIPTION  
DATA ENABLE indicates data transfer cycles during a bus access. DEN# is  
asserted at the start of the first data cycle in a bus access and deasserted at the end  
of the last data cycle. DEN# is used with DT/R# to provide control for data  
transceivers connected to the data bus.  
O
R(1)  
H(Z)  
P(1)  
DEN#  
0 = data cycle  
1 = not data cycle  
BURST LAST indicates the last transfer in a bus access. BLAST# is asserted in the  
last data transfer of burst and non-burst accesses. BLAST# remains active as long  
as wait states are inserted through the RDYRCV# pin. BLAST# becomes inactive  
after the final data transfer in a bus cycle.  
O
R(1)  
H(Z)  
P(1)  
BLAST#  
0 = last data transfer  
1 = not last data transfer  
READY/RECOVER indicates that data on AD lines may be sampled or removed.  
When RDYRCV# is not asserted during a T cycle, the T cycle is extended to the  
d
d
next cycle by inserting a wait state (T ).  
w
0 = sample data  
1 = dont sample data  
I
RDYRCV#  
S(L)  
The RDYRCV# pin has another function during the recovery (T ) state. The  
r
processor continues to insert additional recovery states until it samples the pin  
HIGH. This function gives slow external devices more time to float their buffers  
before the processor begins to drive address again.  
0 = insert wait states  
1 = recovery complete  
BUS LOCK indicates that an atomic read-modify-write operation is in progress. The  
LOCK# output is asserted in the first clock of an atomic operation and deasserted in  
the last data transfer of the sequence. The processor does not grant HOLDA while it  
is asserting LOCK#. This prevents external agents from accessing memory involved  
in semaphore operations.  
I/O  
0 = Atomic read-modify-write in progress  
1 = Atomic read-modify-write not in progress  
S(L)  
R(H)  
H(Z)  
P(1)  
LOCK#/  
ONCE#  
ONCE MODE: The processor samples the ONCE# input during reset. When it is  
asserted LOW at the end of reset, the processor enters ONCE mode. In ONCE  
mode, the processor stops all clocks and floats all output pins. The pin has a weak  
internal pullup which is active during reset to ensure normal operation when the pin  
is left unconnected.  
0 = ONCE mode enabled  
1 = ONCE mode not enabled  
HOLD: A request from an external bus master to acquire the bus. When the  
processor receives HOLD and grants bus control to another master, it asserts  
HOLDA, floats the address/data and control lines and enters the T state. When  
h
I
HOLD is deasserted, the processor deasserts HOLDA and enters either the T or T  
i
a
HOLD  
S(L)  
state, resuming control of the address/data and control lines.  
0 = no hold request  
1 = hold request  
20  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 8. Pin DescriptionExternal Bus Signals (Sheet 4 of 4)  
NAME  
TYPE  
DESCRIPTION  
HOLD ACKNOWLEDGE indicates to an external bus master that the processor has  
O
relinquished control of the bus. The processor may grant HOLD requests and enter  
R(Q)  
H(1)  
P(Q)  
the T state during reset and while halted as well as during regular operation.  
h
HOLDA  
0 = hold not acknowledged  
1 = hold acknowledged  
BUS STATUS indicates that the processor may soon stall unless it has sufficient  
access to the bus; see i960® Jx Microprocessor Developers Manual (272483).  
Arbitration logic may examine this signal to determine when an external bus master  
should acquire/relinquish the bus.  
O
R(0)  
H(Q)  
P(0)  
BSTAT  
0 = no potential stall  
1 = potential stall  
Table 9. Pin DescriptionProcessor Control Signals, Test Signals, and Power (Sheet 1 of 2)  
NAME  
TYPE  
DESCRIPTION  
CLOCK INPUT provides the processors fundamental time base; both the processor  
core and the external bus run at the CLKIN rate. All input and output timings are  
specified relative to a rising CLKIN edge.  
CLKIN  
I
RESET initializes the processor and clears its internal logic. During reset, the  
processor places the address/data bus and control output pins in their idle (inactive)  
states.  
During reset, the input pins are ignored with the exception of LOCK#/ONCE#,  
STEST and HOLD.  
I
RESET#  
A(L)  
The RESET# pin has an internal synchronizer. To ensure predictable processor  
initialization during power up, RESET# must be asserted a minimum of 10,000  
CLKIN cycles with V and CLKIN stable. On a warm reset, RESET# should be  
CC  
asserted for a minimum of 15 cycles.  
SELF TEST enables or disables the processors internal self-test feature at  
initialization. STEST is examined at the end of reset. When STEST is asserted, the  
processor performs its internal self-test and the external bus confidence test. When  
STEST is deasserted, the processor performs only the external bus confidence test.  
I
STEST  
S(L)  
0 = self test disabled  
1 = self test enabled  
FAIL indicates a failure of the processors built-in self-test performed during  
initialization. FAIL# is asserted immediately upon reset and toggles during self-test to  
indicate the status of individual tests:  
O
When self-test passes, the processor deasserts FAIL# and begins operation  
from user code.  
R(0)  
H(Q)  
P(1)  
FAIL#  
When self-test fails, the processor asserts FAIL# and then stops executing.  
0 = self test failed  
1 = self test passed  
TEST CLOCK is a CPU input which provides the clocking function for IEEE 1149.1  
Boundary Scan Testing (JTAG). State information and data are clocked into the  
processor on the rising edge; data is clocked out of the processor on the falling edge.  
TCK  
TDI  
I
I
TEST DATA INPUT is the serial input pin for JTAG. TDI is sampled on the rising edge  
of TCK, during the SHIFT-IR and SHIFT-DR states of the Test Access Port.  
S(L)  
Datasheet  
21  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 9. Pin DescriptionProcessor Control Signals, Test Signals, and Power (Sheet 2 of 2)  
NAME  
TYPE  
DESCRIPTION  
O
TEST DATA OUTPUT is the serial output pin for JTAG. TDO is driven on the falling  
edge of TCK during the SHIFT-IR and SHIFT-DR states of the Test Access Port. At  
other times, TDO floats. TDO does not float during ONCE mode.  
R(Q)  
HQ)  
P(Q)  
TDO  
TEST RESET asynchronously resets the Test Access Port (TAP) controller function  
of IEEE 1149.1 Boundary Scan testing (JTAG). When using the Boundary Scan  
I
TRST#  
TMS  
feature, connect a pull-down resistor between this pin and V . When TAP is not  
SS  
A(L)  
used, this pin must be connected to V ; however, no resistor is required. See  
SS  
Section 4.3, Connection Recommendationson page 36.  
I
TEST MODE SELECT is sampled at the rising edge of TCK to select the operation of  
the test logic for IEEE 1149.1 Boundary Scan testing.  
S(L)  
V
POWER pins intended for external connection to a V board plane.  
CC  
CC  
PLL POWER is a separate V supply pin for the phase lock loop clock generator. It  
CC  
is intended for external connection to the V board plane. In noisy environments,  
CC  
VCCPLL  
VCC5  
add a simple bypass filter circuit to reduce noise-induced clock jitter and its effects on  
timing relationships.  
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O  
buffers. This signal should be connected to +5 V for use with inputs which exceed  
3.3 V. When all inputs are from 3.3 V components, this pin should be connected to  
3.3 V.  
V
GROUND pins intended for external connection to a V board plane.  
SS  
SS  
NC  
NO CONNECT pins. Do not make any system connections to these pins.  
Table 10. Pin DescriptionInterrupt Unit Signals  
NAME  
TYPE  
DESCRIPTION  
EXTERNAL INTERRUPT pins are used to request interrupt service. The XINT[7:0]#  
pins may be configured in three modes:  
Dedicated Mode: Each pin is assigned a dedicated interrupt level. Dedicated inputs  
may be programmed to be level (low) or edge (falling) sensitive.  
I
Expanded Mode: All eight pins act as a vectored interrupt source. The interrupt pins  
are level sensitive in this mode.  
XINT[7:0]#  
A(E/L)  
Mixed Mode: The XINT[7:5]# pins act as dedicated sources and the XINT[4:0]# pins  
act as the five most significant bits of a vectored source. The least significant bits of  
the vectored source are set to 010 internally.  
2
Unused external interrupt pins should be connected to V  
.
CC  
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
NMI# is the highest priority interrupt source and is falling edge-triggered. when NMI#  
I
NMI#  
A(E)  
is unused, it should be connected to V  
.
CC  
22  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
3.2.2  
80960Jx 132-Lead PGA Pinout  
Figure 3. 132-Lead Pin Grid Array Top View-Pins Facing Down  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
P
P
AD6 AD11 AD13  
V
V
V
V
V
V
V
CC  
AD18 AD19 AD22 AD25  
AD20 AD24 AD26 AD27  
CC  
CC  
SS  
CC  
CC  
CC  
CC  
N
N
AD3  
AD0  
AD7 AD10  
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
M
M
AD9  
AD12  
AD21 AD23  
AD4 AD8  
AD1 AD5  
AD14 AD15 AD16  
AD17  
NC AD29 AD30  
AD28 BE3# BE2#  
L
L
V
V
CC  
CC  
K
J
K
J
V
AD2  
AD31  
BE1#  
V
V
SS  
SS  
SS  
CC  
CC  
V
V
V
V
NC  
VCCPLL  
NC  
V
V
CC  
SS  
H
G
F
E
D
x80960Jx  
H
G
F
E
D
CLKIN  
BE0#  
ALE  
V
V
V
SS  
SS  
SS  
CC  
M
© 19xx  
V
V
V
V
SS  
CC  
CC  
i
BSTAT  
V
V
V
V
V
V
RDYRCV#  
SS  
SS  
SS  
CC  
CC  
XXXXXXXX SS  
V
RESET#  
TDI  
CC  
DEN#  
DT/R#  
CC  
SS  
SS  
V
V
V
CC  
SS  
CC  
C
B
A
C
B
A
LOCK#/  
ONCE#  
NC STESTTRST#XINT0#XINT1# HOLD NC  
VCC5  
FAIL#  
A2  
A3 BLAST# HOLDA  
NC  
TCK XINT3#XINT4#XINT6#  
V
V
V
V
SS  
NC TDO WIDTH/ D/C# W/R#  
HLTD0  
SS  
SS  
SS  
NC  
NC  
ALE#  
TMS XINT2# XINT5#XINT7# NMI#  
V
V
V
V
WIDTH/ ADS#  
HLTD1  
CC  
CC  
CC  
CC  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
NOTE: To address the fact that many of the package prefix variables have changed, all package prefix  
variables in this document are now indicated with an "x".  
Datasheet  
23  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 4. 132-Lead Pin Grid Array Bottom View-Pins Facing Up  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
P
P
AD25 AD22 AD19 AD18  
AD27 AD26 AD24 AD20  
V
V
V
V
V
V
V
CC  
AD13 AD11  
AD10 AD7  
AD6  
AD3  
CC  
CC  
CC  
SS  
CC  
CC  
SS  
CC  
N
N
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
M
M
AD23 AD21  
AD12  
AD9  
AD17 AD16 AD15 AD14  
AD8 AD4  
AD5 AD1  
AD0  
AD30 AD29 NC  
BE2# BE3# AD28  
L
K
J
L
K
J
V
CC  
CC  
V
V
V
V
V
V
AD31  
BE1#  
AD2  
NC  
SS  
CC  
CC  
SS  
V
V
V
SS  
SS  
SS  
CC  
SS  
H
G
F
H
G
F
VCCPLL V  
CLKIN  
V
V
BE0#  
ALE  
CC  
CC  
SS  
V
NC  
V
V
SS  
SS  
SS  
CC  
BSTAT  
V
V
V
V
RDYRCV#V  
RESET# V  
V
CC  
CC  
SS  
SS  
SS  
CC  
E
D
E
D
V
DEN#  
DT/R#  
CC  
V
V
TDI  
V
V
CC  
CC  
SS  
C
B
A
C
B
A
LOCK#/  
ONCE#  
HOLDA BLAST# A3  
A2  
FAIL#  
VCC5  
NC HOLD XINT1#XINT0# TRST#STEST NC  
W/R# D/C# WIDTH/ TDO NC  
HLTD0  
V
V
V
V
SS  
XINT6#XINT4#XINT3# TCK  
NC  
SS  
SS  
SS  
ALE#  
NC  
NC  
ADS# WIDTH/  
HLTD1  
V
V
V
V
NMI# XINT7#XINT5# XINT2# TMS  
CC  
CC  
CC  
CC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
24  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 11. 132-Lead PGA PinoutIn Signal Order  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
A2  
C5  
C4  
AD31  
ADS#  
ALE  
K3  
A1  
TDO  
TMS  
B4  
A14  
C12  
A6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
B9  
D2  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A3  
AD0  
M14  
L13  
K12  
N14  
M13  
L12  
P14  
N13  
M12  
M11  
N12  
P13  
M10  
P12  
M9  
G3  
A3  
TRST#  
D13  
E2  
AD1  
ALE#  
BE0#  
BE1#  
BE2#  
