TLC27L4BCDRG4 [ROCHESTER]

Operational Amplifier, 4 Func, 3000uV Offset-Max, CMOS, PDSO14, GREEN, SOIC-14;
TLC27L4BCDRG4
型号: TLC27L4BCDRG4
厂家: Rochester Electronics    Rochester Electronics
描述:

Operational Amplifier, 4 Func, 3000uV Offset-Max, CMOS, PDSO14, GREEN, SOIC-14

放大器 光电二极管
文件: 总44页 (文件大小:1172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
D, J, N, OR PW PACKAGE  
(TOP VIEW)  
Trimmed Offset Voltage:  
TLC27L9 . . . 900 µV Max at 25°C,  
= 5 V  
V
DD  
1OUT  
1IN–  
1IN+  
4OUT  
4IN–  
4IN+  
GND  
3IN+  
3IN–  
3OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Input Offset Voltage Drift . . . Typically  
0.1 µV/Month, Including the First 30 Days  
Wide Range of Supply Voltages Over  
Specified Temperature Range:  
0°C to 70°C . . . 3 V to 16 V  
V
DD  
2IN+  
2IN–  
40°C to 85°C . . . 4 V to 16 V  
55°C to 125°C . . . 4 V to 16 V  
2OUT  
8
Single-Supply Operation  
FK PACKAGE  
(TOP VIEW)  
Common-Mode Input Voltage Range  
Extends Below the Negative Rail (C-Suffix,  
I-Suffix Types)  
Ultra-Low Power . . . Typically 195 µW  
at 25°C, V  
= 5 V  
DD  
3
2
1
20 19  
18  
4IN+  
1IN+  
NC  
4
5
6
7
8
Output Voltage Range includes Negative  
Rail  
NC  
17  
16  
15  
14  
GND  
NC  
V
DD  
12  
High Input Impedance . . . 10 Typ  
NC  
ESD-Protection Circuitry  
3IN+  
2IN+  
9 10 11 12 13  
Small-Outline Package Option Also  
Available in Tape and Reel  
Designed-In Latch-Up Immunity  
description  
NC – No internal connection  
The TLC27L4 and TLC27L9 quad operational  
amplifiers combine a wide range of input offset  
voltage grades with low offset voltage drift, high  
input impedance, extremely low power, and high  
gain.  
DISTRIBUTION OF TLC27L9  
INPUT OFFSET VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
5
299 Units Tested From 2 Wafer Lots  
V
= 5 V  
DD  
= 25°C  
T
A
These devices use Texas instrumentssilicon-gate  
LinCMOS technology, which provides offset  
voltage stability far exceeding the stability  
available with conventional metal-gate pro-  
cesses.  
N Package  
The extremely high input impedance, low bias  
currents, and low-power consumption make  
these cost-effective devices ideal for high-gain,  
low- frequency, low-power applications. Four  
offset voltage grades are available (C-suffix and  
I-suffix types), ranging from the low-cost TLC27L4  
(10 mV) to the high-precision TLC27L9 (900 µV).  
These advantages, in combination with good  
common-mode rejection and supply voltage  
rejection, make these devices a good choice for  
new state-of-the-art designs as well as for  
upgrading existing designs.  
0
1200  
600  
0
600  
1200  
V
IO  
– Input Offset Voltage – µV  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright 1994, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
description (continued)  
In general, many features associated with bipolar technology are available on LinCMOS operational  
amplifiers, without the power penalties of bipolar technology. General applications such as transducer  
interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the  
TLC27L4 and TLC27L9. The devices also exhibit low voltage single-supply operation and ultra-low power  
consumption, making them ideally suited for remote and inaccessible battery-powered applications. The  
common-mode input voltage range includes the negative rail.  
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density  
system applications.  
The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.  
The TLC27L4 and TLC27L9 incorporate internal ESD-protection circuits that prevent functional failures at  
voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in  
handling these devices, as exposure to ESD may result in the degradation of the device parametric  
performance.  
