TLC081CD [ROCHESTER]

OP-AMP, 3000uV OFFSET-MAX, 10MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8;
TLC081CD
型号: TLC081CD
厂家: Rochester Electronics    Rochester Electronics
描述:

OP-AMP, 3000uV OFFSET-MAX, 10MHz BAND WIDTH, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8

放大器 光电二极管
文件: 总54页 (文件大小:2702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY  
OPERATIONAL AMPLIFIERS  
Check for Samples: TLC080 , TLC081, TLC082, TLC083, TLC084, TLC085, TLC08xA  
1
FEATURES  
DESCRIPTION  
The first  
members  
of  
TIs  
new BiMOS  
23  
Wide Bandwidth: 10 MHz  
High Output Drive:  
general-purpose operational amplifier family are the  
TLC08x. The BiMOS family concept is simple:  
provide an upgrade path for BiFET users who are  
moving away from dual-supply to single-supply  
systems and demand higher ac and dc performance.  
With performance rated from 4.5 V to 16 V across  
commercial (0°C to 70°C) and an extended industrial  
temperature range (40°C to 125°C), BiMOS suits a  
wide range of audio, automotive, industrial, and  
instrumentation applications. Familiar features like  
offset nulling pins, and new features like MSOP  
PowerPADpackages and shutdown modes, enable  
IOH: 57 mA at VDD 1.5 V  
IOL: 55 mA at 0.5 V  
High Slew Rate:  
SR+: 16 V/µs  
SR: 19 V/µs  
Wide Supply Range: 4.5 V to 16 V  
Supply Current: 1.9 mA/Channel  
Ultralow Power Shutdown Mode:  
higher levels of performance in  
applications.  
a
variety of  
IDD: 125 µA/Channel  
Low Input Noise Voltage: 8.5 nVHz  
Input Offset Voltage: 60 µV  
Ultra-Small Packages:  
Developed in TIs patented LBC3 BiCMOS process,  
the new BiMOS amplifiers combine a very high input  
impedance, low-noise CMOS front end with  
a
high-drive bipolar output stage, thus providing the  
optimum performance features of both. AC  
performance improvements over the TL08x BiFET  
predecessors include a bandwidth of 10 MHz (an  
increase of 300%) and voltage noise of 8.5 nV/Hz  
(an improvement of 60%). DC improvements include  
an ensured VICR that includes ground, a factor of 4  
reduction in input offset voltage down to 1.5 mV  
(maximum) in the standard grade, and a power  
supply rejection improvement of greater than 40 dB to  
130 dB. Added to this list of impressive features is  
the ability to drive ±50-mA loads comfortably from an  
ultrasmall-footprint MSOP PowerPAD package, which  
positions the TLC08x as the ideal high-performance  
general-purpose operational amplifier family.  
8- or 10-Pin MSOP (TLC080/1/2/3)  
+
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
NO. OF  
DEVICE  
UNIVERSAL  
EVM BOARD  
CHANNELS  
MSOP  
PDIP  
8
SOIC  
8
TSSOP SHUTDOWN  
TLC080  
TLC081  
TLC082  
TLC083  
TLC084  
TLC085  
1
1
2
2
4
4
8
8
20  
20  
Yes  
8
8
Refer to the EVM  
Selection Guide  
(Lit# SLOU060)  
8
8
8
Yes  
10  
14  
14  
16  
14  
14  
16  
Yes  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 19992011, Texas Instruments Incorporated  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
TLC080 and TLC081 AVAILABLE OPTIONS  
PACKAGED DEVICES  
TA  
SMALL OUTLINE  
(D)(1)  
SMALL OUTLINE  
PLASTIC DIP  
SYMBOL  
(DGN)(1)  
TLC080CDGN  
TLC081CDGN  
TLC080IDGN  
TLC081IDGN  
(P)  
TLC080CD  
TLC081CD  
TLC080ID  
TLC081ID  
TLC080AID  
TLC081AID  
xxTIACW  
xxTIACY  
xxTIACX  
xxTIACZ  
TLC080CP  
TLC081CP  
TLC080IP  
TLC081IP  
TLC080AIP  
TLC081AIP  
0°C to 70°C  
40°C to 125°C  
(1) This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC080CDR).  
TLC082 and TLC083 AVAILABLE OPTIONS  
PACKAGED DEVICES  
SMALL  
OUTLINE  
(D)(1)  
MSOP  
SYMBOL(2)  
PLASTIC  
DIP  
PLASTIC  
DIP  
TA  
(DGN)(1)  
(DGQ)(1)  
SYMBOL(2)  
(N)  
(P)  
TLC082CD  
TLC083CD  
TLC082ID  
TLC083ID  
TLC082AID  
TLC083AID  
TLC082CDGN  
xxTIADZ  
xxTIAEB  
TLC083CN  
TLC082CP  
0°C to 70°C  
xxTIAEA  
TLC083CDGQ  
TLC082IP  
TLC082IDGN  
TLC083IDGQ  
xxTIAEC  
TLC083IN  
40°C to 125°C  
TLC082AIP  
TLC083AIN  
(1) This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC082CDR).  
(2) xx represents the device date code.  
TLC084 and TLC085 AVAILABLE OPTIONS  
PACKAGED DEVICES  
TA  
SMALL OUTLINE  
(D)(1)  
PLASTIC DIP  
(N)  
TSSOP  
(PWP)(1)  
TLC084CD  
TLC085CD  
TLC084ID  
TLC085ID  
TLC084AID  
TLC085AID  
TLC084CN  
TLC085CN  
TLC084IN  
TLC085IN  
TLC084AIN  
TLC085AIN  
TLC084CPWP  
TLC085CPWP  
TLC084IPWP  
TLC085IPWP  
TLC084AIPWP  
TLC085AIPWP  
0°C to 70°C  
40°C to 125°C  
(1) This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC084CDR).  
space  
For the most current package and ordering information, see the Package Option Addendum at the end of this  
data sheet, or see the TI web site at www.ti.com.  
2
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
TLC080  
TLC081  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
TLC082  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
D, DGN, OR P PACKAGE  
(TOP VIEW)  
NULL  
IN  
SHDN  
NULL  
IN  
NC  
V
1OUT  
1IN  
V
DD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
2OUT  
2IN  
DD  
DD  
IN+  
GND  
OUT  
IN+  
GND  
OUT  
1IN+  
GND  
NULL  
NULL  
2IN+  
TLC084  
TLC083  
D OR N PACKAGE  
(TOP VIEW)  
TLC083  
D OR N PACKAGE  
(TOP VIEW)  
DGQ PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN  
1OUT  
1IN  
V
DD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4OUT  
4IN  
1
1OUT  
1IN  
V
10  
DD  
2OUT  
2
3
4
5
2OUT  
2IN  
9
8
7
6
1IN+  
1IN+  
GND  
NC  
2IN  
4IN+  
GND  
3IN+  
3IN  
1IN+  
V
2IN+  
NC  
GND  
2IN+  
DD  
1SHDN  
2SHDN  
2IN+  
2IN  
1SHDN  
NC  
2SHDN  
NC  
8
2OUT  
8
3OUT  
TLC085  
TLC084  
TLC085  
PWP PACKAGE  
(TOP VIEW)  
PWP PACKAGE  
D OR N PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
4OUT  
4IN  
1OUT  
1IN  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1OUT  
1IN  
4OUT  
4IN  
1OUT  
1IN  
4OUT  
4IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
2
3
1IN+  
VDD  
4IN+  
GND  
3IN+  
3IN  
1IN+  
VDD  
2IN+  
2IN  
4IN+  
GND  
3IN+  
3IN  
1IN+  
4IN+  
4
V
GND  
3IN+  
3IN  
DD  
5
2IN+  
2IN  
2IN+  
2IN  
6
7
2OUT  
1/2SHDN  
NC  
3OUT  
3/4SHDN  
NC  
2OUT  
NC  
3OUT  
NC  
2OUT  
3OUT  
3/4SHDN  
8
1/2SHDN  
9
NC  
NC  
10  
NC  
NC  
NC  
NC  
NC - No internal connection  
TYPICAL PIN 1 INDICATORS  
Pin 1  
Printed or  
Pin 1  
Pin 1  
Pin 1  
Molded Dot  
Stripe  
Bevel Edges  
Molded ”U” Shape  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
(2)  
Supply voltage, VDD  
17  
V
Differential input voltage range, VID  
Continuous total power dissipation  
±VDD  
See Dissipation Rating Table  
C suffix  
Operating free-air temperature range, TA:  
I suffix  
0 to 70  
40 to 125  
150  
°C  
°C  
°C  
°C  
°C  
Maximum junction temperature, TJ  
Storage temperature range, Tstg  
65 to 150  
260  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to GND .  