BE3#  
BLAST#  
BSTAT  
CLKIN  
D/C#  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
AD2  
H3  
A7  
E13  
F2  
AD3  
J3  
A8  
AD4  
L1  
A9  
F13  
G2  
AD5  
L2  
D1  
AD6  
C3  
D14  
E1  
G13  
H2  
AD7  
F3  
AD8  
H14  
B2  
E14  
F1  
H13  
J2  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
DEN#  
DT/R#  
FAIL#  
HOLD  
HOLDA  
LOCK#/ONCE#  
NC  
E3  
F14  
G1  
G14  
H1  
J13  
K2  
D3  
C6  
K13  
N5  
C9  
C2  
J1  
N6  
M8  
C1  
J14  
K1  
N7  
M7  
A4  
N8  
M6  
NC  
A5  
K14  
L14  
P5  
N9  
P4  
NC  
B5  
N10  
N11  
B1  
P3  
NC  
B14  
C8  
N4  
NC  
P6  
W/R#  
WIDTH/HLTD0  
WIDTH/HLTD1  
XINT0#  
M5  
NC  
C14  
G12  
J12  
M3  
A10  
F12  
E12  
C13  
B13  
D12  
P7  
B3  
P2  
NC  
P8  
A2  
M4  
NC  
P9  
C11  
C10  
A13  
B12  
B11  
A12  
B10  
A11  
N3  
NC  
P10  
P11  
H12  
C7  
XINT1#  
P1  
NMI#  
XINT2#  
N2  
RDYRCV#  
RESET#  
STEST  
TCK  
VCCPLL  
VCC5  
XINT3#  
N1  
XINT4#  
L3  
V
V
V
B6  
XINT5#  
SS  
SS  
SS  
M2  
B7  
XINT6#  
M1  
TDI  
B8  
XINT7#  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Datasheet  
25  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 12. 132-Lead PGA PinoutIn Pin Order  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
A1  
A2  
ADS#  
WIDTH/HLTD1  
ALE#  
C6  
C7  
FAIL#  
VCC5  
NC  
H1  
H2  
V
M10  
M11  
M12  
M13  
M14  
N1  
AD12  
AD9  
CC  
V
SS  
A3  
C8  
H3  
BE0#  
AD8  
A4  
NC  
C9  
HOLD  
XINT1#  
XINT0#  
TRST#  
STEST  
NC  
H12  
H13  
H14  
J1  
VCCPLL  
AD4  
A5  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
V
AD0  
SS  
A6  
V
V
V
V
CLKIN  
AD27  
AD26  
AD24  
AD20  
CC  
CC  
CC  
CC  
A7  
V
N2  
CC  
A8  
J2  
V
N3  
SS  
A9  
J3  
BE1#  
NC  
N4  
A10  
A11  
A12  
A13  
A14  
B1  
NMI#  
XINT7#  
XINT5#  
XINT2#  
TMS  
V
J12  
J13  
J14  
K1  
N5  
V
V
V
V
V
V
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
D2  
V
V
N6  
SS  
SS  
CC  
CC  
D3  
DT/R#  
TDI  
V
V
N7  
D12  
D13  
D14  
E1  
N8  
V
K2  
V
N9  
SS  
CC  
CC  
SS  
W/R#  
V
V
K3  
AD31  
AD2  
N10  
N11  
N12  
N13  
N14  
P1  
B2  
D/C#  
K12  
K13  
K14  
L1  
B3  
WIDTH/HLTD0  
TDO  
E2  
V
V
AD10  
AD7  
SS  
SS  
CC  
B4  
E3  
DEN#  
V
B5  
NC  
E12  
E13  
E14  
F1  
RESET#  
BE2#  
BE3#  
AD28  
AD5  
AD3  
B6  
V
V
V
V
V
L2  
AD25  
AD22  
AD19  
AD18  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
B7  
V
V
L3  
P2  
B8  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
P3  
B9  
F2  
V
AD1  
P4  
SS  
B10  
B11  
B12  
B13  
B14  
C1  
C2  
C3  
C4  
C5  
XINT6#  
XINT4#  
XINT3#  
TCK  
F3  
BSTAT  
V
P5  
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
F12  
F13  
F14  
G1  
RDYRCV#  
AD30  
AD29  
NC  
P6  
V
P7  
SS  
CC  
CC  
V
V
P8  
NC  
AD23  
AD21  
AD17  
AD16  
AD15  
AD14  
P9  
LOCK#/ONCE#  
HOLDA  
BLAST#  
A3  
G2  
V
P10  
P11  
P12  
P13  
P14  
SS  
G3  
ALE  
NC  
G12  
G13  
G14  
AD13  
AD11  
AD6  
V
SS  
CC  
A2  
V
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
26  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
3.2.3  
80960Jx 132-Lead PQFP Pinout  
Figure 5. 132-Lead PQFP - Top View  
AD9  
TRST#  
TCK  
TMS  
HOLD  
XINT0#  
XINT1#  
XINT2#  
1
2
3
4
5
6
7
99  
98  
V
(I/O)  
(I/O)  
CC  
V
97  
96  
95  
94  
93  
SS  
AD10  
AD11  
V
V
V
(I/O)  
(I/O)  
(Core)  
CC  
SS  
CC  
XINT3#  
92  
91  
90  
8
9
10  
V
(Core)  
V
V
(I/O)  
SS  
CC  
AD12  
(I/O)  
SS  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
AD13  
AD14  
AD15  
XINT4#  
XINT5#  
XINT6#  
V
(I/O)  
XINT7#  
NMI#  
CC  
V
(I/O)  
SS  
®
AD16  
AD17  
AD18  
AD19  
V
V
(Core)  
(Core)  
CC  
SS  
i960  
NC  
NC  
V
V
(I/O)  
(I/O)  
VCC5  
NC  
NC  
FAIL#  
ALE#  
TDO  
CC  
SS  
AD20  
AD21  
AD22  
AD23  
x80960Jx  
77  
76  
75  
74  
73  
72  
71  
23  
24  
25  
26  
27  
28  
29  
XXXXXXXX SS  
V
(Core)  
V
V
(I/O)  
CC  
CC  
M
© 19xx  
V
(Core)  
(I/O)  
SS  
SS  
i
V
V
(I/O)  
(I/O)  
WIDTH/HLTD1  
CC  
V
V
(Core)  
(Core)  
SS  
CC  
AD24  
70  
69  
68  
67  
30  
31  
32  
33  
SS  
WIDTH/HLTD0  
A2  
AD25  
AD26  
NC  
A3  
NOTE: To address the fact that many of the package prefix variables have changed, all package prefix  
variables in this document are now indicated with an "x".  
Datasheet  
27  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 13. 132-Lead PQFP PinoutIn Signal Order  
Signal  
Pin  
Signal  
Pin  
Signal  
(Core)  
Pin  
Signal  
(Core)  
SS  
Pin  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
60  
61  
ALE#  
ADS#  
24  
36  
33  
32  
55  
54  
53  
52  
28  
31  
35  
37  
42  
43  
34  
132  
50  
4
V
V
V
V
V
V
V
47  
59  
V
124  
10  
27  
40  
48  
56  
64  
71  
79  
85  
93  
97  
106  
112  
131  
18  
19  
21  
22  
67  
121  
122  
126  
127  
14  
13  
12  
11  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
V
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
62  
A3  
74  
V
V
V
V
V
V
V
V
V
V
V
V
V
63  
A2  
92  
66  
BE3#  
113  
115  
123  
9
68  
BE2#  
69  
BE1#  
70  
BE0#  
V
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
(I/O)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
75  
WIDTH/HLTD1  
WIDTH/HLTD0  
D/C#  
V
V
V
V
V
V
V
V
V
V
V
V
V
26  
76  
41  
77  
49  
78  
W/R#  
57  
81  
DT/R#  
65  
82  
DEN#  
72  
83  
BLAST#  
RDYRCV#  
LOCK#/ONCE#  
HOLD  
80  
84  
86  
NC  
87  
94  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
88  
98  
89  
HOLDA  
BSTAT  
CLKIN  
RESET#  
STEST  
FAIL#  
44  
51  
117  
125  
128  
23  
2
105  
111  
129  
119  
20  
90  
95  
96  
VCCPLL  
VCC5  
99  
AD8  
100  
101  
102  
103  
104  
107  
108  
109  
110  
45  
V
(CLK)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
(Core)  
118  
17  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
AD7  
TCK  
V
V
V
V
V
V
V
V
V
XINT7#  
XINT6#  
XINT5#  
XINT4#  
XINT3#  
XINT2#  
XINT1#  
XINT0#  
NMI#  
AD6  
TDI  
130  
25  
1
30  
AD5  
TDO  
38  
AD4  
TRST#  
TMS  
46  
AD3  
3
58  
8
AD2  
V
(CLK)  
(Core)  
(Core)  
(Core)  
120  
16  
29  
39  
73  
7
CC  
CC  
CC  
CC  
AD1  
V
V
V
91  
6
AD0  
114  
116  
5
ALE  
15  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
28  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 14. 132-Lead PQFP PinoutIn Pin Order  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
1
TRST#  
TCK  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
BLAST#  
D/C#  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
NC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
AD8  
AD7  
AD6  
AD5  
AD4  
2
AD26  
AD25  
AD24  
3
TMS  
ADS#  
W/R#  
4
HOLD  
XINT0#  
XINT1#  
XINT2#  
XINT3#  
5
V
V
(Core)  
(Core)  
V
(I/O)  
(I/O)  
SS  
CC  
SS  
CC  
6
V
V
(I/O)  
CC  
7
V
(I/O)  
(I/O)  
V
(Core)  
(Core)  
V
(I/O)  
SS  
CC  
SS  
CC  
SS  
8
V
V
AD3  
9
V
(I/O)  
(I/O)  
DT/R#  
DEN#  
HOLDA  
ALE  
AD23  
AD2  
AD1  
AD0  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
V
AD22  
AD21  
AD20  
SS  
XINT4#  
XINT5#  
XINT6#  
XINT7#  
NMI#  
V
(I/O)  
CC  
V
V
(Core)  
(Core)  
V
(I/O)  
V
(I/O)  
SS  
CC  
SS  
CC  
SS  
V
(I/O)  
V
(Core)  
(Core)  
(Core)  
(Core)  
CC  
SS  
CC  
SS  
V
(I/O)  
(I/O)  
AD19  
AD18  
AD17  
AD16  
V
V
V
SS  
CC  
V
V
(Core)  
V
CC  
SS  
(Core)  
NC  
LOCK#/ONCE#  
BSTAT  
BE0#  
CLKIN  
V (CLK)  
SS  
NC  
V
(I/O)  
SS  
CC  
VCC5  
NC  
BE1#  
V
(I/O)  
VCCPLL  
BE2#  
AD15  
AD14  
AD13  
AD12  
V
CC (CLK)  
NC  
BE3#  
NC  
FAIL#  
ALE#  
TDO  
V
(I/O)  
(I/O)  
NC  
SS  
CC  
V
V
(Core)  
(Core)  
CC  
SS  
V
(Core)  
(Core)  
V
(Core)  
V
SS  
CC  
SS  
CC  
V
(I/O)  
V
V
(Core)  
RESET#  
NC  
CC  
V
(I/O)  
AD31  
V
(I/O)  
(I/O)  
SS  
SS  
CC  
WIDTH/HLTD1  
AD30  
AD29  
AD28  
V
NC  
V
V
(Core)  
(Core)  
AD11  
AD10  
STEST  
CC  
SS  
V
(I/O)  
CC  
WIDTH/HLTD0  
V
(I/O)  
V
(I/O)  
TDI  
(I/O)  
SS  
CC  
SS  
CC  
A2  
A3  
V
(I/O)  
V
(I/O)  
V
SS  
AD27  
AD9  
RDYRCV#  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Datasheet  
29  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
3.2.4  
80960Jx 196-Ball MPBGA Pinout  
Figure 6. 196-Ball Mini Plastic Ball Grid Array Top View-Balls Facing Down  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
A
B
C
NC  
AD28  
V
NC  
V
V
AD22  
V
AD18  
V
AD15 AD13  
V
CC  
AD8  
NC  
CC  
CC  
CC  
CC  
V
AD30 AD27 AD29  
AD23 AD20 AD17 AD14 AD12 AD10 AD9 AD7  
AD4  
CC  
CC  
AD26 AD25 AD24 AD21 AD19 AD16  
V
V
AD11 AD6  
AD5 AD0  
AD2  
AD1  
NC  
NC  
AD31  
NC  
NC  
NC  
CC  
CC  
D
E
F
G
H
J
D
E
F
G
H
J
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
AD3  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
CC  
CC  
CC  
CC  
SS  
SS  
SS  
SS  
CC  
CC  
VCCPLL  
V
V
V
V
V
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NC CLKIN NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NC  
V
NC  
SS  
SS  
BE1# BE2# BE3#  
CC  
BSTAT  
V
V
V
BE0#  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
TDI  
NC  
NC  
NC RESET#  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
K
L
K
L
LOCK#/  
ONCE#  
ALE  
V
STEST  
V
V
V
V
V
CC  
CC  
SS  
SS  
HOLDA DEN#  
V
V
V
V
NC RDYRCV#  
CC  
SS  
SS  
SS  
SS  
SS  
M
N
M
N
DT/R#  
V
NC  
NC  
NC  
NC  
A3  
A2  
V
V
ALE# VCC5  
V
XINT2# XINT0# TMS TRST# TCK  
CC  
CC  
CC  
W/R# D/C#  
TDO  
NC XINT4# NC XINT6#XINT1#XINT3# HOLD  
CC  
P
P
BLAST#  
V
WIDTH0  
NC  
ADS#  
WIDTH1FAIL#  
NC  
NC  
NMI# XINT7#XINT5#  
V
NC  
CC  
CC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
30  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 7. 196-Ball Mini Plastic Ball Grid Array Bottom View-Balls Facing Up  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
C
A
B
C
NC  
AD8  
V
AD13 AD15  
V
AD18  
V
AD22  
V
NC  
V
CC  
AD28  
NC  
CC  
CC  
CC  
CC  
AD4  
AD7 AD9 AD10 AD12 AD14 AD17 AD20 AD23  
V
AD29 AD27 AD30  
V
CC  
CC  
V
V
AD25 AD26  
AD2  
AD1  
AD6 AD11  
AD0 AD5  
AD16 AD19 AD21 AD24  
NC  
NC  
AD31  
NC  
NC  
NC  
CC  
CC  
D
E
F
G
H
J
D
E
F
G
H
J
AD3  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
CC  
CC  
CC  
CC  
SS  
CC  
VCCPLL  
V
V
V
V
V
V
V
V
V
V
NC  
NC  
NC  
NC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
NC CLKIN NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
BE3# BE2# BE1#  
NC  
V
NC  
CC  
V
V
BSTAT  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
BE0#  
V
CC  
SS  
SS  
RESET# NC  
TDI  
NC  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
K
L
K
L
ALE  
LOCK#/  
ONCE#  
STEST  
V
CC  
V
V
V
V
V
SS  
SS  
SS  
CC  
RDYRCV# NC  
V
V
V
V
CC  
DEN# HOLDA  
SS  
SS  
SS  
SS  
M
N
M
N
DT/R#  
TCK TRST# TMS XINT0# XINT2#  
V
VCC5 ALE#  
V
V
A3  
A2  
NC  
NC  
NC  
NC  
V
CC  
CC  
CC  
HOLD XINT3# XINT1# XINT6# NC XINT4# NC  
TDO  
D/C# W/R#  
CC  
P
P
WIDTH0 V  
BLAST#  
NC  
V
XINT5# XINT7# NMI# NC  
NC  
FAIL# WIDTH1  
ADS#  
NC  
CC  
CC  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Datasheet  
31  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 15. 196-Ball MPBGA PinoutIn Signal Order (Sheet 1 of 2)  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
A2  
N5  
M5  
D13  
D14  
C14  
D11  
B14  
D12  
C13  
B13  
A13  
B12  
B11  
C12  
B10  
A11  
B9  
BE0#  
BE1#  
BE2#  
BE3#  
BLAST#  
BSTAT  
CLKIN  
DEN#  
D/C#  
DT/R#  
FAIL#  
HOLD  
HOLDA  
LOCK#/ONCE#  
NC  
J2  
H1  
NC  
NC  
M4  
N3  
V
V
V
V
V
V
V
V
V
V
J1  
K3  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A3  
AD0  
H2  
NC  
N4  
K13  
L3  
AD1  
H3  
NC  
N8  
AD2  
P3  
NC  
N10  
P1  
M2  
M6  
M9  
N6  
P4  
AD3  
J3  
NC  
AD4  
G13  
L2  
NC  
P8  
AD5  
NC  
P9  
AD6  
N2  
NC  
P14  
P10  
L14  
J14  
K14  
M14  
J12  
N7  
AD7  
M1  
P7  
NMI#  