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized  
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation from 55°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
CHIP  
V
max  
IO  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
T
A
FORM  
(Y)  
TSSOP  
(PW)  
AT 25°C  
(J)  
(N)  
900 µV  
2 mV  
TLC27L9CD  
TLC27L4BCD  
TLC27L4ACD  
TLC27L4CD  
TLC27L9ID  
TLC27L9CN  
TLC27L4BCN  
TLC27L4ACN  
TLC27L4CN  
TLC27L9IN  
0°C to 70°C  
5 mV  
10 mV  
900 µV  
2 mV  
TLC27L4CPW  
TLC27L4Y  
TLC27L4BID  
TLC27L4AID  
TLC27L4ID  
TLC27L4BIN  
TLC27L4AIN  
TLC27L4IN  
40°C to 85°C  
55°C to 125°C  
5 mV  
10 mV  
900 µV  
10 mV  
TLC27L9MD  
TLC27L4MD  
TLC27L9MFK  
TLC27L4MFK  
TLC27L9MJ  
TLC27L4MJ  
TLC27L9MN  
TLC27L4MN  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC27L9CDR).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
equivalent schematic (each amplifier)  
V
DD  
P3  
P4  
R6  
R1  
R2  
N5  
C1  
IN–  
IN+  
P5  
P6  
P1  
P2  
R5  
OUT  
N3  
D2  
N1  
R3  
N2  
D1  
N4  
N6  
R7  
N7  
R4  
GND  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TLC27L4Y chip information  
These chips, when properly assembled, display characteristics similar to the TLC27L4C. Thermal compression  
or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with  
conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
V
DD  
(4)  
(14)  
(11)  
(8)  
(13)  
(12)  
(10)  
(9)  
(3)  
(2)  
+
1IN+  
1IN–  
(1)  
1OUT  
(5)  
(6)  
+
2IN+  
2IN–  
(7)  
2OUT  
(10)  
(9)  
68  
+
3IN+  
3IN–  
(8)  
3OUT  
(12)  
(13)  
+
4IN+  
4IN–  
(14)  
4OUT  
(11)  
GND  
(2)  
(3)  
(6)  
(1)  
(5)  
(4)  
108  
(7)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
PIN (11) IS INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
ID  
DD  
DD  
I
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 mA  
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature, T : C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or PW package . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded (see application section).  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
494 mW  
715 mW  
715 mW  
819 mW  
POWER RATING  
A
D
FK  
J
950 mW  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
12.6 mW/°C  
5.6 mW/°C  
608 mW  
275 mW  
275 mW  
1375 mW  
1375 mW  
1575 mW  
700 mW  
880 mW  
880 mW  
N
1008 mW  
448 mW  
PW  
recommended operating conditions  
C SUFFIX  
MIN MAX  
I SUFFIX  
M SUFFIX  
UNIT  
MIN MAX  
MIN MAX  
Supply voltage, V  
3
0.2  
0.2  
0
16  
3.5  
8.5  
70  
4
0.2  
0.2  
40  
16  
3.5  
8.5  
85  
4
0
16  
3.5  
8.5  
125  
V
V
DD  
V
V
= 5 V  
DD  
Common-mode input voltage, V  
IC  
Operating free-air temperature, T  
= 10 V  
0
DD  
55  
°C  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L4C  
TLC27L4AC  
TLC27L4BC  
TLC27L9C  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L4C  
TLC27L4AC  
TLC27L4BC  
TLC27L9C  
mV  
0.9  
240  
200  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
6.5  
S
L
V
IO  
Input offset voltage  
2000  
3000  
900  
1500  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
70°C  
α
1.1  
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
pA  
IO  
O
IC  
300  
600  
0.6  
40  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
4
4.2  
Common mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
3.5  
25°C  
0°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
3
50  
50  
50  
= –100 mV,  
= 2.5 V to 2 V,  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
520  
680  
380  
94  
95  
95  
97  
97  
98  
40  
48  
31  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
L
70°C  
25°C  
0°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
IC  
70°C  
25°C  
0°C  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
68  
84  
56  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
µA  
DD  
No load  
70°C  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L4C  
TLC27L4AC  
TLC27L4BC  
TLC27L9C  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
25°C  
Full range  
25°C  
1.1  
10  
12  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L4C  
TLC27L4AC  
TLC27L4BC  
TLC27L9C  
mV  
0.9  
260  
210  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
S
L
Full range  
25°C  
6.5  
V
IO  
Input offset voltage  
2000  
3000  
1200  
1900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
S
L
Full range  
25°C  
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
S
L
Full range  
Average temperature coefficient of  
input offset voltage  
25°C to  
70°C  
α
1
µV/°C  
VIO  
25°C  
70°C  
25°C  
70°C  
0.1  
7
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
pA  
IO  
O
IC  
300  
600  
0.7  
50  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
0°C  
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
70°C  
25°C  
0°C  
50  
50  
50  
I
0
mV  
V/mV  
dB  
OL  
OL  
70°C  
25°C  
0°C  
0
50  
50  
50  
65  
60  
60  
70  
60  
60  
870  
1020  
660  
97  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
L
70°C  
25°C  
0°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
97  
IC  
70°C  
25°C  
0°C  
97  
97  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
97  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
70°C  
25°C  
0°C  
98  
57  
92  
132  
80  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
72  
µA  
DD  
No load  
70°C  
44  
Full range is 0°C to 70°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L4I  
TLC27L4AI  
TLC27L4BI  
TLC27L9I  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L4I  
TLC27L4AI  
TLC27L4BI  