DISSIPATION RATING TABLE  
θJC  
(°C/W)  
θJA  
(°C/W)  
TA 25°C  
POWER RATING  
PACKAGE  
D (8)  
D (14)  
38.3  
26.9  
25.7  
4.7  
176  
122.3  
114.7  
52.7  
52.3  
78  
710 mW  
1022 mW  
1090 mW  
2.37 W  
D (16)  
DGN (8)  
DGQ (10)  
N (14, 16)  
P (8)  
4.7  
2.39 W  
32  
1600 mW  
1200 mW  
4.79 W  
41  
104  
PWP (20)  
1.40  
26.1  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.5  
MAX  
UNIT  
Single supply  
Split supply  
16  
±8  
Supply voltage, VDD  
V
V
V
±2.25  
GND  
2
Common-mode input voltage, VICR  
Shutdown on/off voltage level(1)  
VDD2  
VIH  
VIL  
0.8  
70  
C-suffix  
I-suffix  
0
Operating free-air temperature, TA  
°C  
40  
125  
(1) Relative to the voltage on the GND terminal of the device.  
4
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TLC080/1/2/3,  
TA(1)  
25°C  
MIN  
TYP  
MAX  
1900  
3000  
1400  
2000  
UNIT  
390  
TLC084/5  
Full range  
25°C  
VIO  
Input offset voltage  
µV  
VDD = 5 V,  
VIC = 2.5 V,  
VO = 2.5 V,  
TLC080/1/2/3A,  
TLC084/5A  
390  
Full range  
Temperature coefficient of  
input offset voltage  
RS = 50 Ω  
VIO  
1.2  
1.9  
µV/°C  
25°C  
Full range  
25°C  
50  
100  
700  
50  
IIO  
Input offset current  
Input bias current  
VDD = 5 V,  
VIC = 2.5 V,  
VO = 2.5 V,  
RS = 50 Ω  
TLC08XC  
TLC08XI  
pA  
3
IIB  
TLC08XC  
TLC08XI  
100  
700  
pA  
V
Full range  
25°C  
Full range  
25°C  
0 to 3.0  
0 to 3.0  
4.1  
0 to 3.5  
0 to 3.5  
4.3  
VICR  
Common-mode input voltage RS = 50 Ω  
IOH = 1 mA  
IOH = 20 mA  
IOH = 35 mA  
Full range  
25°C  
3.9  
3.7  
4
3.8  
3.6  
Full range  
25°C  
3.5  
VOH  
High-level output voltage  
VIC = 2.5 V  
V
3.4  
Full range  
25°C  
3.2  
3.2  
IOH = 50 mA  
40°C to  
85°C  
3
25°C  
Full range  
25°C  
0.18  
0.35  
0.43  
0.45  
0.25  
0.35  
0.39  
0.45  
0.55  
0.7  
IOL = 1 mA  
IOL = 20 mA  
IOL = 35 mA  
Full range  
25°C  
VOL  
Low-level output voltage  
VIC = 2.5 V  
V
Full range  
25°C  
0.63  
IOL = 50 mA  
40°C to  
85°C  
0.7  
Sourcing  
Sinking  
25°C  
25°C  
100  
100  
57  
IOS  
Short-circuit output current  
Output current  
mA  
mA  
dB  
VOH = 1.5 V from positive rail  
VOL = 0.5 V from negative rail  
25°C  
IO  
25°C  
55  
25°C  
100  
100  
120  
Large-signal differential  
voltage amplification  
AVD  
VO(PP) = 3 V,  
RL = 10 kΩ  
Full range  
25°C  
ri(d)  
CIC  
Differential input resistance  
1000  
22.9  
GΩ  
Common-mode input  
capacitance  
f = 10 kHz  
f = 10 kHz,  
25°C  
25°C  
pF  
Closed-loop output  
impedance  
zo  
AV = 10  
0.25  
110  
Ω
25°C  
Full range  
25°C  
80  
80  
80  
80  
CMRR  
Common-mode rejection ratio VIC = 0 to 3 V,  
RS = 50 Ω  
dB  
VDD = 4.5 V to 16 V, VIC = VDD/2,  
No load  
100  
Supply voltage rejection ratio  
(ΔVDD /ΔVIO  
kSVR  
dB  
)
Full range  
(1) Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
Submit Documentation Feedback  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
Copyright © 19992011, Texas Instruments Incorporated  
5
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA(1)  
25°C  
MIN  
TYP  
MAX  
2.5  
UNIT  
1.8  
IDD  
Supply current (per channel)  
VO = 2.5 V, No load  
mA  
Full range  
25°C  
3.5  
Supply current in shutdown  
125  
200  
IDD(SHDN) mode (per channel) (TLC080, SHDN 0.8 V  
µA  
Full range  
250  
TLC083, TLC085)  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
10  
TYP  
MAX  
UNIT  
VO(PP) = 0.8 V,  
CL = 50 pF,  
CL = 50 pF,  
25°C  
16  
Positive slew rate at unity  
gain  
SR+  
V/µs  
RL = 10 kΩ  
VO(PP) = 0.8 V,  
RL = 10 kΩ  
f = 100 Hz  
f = 1 kHz  
Full range  
25°C  
9.5  
12.5  
10  
19  
Negative slew rate at unity  
gain  
SR–  
V/µs  
Full range  
25°C  
12  
Equivalent input noise  
voltage  
Vn  
In  
nV/Hz  
fA /Hz  
25°C  
8.5  
Equivalent input noise  
current  
f = 1 kHz  
25°C  
0.6  
VO(PP) = 3 V,  
AV = 1  
0.002  
0.012  
0.085  
0.15  
1.3  
Total harmonic distortion  
plus noise  
THD + N  
RL = 10 kΩ and 250 Ω,  
f = 1 kHz  
AV = 10  
AV = 100  
25°C  
%
t(on)  
t(off)  
Amplifier turnon time(2)  
Amplifier turnoff time(2)  
Gain-bandwidth product  
25°C  
25°C  
25°C  
µs  
µs  
RL = 10 kΩ  
f = 10 kHz,  
RL = 10 kΩ  
10  
MHz  
V(STEP)PP = 1 V,  
AV = 1,  
0.1%  
0.18  
CL = 10 pF,  
RL = 10 kΩ  
0.01%  
0.1%  
0.39  
0.18  
0.39  
ts  
Settling time  
25°C  
µs  
V(STEP)PP = 1 V,  
AV = 1,  
CL = 47 pF,  
RL = 10 kΩ  
0.01%  
RL = 10 kΩ,  
RL = 10 kΩ,  
RL = 10 kΩ,  
RL = 10 kΩ,  
CL = 50 pF  
CL = 0 pF  
CL = 50 pF  
CL = 0 pF  
32  
40  
φm  
Phase margin  
Gain margin  
25°C  
25°C  
°
2.2  
3.3  
dB  
(1) Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
(2) Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the  
supply current has reached half its final value.  