RDYRCV#  
RESET#  
STEST  
TCK  
TDI  
P13  
F14  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E4  
AD8  
VCCPLL  
AD9  
N14  
L1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
ADS#  
ALE  
K2  
A1  
NC  
A4  
TDO  
TMS  
TRST#  
VCC5  
NC  
A14  
C1  
M12  
M13  
M8  
A10  
C9  
NC  
NC  
C3  
B8  
NC  
D1  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A3  
E5  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A8  
NC  
D2  
A5  
E6  
C8  
NC  
D3  
A7  
E7  
B7  
NC  
E1  
A9  
E8  
C7  
NC  
E2  
A12  
B1  
E9  
A6  
NC  
F1  
E10  
E11  
F4  
B6  
NC  
F2  
B5  
C6  
NC  
G1  
G2  
G12  
G14  
H12  
H14  
J13  
K12  
L12  
L13  
M3  
C10  
C11  
E3  
C5  
NC  
F5  
C4  
NC  
F6  
B3  
NC  
E12  
E13  
E14  
F3  
F7  
A2  
NC  
F8  
B4  
NC  
F9  
B2  
NC  
F10  
F11  
G4  
G5  
G6  
C2  
NC  
F12  
F13  
G3  
P2  
NC  
K1  
NC  
ALE#  
M7  
NC  
H13  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
32  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 15. 196-Ball MPBGA PinoutIn Signal Order (Sheet 2 of 2)  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G7  
G8  
V
V
V
V
V
V
V
V
V
V
V
V
H11  
J4  
V
V
V
V
V
V
V
V
V
V
V
V
K7  
K8  
K9  
K10  
K11  
L5  
V
SS  
L11  
P5  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
WIDTH0  
WIDTH1  
W/R#  
G9  
J5  
P6  
G10  
G11  
H4  
J6  
N1  
J7  
XINT0#  
XINT1#  
XINT2#  
XINT3#  
XINT4#  
XINT5#  
XINT6#  
XINT7#  
M11  
N12  
M10  
N13  
N9  
J8  
H5  
J9  
L6  
H6  
J10  
J11  
K4  
K5  
K6  
L7  
H7  
L8  
H8  
L9  
P12  
N11  
P11  
H9  
L10  
L4  
H10  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Table 16. 196-Ball MPBGA PinoutIn Pin Order (Sheet 1 of 2)  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
BSTAT  
A1  
A2  
NC  
C11  
C12  
C13  
C14  
D1  
V
F7  
F8  
V
V
V
V
V
V
V
J3  
J4  
CC  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
AD28  
AD11  
AD6  
AD2  
NC  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A3  
V
F9  
J5  
CC  
A4  
NC  
F10  
F11  
F12  
F13  
F14  
G1  
J6  
A5  
V
J7  
CC  
A6  
AD22  
D2  
NC  
J8  
A7  
V
D3  
NC  
J9  
CC  
A8  
AD18  
D4  
V
V
V
V
V
V
V
VCCPLL  
NC  
J10  
J11  
J12  
J13  
J14  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A9  
V
D5  
CC  
A10  
A11  
A12  
A13  
A14  
B1  
AD15  
AD13  
D6  
G2  
NC  
TDI  
NC  
D7  
G3  
V
V
V
V
V
V
V
V
V
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
D8  
G4  
RESET#  
ALE  
CC  
AD8  
NC  
D9  
G5  
D10  
D11  
D12  
D13  
D14  
E1  
G6  
LOCK#/ONCE#  
V
AD3  
AD5  
AD0  
AD1  
NC  
G7  
V
CC  
CC  
B2  
AD30  
AD27  
AD29  
G8  
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
B3  
G9  
B4  
G10  
G11  
G12  
B5  
V
CC  
B6  
AD23  
E2  
NC  
NC  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
Datasheet  
33  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 16. 196-Ball MPBGA PinoutIn Pin Order (Sheet 2 of 2)  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
Signal  
B7  
B8  
AD20  
AD17  
AD14  
AD12  
AD10  
AD9  
E3  
E4  
V
G13  
G14  
H1  
CLKIN  
NC  
K9  
K10  
K11  
K12  
K13  
K14  
L1  
V
V
V
CC  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
CC  
B9  
E5  
BE1#  
BE2#  
BE3#  
B10  
B11  
B12  
B13  
B14  
C1  
E6  
H2  
NC  
E7  
H3  
V
CC  
E8  
H4  
V
V
V
V
V
V
V
V
STEST  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
AD7  
E9  
H5  
HOLDA  
DEN#  
AD4  
E10  
E11  
E12  
E13  
E14  
F1  
H6  
L2  
NC  
H7  
L3  
V
CC  
C2  
AD31  
NC  
V
V
V
H8  
L4  
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
C3  
H9  
L5  
C4  
AD26  
AD25  
AD24  
AD21  
AD19  
AD16  
H10  
H11  
H12  
H13  
H14  
J1  
L6  
C5  
NC  
NC  
L7  
C6  
F2  
NC  
L8  
C7  
F3  
V
V
L9  
CC  
CC  
C8  
F4  
V
NC  
L10  
L11  
L12  
P4  
SS  
SS  
SS  
C9  
F5  
V
V
V
CC  
C10  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
V
F6  
J2  
BE0#  
NC  
CC  
NC  
M10  
M11  
M12  
M13  
M14  
N1  
XINT2#  
XINT0#  
TMS  
TRST#  
TCK  
N7  
TDO  
NC  
V
CC  
RDYRCV#  
DT/R#  
N8  
P5  
WIDTH0  
N9  
XINT4#  
NC#  
P6  
WIDTH1  
FAIL#  
NC  
V
N10  
N11  
N12  
N13  
N14  
P1  
P7  
CC  
NC  
NC  
A3  
XINT6#  
XINT1#  
XINT3#  
HOLD  
NC  
P8  
W/R#  
D/C#  
NC  
P9  
NC  
N2  
P10  
P11  
P12  
P13  
P14  
NMI#  
V
N3  
XINT7#  
XINT5#  
CC  
ALE#  
N4  
NC  
VCC5  
N5  
A2  
P2  
ADS#  
BLAST#  
V
CC  
V
N6  
V
P3  
NC  
CC  
CC  
NOTE: Do not connect any external logic to pins marked NC (no connect pins).  
34  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
4.0  
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
This document contains information on products in the production phase of development. The  
specifications within this datasheet are subject to change without prior notice. Verify with your  
local Intel sales office or the world wide web to ensure that you have the latest datasheet and device  
specification update before finalizing a design.  
Warning: Stressing the device beyond the Absolute Maximum Ratings may cause permanent damage. These  
are stress ratings only. Table 17 presents the absolute maximum ratings.  
Table 17. Absolute Maximum Ratings  
Parameter  
Maximum Rating  
65o C to +150o C  
Storage Temperature  
Case Temperature Under Bias  
Supply Voltage wrt. V  
65o C to +110o C  
0.5 V to + 4.6 V  
0.5 V to + 6.5 V  
SS  
Voltage on VCC5 wrt. VSS  
Voltage on Other Pins wrt. V  
0.5 V to V + 0.5 V  
SS  
CC  
4.2  
Operating Conditions  
Warning: Operation beyond the Operating Conditionsis not recommended and extended exposure beyond  
the Operating Conditionsmay affect device reliability.  
Table 18 presents the operating conditions for the 80960Jx 3.3 V processors.  
Table 18. 80960Jx Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
V
Supply Voltage  
3.15  
3.15  
3.45  
5.5  
V
V
CC  
VCC5  
Input Protection Bias  
()  
Input Clock Frequency  
80960JT-100  
80960JC-66  
15  
15  
15  
15  
15  
12  
12  
12  
12  
12  
12  
12  
33.3  
33.3  
25  
33  
25  
33.3  
25  
20  
16.67  
33.3  
25  
80960JC-50  
80960JS-33  
80960JS-25  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
f
MHz  
CLKIN  
16  
Operating Case Temperature  
PGA, MPBGA, and PQFP  
T
0
-40  
100  
100  
°C  
C
Extended temp PQFP and MPBGA  
See Section 4.4, VCC5 Pin Requirements (VDIFF)on page 36.  
Datasheet  
35  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
4.3  
Connection Recommendations  
For clean on-chip power distribution, VCC and VSS pins separately feed the devices functional  
units. Power and ground connections must be made to all 80960Jx power and ground pins. On the  
circuit board, every VCC pin should connect to a power plane and every VSS pin should connect to  
a ground plane. Place liberal decoupling capacitance near the 80960Jx, since the processor may  
cause transient power surges.  
The 80960JS/JC/JT processors are produced on Intels advanced CMOS process. Proper bulk  
decoupling must be used to prevent device damage during initial power up and during transitions  
from low power mode to normal processor operation. Power supply behavior during these  
transitions may cause the power supply to exceed the maximum VCC specification and may cause  
device damage.  
Pay special attention to the Test Reset (TRST#) pin. It is essential that the JTAG Boundary Scan  
Test Access Port (TAP) controller initializes to a known state whether it may be used or not. When  
the JTAG Boundary Scan function may be used, connect a pull-down resistor between the TRST#  
pin and VSS. When the JTAG Boundary Scan function may not be used (even for board-level  
testing), connect the TRST# pin to VSS.  
Do not connect the TDI, TDO, and TCK pins when the TAP Controller may not be used.  
Note: Pins identified as NC must not be connected in the system.  
4.4  
VCC5 Pin Requirements (VDIFF)  
In 3.3 V only systems where the 80960Jx input pins are driven from 3.3 V logic, connect the VCC5  
pin directly to the 3.3 V VCC plane.  
In mixed voltage systems where the processor is powered by 3.3 V and interfaces with 5 V  
components, VCC5 must be connected to 5 V. This allows proper 5 V tolerant buffer operation, and  
prevents damage to the input pins. The voltage differential between the 80960Jx VCC5 pin and its  
3.3 V VCC pins must not exceed 2.25 V. When this requirement is not met, current flow through the  
pin may exceed the value at which the processor is damaged. Instances when the voltage may  
exceed 2.25 V is during power up or power down, where one source reaches its level faster than the  
other, briefly causing an excess voltage differential. Another instance is during steady-state  
operation, where the differential voltage of the regulator (provided a regulator is used) cannot be  
maintained within 2.25 V. Two methods are possible to prevent this from happening:  
Use a regulator that is designed to prevent the voltage differential from exceeding 2.25 V.  
or:  
As shown in Figure 8, place a 100 resistor in series with the VCC5 pin to limit the current  
through VCC5.  
Figure 8. VCC5 Current-Limiting Resistor  
+5 V (±0.25 V)  
VCC5 Pin  
100 Ω  
(±5%, 0.5 W)  
36  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
When the regulator cannot prevent the 2.25 V differential, the addition of the resistor is a simple  
and reliable method for limiting current. The resistor may also prevent damage in the case of a  
power failure, where the 5 V supply remains on and the 3.3 V supply goes to zero.  
Table 19. VDIFF Parameters  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
VCC5 input should not exceed V by more than 2.25 V  
during power-up and power-down, or during steady-  
state operation.  
CC  
VCC5-V  
Difference  
CC  
VDIFF  
2.25  
V
4.5  
VCCPLL Pin Requirements  
To reduce clock skew on the 80960Jx processor, the VCCPLL pin for the Phase Lock Loop (PLL)  
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 9, reduces noise induced  
clock jitter and its effects on timing relationships in system designs. The 4.7 µF capacitor must be  
low ESR solid tantalum; the 0.01 µF capacitor must be of the type X7R and the node connecting  
VCCPLL must be as short as possible.  
When the voltage on the VCCPLL power supply pin exceeds the VCC pin voltage by 0.5 V at any  
time, including the power up and power down sequences, excessive currents may permanently  
damage on-chip electrostatic discharge (ESD) protection diodes. The damage may accumulate over  
multiple episodes.  
In actual applications, this problem occurs only when the VCCPLL and VCC pins are driven by  
separate power supplies or voltage regulators. Applications that use one power supply for  
VCCPLL and VCC are not typically at risk. Verify that your application does not allow the  
VCCPLL voltage to exceed VCC by 0.5 V.  
The VCCPLL low-pass filter recommendation does not promote this problem.  
Figure 9. VCCPLL Lowpass Filter  
100  
10  
(80960JA/JF/JD)  
(80960JS/JC/JT)  
VCCPLL  
(On 80960Jx)  
+
V
CC  
4.7 µF  
0.01 µF  
(Board Plane)  
F_CA078A  
Datasheet  
37  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
4.6  
D.C. Specifications  
Table 20. 80960Jx D.C. Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
V
Input Low Voltage  
-0.3  
2.0  
0.8  
V
V
V
V
V
IL  
V
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Output Ground Bounce  
V
+ 0.3  
IH  
CC5  
V
0.4  
I
= 3 mA  
= -1 mA  
(1,2)  
OL  
OH  
OL  
V
2.4  
I
OH  
V
<0.8  
OLP  
Input Capacitance  
PGA  
PQFP  
15  
15  
15  
C
pF  
pF  
pF  
f
f
f
= f  
= f  
= f  
(2)  
(2)  
(2)  
IN  
MIN  
MIN  
MIN  
CLKIN  
CLKIN  
CLKIN  