TLC27L9I  
13  
mV  
0.9  
240  
200  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
7
S
L
V
IO  
Input offset voltage  
2000  
3500  
900  
2000  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
25°C  
S
L
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
Full range  
S
L
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1.1  
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
24  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
pA  
IO  
O
IC  
1000  
2000  
0.6  
200  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
4
4.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
3.5  
25°C  
40°C  
85°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
3
25°C  
50  
50  
50  
= –100 mV,  
= 0.25 V to 2 V,  
I
40°C  
85°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
480  
900  
330  
94  
95  
95  
97  
97  
98  
39  
62  
29  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
40°C  
85°C  
L
25°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
IC  
25°C  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
25°C  
68  
108  
52  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
40°C  
85°C  
µA  
DD  
No load  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L4I  
TLC27L4AI  
TLC27L4BI  
TLC27L9I  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L4I  
TLC27L4AI  
TLC27L4BI  
TLC27L9I  
13  
mV  
0.9  
260  
210  
5
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
S
L
Full range  
25°C  
7
V
IO  
Input offset voltage  
2000  
3500  
1200  
2900  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
S
L
Full range  
25°C  
µV  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
S
L
Full range  
Average temperature coefficient of input  
offset voltage  
25°C to  
85°C  
α
1
µV/°C  
VIO  
25°C  
85°C  
25°C  
85°C  
0.1  
26  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
=.5 V  
pA  
IO  
O
IC  
1000  
2000  
0.7  
220  
I
IB  
pA  
V
O
IC  
0.2  
to  
0.3  
to  
25°C  
9
9.2  
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
V
V
8.5  
25°C  
40°C  
85°C  
8
7.8  
7.8  
8.9  
8.9  
8.9  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
OH  
ID  
ID  
O
L
25°C  
50  
50  
50  
I
40°C  
85°C  
0
mV  
V/mV  
dB  
OL  
OL  
0
25°C  
50  
50  
50  
65  
60  
60  
70  
60  
60  
800  
1550  
585  
97  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
40°C  
85°C  
L
25°C  
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
40°C  
85°C  
97  
IC  
98  
25°C  
97  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
40°C  
85°C  
97  
dB  
SVR  
DD  
O
(V /V  
DD IO  
)
98  
25°C  
57  
92  
172  
72  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
40°C  
85°C  
98  
µA  
DD  
No load  
40  
Full range is 40°C to 85°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 5 V (unless otherwise noted)  
DD  
TLC27L4M  
TLC27L9M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L4M  
TLC27L9M  
mV  
12  
V
IO  
Input offset voltage  
200  
900  
3750  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
µV  
S
L
Full range  
Average temperature coefficient of input  
offset voltage  
25°C to  
125°C  
α
1.4  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.4  
0.6  
9
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 2.5 V,  
= 2.5 V,  
V
V
= 2.5 V  
= 2.5 V  
IO  
O
IC  
15  
35  
I
IB  
O
IC  
125°C  
0.2  
to  
0.3  
to  
4.2  
25°C  
V
V
4
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0.2  
to  
Full range  
3.5  
25°C  
55°C  
125°C  
25°C  
3.2  
3
4.1  
4.1  
4.2  
0
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
3
50  
50  
50  
= –100 mV,  
= 0.25 V to 2 V,  
I
55°C  
125°C  
25°C  
0
OL  
OL  
0
50  
25  
25  
65  
60  
60  
70  
60  
60  
480  
950  
200  
94  
95  
85  
97  
97  
98  
39  
69  
27  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
55°C  
125°C  
25°C  
L
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
68  
120  
48  
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
= 10 V (unless otherwise noted)  
DD  
TLC27L4M  
TLC27L9M  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
10  
25°C  
Full range  
25°C  
1.1  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
TLC27L4M  
TLC27L9M  
mV  
12  
V
IO  
Input offset voltage  
210  
1200  
4300  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
IC  
µV  
S
L
Full range  
Average temperature coefficient of  
input offset voltage  
25°C to  
125°C  
α
1.4  
µV/°C  
VIO  
25°C  
125°C  
25°C  
0.1  
1.8  
0.7  
10  
pA  
nA  
pA  
nA  
I
Input offset current (see Note 4)  
Input bias current (see Note 4)  
V
V
= 5 V,  
= 5 V,  
V
V
= 5 V  
= 5 V  
IO  
O
IC  
15  
35  
I
IB  
O
IC  
125°C  
0
to  
9
0.3  
to  
9.2  
25°C  
V
V
Common-mode input voltage range  
(see Note 5)  
V
ICR  
0
to  
Full range  
8.5  
25°C  
55°C  
125°C  
25°C  
8
7.8  
7.8  
8.9  
8.8  
9
V
V
High-level output voltage  
Low-level output voltage  
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
0
50  
50  
50  
I
55°C  
125°C  
25°C  
0
OL  
OL  
0
50  
25  
25  
65  
60  
60  
70  
60  
60  
800  
1750  
380  
97  
97  
91  
97  
97  
98  
57  
111  
35  
Large-signal differential voltage  
amplification  
A
VD  
R
= 1 MΩ  
55°C  
125°C  
25°C  
L
CMRR Common-mode rejection ratio  
= V  
min  
ICR  
55°C  
125°C  
25°C  
IC  
Supply-voltage rejection ratio  
k
V
V
= 5 V to 10 V,  
V
V
= 1.4 V  
55°C  
125°C  
25°C  
dB  
SVR  
DD  
O
(V  
DD  
/V )  
IO  
92  
192  
60  
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
55°C  
125°C  
µA  
DD  
No load  
Full range is 55°C to 125°C.  