6
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
ELECTRICAL CHARACTERISTICS  
at specified free-air temperature, VDD = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TLC080/1/2/3,  
TA(1)  
25°C  
MIN  
TYP  
MAX  
1900  
3000  
1400  
2000  
UNIT  
390  
TLC084/5  
Full range  
25°C  
VIO  
Input offset voltage  
µV  
VDD = 12 V,  
VIC = 6 V,  
VO = 6 V,  
TLC080/1/2/3A,  
TLC084/5A  
390  
Full range  
Temperature coefficient of  
input offset voltage  
RS = 50 Ω  
VIO  
1.2  
1.5  
µV/°C  
25°C  
Full range  
25°C  
50  
100  
700  
50  
IIO  
Input offset current  
Input bias current  
VDD = 12 V,  
VIC = 6 V,  
VO = 6 V,  
RS = 50 Ω  
TLC08xC  
TLC08xI  
pA  
3
IIB  
TLC08xC  
TLC08xI  
100  
700  
pA  
V
Full range  
25°C  
0 to 10.0 0 to 10.5  
VICR  
Common-mode input voltage RS = 50 Ω  
Full range 0 to 10.0 0 to 10.5  
25°C  
Full range  
25°C  
11.1  
11  
11.2  
IOH = 1 mA  
IOH = 20 mA  
IOH = 35 mA  
10.8  
10.7  
10.6  
10.3  
10.3  
11  
Full range  
25°C  
VOH  
High-level output voltage  
VIC = 6 V  
V
10.7  
10.5  
Full range  
25°C  
IOH = 50 mA  
40°C to  
85°C  
10.2  
25°C  
Full range  
25°C  
0.17  
0.35  
0.4  
0.25  
0.35  
0.45  
0.5  
IOL = 1 mA  
IOL = 20 mA  
IOL = 35 mA  
Full range  
25°C  
VOL  
Low-level output voltage  
VIC = 6 V  
V
0.52  
0.6  
Full range  
25°C  
0.45  
0.6  
IOL = 50 mA  
40°C to  
85°C  
0.65  
Sourcing  
Sinking  
25°C  
25°C  
150  
150  
57  
IOS  
Short-circuit output current  
Output current  
mA  
mA  
dB  
VOH = 1.5 V from positive rail  
VOL = 0.5 V from negative rail  
25°C  
IO  
25°C  
55  
25°C  
120  
120  
140  
Large-signal differential  
voltage amplification  
AVD  
VO(PP) = 8 V,  
RL = 10 kΩ  
Full range  
25°C  
ri(d)  
CIC  
Differential input resistance  
1000  
21.6  
GΩ  
Common-mode input  
capacitance  
f = 10 kHz  
f = 10 kHz,  
25°C  
25°C  
pF  
Closed-loop output  
impedance  
zo  
AV = 10  
0.25  
110  
Ω
25°C  
Full range  
25°C  
80  
80  
80  
80  
CMRR  
Common-mode rejection ratio VIC = 0 to 10 V,  
RS = 50 Ω  
dB  
VDD = 4.5 V to 16 V, VIC = VDD/2,  
No load  
100  
Supply voltage rejection ratio  
(ΔVDD /ΔVIO  
kSVR  
dB  
)
Full range  
(1) Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
Submit Documentation Feedback  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
Copyright © 19992011, Texas Instruments Incorporated  
7
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
at specified free-air temperature, VDD = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA(1)  
25°C  
MIN  
TYP  
MAX  
2.9  
UNIT  
1.9  
IDD  
Supply current (per channel)  
VO = 7.5 V, No load  
mA  
Full range  
25°C  
3.5  
Supply current in shutdown  
125  
200  
IDD(SHDN) mode (TLC080, TLC083,  
TLC085) (per channel)  
SHDN 0.8 V  
µA  
Full range  
250  
OPERATING CHARACTERISTICS  
at specified free-air temperature, VDD = 12 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
10  
TYP  
MAX  
UNIT  
VO(PP) = 2 V,  
CL = 50 pF,  
CL = 50 pF,  
25°C  
16  
Positive slew rate at unity  
gain  
SR+  
V/µs  
RL = 10 kΩ  
VO(PP) = 2 V,  
RL = 10 kΩ  
f = 100 Hz  
f = 1 kHz  
Full range  
25°C  
9.5  
12.5  
10  
19  
Negative slew rate at unity  
gain  
SR–  
V/µs  
Full range  
25°C  
14  
Equivalent input noise  
voltage  
Vn  
In  
nV/Hz  
fA /Hz  
25°C  
8.5  
Equivalent input noise  
current  
f = 1 kHz  
25°C  
0.6  
VO(PP) = 8 V,  
AV = 1  
0.002  
0.005  
0.022  
0.47  
2.5  
Total harmonic distortion  
plus noise  
THD + N  
RL = 10 kΩ and 250 Ω,  
f = 1 kHz  
AV = 10  
AV = 100  
25°C  
%
t(on)  
t(off)  
Amplifier turnon time(2)  
Amplifier turnoff time(2)  
Gain-bandwidth product  
25°C  
25°C  
25°C  
µs  
µs  
RL = 10 kΩ  
f = 10 kHz,  
RL = 10 kΩ  
10  
MHz  
V(STEP)PP = 1 V,  
AV = 1,  
0.1%  
0.17  
CL = 10 pF,  
RL = 10 kΩ  
0.01%  
0.1%  
0.22  
0.17  
0.29  
ts  
Settling time  
25°C  
µs  
V(STEP)PP = 1 V,  
AV = 1,  
CL = 47 pF,  
RL = 10 kΩ  
0.01%  
RL = 10 kΩ,  
RL = 10 kΩ,  
RL = 10 kΩ,  
RL = 10 kΩ,  
CL = 50 pF  
CL = 0 pF  
CL = 50 pF  
CL = 0 pF  
37  
42  
3.1  
4
φm  
Phase margin  
Gain margin  
25°C  
25°C  
°
dB  
(1) Full range is 0°C to 70°C for C suffix and 40°C to 125°C for I suffix. If not specified, full range is 40°C to 125°C.  
(2) Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the  
supply current has reached half its final value.  
8
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
VIO  
Input offset voltage  
Input offset current  
Input bias current  
vs Common-mode input voltage  
vs Free-air temperature  
1, 2  
3, 4  
3, 4  
5, 7  
6, 8  
9
IIO  
IIB  
vs Free-air temperature  
vs High-level output current  
vs Low-level output current  
vs Frequency  
VOH  
VOL  
Zo  
High-level output voltage  
Low-level output voltage  
Output impedance  
Supply current  
IDD  
vs Supply voltage  
vs Frequency  
10  
PSRR  
CMRR  
Vn  
Power supply rejection ratio  
Common-mode rejection ratio  
Equivalent input noise voltage  
Peak-to-peak output voltage  
Crosstalk  
11  
vs Frequency  
12  
vs Frequency  
13  
VO(PP)  
vs Frequency  
14, 15  
16  
vs Frequency  
Differential voltage gain  
Phase  
vs Frequency  
17, 18  
17, 18  
19, 20  
21, 22  
23  
vs Frequency  
φm  
Phase margin  
vs Load capacitance  
vs Load capacitance  
vs Supply voltage  
Gain margin  
Gain-bandwidth product  
vs Supply voltage  
vs Free-air temperature  
24  
25, 26  
SR  
Slew rate  
vs Frequency  
27, 28  
29, 30  
31, 32  
33  
THD + N  
Total harmonic distortion plus noise  
vs Peak-to-peak output voltage  
Large-signal follower pulse response  
Small-signal follower pulse response  
Large-signal inverting pulse response  
Small-signal inverting pulse response  
Shutdown forward isolation  
34, 35  
36  
vs Frequency  
37, 38  
39, 40  
41  
Shutdown reverse isolation  
vs Frequency  
vs Supply voltage  
vs Free-air temperature  
Shutdown supply current  
Shutdown pulse  
42  
43, 44  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT AND  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
1000  
1500  
300  
250  
V
= 5 V  
DD  
= 25° C  
V
= 12 V  
DD  
= 25° C  
V
= 5 V  
DD  
1300  
1100  
900  
T
800  
600  
400  
200  
0
T
A
A
200  
150  
700  
500  
300  
100  
50  
I
IB  
100  
-100  
-300  
-500  
-200  
-400  
-600  
0
I
IO  
-50  
-100  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
1
2
3
4
5
6
7
8
9 10 11 12  
-55 -40 -25 -10  
5 20 35 50 65 80 95 110125  
V
– Common-Mode Input Voltage – V  
V
– Common-Mode Input Voltage – V  
ICR  
TA – Free-Air Temperature – °C  
ICR  
Figure 1.  