MPBGA  
I/O or Output Capacitance  
PGA  
PQFP  
MPBGA  
15  
15  
15  
C
C
OUT  
CLK  
CLKIN Capacitance  
PGA  
PQFP  
15  
15  
15  
MPBGA  
NOTES:  
1. Typical is measured with V = 3.3 V and temperature = 25°C.  
CC  
2. Not tested.  
38  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 21. 80960Jx ICC Characteristics (Sheet 1 of 3)  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
0 V V  
CC  
Input Leakage Current for each pin  
except TCK, TDI, TRST# and TMS  
I
± 1  
µA  
LI1  
LI2  
IN  
Input Leakage Current for TCK, TDI,  
TRST# and TMS  
80960 JA/JF/JD  
I
-140  
-250  
-250  
-300  
µA  
µA  
kΩ  
V
= 0.45V (1)  
IN  
80960 JS/JC/JT  
0.4 V  
OUT  
I
Output Leakage Current  
± 1  
LO  
V
CC  
Internal Pull-UP Resistance for  
ONCE#, TMS, TDI and TRST#  
R
20  
30  
pu  
80960JT-100  
505  
80960JC-66  
80960JC-50  
360  
280  
80960JS-33  
80960JS-25  
240  
185  
I
Active  
CC  
mA  
(2,3)  
(Power Supply)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
580  
447  
367  
310  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
320  
241  
154  
80960JT-100  
480  
80960JC-66  
80960JC-50  
345  
270  
80960JS-33  
80960JS-25  
221  
170  
I
Active  
CC  
mA  
(2,4)  
(Thermal)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
510  
390  
320  
260  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
271  
215  
152  
Datasheet  
39  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 21. 80960Jx ICC Characteristics (Sheet 2 of 3)  
Symbol  
Parameter  
Typ  
Max  
Units  
Notes  
Reset mode  
80960JT-100  
380  
80960JC-66  
80960JC-50  
275  
210  
80960JS-33  
80960JS-25  
240  
182  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
475  
425  
345  
300  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
250  
200  
150  
I
Test  
CC  
Halt mode  
mA  
(5)  
(Power modes)  
80960JT-100  
52  
80960JC-66  
80960JC-50  
45  
34  
80960JS-33  
80960JS-25  
35  
30  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
50  
40  
34  
29  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
31  
26  
21  
ONCE mode  
10  
40  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 21. 80960Jx ICC Characteristics (Sheet 3 of 3)  
Symbol  
Parameter  
80960JT-100  
Typ  
Max  
Units  
Notes  
80960JC-66  
80960JC-50  
80960JS-33  
80960JS-25  
ICC5 Current on the  
VCC5 Pin  
200  
µA  
(6)  
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
NOTES:  
1. These pins have internal pullup devices. Typical leakage current is not tested.  
2. Measured with device operating and outputs loaded to the test condition in Figure 10, A.C. Test Loadon  
page 45.  
3. I Active (Power Supply) value is provided for selecting your systems power supply. It is measured using  
CC  
one of the worst case instruction mixes with V = 3.45 V. This parameter is characterized but not tested.  
CC  
4. I Active (Thermal) value is provided for your systems thermal management. Typical I is measured  
CC  
CC  
with V =3.3 V and temperature = 25° C. This parameter is characterized but not tested.  
CC  
5. I Test (Power modes) refers to the I values that are tested when the 80960JD is in Reset mode, Halt  
CC  
CC  
mode or ONCE mode with V = 3.45 V.  
CC  
6. I  
is tested at V = 3.3 V, VCC5 = 5.25 V.  
CC5  
CC  
Datasheet  
41  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
4.7  
A.C. Specifications  
The 80960Jx A.C. timings are based upon device characterization.  
Table 22. 80960Jx A.C. Characteristics (Sheet 1 of 3)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Input Clock Timings  
CLKIN Frequency  
80960JT-100  
15  
33.3  
80960JC-66  
80960JC-50  
15  
15  
33.3  
25  
80960JS-33  
80960JS-25  
15  
15  
33.3  
25  
T
MHz  
F
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
12  
12  
12  
12  
33.3  
25  
20  
16.67  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
12  
12  
12  
33.3  
25  
16  
CLKIN Period  
80960JT-100  
30  
66.7  
80960JC-66  
80960JC-50  
30  
40  
66.7  
66.7  
80960JS-33  
80960JS-25  
30  
40  
66.7  
66.7  
T
ns  
C
80960JD-66  
80960JD-50  
80960JD-40  
80960JD-33  
30  
40  
50  
60  
83.3  
83.3  
83.3  
83.3  
80960JA/JF-33  
80960JA/JF-25  
80960JA-16  
30  
40  
62.5  
83.3  
83.3  
83.3  
T
T
CLKIN Period Stability  
CLKIN High Time  
CLKIN Low Time  
CLKIN Rise Time  
CLKIN Fall Time  
± 250  
ps  
ns  
ns  
ns  
ns  
(1, 2)  
CS  
8
8
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
2.0 V to 0.8 V (1)  
CH  
T
CL  
CR  
T
4
4
T
CF  
NOTE: See Table 23 on page 45 for note definitions for this table.  
42  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 22. 80960Jx A.C. Characteristics (Sheet 2 of 3)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Synchronous Output Timings  
Output Valid Delay, Except ALE/ALE#  
Inactive and DT/R# for 3.3 V input  
signals  
2.5  
2.5  
13.5  
16.5  
Same as above, but for 5.5 V input  
signals  
T
OV1  
Extended Temp MPBGA and PQFP  
(JS/JC/JT only):  
ns  
(2, 11)  
Output Valid Delay, Except ALE/ALE#  
Inactive and DT/R# for 3.3 V input  
signals  
1.75  
1.75  
13.5  
16.5  
Same as above, but for 5.5 V input  
signals  
Output Valid Delay, DT/R#  
80960JS/JC/JT  
80960JD  
0.5T + 7 0.5T + 9  
C
C
T
ns  
ns  
OV2  
0.5T + 7 0.5T + 9  
C
C
80960JA/JF  
0.5T + 4 0.5T + 18  
C
C
T
Output Float Delay  
2.5  
13.5  
(4)  
(5)  
(5)  
(6)  
OF  
Synchronous Input Timings  
Input Setup to CLKIN AD[31:0], NMI#,  
XINT[7:0]#  
80960JS/JC/JT  
T
6
6
9
ns  
ns  
ns  
IS1  
80960JD  
80960JA/JF  
Input Hold from CLKIN AD[31:0],  
NMI#, XINT[7:0]#  
80960JS/JC/JT  
T
T
IH1  
2.0  
1.5  
1.0  
80960JD  
80960JA/JF  
Input Setup to CLKIN RDYRCV# and  
HOLD  
80960JS/JC/JT  
80960JD  
6.5  
6.5  
IS2  
80960JA/JF  
10.0  
Input Hold from CLKIN RDYRCV#  
and HOLD  
T
T
1
ns  
ns  
(6)  
(7)  
IH2  
Input Setup to CLKIN RESET#  
80960JS/JC/JT  
7
7
8
IS3  
80960JD  
80960JA/JF  
Input Hold from CLKIN RESET#  
80960JS/JC/JT  
2
2
1
T
ns  
ns  
(7)  
(8)  
IH3  
IS4  
80960JD  
80960JA/JF  
Input Setup to RESET# ONCE#,  
STEST  
7
7
8
T
80960JS/JC/JT  
80960JD  
80960JA/JF  
NOTE: See Table 23 on page 45 for note definitions for this table.  
Datasheet  
43  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 22. 80960Jx A.C. Characteristics (Sheet 3 of 3)  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Input Hold from RESET# ONCE#,  
STEST  
2
2
1
T
80960JS/JC/JT  
80960JD  
80960JA/JF  
ns  
(8)  
IH4  
Relative Output Timings  
Address Valid to ALE/ALE# Inactive  
T
For 3.3 V Data Input Signals  
For 5.0 V Data Input Signals  
0.5T - 5  
ns  
ns  
(9)  
LX  
C
0.5T - 8  
C
T
ALE/ALE# Width  
LXL  
LXA  
DXD  
T
Address Hold from ALE/ALE# Inactive  
DT/R# Valid to DEN# Active  
0.5T - 7  
Equal Loading (9)  
C
T
Boundary Scan Test Signal Timings  
T
TCK Frequency  
0.5T  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BSF  
F
T
TCK High Time  
15  
15  
Measured at 1.5 V (1)  
Measured at 1.5 V (1)  
0.8 V to 2.0 V (1)  
BSCH  
T
TCK Low Time  
BSCL  
BSCR  
T
TCK Rise Time  
5
5
T
TCK Fall Time  
2.0 V to 0.8 V (1)  
BSCF  
BSIS1  
BSIH1  
T
T
Input Setup to TCK TDI, TMS  
Input Hold from TCK TDI, TMS  
TDO Valid Delay  
4
6
3
3
3
3
T
T
T
T
30  
30  
30  
30  
(1, 10)  
(1, 10)  
(1, 10)  
(1, 10)  
BSOV1  
BSOF1  
BSOV2  
BSOF2  
TDO Float Delay  
All Outputs (Non-Test) Valid Delay  
All Outputs (Non-Test) Float Delay  
Input Setup to TCK All Inputs  
(Non-Test)  
T
4
6
ns  
ns  
BSIS2  
Input Hold from TCK All Inputs  
(Non-Test)  
T
BSIH2  
NOTE: See Table 23 on page 45 for note definitions for this table.  
44  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 23. Note Definitions for Table 22, 80960Jx AC Characteristics  
NOTES:  
1. Not tested.  
2. To ensure a 1:1 relationship between the amplitude of the input jitter and the internal clock, the jitter  
frequency spectrum should not have any power peaking between 500 KHz and 1/3 of the CLKIN  
frequency.  
3. Inactive ALE/ALE# refers to the falling edge of ALE and the rising edge of ALE#. For inactive ALE/ALE#  
timings, refer to Relative Output Timings in this table.  
4. A float condition occurs when the output current becomes less than I . Float delay is not tested, but is  
OL  
designed to be no longer than the valid delay.  
5. AD[31:0] are synchronous inputs. Setup and hold times must be met for proper processor operation. NMI#  
and XINT[7:0]# may be synchronous or asynchronous. Meeting setup and hold time guarantees  
recognition at a particular clock edge. For asynchronous operation, NMI# and XINT[7:0]# must be asserted  
for a minimum of two CLKIN periods to ensure recognition.  
6. RDYRCV# and HOLD are synchronous inputs. Setup and hold times must be met for proper processor  
operation.  
7. RESET# may be synchronous or asynchronous. Meeting setup and hold time guarantees recognition at a  
particular clock edge.  
8. ONCE# and STEST# must be stable at the rising edge of RESET# for proper operation.  
9. Guaranteed by design. May not be 100% tested.  
10.Relative to falling edge of TCK.  
11.Worst-case T condition occurs on I/O pins when pins transition from a floating high input to driving a low  
OV  
output state. The Address/Data Bus pins encounter this condition between the last access of a read, and  
the address cycle of a following write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at 50 pF  
loads.  
4.7.1  
A.C. Test Conditions and Derating Curves  
The A.C. Specifications in Section 4.7, A.C. Specificationsare tested with the 50 pF load  
indicated in Figure 10.  
Figure 10. A.C. Test Load  
Output Pin  
CL = 50 pF for all signals  
CL  
Refer to the following sections for the specified derating curves:  
Section 4.7.1.1, Output Delay or Hold vs. Load Capacitanceon page 46  
Section 4.7.1.2, TLX vs. AD Bus Load Capacitanceon page 47  
Datasheet  
45  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
4.7.1.1  
Output Delay or Hold vs. Load Capacitance  
Figure 11. Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (3.3 V Signals)  
AC Timings vs. Load Capacitance  
(3.3 V Signals)  
nom + 10  
nom + 8  
nom + 6  
nom + 4  
nom + 2  
nom + 0  
50  
100  
150  
AD Bus Capacitive Load (pF)  
Figure 12. Output Delay or Hold vs. Load Capacitance80960JS/JC/JT (5 V Signals)  
AC Timings vs. Load Capacitance  
(5 V Signals)  
nom + 16  
nom + 14  
nom + 12  
nom + 10  
nom + 8  
nom + 6  
nom + 4  
nom + 2  
nom + 0  
50  
100  
150  
AD Bus Capacitive Load (pF)  
46  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 13. Output Delay or Hold vs. Load Capacitance80960JA/JF/JD  
AC Timings vs. Load Capacitance  
nom + 8  
nom + 7  
nom + 6  
nom + 5  
nom + 4  
nom + 3  
nom + 2  
nom + 1  
nom + 0  
50  
100  
150  
AD Bus Capacitive Load (pF)  
Rise and Fall times are identical.  
4.7.1.2  
T
vs. AD Bus Load Capacitance  
LX  
Figure 14. TLX vs. AD Bus Load Capacitance80960JS/JC/JT (3.3 V Signals)  
AC Timings vs. Load Capacitance  
(3.3 V Signals)  
nom - 10  
nom - 8  
nom - 6  
nom - 4  
nom - 2  
nom - 0  
50  
100  
150  
AD Bus Capacitive Load (pF)  
Datasheet  
47  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the  
AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE  
and ALE#.  
Figure 15. TLX vs. AD Bus Load Capacitance80960JS/JC/JT (5 V Signals)  
AC Timings vs. Load Capacitance  
(5 V Signals)  
nom - 20  
nom - 15  
nom - 10  
nom - 5  
nom - 0  
50  
100  
150  
AD Bus Capacitive Load (pF)  
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the  
AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE  