NOTES: 4. The typical values of input bias current and Input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V, T = 25°C (unless otherwise  
DD  
A
TLC27L4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
V
IO  
Input offset voltage  
1.1  
10  
mV  
α
Average temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
T
= 25°C to 70°C  
= 2.5 V,  
1.1  
0.1  
0.6  
µV/°C  
pA  
VIO  
A
I
IO  
I
IB  
V
V
V
= 2.5 V  
= 2.5 V  
O
O
IC  
Input bias current (see Note 4)  
V
= 2.5 V,  
pA  
IC  
0.2  
to  
0.3  
to  
4.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
4
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
R
= 1 MΩ  
= 0  
3.2  
4.1  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
= –100 mV,  
= 0.25 V to 2 V,  
I
50  
68  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 1 MΩ  
50  
65  
70  
520  
94  
97  
L
CMRR Common-mode rejection ratio  
= V  
min  
IC  
ICR  
= 5 V to 10 V,  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
DD  
O
= 2.5 V,  
= 2.5 V,  
O
IC  
I
Supply current (four amplifiers)  
40  
µA  
DD  
No load  
electrical characteristics at specified free-air temperature, V = 10 V, T = 25°C (unless otherwise  
DD  
A
noted)  
TLC27L4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
V
R
= 1.4 V,  
= 50 ,  
V
R
= 0,  
= 1 MΩ  
O
S
IC  
L
V
IO  
Input offset voltage  
1.1  
10  
mV  
α
Average temperature coefficient of input offset voltage  
Input offset current (see Note 4)  
T
= 25°C to 70°C  
= 5 V,  
1
0.1  
0.7  
µV/°C  
pA  
VIO  
A
I
I
V
V
V
= 5 V  
= 5 V  
IO  
O
O
IC  
Input bias current (see Note 4)  
V
= 5 V,  
pA  
IB  
IC  
0.2  
to  
0.3  
to  
9.2  
V
ICR  
Common-mode input voltage range (see Note 5)  
V
9
V
V
High-level output voltage  
V
V
V
V
V
V
= 100 mV,  
= –100 mV,  
= 1 V to 6 V,  
R
= 1 MΩ  
= 0  
8
8.9  
0
V
mV  
V/mV  
dB  
OH  
ID  
ID  
O
L
Low-level output voltage  
I
50  
92  
OL  
OL  
A
VD  
Large-signal differential voltage amplification  
R
= 1 MΩ  
50  
65  
70  
870  
97  
97  
L
CMRR Common-mode rejection ratio  
= V  
min  
IC  
DD  
ICR  
= 5 V to 10 V,  
k
Supply-voltage rejection ratio (V  
/V  
IO  
)
V
V
= 1.4 V  
dB  
SVR  
DD  
O
= 5 V,  
= 5 V,  
O
IC  
I
Supply current (four amplifiers)  
57  
µA  
DD  
No load  
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.  
5. This range also applies to each input individually.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27L4C  
TLC27L4AC  
TLC27L4BC  
TLC27L9C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.03  
0.02  
MAX  
25°C  
0°C  
V
V
= 1 V  
IPP  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 2.5 V  
IPP  
70°C  
f = 1 kHZ,  
See Figure 2  
R
= 20 Ω,  
S
L
V
n
Equivalent input noise voltage  
25°C  
70  
nV/Hz  
25°C  
0°C  
5
6
V
R
= V  
OH  
= 1 MΩ,  
,
C
= 20 pF,  
O
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 1  
70°C  
25°C  
0°C  
4.5  
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
100  
65  
kHz  
70°C  
25°C  
0°C  
34°  
36°  
30°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27L4C  
TLC27L4AC  
TLC27L4BC  
TLC27L9C  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.05  
0.04  
0.04  
0.05  
0.04  
MAX  
25°C  
0°C  
V
V
= 1 V  
IPP  
R
C
= 1 M,  
= 20 pF,  
L
L
70°C  
25°C  
0°C  
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
= 5.5 V  
IPP  
70°C  
f = 1 kHz  
See Figure 2  
R
= 20 Ω,  
,
S
L
V
n
Equivalent input noise voltage  
25°C  
70  
nV/Hz  
25°C  
0°C  
1
1.3  
0.9  
110  
125  
90  
V
R
= V  
OH  
= 1 MΩ,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
70°C  
25°C  
0°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
kHz  
1
70°C  
25°C  
0°C  
38°  
40°  
34°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
C
= 20 pF,  
70°C  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27L4I  
TLC27L4AI  
TLC27L4BI  
TLC27L9I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.03  
0.03  
0.04  
0.02  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
IPP  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
= 2.5 V  
40°C  
85°C  
IPP  
f = 1 HZ,  
See Figure 2  
R
= 20 Ω,  
S
L
V
n
Equivalent input noise voltage  
25°C  
70  
nV/Hz  
25°C  
40°C  
85°C  
5
7
V
R
= V  
OH  
= 1 MΩ,  
,
C
= 20 pF,  
O
L
B
Maximum output-swing bandwidth  
kHz  
OM  
1
See Figure 1  
4
25°C  
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
B
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
130  
55  
kHz  
25°C  
34°  
38°  
28°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27L4I  
TLC27L4AI  
TLC27L4BI  
TLC27L9I  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.05  
0.03  
MAX  
25°C  
40°C  
85°C  
V
V
= 1 V  
IPP  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
25°C  
See Figure 1  
= 2.5 V  
40°C  
85°C  
IPP  
f = 1 HZ,  
See Figure 2  
R
= 20 Ω,  
S
L
V
n
Equivalent input noise voltage  
25°C  
70  
nV/Hz  
25°C  
40°C  
85°C  
1
1.4  
0.8  
110  
155  
80  
V
R
= V  
OH  
= 1 MΩ,  
,
C
= 20 pF,  
O
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
25°C  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
40°C  