Figure 2.  
Figure 3.  
INPUT BIAS CURRENT AND  
INPUT OFFSET CURRENT  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
20  
0
V
= 5 V  
V
= 5 V  
DD  
DD  
I
IO  
T
= 70°C  
A
-20  
-40  
T
= 25°C  
A
T
= 125°C  
A
T
= 70°C  
A
-60  
T
= 40 °C  
A
T
= 25°C  
A
-80  
T
= 125°C  
A
-100  
-120  
-140  
T
= 40 °C  
A
I
IB  
V
= 12 V  
DD  
-160  
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
-55 -40 -25 -10  
5 20 35 50 65 80 95 110 125  
I
- High-Level Output Current - mA  
I
– Low-Level Output Current – mA  
OH  
OL  
TA – Free-Air Temperature – °C  
Figure 4.  
Figure 5.  
Figure 6.  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
OUTPUT IMPEDANCE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
FREQUENCY  
1000  
100  
10  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
V
T
= 5 V and 12 V  
DD  
T
= 125°C  
A
= 25°C  
A
T
= 70°C  
A
T
= 125°C  
A
T
= 70°C  
A
A
= 100  
V
T
= 25°C  
A
T
= 40 °C  
A
T
= 25°C  
A
1
0.10  
0.01  
A
A
= 10  
= 1  
V
T
= 40 °C  
A
V
V
= 12 V  
V
= 12 V  
DD  
5
DD  
5
9.0  
0
10 15 20 25 30 35 40 45 50  
0
10 15 20 25 30 35 40 45 50  
100  
1k  
10k  
100k  
1M  
10M  
f – Frequency – Hz  
IOL – Low-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
Figure 7.  
Figure 8.  
Figure 9.  
10  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
TYPICAL CHARACTERISTICS  
POWER SUPPLY REJECTION  
RATIO  
SUPPLY CURRENT  
vs  
COMMON-MODE REJECTION RATIO  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
FREQUENCY  
140  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
140  
120  
V
T
= 5 V and 12 V  
DD  
= 25°C  
T
= 25°C  
120  
100  
80  
60  
40  
20  
0
A
A
V
= 12 V  
DD  
T
= 40 °C  
100  
80  
60  
40  
20  
0
A
T
= 125°C  
A
T
= 70°C  
A
V
= 5 V  
DD  
A
V
= 1  
1.2  
1.0  
SHDN = V  
DD  
Per Channel  
4
5
6
7
8
9 10 11 12 13 14 15  
0
10 100  
1k  
10k 100k 1M 10M  
100  
1k  
10k  
100k  
1M  
10M  
f – Frequency – Hz  
f – Frequency – Hz  
VDD – Supply Voltage – V  
Figure 10.  
Figure 11.  
Figure 12.  
PEAK-TO-PEAK OUTPUT  
VOLTAGE  
PEAK-TO-PEAK OUTPUT  
VOLTAGE  
EQUIVALENT INPUT NOISE  
VOLTAGE  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
12  
10  
8
12  
10  
8
40  
V
= 12 V  
DD  
V
= 12 V  
35  
30  
25  
20  
15  
10  
5
DD  
6
6
V
= 5 V  
DD  
V
= 5 V  
DD  
V
= 12 V  
4
4
DD  
THD+N < = 5%  
THD+N < = 5%  
2
2
V
= 5 V  
DD  
R = 10 kΩ  
L
R
T
= 600 Ω  
L
T
A
= 25°C  
= 25°C  
A
0
0
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
f – Frequency – Hz  
f – Frequency – H  
f – Frequency – Hz  
Figure 13.  
Figure 14.  
Figure 15.  
CROSSTALK  
vs  
FREQUENCY  
0
V
= 5 V and 12 V  
DD  
-20  
A
= 1  
V
R
= 10 kΩ  
L
= 2 V  
I(PP)  
-40  
-60  
-80  
V
For All Channels  
-100  
-120  
-140  
-160  
10  
100  
1k  
10k  
100k  
f – Frequency – Hz  
Figure 16.  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL VOLTAGE GAIN AND  
DIFFERENTIAL VOLTAGE GAIN AND  
PHASE  
vs  
PHASE  
vs  
FREQUENCY  
FREQUENCY  
80  
70  
0
80  
70  
0
Gain  
60  
50  
40  
30  
20  
10  
0
Gain  
-45  
60  
50  
40  
30  
20  
10  
0
-45  
Phase  
Phase  
-90  
-90  
-135  
-180  
-225  
-135  
-180  
-225  
V
R
C
T
= ±2.5 V  
V
R
C
= ±6 V  
= 10 kΩ  
DD  
L
L
DD  
L
L
= 10 kΩ  
= 0 pF  
= 25°C  
-10  
-10  
= 0 pF T  
A
= 25°C  
A
-20  
-20  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M 100M  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 17.  
Figure 18.  
PHASE MARGIN  
vs  
PHASE MARGIN  
vs  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
45°  
4
40°  
35°  
R
= 0 Ω  
R
R
= 0 Ω  
null  
null  
null  
R
= 0 Ω  
null  
40°  
35°  
= 100 Ω  
3.5  
3
R
= 100 Ω  
null  
30°  
R
= 50 Ω  
null  
30°  
25°  
20°  
2.5  
R
= 100 Ω  
25°  
20°  
15°  
null  
R
= 50 Ω  
R
null  
2
R
= 50 Ω  
null  
R
= 20 Ω  
= 20 Ω  
null  
null  
1.5  
15°  
1
0.5  
0
10°  
V
= 12 V  
V
= 5 V  
DD  
V
= 5 V  
DD  
DD  
10°  
5°  
R
= 20 Ω  
null  
R
T
= 10 kΩ  
R
T
= 10 kΩ  
L
= 25°C  
R
T
= 10 kΩ  
L
L
5°  
0°  
= 25°C  
= 25°C  
A
A
A
0°  
10  
100  
10  
100  
10  
100  
C
– Load Capacitance – pF  
L
C
– Load Capacitance – pF  
C
– Load Capacitance – pF  
L
L
Figure 19.  
Figure 20.  
Figure 21.  
GAIN MARGIN  
vs  
GAIN BANDWIDTH PRODUCT  
SLEW RATE  
vs  
vs  
LOAD CAPACITANCE  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
5
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
R
= 0 Ω  
null  
R
C
= 600 Ω and 10 kΩ  
= 50 pF  
= 1  
C
= 11 pF  
L
L
L
4.5  
4
T = 25°C  
A
A
R
= 100 Ω  
V
null  
3.5  
3
Slew Rate  
R
= 10 kΩ  
L
2.5  
2
R
= 50 Ω  
null  
R
= 600 Ω  
R
= 20 Ω  
L
null  
Slew Rate +  
1.5  
V
= 12 V  
DD  
1
0.5  
0
R
T
= 10 kΩ  
L
= 25°C  
A
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9 10 11 12 13 14 15 16  
10  
100  
V
– Supply Voltage – V  
V
– Supply Voltage – V  
DD  
C
– Load Capacitance – pF  
DD  
L
Figure 22.  