and ALE#.  
Figure 16. TLX vs. AD Bus Load Capacitance80960JA/JF/JD  
AC Timings vs. Load Capacitance  
nom- 8  
nom- 7  
nom- 6  
nom- 5  
nom- 4  
nom- 3  
nom- 2  
nom- 1  
nom- 0  
50  
100  
150  
AD Bus Capacitive Load (pF)  
Rise and Fall times are identical.  
48  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Note: The TLX Derating curve applies only when an imbalance in the capacitive load occurs between the  
AD bus and ALE. The TLX derating is based on a 50 pF load on ALE. The derating applies to ALE  
and ALE#.  
4.7.1.3  
ICC Active vs. Frequency  
Figure 17. ICC Active (Power Supply) vs. Frequency80960JA/JF  
Icc Active (Pow er Supply) vs Frequency  
350  
300  
250  
200  
150  
100  
50  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Fre quency M Hz  
Figure 18. 80960JA/JF ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs. Frequency  
300  
250  
200  
150  
100  
50  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency M Hz  
Datasheet  
49  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 19. 80960JD ICC Active (Power Supply) vs. Frequency  
Icc Active (Pow er Supply) vs. Frequency  
600  
500  
400  
300  
200  
100  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Fre que ncy (M Hz)  
Figure 20. 80960JD ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs. Frequency  
600  
500  
400  
300  
200  
100  
0
12  
15  
18  
21  
24  
27  
30  
33  
CLKIN Fre que ncy (M Hz)  
50  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 21. 80960JC ICC Active (Power Supply) vs. Frequency  
Icc Active (Power Supply) vs Frequency  
80960 JC  
400  
350  
300  
250  
200  
150  
100  
50  
0
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency MHz  
Figure 22. 80960JC ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs Frequency  
80960 JC  
400  
350  
300  
250  
200  
150  
100  
50  
0
15  
18  
21  
24  
27  
30  
33  
CLKINFrequency MHz  
Datasheet  
51  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 23. 80960JS ICC Active (Power Supply) vs. Frequency  
Icc Active (Power Supply) vs Frequency  
80960 JS  
300  
250  
200  
150  
100  
50  
0
15  
18  
21  
24  
27  
30  
33  
CLKIN Frequency MHz  
Figure 24. 80960JS ICC Active (Thermal) vs. Frequency  
Icc Active (Thermal) vs. Frequency  
80960 JS  
250  
200  
150  
100  
50  
0
15  
18  
21  
24  
27  
30  
33  
CLKINFrequency MHz  
52  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
4.7.2  
A.C. Timing Waveforms  
Figure 25. CLKIN Waveform  
T
T
CF  
CR  
2.0 V  
1. 5V  
0.8 V  
T
CH  
T
CL  
T
C
Figure 26. TOV1 Output Delay Waveform  
1.5 V  
1.5 V  
CLKIN  
T
OV1  
AD[31:0],  
ALE (active),  
ALE# (active),  
ADS#, A[3:2],  
1.5 V  
BE[3:0]#,  
WIDTH/HLTD[1:0],  
D/C#, W/R#, DEN#,  
BLAST#, LOCK#,  
HOLDA, BSTAT, FAIL#  
Datasheet  
53  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 27. TOF Output Float Waveform  
1.5 V  
1.5 V  
CLKIN  
T
OF  
AD[31:0],  
ALE, ALE#  
ADS#, A[3:2],  
BE[3:0]#,  
WIDTH/HLTD[1:0],  
D/C#, W/R#, DT/R#,  
DEN#, BLAST#, LOCK#  
Figure 28. TIS1 and TIH1 Input Setup and Hold Waveform  
1.5 V  
1.5 V  
IH1  
1.5 V  
CLKIN  
T
T
IS1  
AD[31:0]  
NMI#  
Valid  
1.5 V  
XINT[7:0]#  
Figure 29. TIS2 and TIH2 Input Setup and Hold Waveform  
1.5 V  
1.5 V  
1.5 V  
CLKIN  
T
IH2  
T
IS2  
HOLD,  
1.5 V  
Valid  
1.5 V  
RDYRCV#  
54  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 30. TIS3 and TIH3 Input Setup and Hold Waveform  
1.5 V  
1.5 V  
CLKIN  
T
T
IS3  
IH3  
RESET#  
Figure 31. TIS4 and TIH4 Input Setup and Hold Waveform  
RESET#  
T
IH4  
T
IS4  
ONCE#,  
STEST  
Valid  
Datasheet  
55  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 32. TLX, TLXL and TLXA Relative Timings Waveform  
Ta  
Tw/Td  
1.5 V  
1.5 V  
1.5 V  
CLKIN  
TLXL  
ALE  
1.5 V  
Valid  
1.5 V  
1.5 V  
ALE#  
TLX  
TLXA  
1.5 V  
AD[31:0]  
Valid  
Figure 33. DT/R# and DEN# Timings Waveform  
Ta  
Tw/Td  
CLKIN  
1.5 V  
1.5 V  
1.5 V  
TOV2  
Valid  
DT/R#  
TDXD  
DEN#  
TOV1  
56  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 34. TCK Waveform  
T
T
BSCR  
BSCF  
2.0 V  
1.5 V  
0.8 V  
T
BSCH  
T
BSCL  
Figure 35. TBSIS1 and TBSIH1 Input Setup and Hold Waveforms  
1.5 V  
1.5 V  
BSIH1  
1.5 V  
TCK  
T
T
BSIS1  
TMS  
TDI  
1.5V  
Valid  
1.5V  
Figure 36. TBSOV1 and TBSOF1 Output Delay and Output Float Waveform  
TCK  
1.5 V  
1.5 V  
1.5 V  
T
T
BSOV1  
BSOF1  
Valid  
1.5 V  
TDO  
Datasheet  
57  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 37. TBSOV2 and TBSOF2 Output Delay and Output Float Waveform  
TCK  
1.5 V  
1.5 V  
1.5 V  
T
T
BSOF2  
BSOV2  
Non-Test  
Outputs  
Valid  
1.5 V  
Figure 38. TBSIS2 and TBSIH2 Input Setup and Hold Waveform  
TCK  
1.5 V  
1.5 V  
1.5 V  
TBSIS2 TBSIH2  
Non-Test  
Inputs  
1.5 V  
Valid  
1.5 V  
58  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
5.0  
Device Identification  
80960Jx processors may be identified electrically, according to device type and stepping (see  
Figure 39, and Table 25 through Table 30). Table 24 identifies the device type and stepping  
for all 5 V, 80960Jx processors. Figure 39, and Table 25 through Table 30 identify all 3.3 V  
to 5 V-tolerant 80960Jx processors. The device ID was enhanced to differentiate between 3.3 V and  
5 V supply voltages, and between non-clock-doubled and clock-doubled cores when stepping from  
the A2 stepping to the C0 stepping. The 32-bit identifier is accessible in several ways:  
Upon reset, the identifier is placed into the g0 register.  
The identifier may be accessed from supervisor mode at any time by reading the DEVICEID  
register at address FF008710H.  
The IEEE Standard 1149.1 Test Access Port may select the DEVICE ID register through the  
IDCODE instruction.  
The device and stepping letter is also printed on the top side of the product package.  
Table 24. 80960Jx Device Type and Stepping Reference  
Device and  
Stepping  
Version  
Number  
Complete ID  
(Hex)  
Part Number  
Manufacturer  
X
80960JT A0, A1  
80960JC A1  
80960JS A1  
80960JD C0  
80960JF C0  
80960JA C0  
0000  
0011  
0011  
0011  
0011  
0011  
0000 1000 0010 1011  
0000 1000 0011 0011  
0000 1000 0010 0011  
0000 1000 0011 0000  
0000 1000 0010 0000  
0000 1000 0010 0001  
0000 0001 001  
0000 0001 001  
0000 0001 001  
0000 0001 001  
0000 0001 001  
0000 0001 001  
1
1
1
1
1
1
0082B013  
30833013  
30823013  
30830013  
30820013  
30821013  
Datasheet  
59  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
5.1  
80960JS/JC/JT Device Identification Register  
Figure 39. 80960JS/JC/JT Device Identification Register Fields  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
0
1
0
1
1
0
0
0
0
1
0
0
0
0 0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
Table 25. 80960JS/JC/JT Device ID Register Field Definitions  
Field  
Version  
Value  
Definition  
See Table 26  
Indicates major stepping changes.  
Indicates that a device is 3.3 V.  
V
0 = 3.3 V device  
CC  
000 100  
(Indicates i960 CPU)  
Product Type  
Designates type of product.  
Indicates the generation (or series) to which the  
product belongs.  
Generation Type 0001 = J-series  
D DPCC  
D = Clock Multiplier  
(01) Clock-Tripled  
(P) Product Derivative  
(0) Jx  
Indicates member within a series and specific model  
information.  
Model  
C = Cache Size  
(11) 16K I-cache, 4K D-cache  
000 0000 1001  
(Indicates Intel)  
Manufacturer ID  
Manufacturer ID assigned by IEEE.  
Table 26. 80960JS/JC/JT Device ID Model Types  
Device  
Version  
V
Product  
Gen.  
Model  
Manufacturer ID  
1’  
CC  
80960JT A0, A1  
80960JC A1  
80960JS A1  
0000  
0000  
0000  
0
000100  
000100  
000100  
0001  
0001  
0001  
01011  
10011  
00011  
00000001001  
00000001001  
00000001001  
1
1
1
0
0
60  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
5.2  
80960JD Device Identification Register  
Figure 40. 80960JD Device Identification Register Fields  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0 0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
Table 27. 80960JD Device ID Field Definitions  
Field  
Version  
Value  
See Table 24.  
Definition  
Indicates major stepping changes.  
Indicates that a device is 3.3 V.  
0 = 3.3 V device  
1 = 5 V device  
V
CC  
00 0100  
(Indicates i960 CPU)  
Product Type  
Designates type of product.  
Indicates the generation (or series) to which the product  
belongs.  
Generation Type 0001 = J-series  
D000C  
D = Clock Doubled  
(0) Not Clock-Doubled  
(1) Clock Doubled  
Indicates member within a series and specific model  
information.  
Model  
C = Cache Size  
(0) 4K I-cache, 2K D-cache  
(1) 2K I-cache, 1K D-cache  
000 0000 1001  
(Indicates Intel)  
Manufacturer ID  
Manufacturer ID assigned by IEEE.  
Table 28. 80960JD Device ID Model Types  
Device  
80960JD C0  
Version  
V
Product  
Gen.  
Model  
Manufacturer ID  
1’  
CC  
0011  
0
000100  
0001  
10000  
00000001001  
1
Datasheet  
61  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
5.3  
80960JA/JF Device Identification Register  
Figure 41. 80960JA/JF Device Identification Register Fields  
Part Number  
Product  
VCC  
Type  
Version  
Gen  
Model  
Manufacturer ID  
1
0
0
0
0
1
0
0
0
0 0 1  
0
0
0
0
0
0
0
1
0
0
1
1
28  
24  
20  
16  
12  
8
4
0
Table 29. 80960JA/JF Device ID Field Definitions  
Field  
Version  
Value  
Definition  
See Table 30.  
Indicates major stepping changes.  
Indicates that a device is 3.3 V.  
0 = 3.3 V device  
1 = 5 V device  
V
CC  
00 0100  
(Indicates i960 CPU)  
Product Type  
Designates type of product.  
Indicates the generation (or series) to which the  
product belongs.  
Generation Type 0001 = J-series  
0000C  
C = Cache Size  
Model  
Indicates member within a series and specific  
model information.  
0 = 4K I-cache, 2K D-cache  
1 = 2K I-cache, 1K D-cache  
000 0000 1001  
(Indicates Intel)  
Manufacturer ID  
Manufacturer ID assigned by IEEE.  
Table 30. 80960JA/JF Device ID Model Types  
Device  
Version  
V
Product  
Gen.  
Model  
Manufacturer ID  
1’  
CC  
80960JA C0  
80960JF C0  
0011  
0011  
0
000100  
000100  
0001  
0001  
00001  
00000  
00000001001  
00000001001  
1
1
0
62  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
6.0  
Thermal Specifications  
The 80960Jx is specified for operation when TC (case temperature) is within the range of 0° C to  
100° C for PGA, MPBGA and PQFP packages. Extended temperature devices are also available in  
a PQFP package and an MPBGA package with TC = -40° C to 100° C. Case temperature may be  
measured in any environment to determine whether the 80960Jx is within its specified operating  
range. The case temperature should be measured at the center of the top surface, opposite the pins.  
θCA is the thermal resistance from case to ambient. Use the following equation to calculate TA, the  
maximum ambient temperature to conform to a particular case temperature:  
TA = TC - P (θ  
)
CA  
Junction temperature (TJ) is commonly used in reliability calculations. TJ may be calculated from  
θJC (thermal resistance from junction to case) using the following equation:  
TJ = TC + P (θ  
)
JC  
Similarly, when TA is known, the corresponding case temperature (TC) may be calculated as  
follows:  
TC = TA + P (θ  
)
CA  
Compute P by multiplying ICC from Table 21, 80960Jx ICC Characteristicson page 39 and VCC  
See the following tables for θJC and θCA values:  
.
Table 31. Thermal Resistance for θCA and θJC Reference Table  
Package  
Table  
Table 33 on page 64  
PGA package  
MPBGA package  
PQFP package  
Table 34 on page 64 and Table 35 on page 65  