85°C  
kHz  
1
25°C  
38°  
42°  
32°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
L
φ
m
40°C  
85°C  
C
= 20 pF,  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLC27L4M  
TLC27L9M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.03  
0.04  
0.02  
0.03  
0.04  
0.02  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 2.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 Ω,  
S
V
n
Equivalent input noise voltage  
25°C  
70  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
5
8
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 1 MΩ,  
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
3
85  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
140  
45  
kHz  
1
34°  
39°  
25°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 pF,  
L
operating characteristics at specified free-air temperature, V  
= 10 V  
DD  
TLC27L4M  
TLC27L9M  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP  
0.05  
0.06  
0.03  
0.04  
0.06  
0.03  
MAX  
25°C  
55°C  
125°C  
25°C  
V
= 1 V  
IPP  
IPP  
R
C
= 1 M,  
= 20 pF,  
L
L
SR  
Slew rate at unity gain  
V/µs  
See Figure 1  
V
= 5.5 V  
55°C  
125°C  
f = 1 kHz,  
See Figure 2  
R
= 20 Ω,  
S
V
n
Equivalent input noise voltage  
25°C  
70  
nV/Hz  
25°C  
55°C  
125°C  
25°C  
1
1.5  
0.7  
110  
165  
70  
V
R
= V  
,
C
= 20 pF,  
O
L
OH  
= 1 MΩ,  
L
B
B
Maximum output-swing bandwidth  
kHz  
OM  
See Figure 1  
V = 10 mV,  
I
See Figure 3  
C = 20 pF,  
L
Unity-gain bandwidth  
Phase margin  
55°C  
125°C  
25°C  
kHz  
1
38°  
43°  
29°  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
55°C  
125°C  
C
= 20 F,  
L
P
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
operating characteristics, V  
= 5 V, T = 25°C  
A
DD  
TLC27L4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
R
C
= 1 M,  
= 20 pF,  
V
V
= 1 V  
0.03  
L
L
IPP  
SR  
Slew rate at unity gain  
V/µs  
= 2.5 V  
0.03  
70  
See Figure 1  
IPP  
f = 1 kHz,  
See Figure 2  
R
= 20 Ω,  
S
L
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
nV/Hz  
kHz  
V
R
= V  
,
C
= 20 pF,  
O
OH  
= 1 MΩ,  
B
B
5
85  
OM  
See Figure 1  
C = 20 pF,  
L
L
V = 10 mV,  
I
See Figure 3  
kHz  
1
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
Phase margin  
34°  
C
= 20 pF,  
L
operating characteristics, V  
= 10 V, T = 25°C  
A
DD  
TLC27L4Y  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
R
C
= 1 M,  
= 20 pF,  
V
V
= 1 V  
0.05  
L
L
IPP  
SR  
Slew rate at unity gain  
V/µs  
= 5.5 V  
0.04  
70  
See Figure 1  
IPP  
f = 1 kHz,  
See Figure 2  
R
= 20 Ω,  
S
L
V
n
Equivalent input noise voltage  
Maximum output-swing bandwidth  
Unity-gain bandwidth  
nV/Hz  
kHz  
V
R
= V  
,
C
= 20 pF,  
O
OH  
= 1 MΩ,  
B
OM  
B
1
1
110  
38°  
See Figure 1  
C = 20 pF,  
L
L
V = 10 mV,  
I
See Figure 3  
kHz  
V = 10 mV,  
f = B ,  
1
See Figure 3  
I
φ
m
Phase margin  
C
= 20 pF,  
L
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
single-supply versus split-supply test circuits  
Because the TLC27L4 and TLC27L9 are optimized for single-supply operation, circuit configurations used for  
the various tests often present some inconvenience since the input signal, in many cases, must be offset from  
ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to  
thenegativerail. Acomparisonofsingle-supplyversussplit-supplytestcircuitsisshownbelow. Theuseofeither  
circuit gives the same result.  
V
DD  
V
DD+  
+
V
O
V
O
+
V
I
V
I
C
R
C
R
L
L
L
L
V
DD–  
(b) SPLIT SUPPLY  
(a) SINGLE SUPPLY  
Figure 1. Unity-Gain Amplifier  
2 kΩ  
2 kΩ  
V
DD  
V
DD+  
20 Ω  
20 Ω  
1/2 V  
V
O
V
O
DD  
+
+
20 Ω  
20 Ω  
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 2. Noise-Test Circuit  
10 kΩ  
10 kΩ  
V
DD+  
V
DD  
100 Ω  
100 Ω  
V
I
V
I
V
L
O
V
O
+
+
1/2 V  
DD  
C
C
L
V
DD–  
(a) SINGLE SUPPLY  
(b) SPLIT SUPPLY  
Figure 3. Gain-of-100 Inverting Amplifier  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
input bias current  
Becauseof the high input impedance of the TLC27L4 and TLC27L9 operational amplifiers, attempts to measure  
the input bias current can result in erroneous readings. The bias current at normal room ambient temperature  
is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are  
offered to avoid erroneous measurements:  
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the  
device inputs (see Figure 4). Leakages that would otherwise flow to the inputs are shunted away.  
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using  
a picoammeter) with no device in the test socket. The actual input bias current can then be calculated  
by subtracting the open-socket leakage readings from the readings obtained with a device in the test  
socket.  
One word of caution: many automatic testers as well as some bench-top operational amplifier testers use the  
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage  
drop across the series resistor is measured and the bias current is calculated). This method requires that a  
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not  
feasible using this method.  