Figure 23.  
Figure 24.  
12  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
TYPICAL CHARACTERISTICS  
TOTAL HARMONIC DISTORTION  
SLEW RATE  
vs  
SLEW RATE  
vs  
PLUS NOISE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
FREQUENCY  
1
25  
20  
15  
10  
5
25  
V
= 5 V  
DD  
L
L
V
V
= 5 V  
DD  
R
C
A
= 600 Ω and 10 kΩ  
= 50 pF  
= 1  
Slew Rate –  
V
= 2 V  
O(PP)  
= 10 kΩ  
Slew Rate  
R
20  
L
A
= 100  
V
0.1  
15  
Slew Rate +  
Slew Rate +  
A
A
= 10  
10  
V
V
0.01  
V
= 12 V  
= 600 Ω and 10 kΩ  
= 50 pF  
DD  
L
L
V
5
R
C
A
= 1  
= 1  
0
0
0.001  
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
100  
1k  
10k  
100k  
T
– Free-Air Temperature –°C  
T
– Free-Air Temperature °C  
A
f – Frequency– Hz  
A
Figure 25.  
Figure 26.  
Figure 27.  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
TOTAL HARMONIC DISTORTION  
PLUS NOISE  
vs  
PLUS NOISE  
vs  
PLUS NOISE  
vs  
FREQUENCY  
PEAK-TO-PEAK OUTPUT VOLTAGE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
0.1  
10  
10  
V
= 5 V  
V
= 12 V  
DD  
= 1  
DD  
A = 1  
V
V
= 12 V  
DD  
R
= 250Ω  
A
L
V
f = 1 kHz  
V
= 8 V  
O(PP)  
= 10 kΩ  
f = 1 kHz  
R
L
1
1
R
= 250Ω  
A
= 100  
L
V
0.1  
0.1  
0.01  
R
= 600Ω  
R
= 600Ω  
L
L
0.01  
0.01  
A
A
= 10  
= 1  
V
V
R
= 10 kΩ  
L
0.001  
0.001  
R
= 10 kΩ  
L
0.0001  
0.0001  
0.001  
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75  
0.5  
2.5  
4.5  
6.5  
8.5  
10.5  
100  
1k  
10k  
100k  
V
– Peak-to-Peak Output Voltage – V  
V – Peak-to-Peak Output Voltage – V  
O(PP)  
f – Frequency – Hz  
O(PP)  
Figure 28.  
Figure 29.  
Figure 30.  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
LARGE SIGNAL FOLLOWER  
PULSE RESPONSE  
SMALL SIGNAL FOLLOWER  
PULSE RESPONSE  
V (1 V/Div)  
I
V (5 V/Div)  
I
V (100mV/Div)  
I
V
(2 V/Div)  
O
V
(500 mV/Div)  
= 5 V  
O
V
(50mV/Div)  
O
V
= 12 V  
V
DD  
DD  
R
= 600 Ω  
L
and 10 kΩ  
R
= 600 Ω  
L
and 10 kΩ  
V
= 5 V and 12 V  
= 600 and 10 kΩ  
= 8 pF  
DD  
L
L
R
C
T
C
T
= 8 pF  
L
= 25°C  
C
= 8 pF  
L
T
A
= 25°C  
A
= 25°C  
A
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1 1.2 1.4 1.6 1.8 2  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10  
t – Time – ms  
t – Time – ms  
t – Time – ms  
Figure 31.  
Figure 32.  
Figure 33.  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
TYPICAL CHARACTERISTICS  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
LARGE SIGNAL INVERTING  
PULSE RESPONSE  
SMALL SIGNAL INVERTING  
PULSE RESPONSE  
V
(2 V/div)  
V (5 V/div)  
I
I
V
(100 mV/div)  
I
V
R
C
T
= 5 V and 12 V  
DD  
= 600 Ω and 10 kΩ  
= 8 pF  
L
L
V
= 5 V  
DD  
V
= 12 V  
DD  
R
= 600 Ω  
L
and 10 kΩ  
R
= 600 Ω  
L
and 10 kΩ  
= 25°C  
A
C
= 8 pF  
L
C
T
= 8 pF  
L
= 25°C  
T
A
= 25°C  
A
V
(50 mV/Div)  
O
V
(2 V/Div)  
V
(500 mV/Div)  
O
O
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
t – Time – ms  
t – Time – ms  
t – Time – ms  
Figure 34.  
Figure 35.  
Figure 36.  
SHUTDOWN FORWARD  
ISOLATION  
SHUTDOWN FORWARD  
ISOLATION  
SHUTDOWN REVERSE  
ISOLATION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
V
= 5 V  
V
= 5 V  
DD  
C = 0 pF  
DD  
C = 0 pF  
V
= 12 V  
DD  
C = 0 pF  
L
L
L
T
A
V
= 25°C  
T
A
V
= 25°C  
T
A
V
= 25°C  
= 0.1, 2.5, and 5 V  
= 0.1, 2.5, and 5 V  
I(PP)  
I(PP)  
= 0.1, 8, 12 V  
I(PP)  
R
= 600 Ω  
L
R
= 600 Ω  
L
R
= 600 Ω  
L
60  
R
= 10 kΩ  
60  
60  
L
R
= 10 kΩ  
R
= 10 kΩ  
L
L
40  
40  
40  
20  
20  
20  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
1k  
10k 100k  
1M  
10M 100M  
f – Frequency – Hz  
f – Frequency – Hz  
f – Frequency – Hz  
Figure 37.  
Figure 38.  
Figure 39.  
SHUTDOWN REVERSE  
ISOLATION  
vs  
SHUTDOWN SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
140  
136  
134  
132  
130  
128  
126  
124  
122  
120  
118  
180  
160  
140  
120  
100  
80  
A
= 1  
= V  
DD/2  
V
V
= 12 V  
Shutdown On  
R
DD  
C = 0 pF  
V
IN  
= open  
= V  
L
IN  
L
120  
100  
80  
V
DD/2  
T
A
V
= 25°C  
= 0.1, 8, 12 V  
I(PP)  
V
= 12 V  
DD  
R
= 600 Ω  
L
V
= 5 V  
DD  
60  
R
= 10 kΩ  
L
40  
20  
60  
4
5
6
7
8
9
10 11 12 13 14 15 16  
–55  
–25  
5
35  
65  
95  
125  
100  
1k  
10k 100k  
1M  
10M 100M  
V
– Supply Voltage – V  
T
– Free-Air Temperature °C  
f – Frequency – Hz  
DD  
A
Figure 40.  
Figure 41.  
Figure 42.  
14  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
TYPICAL CHARACTERISTICS  
SHUTDOWN PULSE  
SHUTDOWN PULSE  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
6
SD Off  
SD Off  
4
Shutdown Pulse  
Shutdown Pulse  
2
0
2
V
= 5 V  
V
= 12 V  
DD  
= 8 pF  
DD  
= 8 pF  
C
T
C
T
L
L
= 25°C  
= 25°C  
0
A
A
I
R
= 10 kΩ  
I R = 10 kΩ  
DD L  
DD  
L
-2  
-4  
-6  
-2  
-4  
-6  
I
R
= 600 Ω  
I R = 600 Ω  
DD L  
DD  
L
0
10 20 30 40 50 60 70 80  
0
10 20 30 40 50 60 70  
80  
t – Time ms  
t – Time ms  
Figure 43.  
Figure 44.  
PARAMETER MEASUREMENT INFORMATION  
R
_
+
null  
R
L
C
L
Figure 45  
Figure 45.  