Table 36 on page 65  
For high speed operation, the processors θJA may be significantly reduced by adding a heatsink  
and/or by increasing airflow.  
Refer to the following tables for the maximum ambient temperature (TA) permitted without  
exceeding TC for the PGA, MPBGA, and PQFP packages. The values are based on typical ICC and  
CC of +3.3 V, with a TC of +100° C.  
V
Table 32. Maximum Ambient Temperature Reference Table  
Processor  
Table  
Table 37 on page 66  
80960JT processor  
80960JC processor  
80960JD processor  
80960JS processor  
Table 38 on page 66  
Table 39 on page 67  
Table 40 on page 67  
80960JA/JF processor Table 41 on page 68  
Datasheet  
63  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 33. 132-Lead PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.08)  
θ
θ
θ
θ
(Junction-to-Case)  
0.7  
25  
15  
16  
0.7  
19  
9
0.7  
14  
6
0.7  
12  
5
0.7  
11  
4
0.7  
10  
4
JC  
(Case-to-Ambient) (No Heatsink)  
CA  
CA (Case-to-Ambient) (Omnidirectional Heatsink)  
CA (Case-to-Ambient) (Unidirectional Heatsink)  
8
6
5
4
4
θ
θ
CA  
JA  
θ
JC  
θ
J-PIN  
θ
J-CAP  
NOTES:  
1. This table applies to a PGA device plugged into a socket or soldered directly into a board.  
2. θ = θ + θ  
JA  
JC  
CA  
3. θ  
4. θ  
5. θ  
6. θ  
7. θ  
8. θ  
= 5.6° C/W (approximate) (no heatsink)  
J-CAP  
J-PIN  
J-PIN  
J-CAP  
J-PIN  
J-PIN  
= 6.4° C/W (inner pins) (approximate) (no heatsink)  
= 6.2° C/W (outer pins) (approximate) (no heatsink)  
= 3° C/W (approximate) (with heatsink)  
= 3.3° C/W (inner pins) (approximate) (with heatsink)  
= 3.3° C/W (outer pins) (approximate) (with heatsink)  
Table 34. 80960JA/JF/JD 196-Ball MPBGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.08)  
θ
θ
(Junction-to-Case)  
2
2
2
2
2
2
JC  
(Case-to-Ambient) (No Heatsink)  
30  
22  
20  
19  
18  
18  
CA  
θ
JA  
θ
CA  
θ
JC  
NOTES:  
1. This table applies to an MPBGA device soldered directly into a board with all V connections.  
SS  
2. θ = θ + θ  
JA  
JC  
CA  
64  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 35. 80960JS/JC/JT 196-Ball MPBGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.08)  
θ
θ
(Junction-to-Case)  
2
2
2
2
2
2
JC  
(Case-to-Ambient) (No Heatsink)  
34  
25  
23  
22  
21  
20  
CA  
θ
JA  
θ
CA  
θ
JC  
NOTES:  
1. This table applies to an MPBGA device soldered directly into a board with all V connections.  
SS  
2. θ = θ + θ  
JA  
JC  
CA  
Table 36. 132-Lead PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θ
θ
(Junction-to-Case)  
4.1  
23  
4.3  
19  
4.3  
18  
4.3  
16  
4.3  
14  
4.7  
11  
4.9  
9
JC  
(Case-to-Ambient -No Heatsink)  
CA  
θ
CA  
θ
JA  
θ
JC  
θ
JB  
θ
JL  
NOTES:  
1. This table applies to a PQFP device soldered directly into board.  
2. θ = θ + θ  
JA  
JC  
CA  
3. θ = 13° C/W (approx.)  
JL  
4. θ = 13.5° C/W (approx.)  
JB  
Datasheet  
65  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 37. Maximum TA at Various Airflows in °C (80960JT)  
Airflow-ft/min (m/sec)  
f
0
200  
400  
600  
800  
1000  
CLKIN  
(MHz)  
(0)  
(1.01) (2.03) (3.04) (4.06) (5.07)  
PQFP  
Package  
T
without Heatsink  
33  
63  
74  
78  
82  
86  
87  
A
T
without Heatsink  
33  
33  
60  
76  
70  
86  
78  
90  
81  
92  
82  
94  
84  
94  
A
T
with Omnidirectional  
A
PGA  
Package  
Heatsink1  
T
with Unidirectional  
A
33  
33  
74  
46  
87  
60  
90  
63  
92  
65  
94  
66  
94  
68  
Heatsink2  
MPBGA  
Package  
T
without Heatsink  
A
NOTES:  
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin  
spacing).  
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).  
Table 38. Maximum TA at Various Airflows in °C (80960JC)  
Airflow-ft/min (m/sec)  
0
(0)  
200  
400  
600  
800  
1000  
f
(MHz)  
CLKIN  
(1.01) (2.03) (3.04) (4.06) (5.07)  
33  
25  
20  
75  
79  
84  
86  
82  
86  
89  
90  
85  
87  
90  
92  
88  
90  
92  
93  
90  
92  
94  
95  
91  
93  
94  
95  
PQFP  
Package  
T
without Heatsink  
A
16.67  
33  
25  
20  
73  
78  
83  
85  
79  
83  
87  
89  
85  
87  
90  
92  
87  
89  
92  
93  
88  
90  
92  
93  
89  
91  
93  
94  
T
without Heatsink  
A
16.67  
33  
25  
20  
84  
87  
90  
91  
90  
92  
94  
95  
93  
95  
96  
96  
95  
96  
97  
97  
96  
96  
97  
98  
96  
96  
97  
98  
PGA  
T
with Omnidirectional  
A
Package Heatsink1  
16.67  
33  
25  
20  
82  
86  
89  
90  
91  
93  
94  
95  
93  
95  
96  
96  
95  
96  
97  
97  
96  
96  
97  
98  
96  
96  
97  
98  
T
with Unidirectional  
A
Heatsink2  
16.67  
33  
25  
20  
63  
69  
76  
80  
73  
78  
83  
85  
75  
79  
84  
86  
76  
80  
85  
87  
77  
81  
85  
87  
78  
82  
86  
88  
MPBGA  
Package  
T
without Heatsink  
A
16.67  
NOTES:  
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin  
spacing).  
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).  
66  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 39. Maximum TA at Various Airflows in °C (80960JD)  
Airflow-ft/min (m/sec)  
0
(0)  
200  
400  
600  
800  
1000  
f
(MHz)  
CLKIN  
(1.01) (2.03) (3.04) (4.06) (5.07)  
33  
25  
20  
61  
70  
75  
79  
73  
79  
82  
86  
76  
82  
85  
87  
81  
86  
88  
90  
85  
88  
90  
92  
86  
90  
91  
93  
PQFP  
Package  
T
without Heatsink  
A
16.67  
33  
25  
20  
58  
68  
73  
78  
68  
75  
79  
83  
76  
82  
85  
87  
80  
84  
87  
89  
81  
86  
88  
90  
83  
87  
89  
91  
T
without Heatsink  
A
16.67  
33  
25  
20  
75  
81  
84  
87  
85  
88  
90  
92  
90  
92  
93  
95  
92  
94  
95  
96  
93  
95  
96  
96  
93  
95  
96  
96  
PGA  
T
with Omnidirectional  
A
Package Heatsink1  
16.67  
33  
25  
20  
73  
79  
82  
86  
86  
90  
91  
93  
90  
92  
93  
95  
92  
94  
95  
96  
93  
95  
96  
96  
93  
96  
96  
96  
T
with Unidirectional  
A
Heatsink2  
16.67  
MPBGA  
Package  
T
without Heatsink  
25  
61  
72  
74  
76  
77  
77  
A
NOTES:  
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin  
spacing).  
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin spacing).  
Table 40. Maximum TA at Various Airflows in °C (80960JS)  
Airflow-ft/min (m/sec)  
0
(0)  
200  
400  
600  
800  
1000  
f
(MHz)  
CLKIN  
(1.01) (2.03) (3.04) (4.06) (5.07)  
33  
25  
16.67  
84  
86  
91  
89  
90  
94  
90  
92  
94  
92  
93  
96  
94  
95  
96  
94  
95  
97  
PQFP  
Package  
T
without Heatsink  
A
33  
25  
16.67  
83  
85  
90  
87  
89  
92  
90  
92  
94  
92  
93  
95  
92  
93  
96  
93  
94  
96  
T
without Heatsink  
A
33  
25  
16.67  
90  
91  
94  
94  
95  
96  
96  
96  
98  
97  
97  
98  
97  
98  
98  
97  
98  
98  
PGA  
T
with Omnidirectional  
A
Package Heatsink1  
33  
25  
16.67  
89  
90  
94  
94  
95  
97  
96  
96  
98  
97  
97  
98  
97  
98  
98  
97  
98  
98  
T
with Unidirectional  
A
Heatsink2  
33  
25  
16.67  
76  
80  
86  
83  
85  
90  
84  
86  
91  
85  
87  
91  
85  
87  
92  
86  
88  
92  
MPBGA  
Package  
T
without Heatsink  
A
NOTES:  
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin  
spacing).  
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin  
spacing).  
Datasheet  
67  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 41. Maximum TA at Various Airflows in °C (80960JA/JF)  
Airflow-ft/min (m/sec)  
0
(0)  
200  
400  
600  
800  
1000  
f
(MHz)  
CLKIN  
(1.01) (2.03) (3.04) (4.06) (5.07)  
33  
25  
16  
79  
84  
89  
86  
89  
92  
87  
90  
93  
90  
92  
95  
92  
94  
96  
93  
94  
96  
For x80960JA/JF  
without Heatsink  
T
A
PQFP  
Package  
For x80960JA-25  
25  
84  
89  
90  
92  
94  
94  
T
without Heatsink  
A
33  
25  
16  
78  
83  
88  
83  
87  
91  
87  
90  
93  
89  
92  
94  
90  
92  
95  
91  
93  
95  
T
without Heatsink  
A
33  
25  
16  
87  
90  
93  
92  
94  
96  
95  
96  
97  
96  
97  
98  
96  
97  
98  
96  
97  
98  
PGA  
T
with Omnidirectional  
A
Package Heatsink1  
33  
25  
16  
86  
89  
92  
93  
94  
96  
95  
96  
97  
96  
97  
98  
96  
97  
98  
96  
97  
98  
T
with Unidirectional  
A
Heatsink2  
MPBGA  
Package  
33  
25  
73  
79  
80  
84  
82  
86  
83  
87  
84  
87  
84  
87  
T
without Heatsink  
A
NOTES:  
1. 0.248 inch high omnidirectional heatsink (AI alloy 6061, 41 mil fin width, 124 mil center-to-center fin  
spacing).  
2. 0.250 inch high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 146 mil center-to-center fin  
spacing).  
3. To address the fact that many of the package prefix variables have changed, all package prefix variables  
in this document are now indicated with an "x".  
6.1  
Thermal Management Accessories  
The following is a list of suggested sources for 80960Jx thermal solutions. This is neither an  
endorsement or a warranty of the performance of any of the listed products and/or companies.  
6.1.1  
Heatsinks  
1. Thermalloy, Inc.  
2021 West Valley View Lane  
Dallas, TX 75234-8993  
(972) 243-4321  
2. Wakefield Engineering  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900  
3. Aavid Thermal Technologies, Inc.  
One Kool Path  
Laconia, NH 03247-0400  
(603) 528-3400  
68  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
7.0  
Bus Functional Waveforms  
Figure 42 through Figure 47 illustrate typical 80960Jx bus transactions. Figure 48 depicts the bus  
arbitration sequence. Figure 49 illustrates the processor reset sequence from the time power is  
applied to the device. Figure 50 illustrates the processor reset sequence when the processor is in  
operation. Figure 51 illustrates the processor ONCE# sequence from the time power is applied to  
the device. Figure 53 and Figure 54 also show accesses on 32-bit buses. Table 44 through Table 46  
summarize all possible combinations of bus accesses across 8-, 16-, and 32-bit buses according to  
data alignment.  
Figure 42. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
T
T
T
T
T
T
T
T
T
T
i
a
d
r
i
i
a
d
r
i
CLKIN  
D
ADDR  
ADDR  
Invalid  
DATA Out  
AD31:0  
In  
ALE  
ADS#  
A3:2  
BE3:0#  
WIDTH1:0  
10  
10  
D/C#  
W/R#  
BLAST#  
DT/R#  
DEN#  
RDYRCV#  
F_JF030A  
Datasheet  
69  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 43. Burst Read and Write Transactions Without Wait States, 32-Bit Bus  
TA  
TD  
TD  
TR  
TA  
TD  
TD  
TD TD  
TR  
CLKIN  
D
In  
DATA  
Out  
DATA  
Out  
D
DATA DATA  
ADDR  
ADDR  
AD31:0  
In  
Out Out  
ALE  
ADS#  
00 or 10  
01 or 11  
00  
01  
10  
11  
A3:2  
BE3:0#  
1 0  
WIDTH1:0  
D/C#  
1 0  
W/R#  
BLAST#  
DT/R#  
DEN#  
RDYRCV#  
70  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 44. Burst Write Transactions With 2,1,1,1 Wait States, 32-Bit Bus  
TA  
TW  
TW  
TD  
TW  
TD  
TW  
TD  
TW  
TD  
TR  
CLKIN  
AD31:0  
ALE  
DATA  
Out  
DATA  
Out  
DATA  
Out  
DATA  
Out  
ADDR  
ADS#  
A3:2  
0 0  
0 1  
1 0  
1 1  
BE3:0#  
WIDTH1:0  
D/C#  
1 0  
W/R#  
BLAST#  
DT/R#  
DEN#  
RDYRCV#  
F_JF032A  
Datasheet  
71  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 45. Burst Read and Write Transactions Without Wait States, 8-Bit Bus  
TA  
TD  
TD  
TR  
TA  
TD  
TD  
TD  
TD  
TR  
CLKIN  
DATA  
Out  
D
In  
D
In  
DATA DATA  
DATA  
ADDR  
ADDR  
AD31:0  
Out Out Out  
ALE  
ADS#  
A3:2  
00,01,10 or 11  
00,01,10 or 11  
01 or  
BE1#/A1  
BE0#/A0  
00  
01  
10  
11  
00 or 10  
11  
WIDTH1:0  
D/C#  
00  
00  
W/R#  
BLAST#  
DT/R#  
DEN#  
RDYRCV#  
F_JF033A  
72  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 46. Burst Read and Write Transactions With 1, 0 Wait States  
and Extra Tr State on Read, 16-Bit Bus  
TW TD  
TD  
TR  
TR  
TA  
TW  
TD TD  
TR  
TA  
CLKIN  
AD31:0  
ALE  
D
D
DATA  
DATA  
Out  
ADDR  