7
1
V = V  
IC  
8
14  
Figure 4. Isolation Metal Around Device Inputs (J and N packages)  
low-level output voltage  
To obtain low-supply-voltage operation, some compromise was necessary in the input stage. This compromise  
results in the device low-level output being dependent on both the common-mode input voltage level as well  
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted  
in the electrical specifications, these two conditions should be observed. If conditions other than these are to  
be used, please refer to Figures 14 through 19 in the Typical Characteristics of this data sheet.  
input offset voltage temperature coefficient  
Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This  
parameter is actually a calculation using input offset voltage measurements obtained at two different  
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device  
and the test socket. This moisture results in leakage and contact resistance, which can cause erroneous input  
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the  
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these  
measurements be performed at temperatures above freezing to minimize error.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
PARAMETER MEASUREMENT INFORMATION  
full-power response  
Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage  
swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is  
generallymeasuredbymonitoringthedistortionleveloftheoutputwhileincreasingthefrequencyofasinusoidal  
input signal until the maximum frequency is found above which the output contains significant distortion. The  
full-peak response is defined as the maximum output frequency, without regard to distortion, above which full  
peak-to-peak output swing cannot be maintained.  
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified  
in this data sheet and is measured using the circuit of Figure 1. The initial setup involves the use of a sinusoidal  
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is  
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same  
amplitude. Thefrequencyisthenincreaseduntilthemaximumpeak-to-peakoutputcannolongerbemaintained  
(Figure 5). A square wave is used to allow a more accurate determination of the point at which the maximum  
peak-to-peak output is reached.  
(a) f = 100 Hz  
(b) B  
OM  
> f > 100 Hz  
(c) f = B  
OM  
(d) f > B  
OM  
Figure 5. Full-Power-Response Output Signal  
test time  
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,  
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET  
devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more  
pronounced with reduced supply levels and lower temperatures.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
6, 7  
V
Input offset voltage  
Distribution  
Distribution  
IO  
α
Temperature coefficient  
8, 9  
VIO  
vs High-level output current  
vs Supply voltage  
vs Free-air temperature  
10, 11  
12  
13  
V
High-level output voltage  
Low-level output voltage  
OH  
vs Common-mode input voltage  
vs Differential input voltage  
vs Free-air temperature  
14, 15  
16  
17  
V
OL  
vs Low-level output current  
18, 19  
vs Supply voltage  
vs Free-air temperature  
vs Frequency  
20  
21  
32, 33  
A
VD  
Differential voltage amplification  
I
/I  
Input bias and input offset current  
Common-mode input voltage  
vs Free-air temperature  
vs Supply voltage  
22  
23  
IB IO  
V
IC  
vs Supply voltage  
vs Free-air temperature  
24  
25  
I
Supply current  
Slew rate  
DD  
vs Supply voltage  
vs Free-air temperature  
26  
27  
SR  
Normalized slew rate  
vs Free-air temperature  
vs Frequency  
28  
29  
V
Maximum peak-to-peak output voltage  
O(PP)  
vs Free-air temperature  
vs Supply voltage  
30  
31  
B
1
Unity-gain bandwidth  
vs Supply voltage  
vs Free-air temperature  
vs Capacitive loads  
34  
35  
36  
φ
Phase margin  
m
V
Equivalent input noise voltage  
Phase shift  
vs Frequency  
vs Frequency  
37  
n
φ
32, 33  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLC27L4  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27L4  
INPUT OFFSET VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
905 Amplifiers Tested From 6 Wafer Lots  
905 Amplifiers Tested From 6 Wafer Lots  
V
= 5 V  
V
T
= 10 V  
DD  
= 25°C  
DD  
= 25°C  
T
A
A
N Package  
N Package  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–5 –4 –3 –2 –1  
0
1
2
3
4
5
V
IO  
– Input Offset Voltage – mV  
V
IO  
– Input Offset Voltage – mV  
Figure 6  
Figure 7  
DISTRIBUTION OF TLC27L4 AND TLC27L9  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLC27L4 AND TLC27L9  
INPUT OFFSET VOLTAGE  
TEMPERATURE COEFFICIENT  
TEMPERATURE COEFFICIENT  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
356 Amplifiers Tested From 6 Wafer Lots  
356 Amplifiers Tested From 8 Wafer Lots  
V
= 10 V  
V
= 5 V  
DD  
= 25°C to 125°C  
A
DD  
= 25°C to 125°C  
T
T
A
N Package  
Outliers:  
N Package  
Outliers:  
(1) 18.7 µV/°C  
(1) 11.6 µV/°C  
(1) 19.2 µV/°C  
(1) 12.1 µV/°C  
10 8 –6 –4 –2  
0
2
4
6
8
10  
10 8 –6 –4 –2  
0
2
4
6
8
10  
α
– Temperature Coefficient – µV/°C  
α