APPLICATION INFORMATION  
Input Offset Voltage Null Circuit  
The TLC080 and TLC081 has an input offset nulling function. Refer to Figure 46 for the diagram.  
IN  
OUT  
+
N2  
IN+  
N1  
100 k  
R1  
V
DD  
A. R1 = 5.6 kΩ for offset voltage adjustment of ±10 mV. R1 = 20 kΩ for offset voltage adjustment of ±3 mV.  
Figure 46. Input Offset Voltage Null Circuit  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
Driving a Capacitive Load  
When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the  
devices phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater  
than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as  
shown in Figure 47. A minimum value of 20 Ω should work well for most applications.  
R
F
R
G
_
+
R
NULL  
Input  
Output  
LOAD  
C
Figure 47. Driving a Capacitive Load  
Offset Voltage  
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times  
the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:  
R
F
I
IB–  
R
G
+
V
I
V
O
+
R
S
I
IB+  
R
R
R
R
F
F
V
V
1
± I + R  
IB  
1
± I  
R
+
)
)
+
)
)
G
(
(
=
(
(
OO  
IO  
S
IB–  
F
G
Figure 48. Output Offset Voltage Model  
16  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
High Speed CMOS Input Amplifiers  
The TLC08x is a family of high-speed low-noise CMOS input operational amplifiers that has an input capacitance  
of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to the  
input capacitance multiplied by the combination of source resistance and feedback resistance. For example, a  
gain of 10, a source resistance of 1 kΩ, and a feedback resistance of 10 kΩ add an additional pole at  
approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater  
input capacitance.  
This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their  
unity-gain bandwidth. However, the TLC08x with its 10-MHz bandwidth means that this pole normally occurs at  
frequencies where there is on the order of 5dB gain left and the phase shift adds considerably.  
The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the  
feedback resistance is increased, the gain peaking increases at a lower frequency and the 180° phase shift  
crossover point also moves down in frequency, decreasing the phase margin.  
For the TLC08x, the maximum feedback resistor recommended is 5 kΩ; larger resistances can be used but a  
capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance  
pole.  
The TLC083 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when  
configured as a unity gain buffer and with a 10-kΩ feedback resistor. By adding a 10-pF capacitor in parallel with  
the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much  
faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only.  
Load capacitance had little effect on these measurements due to the excellent output drive capability of the  
TLC08x.  
2
V
10 pF  
IN  
1
0
1
With  
= 10 pF  
10 kΩ  
C
F
1.5  
_
+
1
IN  
V
A
R
R
C
= ±5 V  
0.5  
DD  
= +1  
600 Ω  
V
22 pF  
V
OUT  
= 10 kΩ  
= 600 Ω  
= 22 pF  
50 Ω  
F
L
L
0
0.5  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6  
t - Time - ms  
Figure 49. 1-V Step Response  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
General Configurations  
When receiving low-level signals, limiting the bandwidth of the incoming signals into theFigure 50 system is often  
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier  
(see ).  
R
R
F
G
V
1
O
+
V
I
R1  
C1  
f
=
–3dB  
2pR1C1  
V
R
O
F
1
( )( )  
1 +  
=
V
R
1
sR1C1  
+
I
G
Figure 50. Single-Pole Low-Pass Filter  
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this  
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.  
Failure to do this can result in phase shift of the amplifier.  
C1  
R1 = R2 = R  
C1 = C2 = C  
Q = Peaking Factor  
(Butterworth Q = 0.707)  
+
_
V
I
1
2pRC  
R1  
R2  
f
=
2
–3dB  
C2  
R
F
R
=
G
1
R
F
)
R
(
Q
G
Figure 51. 2-Pole Low-Pass Sallen-Key Filter  
18  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
Shutdown Function  
Three members of the TLC08x family (TLC080/3/5) have a shutdown terminal (SHDN) for conserving battery life  
in portable applications. When the shutdown terminal is tied low, the supply current is reduced to  
125 µA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the  
amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left  
floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not  
inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always  
referenced to the voltage on the GND terminal of the device. Therefore, when operating the device with split  
supply voltages (e.g. ±2.5 V), the shutdown terminal needs to be pulled to VDD(not system ground) to disable  
the operational amplifier.  
The amplifiers output with a shutdown pulse is shown in Figure 43 and Figure 44. The amplifier is powered with  
a single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turnon and turnoff times are  
measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the  
single, dual, and quad are listed in the data tables.  
Figure 37 through Figure 40 show the amplifiers forward and reverse isolation in shutdown. The operational  
amplifier is configured as a voltage follower (AV = 1). The isolation performance is plotted across frequency using  
0.1 VPP, 2.5 VPP, and 5 VPP input signals at ±2.5 V supplies and 0.1 VPP, 8 VPP, and 12 VPP input signals at ±6 V  
supplies.  
Circuit Layout Considerations  
To achieve the levels of high performance of the TLC08x, follow proper printed-circuit board design techniques.  
A general set of guidelines is given in the following.  
Ground planes It is highly recommended that a ground plane be used on the board to provide all  
components with a low inductive ground connection. However, in the areas of the amplifier inputs and output,  
the ground plane can be removed to minimize the stray capacitance.  
Proper power supply decoupling Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor  
on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the  
application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier.  
In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance  
increases, the inductance in the connecting trace makes the capacitor less effective. The designer should  
strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.  
Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins  
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is  
the best implementation.  
Short trace runs/compact part placements Optimum high performance is achieved when stray series  
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,  
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the  
amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the  
input of the amplifier.  
Surface-mount passive components Using surface-mount passive components is recommended for high  
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of  
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small  
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray  
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept  
as short as possible.  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
General PowerPAD Design Considerations  
The TLC08x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
DIE  
Thermal  
Side View (a)  
Pad  
DIE  
Bottom View (c)  
End View (b)  
A. The thermal pad is electrically isolated from all terminals in the package.  
Figure 52. Views of Thermally-Enhanced DGN Package  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat dissipating device.  
Soldering the PowerPAD to the printed circuit board (PCB) is always required, even with applications  
that have low power dissipation. This soldering provides the necessary thermal and mechanical connection  
between the lead frame die pad and the PCB.  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
20  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
 
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
The PowerPAD must be connected to the most negative supply voltage (GND pin potential) of the device.  
1. Prepare the PCB with a top side etch pattern (see the landing patterns at the end of this data sheet). There  
should be etch for the leads as well as etch for the thermal pad.  
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in  
diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the TLC08x IC. These additional vias may be larger than the 13-mil diameter  
vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be  
soldered so that wicking is not a problem.  
4. Connect all holes to the internal plane that is at the same potential as the ground pin of the device.  
5. When connecting these holes to this internal plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In  
this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the  
holes under the TLC08x PowerPAD package should make their connection to the internal ground plane with  
a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes  
of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the  
reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the TLC08x IC is simply placed in position and run through the solder  
reflow operation as any standard surface-mount component. This results in a part that is properly installed.  
For a given θJA, the maximum power dissipation is shown in Figure 53 and is calculated by the following formula:  
T
-
æ
A ö  
T
MAX  
PD=  
ç
è
÷
ø
θJA  
(1)  
Where:  
PD =  
TMAX  
TA =  
Maximum power dissipation of TLC08x IC (watts)  
Absolute maximum junction temperature (150°C)  
Free-ambient air temperature (°C)  
=
θJA  
=
θJC + θCA  
θJC = Thermal coefficient from junction to case  
θCA = Thermal coefficient from case to ambient air (°C/W)  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
7
PWP Package  
T
= 150°C  
J
Low-K Test PCB  
θ
= 29.7°C/W  
JA  
6
5
SOT-23 Package  
Low-K Test PCB  
= 324°C/W2  
θ
JA  
DGN Package  
Low-K Test PCB  
θ
= 52.3°C/W  
JA  
4
3
2
SOIC Package  
Low-K Test PCB  
θ
= 176°C/W  
JA  
PDIP Package  
Low-K Test PCB  
θ
= 104°C/W  
JA  
1
0
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA – Free-Air Temperature – °C  
A. Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 53. Maximum Power Dissipation vs Free-Air Temperature  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the device,  
especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat  
dissipation is at low output voltages with high output currents.  