ADDR  
In  
In  
Out  
ADS#  
00,01,10, or 11  
00,01,10, or 11  
A3:2  
0
0
1
BE1#/A1  
1
BE3#/BHE  
BE0#/BLE  
01  
01  
WIDTH1:0  
D/C#  
W/R#  
BLAST#  
DT/R#  
DEN#  
F_JF034A  
RDYRCV#  
Datasheet  
73  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 47. Double Word Read Bus Request, Misaligned One Byte From  
Quad Word Boundary, 32-Bit Bus, Little Endian  
TA  
TD  
TR  
TA  
TD  
TR  
TA  
TD  
TR  
TA  
TD  
TR  
CLKIN  
AD31:0  
ALE  
D
In  
D
In  
D
In  
D
In  
A
A
A
A
ADS#  
A3:2  
00  
00  
01  
10  
BE3:0#  
WIDTH1:0  
D/C#  
0 0 0 0  
1 1 1 0  
0 0 1 1  
1 1 0 1  
1 0  
Valid  
W/R#  
BLAST#  
DT/R#  
DEN#  
RDYRCV#  
74  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 48. HOLD/HOLDA Waveform For Bus Arbitration  
TI or TR  
TH  
TH  
TI or TA  
CLKIN  
Outputs:  
AD31:0,  
ALE, ALE#,  
ADS#, A3:2,  
BE3:0#,  
Valid  
Valid  
WIDTH/HLTD1:0,  
D/C#, W/R#,  
DT/R#, DEN#,  
BLAST#, LOCK#  
HOLD  
HOLDA  
(Note)  
NOTE: HOLD is sampled on the rising edge of CLKIN. The processor asserts HOLDA to grant the bus on the  
same edge in which it recognizes HOLD when the last state was Ti or the last Tr of a bus transaction. Similarly,  
the processor deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD.  
Datasheet  
75  
CLKIN  
VCC  
ALE#, ADS#,  
BE3:0#, DEN#,  
BLAST#  
ALE#,W/R#,DT/R#  
WIDTH/HLTD1:0  
(Note 1)  
FAIL#  
Idle (Note 2)  
AD31:0, A3:2,D/C#  
Valid Input (Note 3)  
Valid Output (Note 3)  
HOLD  
HOLDA  
LOCK#/  
ONCE#  
(Output)  
(Input)  
Valid  
STEST  
RESET#  
First  
Built-in self-test (Note 4)  
V
CC and CLKIN stable to RESET High, minimum  
10,000 CLKIN periods, for PLL stabilization.  
Bus  
Activity  
Notes:  
1. The processor asserts FAIL# during built-in self-test. When self- test passes, the FAIL# pin is deasserted.The processor also asserts FAIL#  
during the bus confidence test. When the bus confidence test passes, FAIL# is deasserted and the processor begins user program execution.  
2. If the processor fails built-in self-test, it initiates one dummy load bus access. The load address indicates the point of self-test failure.  
3. Since the bus is idle, hold requests are honored during reset and built-in self-test.  
4. When selected, built-in self test requires approximately (in CLKIN periods): 393,000 for 80960JT, 580,012 for the 80960JC,  
1,176,025 for the 80960JS, 207,000 for 80960JD, and 414,000 for 80960JA/JF.  
CLKIN  
ALE#, ADS#, BE3:0#,  
DEN#, BLAST#  
ALE, W/R#,DT/R#, BSTAT,  
WIDTH/HLTD1:0  
FAIL#  
AD31:0, A3:2, D/C#  
HOLD  
HOLDA  
LOCK#/ONCE#  
STEST  
Valid  
Maximum RESET# Low to Reset State  
4 CLKIN Cycles  
RESET#  
RESET# High to First Bus  
Activity: (CLKIN cycles)  
Minimum RESET# Low Time  
15 CLKIN Cycles  
80960JT - 26  
80960JC - 40  
80960JS - 60  
80960JD - 46  
80960JA/JF - 92  
CLKIN may not be allowed to float.  
It must be driven high or low or continue to run.  
CLKIN  
VCC  
ALE#, ADS#,  
BE3:0#, DEN#, BLAST#  
ALE,W/R,#  
DT/R#, WIDTH/HLTD1:0  
FAIL#  
AD31:0, A3:2,  
D/C#  
HOLD  
HOLDA  
(Input)  
LOCK#/  
ONCE#  
STEST  
RESET#  
(Note 1)  
VCC and CLKIN stable to RESET# High,  
minimum 10,000 CLKIN periods, for PLL  
stabilization.  
NOTES:  
1. ONCE# mode may be entered prior to the rising edge of RESET#: ONCE# input is not latched until the rising edge of RESET#.  
2. The ONCE# input may be removed after the processor enters ONCE# Mode.  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
7.1  
Basic Bus States  
The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and hold  
(Th). During system operation, the processor continuously enters and exits different bus states.  
Figure 52 shows the five bus states.  
The bus occupies the idle (Ti) state when no address/data transactions are in progress and when  
RESET# is asserted. When the processor needs to initiate a bus access, it enters the Ta state to  
transmit the address.  
Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data  
lines. Assertion of the RDYRCV# input signal indicates completion of each transfer. When data is  
not ready, the processor may wait as long as necessary for the memory or I/O device to respond.  
After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case  
of a burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next  
data word. The processor asserts the BLAST# signal during the last Tw/Td states of an access.  
Once all data words transfer in a burst access (up to four), the bus enters the Tr state to allow  
devices on the bus to recover.  
The processor remains in the Tr state until RDYRCV# is deasserted. When the recovery state  
completes, the bus enters the Ti state when no new accesses are required. When an access is  
pending, the bus enters the Ta state to transmit the new address.  
Datasheet  
79  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 52. Bus States with Arbitration  
(READY AND BURST)  
OR NOT READY  
Tw/Td  
RECOVERED AND  
REQUEST  
PENDING AND (NO  
HOLD OR LOCKED)  
READY AND NO BURST  
Ta  
REQUEST PENDING  
AND (NO HOLD OR  
LOCKED)  
NOT  
RECOVERED  
Tr  
RECOVERED AND  
NO REQUEST AND  
(NO HOLD OR  
LOCKED)  
REQUEST  
PENDING AND  
NO HOLD  
NO REQUEST  
AND (NO HOLD  
OR LOCKED)  
Ti  
ONCE & RESET  
DEASSERTION  
RECOVERED AND  
HOLD AND NOT  
LOCKED  
NO REQUEST  
AND NO HOLD  
Th  
RESET  
To  
HOLD AND  
NOT LOCKED  
HOLD  
Ti IDLE STATE  
READY RDYRCV# ASSERTED  
Ta ADDRESS STATE  
NOT READY RDYRCV# NOT ASSERTED  
BURST BLAST# NOT ASSERTED  
NO BURST BLAST# ASSERTED  
Tw / Td WAIT/DATA STATE  
Tr RECOVERY STATE  
Th HOLD STATE  
RECOVERED RDYRCV# NOT ASSERTED  
NOT RECOVERED RDYRCV# ASSERTED  
REQUEST PENDING NEW TRANSACTION  
NOREQUEST NO NEW TRANSACTION  
HOLD HOLD REQUEST ASSERTED  
To ONCE STATE  
NO HOLD HOLD REQUEST NOT ASSERTED  
LOCKED ATOMIC EXECUTION (ATADD, ATMOD) IN PROGRESS  
NOT LOCKED NO ATOMIC EXECUTION IN PROGRESS  
RESET RESET# ASSERTED  
ONCE ONCE# ASSERTED  
7.2  
Boundary-Scan Register  
The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and  
HIGHZ pins.  
Table 42 shows the bit order of the 80960Jx processor Boundary-Scan register. All table cells that  
contain CTLselect the direction of bidirectional pins or HIGHZ output pins. When a 1 is loaded  
into the control cell, the associated pin(s) are HIGHZ or selected as input.  
80  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 42. Boundary-Scan RegisterBit Order  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Bit  
Signal  
Bit  
Signal  
DEN#  
Bit  
Signal  
AD17  
RDYRCV#  
(TDI)  
0
I
24  
O
48  
I/O  
1
2
HOLD  
I
I
25  
26  
HOLDA  
ALE  
O
O
49  
50  
AD16  
AD15  
I/O  
I/O  
XINT0#  
LOCK#/  
ONCE# cell  
3
XINT1#  
I
27  
Enable cell†  
51  
AD14  
I/O  
LOCK#/  
ONCE#  
4
5
6
XINT2#  
XINT3#  
XINT4#  
I
I
I
28  
29  
30  
I/O  
O
52  
53  
54  
AD13  
AD12  
I/O  
I/O  
BSTAT  
BE0#  
Enable  
cell†  
O
AD cells  
7
XINT5#  
XINT6#  
I
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
BE1#  
BE2#  
BE3#  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
O
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
AD11  
AD10  
AD9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
8
I
O
9
XINT7#  
I
O
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NMI#  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AD8  
FAIL#  
I
AD7  
ALE#  
O
AD6  
WIDTH/HLTD1  
WIDTH/HLTD0  
A2  
O
AD5  
O
AD4  
O
AD3  
A3  
O
AD2  
CONTROL1  
CONTROL2  
BLAST#  
D/C#  
Enable cell†  
AD1  
Enable cell†  
AD0  
O
O
CLKIN  
RESET#  
I
STEST  
(TDO)  
21  
ADS#  
O
45  
AD20  
I/O  
69  
I
22  
23  
W/R#  
O
O
46  
47  
AD19  
AD18  
I/O  
I/O  
DT/R#  
Enable cells are active low.  
Table 43. Natural Boundaries for Load and Store Accesses  
Data Width  
Natural Boundary (Bytes)  
Byte  
1
2
Short Word  
Word  
4
Double Word  
Triple Word  
Quad Word  
8
16  
16  
Datasheet  
81  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 44. Summary of Byte Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit  
Bus (WIDTH1:0=01)  
Accesses on 32 Bit Bus  
(WIDTH1:0=10)  
+0 (aligned)  
Byte access  
Byte access  
Byte access  
Table 45. Summary of Short Word Load and Store Accesses  
Address Offset from  
Natural Boundary  
(in Bytes)  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit  
Bus (WIDTH1:0=01)  
Accesses on 32 Bit Bus  
(WIDTH1:0=10)  
+0 (aligned)  
+1  
Burst of 2 bytes  
Short-word access  
Two byte accesses  
Short-word access  
Two byte accesses  
Two byte accesses  
82  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Table 46. Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)  
Address Offset  
from Natural  
Boundary in Bytes  
Accesses on 8-Bit Bus  
(WIDTH1:0=00)  
Accesses on 16 Bit Bus  
(WIDTH1:0=01)  
Accesses on 32 Bit  
Bus (WIDTH1:0=10)  
Case n=1:  
burst of 2 short words  
Case n=2:  
burst of 4 short words  
+0 (aligned)  
(n =1, 2, 3, 4)  
n burst(s) of 4 bytes  
Burst of n word(s)  
Case n=3:  
burst of 4 short words  
burst of 2 short words  
Case n=4:  
2 bursts of 4 short words  
Byte access  
Byte access  
Byte access  
+1 (n =1, 2, 3, 4)  
+5 (n = 2, 3, 4)  
+9 (n = 3, 4)  
Short-word access  
Short-word access  
Burst of 2 bytes  
n-1 burst(s) of 4 bytes  
Byte access  
n-1 burst(s) of 2 short  
words  
n-1 word  
access(es)  
+13 (n = 3, 4)  
Byte access  
Byte access  
Short-word access  
Short-word access  
+2 (n =1, 2, 3, 4)  
+6 (n = 2, 3, 4)  
+10 (n = 3, 4)  
+14 (n = 3, 4)  
Burst of 2 bytes  
n-1 burst(s) of 2 short  
words  
n-1 word  
access(es)  
n-1 burst(s) of 4 bytes  
Burst of 2 bytes  
Short-word access  
Byte access  
Short-word access  
Byte access  
Byte access  
+3 (n =1, 2, 3, 4)  
+7 (n = 2, 3, 4)  
+11 (n = 3, 4)  
+15 (n = 3, 4)  
n-1 burst(s) of 2 short  
words  
n-1 word  
access(es)  
n-1 burst(s) of 4 bytes  
Burst of 2 bytes  
Byte access  
Short-word access  
Byte access  
Short-word access  
Byte access  
+4 (n = 2, 3, 4)  
+8 (n = 3, 4)  
n burst(s) of 4 bytes  
n burst(s) of 2 short words  
n word access(es)  
+12 (n = 3, 4)  
Datasheet  
83  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 53. Summary of Aligned and Unaligned Accesses (32-Bit Bus)  
0
0
4
8
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
1
2
Short Access (Aligned)  
Byte, Byte Accesses  
Short-Word  
Load/Store  
Short Access (Aligned)  
Byte, Byte Accesses  
Word Access (Aligned)  
Byte, Short, Byte, Accesses  
Short, Short Accesses  
Word  
Load/Store  
Byte, Short, Byte Accesses  
One Double-Word Burst (Aligned)  
Byte, Short, Word, Byte Accesses  
Short, Word, Short Accesses  
Double-Word  
Load/Store  
Byte, Word, Short, Byte Accesses  
Word, Word Accesses  
One Double-Word  
Burst (Aligned)  
84  
Datasheet  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
Figure 54. Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)  
0
4
1
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
0
One Three-Word  
Burst (Aligned)  
Byte, Short, Word,  
Word, Byte Accesses  
Short, Word, Word,  
Short Accesses  
Triple-Word  
Load/Store  
Byte, Word, Word,  
Short, Byte Accesses  
Word, Word,  
Word Accesses  
Word, Word,  
Word Accesses  
Word,  
Word,  
Word  
Accesses  
One Four-Word  
Burst (Aligned)  
Byte, Short, Word, Word,  
Word, Byte Accesses  
Short, Word, Word, Word,  
Short Accesses  
Quad-Word  
Load/Store  
Byte, Word, Word, Word,  
Short, Byte Accesses  
Word, Word, Word,  
Word Accesses  
Word,  
Word,  
Word,  
Word,  
Accesses  
Datasheet  
85  
80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor  
This page intentionally left blank.  
86  
Datasheet  