– Temperature Coefficient – µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
5
4
3
2
1
0
16  
14  
12  
10  
8
V
T
A
= 100 mV  
ID  
= 25°C  
V
= 100 mV  
ID  
= 25°C  
T
A
V
= 16 V  
DD  
V
DD  
= 5 V  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
6
4
2
0
0
–2  
–4  
–6  
–8  
10  
0
–5 –10 15  
20 25  
30 35 40  
– High-Level Output Current – mA  
I
– High-Level Output Current – mA  
OH  
I
OH  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREE-AIR TEMPERATURE  
16  
14  
12  
10  
8
V
V
V
V
1.6  
1.7  
1.8  
1.9  
DD  
DD  
DD  
DD  
V
R
T
A
= 100 mV  
= 1 MΩ  
= 25°C  
ID  
L
I
V
= 5 mA  
= 100 mV  
OH  
ID  
V
DD  
= 5 V  
V
–2  
DD  
V
= 10 V  
DD  
6
V
DD  
V
DD  
V
DD  
V
DD  
2.1  
2.2  
2.3  
2.4  
4
2
0
0
2
4
V
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
– Supply Voltage – V  
DD  
T
A
– Free-Air Temperature – °C  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
500  
450  
400  
350  
300  
250  
700  
650  
V
I
= 5 V  
= 5 mA  
DD  
OL  
V
I
= 10 V  
= 5 mA  
DD  
OL  
T
A
= 25°C  
T
A
= 25°C  
600  
550  
V
= 100 mV  
ID  
V
V
V
= 100 mV  
= 1 V  
ID  
ID  
ID  
500  
450  
= 2.5 V  
400  
350  
V
= 1 V  
ID  
300  
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
4
V
IC  
– Common-Mode Input Voltage – V  
– Common-Mode Input Voltage – V  
IC  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
OL  
= 5 mA  
= 1 V  
= 0.5 V  
I
= 5 mA  
OL  
V
V
V
= |V /2|  
ID  
= 25°C  
ID  
IC  
IC  
T
A
V
= 5 V  
DD  
V
= 5 V  
DD  
V
DD  
= 10 V  
V
= 10 V  
DD  
75 50 25  
0
25  
50  
75  
100 125  
0
–2  
–4  
–6  
–8  
10  
T
A
– Free-Air Temperature – °C  
V
ID  
– Differential Input Voltage – V  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT CURRENT  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
V
V
T
= 1 V  
= 0.5 V  
= 25°C  
ID  
IC  
A
V
V
T
= 1 V  
= 0.5 V  
ID  
IC  
= 25°C  
V
DD  
= 16 V  
A
V
= 5 V  
DD  
V
= 4 V  
DD  
V
= 10 V  
DD  
V
= 3 V  
DD  
1.5  
1
0.5  
0
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
30  
I
– Low-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OL  
OL  
Figure 18  
Figure 19  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
LARGE-SIGNAL  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
A
= 55°C  
R
= 1 MΩ  
R
= 1 MΩ  
L
L
T
= 40°C  
= 0°C  
A
T
A
V
DD  
= 10 V  
T
= 25°C  
= 70°C  
A
T
A
T
A
= 85°C  
600  
600  
V
DD  
= 5 V  
400  
400  
T
A
= 125°C  
200  
200  
0
0
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
A
– Free-Air Temperature – °C  
V
DD  
– Supply Voltage – V  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
INPUT BIAS CURRENT AND INPUT OFFSET CURRENT  
COMMON-MODE  
INPUT VOLTAGE POSITIVE LIMIT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
10000  
1000  
100  
10  
V
V
= 10 V  
DD  
= 5 V  
16  
14  
12  
10  
8
IC  
T
A
= 25°C  
See Note A  
I
IB  
I
IO  
6
1
4
2
0.1  
25  
45  
65  
85  
105  
125  
0
T
A
– Free-Air Temperature – °C  
0
2
4
6
8
10  
12  
14  
16  
V
DD  
– Supply Voltage – V  
NOTE A: The typical values of input bias current and input offset  
current below 5 pA were determined mathematically.  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
180  
120  
100  
V
= V /2  
DD  
T = 55°C  
A
V
O
= V /2  
DD  
O
160  
140  
120  
100  
80  
No Load  
No Load  
T
= 40°C  
A
80  
60  
40  
20  
0
T
= 0°C  
= 25°C  
= 70°C  
A
T
T
T
A
A
A
V
DD  
= 10 V  
= 125°C  
60  
V
DD  
= 5 V  
40  
20  
0
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
– Free-Air Temperature – °C  
A
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
0.07  
0.07  
R
C
= 1 MΩ  
= 20 pF  
= 1  
L
L
A
= 1  
= 1 V  
= 1 mΩ  
= 20 pF  
= 25°C  
V
V
= 10 V  
= 5.5 V  
V
DD  
V
R
C
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
IPP  
IPP  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
A
V
L
L
See Figure 1  
T
A
See Figure 1  
V
V
= 10 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 1 V  
DD  
IPP  
V
V
= 5 V  
= 2.5 V  
DD  
IPP  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
V
6
8
10  
12  
14  
16  
T
A
– Free-Air Temperature – °C  
– Supply Voltage – V  
DD  
Figure 26  
Figure 27  
NORMALIZED SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
vs  
FREQUENCY  
1.4  
1.3  
1.2  
1.1  
1
10  
A
= 1  
V
9
8
7
6
5
4
3
2
1
0
V
IPP  
= 1 V  
= 1 MΩ  
= 20 pF  
V
= 10 V  
DD  
R
L
L
T
= 125°C  
= 25°C  
A
C
V
= 10 V  
= 5 V  
DD  
T
A
T
A
V
DD  
= 5 V  
= 55°C  
V
DD  
0.9  
0.8  
0.7  
0.6  
0.5  
R
= 1 MΩ  
L
See Figure 1  
75 50 25  
0
25  
50  
75  
100 125  
0.1  
1
10  
100  
T
A
– Free-Air Temperature – °C  
f – Frequency – kHz  
Figure 28  
Figure 29  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
UNITY-GAIN BANDWIDTH  
vs  
UNITY-GAIN BANDWIDTH  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
140  
130  
120  
110  
100  
90  
150  
130  
110  
90  
V = 10 mV  
V
= 5 V  
I
DD  
V = 10 mV  
C
= 20 pF  
L
I
C
= 20 pF  
T
= 25°C  
L
A
See Figure 3  
See Figure 3  
80  
70  
70  
50  
60  
50  
30  
0
2
4
6
8
10  
12  
14  
16  
75 50 25  
0
25  
50  
75  
100 125  
V
DD  
– Supply Voltage – V  
T
A
– Free-Air Temperature – °C  
Figure 30  
Figure 31  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
V
= 5 V  