The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The  
PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a  
copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other  
hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the  
device, θJA decreases and the heat dissipation capability increases. The currents and voltages shown in these  
graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents  
and voltages should be used to choose the proper package.  
22  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
Macromodel Information  
Macromodel information provided was derived using Microsim Parts, the model generation software used with  
Microsim PSpice. The Boyle macromodel (see (1)) and subcircuit in Figure 54 are generated using the TLC08x  
typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the  
following key parameters can be generated to a tolerance of 20% (in most cases):  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Open-loop voltage amplification  
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
(1) G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers,IEEE  
Journal of Solid-State Circuits, SC-9, 353 (1974).  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
www.ti.com  
Figure 54. Boyle Macromodel and Subcircuit  
24  
Submit Documentation Feedback  
Copyright © 19992011, Texas Instruments Incorporated  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
TLC080 , TLC081, TLC082  
TLC083, TLC084, TLC085, TLC08xA  
www.ti.com  
SLOS254F JUNE 1999REVISED DECEMBER 2011  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (April 2006) to Revision F  
Page  
Updated Figure 9 ................................................................................................................................................................ 10  
Copyright © 19992011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TLC080 TLC081 TLC082 TLC083 TLC084 TLC085 TLC08xA  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
TLC080AIDR  
TLC080AIDRG4  
TLC080AIP  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
C080AI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
P
2500  
50  
Green (RoHS  
& no Sb/Br)  
C080AI  
TLC080AI  
TLC080AI  
C080C  
C080C  
ACW  
Pb-Free  
(RoHS)  
TLC080AIPE4  
TLC080CD  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC080CDG4  
TLC080CDGNR  
TLC080CDGNRG4  
TLC080CDR  
D
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
MSOP-  
PowerPAD  
DGN  
DGN  
D
2500  
2500  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
0 to 70  
ACW  
SOIC  
SOIC  
SOIC  
SOIC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
C080C  
C080C  
C080I  
TLC080CDRG4  
TLC080ID  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TLC080IDG4  
TLC080IDGNR  
TLC080IDGNRG4  
TLC080IDR  
D
75  
Green (RoHS  
& no Sb/Br)  
C080I  
MSOP-  
PowerPAD  
DGN  
DGN  
D
2500  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
ACX  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
ACX  
SOIC  
SOIC  
PDIP  
Green (RoHS  
& no Sb/Br)  
C080I  
TLC080IDRG4  
TLC080IP  
D
Green (RoHS  
& no Sb/Br)  
C080I  
P
Pb-Free  
(RoHS)  
TLC080I  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC080IPE4  
TLC081AID  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
P
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC080I  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
75  
Green (RoHS  
& no Sb/Br)  
C081AI  
C081AI  
C081AI  
C081AI  
TLC081AI  
TLC081AI  
C081C  
C081C  
ACY  
TLC081AIDG4  
TLC081AIDR  
TLC081AIDRG4  
TLC081AIP  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
TLC081AIPE4  
TLC081CD  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC081CDG4  
TLC081CDGN  
TLC081CDGNG4  
TLC081CDGNR  
TLC081CDGNRG4  
TLC081CDR  
D
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
DGN  
D
80  
Green (RoHS  
& no Sb/Br)  
0 to 70  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
0 to 70  
ACY  
MSOP-  
PowerPAD  
2500  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
ACY  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
0 to 70  
ACY  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
C081C  
C081C  
TLC081C  
TLC081C  
C081I  
TLC081CDRG4  
TLC081CP  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
P
Pb-Free  
(RoHS)  
0 to 70  
TLC081CPE4  
TLC081ID  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
-40 to 125  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC081IDG4  
TLC081IDGNR  
TLC081IDGNRG4  
TLC081IDR  
ACTIVE  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
C081I  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
PowerPAD  
DGN  
DGN  
D
2500  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
ACZ  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
ACZ  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
Green (RoHS  
& no Sb/Br)  
C081I  
C081I  
TLC081I  
TLC081I  
C082AI  
C082AI  
C082AI  
C082AI  
C082AI  
C082AI  
C082C  
C082C  
ADZ  
TLC081IDRG4  
TLC081IP  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
TLC081IPE4  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TLC082AID  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC082AIDG4  
TLC082AIDR  
TLC082AIDRG4  
TLC082AIP  
D
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
P
Pb-Free  
(RoHS)  
TLC082AIPE4  
TLC082CD  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
D
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLC082CDG4  
TLC082CDGN  
TLC082CDGNG4  
TLC082CDGNR  
D
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
80  
Green (RoHS  
& no Sb/Br)  
0 to 70  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
0 to 70  
ADZ  
MSOP-  
2500  
Green (RoHS  
& no Sb/Br)  
0 to 70  
ADZ  
PowerPAD  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC082CDGNRG4  
TLC082CDR  
TLC082CDRG4  
TLC082CP  
ACTIVE  
MSOP-  
PowerPAD  
DGN  
8
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
ADZ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
D
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
C082C  
C082C  
C082C  
C082C  
C082I  
C082I  
AEA  
8
Green (RoHS  
& no Sb/Br)  
0 to 70  
P
8
Pb-Free  
(RoHS)  
0 to 70  
TLC082CPE4  
TLC082ID  
P
8
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
D
8
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TLC082IDG4  
TLC082IDGN  
TLC082IDGNG4  
TLC082IDGNR  
TLC082IDGNRG4  
TLC082IDR  
D
8
75  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
DGN  
D
8
80  
Green (RoHS  
& no Sb/Br)  
MSOP-  
PowerPAD  
8
80  
Green (RoHS  
& no Sb/Br)  
AEA  
MSOP-  
PowerPAD  
8
2500  
2500  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
AEA  
MSOP-  
PowerPAD  
8
Green (RoHS  
& no Sb/Br)  
AEA  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
PDIP  
8
Green (RoHS  
& no Sb/Br)  
C082I  
C082I  
C082I  
C082I  
C083AI  
C083AI  
C083AI  
TLC082IDRG4  
TLC082IP  
D
8
Green (RoHS  
& no Sb/Br)  
P
8
Pb-Free  
(RoHS)  
TLC082IPE4  
TLC083AID  
P
8
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
D
14  
14  
14  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC083AIDG4  
TLC083AIN  
D
50  
Green (RoHS  
& no Sb/Br)  
N
25  
Pb-Free  
(RoHS)  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC083AINE4  
ACTIVE  
PDIP  
N
14  
25  
Pb-Free  
(RoHS)  
CU NIPDAU  
N / A for Pkg Type  
-40 to 125  
C083AI  
TLC083CD  
TLC083CDG4  
TLC083CDGQR  
OBSOLETE  
OBSOLETE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
10  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
0 to 70  
0 to 70  
0 to 70  
C083C  
MSOP-  
PowerPAD  
DGQ  
2500  
2500  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
AEB  
TLC083CDGQRG4  
TLC083CDR  
TLC083CDRG4  
TLC083CN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
PowerPAD  
DGQ  
D
10  
14  
14  
14  
14  
10  
10  
14  
14  
14  
14  
14  
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
0 to 70  
0 to 70  
AEB  
SOIC  
SOIC  
PDIP  