相关型号:

TG80960KA-16

RISC Microprocessor, 32-Bit, 16MHz, CMOS
INTEL

TG80960KB25

RISC Microprocessor, 32-Bit, 25MHz, CMOS, PQFP132,
INTEL

TG84

Rectifier Diode, 1 Phase, 1 Element, 8A, 400V V(RRM), Silicon, TO-220, 2 PIN
MICROSEMI

TG85-1505NZLF

SMD Dual Port T1/E1 Transformers
HALO

TG85-1505NZRL

SMD Dual Port T1/E1 Transformers
HALO

TG85-S002NZLF

SMD Dual Port T1/E1 Transformers
HALO

TG85-S002NZRL

SMD Dual Port T1/E1 Transformers
HALO

TG86

Rectifier Diode, 1 Phase, 1 Element, 8A, 600V V(RRM), Silicon, TO-220, 2 PIN
MICROSEMI

TG88

Rectifier Diode, 1 Phase, 1 Element, 8A, 800V V(RRM), Silicon, TO-220, 2 PIN
MICROSEMI

TG88-6

ABS/POLYCARBONATE ENCLOSURE TG 88-6
ALTECH

TG88-9

ABS/POLYCARBONATE ENCLOSURE TG 88-9
ALTECH

TG90-09A

Connector Wrench
GLENAIR