PDIP  
Green (RoHS  
& no Sb/Br)  
C083C  
C083C  
C083C  
C083C  
AEC  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
N
Pb-Free  
(RoHS)  
0 to 70  
TLC083CNE4  
TLC083IDGQ  
TLC083IDGQG4  
TLC083IN  
N
25  
Pb-Free  
(RoHS)  
0 to 70  
MSOP-  
PowerPAD  
DGQ  
DGQ  
N
80  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
MSOP-  
PowerPAD  
80  
Green (RoHS  
& no Sb/Br)  
AEC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
25  
Pb-Free  
(RoHS)  
C083I  
TLC083INE4  
TLC084AID  
N
25  
Pb-Free  
(RoHS)  
C083I  
D
50  
Green (RoHS  
& no Sb/Br)  
TLC084AI  
TLC084AI  
TLC084AI  
TLC084AI  
TLC084AI  
TLC084AI  
TLC084AIDG4  
TLC084AIDR  
TLC084AIDRG4  
TLC084AIN  
D
50  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
N
Pb-Free  
(RoHS)  
TLC084AINE4  
N
25  
Pb-Free  
(RoHS)  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC084AIPWP  
TLC084AIPWPG4  
TLC084AIPWPR  
TLC084AIPWPRG4  
TLC084CD  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
20  
20  
20  
20  
14  
14  
14  
14  
14  
14  
20  
20  
20  
20  
14  
14  
14  
14  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC084AI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PWP  
PWP  
PWP  
D
70  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
TLC084AI  
TLC084AI  
TLC084AI  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084C  
TLC084I  
TLC084I  
TLC084I  
TLC084I  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLC084CDG4  
TLC084CDR  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SOIC  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLC084CDRG4  
TLC084CN  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
PDIP  
N
Pb-Free  
(RoHS)  
0 to 70  
TLC084CNE4  
TLC084CPWP  
TLC084CPWPG4  
TLC084CPWPR  
TLC084CPWPRG4  
TLC084ID  
PDIP  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
PWP  
PWP  
D
70  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2000  
2000  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TLC084IDG4  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
TLC084IDR  
SOIC  
D
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLC084IDRG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
Addendum-Page 6  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC084IPWP  
TLC084IPWPG4  
TLC084IPWPR  
TLC084IPWPRG4  
TLC085AID  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
SOIC  
PWP  
20  
20  
20  
20  
16  
16  
16  
16  
16  
16  
20  
20  
16  
16  
16  
16  
20  
20  
70  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC084I  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PWP  
PWP  
PWP  
D
70  
2000  
2000  
40  
Green (RoHS  
& no Sb/Br)  
TLC084I  
Green (RoHS  
& no Sb/Br)  
TLC084I  
Green (RoHS  
& no Sb/Br)  
TLC084I  
Green (RoHS  
& no Sb/Br)  
TLC085AI  
TLC085AI  
TLC085AI  
TLC085AI  
TLC085AI  
TLC085AI  
TLC085AI  
TLC085AI  
TLC085C  
TLC085C  
TLC085C  
TLC085C  
TLC085C  
TLC085C  
TLC085AIDG4  
TLC085AIDR  
SOIC  
D
40  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TLC085AIDRG4  
TLC085AIN  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
N
Pb-Free  
(RoHS)  
TLC085AINE4  
TLC085AIPWP  
TLC085AIPWPG4  
TLC085CD  
PDIP  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
HTSSOP  
HTSSOP  
SOIC  
PWP  
PWP  
D
70  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
70  
Green (RoHS  
& no Sb/Br)  
40  
Green (RoHS  
& no Sb/Br)  
TLC085CDG4  
TLC085CN  
SOIC  
D
40  
Green (RoHS  
& no Sb/Br)  
0 to 70  
PDIP  
N
25  
Pb-Free  
(RoHS)  
0 to 70  
TLC085CNE4  
TLC085CPWP  
TLC085CPWPG4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
HTSSOP  
HTSSOP  
PWP  
PWP  
70  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
0 to 70  
70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Addendum-Page 7  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC082, TLC084 :  
Automotive: TLC082-Q1, TLC084-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 8  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC080AIDR  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLC080CDGNR  
MSOP-  
Power  
PAD  
DGN  
TLC080CDR  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLC080IDGNR  
MSOP-  
Power  
PAD  
DGN  
TLC080IDR  
TLC081AIDR  
TLC081CDGNR  
SOIC  
SOIC  
D
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
5.3  
5.2  
5.2  
3.4  
2.1  
2.1  
1.4  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
MSOP-  
Power  
PAD  
DGN  
TLC081CDR  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLC081IDGNR  
MSOP-  
Power  
PAD  
DGN  
TLC081IDR  
TLC082AIDR  
TLC082CDGNR  
SOIC  
SOIC  
D
D
8
8
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
5.3  
5.2  
5.2  
3.4  
2.1  
2.1  
1.4  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
MSOP-  
Power  
DGN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jul-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PAD  
TLC082CDR  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLC082IDGNR  
MSOP-  
Power  
PAD  
DGN  
TLC082IDR  
SOIC  
D
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
5.3  
5.2  
3.4  
2.1  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
TLC083CDGQR  
MSOP-  
Power  
PAD  
DGQ  
10  
TLC083CDR  
TLC084AIDR  
TLC084AIPWPR  
TLC084CDR  
SOIC  
SOIC  
D
D
14  
14  
20  
14  
20  
14  
20  
16  
2500  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.5  
6.5  
9.0  
9.0  
7.1  
9.0  
7.1  
9.0  
7.1  
10.3  
2.1  
2.1  
1.6  
2.1  
1.6  
2.1  
1.6  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
HTSSOP PWP  
SOIC  
HTSSOP PWP  
SOIC  
HTSSOP PWP  
SOIC  
6.95  
6.5  
D
TLC084CPWPR  
TLC084IDR  
6.95  
6.5  
D
TLC084IPWPR  
TLC085AIDR  
6.95  
6.5  
D
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
2500  
Length (mm) Width (mm) Height (mm)  
340.5 338.1 20.6  
TLC080AIDR  
D
8
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jul-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC080CDGNR  
TLC080CDR  
TLC080IDGNR  
TLC080IDR  
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2500  
2000  
2500  
2000  
2500  
358.0  
340.5  
358.0  
340.5  
340.5  
358.0  
340.5  
358.0  
340.5  
340.5  
358.0  
340.5  
358.0  
340.5  
358.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
335.0  
338.1  
335.0  
338.1  
338.1  
335.0  
338.1  
335.0  
338.1  
338.1  
335.0  
338.1  
335.0  
338.1  
335.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
20.6  
35.0  
20.6  
20.6  
35.0  
20.6  
35.0  
20.6  
20.6  
35.0  
20.6  
35.0  
20.6  
35.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
TLC081AIDR  
TLC081CDGNR  
TLC081CDR  
TLC081IDGNR  
TLC081IDR  
SOIC  
D
8
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
TLC082AIDR  
TLC082CDGNR  
TLC082CDR  
TLC082IDGNR  
TLC082IDR  
SOIC  
D
8
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
MSOP-PowerPAD  
SOIC  
DGN  
D
8
8
TLC083CDGQR  
TLC083CDR  
TLC084AIDR  
TLC084AIPWPR  
TLC084CDR  
TLC084CPWPR  
TLC084IDR  
MSOP-PowerPAD  
SOIC  
DGQ  
D
10  
14  
14  
20  
14  
20  
14  
20  
16  
SOIC  
D
HTSSOP  
SOIC  
PWP  
D
HTSSOP  
SOIC  
PWP  
D
TLC084IPWPR  
TLC085AIDR  
HTSSOP  
SOIC  
PWP  
D
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLC081CDG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CDGN

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CDGNG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CDGNR

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CDGNRG4

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CDR

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CDRG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CP

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081CPE4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081ID

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081IDG4

FAMILY OF WIDE BANDWIDTH HIGH OUTPUT DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI

TLC081IDGN

FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS
TI