= 1 MΩ  
= 25°C  
DD  
R
L
T
A
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 32  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE SHIFT  
vs  
FREQUENCY  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
10  
V
R
= 10 V  
= 1 MΩ  
= 25°C  
DD  
L
T
A
0°  
30°  
A
VD  
60°  
90°  
Phase Shift  
120°  
150°  
180°  
1
0.1  
1
10  
100  
1 k  
10 k  
100 k  
1 M  
f – Frequency – Hz  
Figure 33  
PHASE MARGIN  
vs  
FREE-AIR TEMPERATURE  
PHASE MARGIN  
vs  
SUPPLY VOLTAGE  
40°  
42°  
40°  
38°  
36°  
34°  
32°  
30°  
V
= 5 mV  
V = 10 mV  
DD  
V = 10 mV  
I
38°  
36°  
34°  
32°  
30°  
28°  
26°  
24°  
22°  
20°  
C
= 20 pF  
I
L
C
= 20 pF  
T
A
= 25°C  
L
See Figure 3  
See Figure 3  
75 50 25  
0
25  
50  
75  
100 125  
0
2
4
6
8
10  
12  
14  
16  
T
– Free-Air Temperature – °C  
V
– Supply Voltage – V  
A
DD  
Figure 34  
Figure 35  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
FREQUENCY  
37°  
35°  
33°  
31°  
29°  
27°  
25°  
200  
V
= 5 mV  
V
R
= 5 V  
= 20 Ω  
DD  
DD  
S
V = 10 mV  
I
T
A
175  
150  
125  
100  
75  
= 25°C  
T
A
= 25°C  
See Figure 2  
See Figure 3  
50  
25  
0
0
20  
40  
60  
80  
100  
1
10  
100  
1000  
C
– Capacitive Load – pF  
f – Frequency – Hz  
L
Figure 36  
Figure 37  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
single-supply operation  
While the TLC27L4 and TLC27L9 perform well using dual power supplies (also called balanced or split  
supplies), the design is optimized for single-supply operation. This design includes an input common-mode  
voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The  
supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly  
available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is  
recommended.  
Many single-supply applications require that a voltage be applied to one input to establish a reference level that  
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 38).  
The low input bias current of the TLC27L4 and TLC27L9 permits the use of very large resistive values to  
implement the voltage divider, thus minimizing power consumption.  
The TLC27L4 and TLC27L9 work well in conjunction with digital logic; however, when powering both linear  
devices and digital logic from the same power supply, the following precautions are recommended:  
1. Power the linear devices from separate bypassed supply lines (see Figure 39); otherwise, the linear  
device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital  
logic.  
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive  
decoupling is often adequate; however, high-frequency applications may require RC decoupling.  
V
DD  
R4  
R1  
R2  
R3  
R3  
R1 + R3  
V
= V  
DD  
REF  
V
I
V
O
+
R4  
R2  
+ V  
V
O
= (V  
– V )  
REF I  
REF  
V
REF  
C
0.01 µF  
Figure 38. Inverting Amplifier With Voltage Reference  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
single-supply operation (continued)  
+
Power  
Supply  
Logic  
Logic  
Logic  
Output  
(a) COMMON SUPPLY RAILS  
+
Power  
Supply  
Output  
Logic  
Logic  
Logic  
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)  
Figure 39. Common Versus Separate Supply Rails  
input characteristics  
The TLC27L4 and TLC27L9 are specified with a minimum and a maximum input voltage that, if exceeded at  
either input, could cause the device to malfunction. Exceeding this specified range is a common problem,  
especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper  
range limit is specified at V  
– 1 V at T = 25°C and at V  
– 1.5 V at all other temperatures.  
DD  
A
DD  
The use of the polysilicon-gate process and the careful input circuit design gives the TLC27L4 and TLC27L9  
very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage  
drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus  
dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate)  
alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude.  
The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of  
operation.  
Because of the extremely high input impedance and resulting low bias current requirements, the TLC27L4 and  
TLC27L9 are well suited for low-level signal processing; however, leakage currents on printed circuit boards  
and sockets can easily exceed bias current requirements and cause a degradation in device performance. It  
is good practice to include guard rings around inputs (similar to those of Figure 4 in the Parameter Measurement  
Information section). These guards should be driven from a low-impedance source at the same voltage level  
as the common-mode input (see Figure 40).  
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.  
noise performance  
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage  
differential amplifier. The low input bias current requirements of the TLC27L4 and TLC27L9 result in a very low  
noise current, which is insignificant in most applications. This feature makes the devices especially favorable  
over bipolar devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit  
greater noise currents.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
noise performance (continued)  
+
V
I
V
O
V
O
V
O
+
+
V
I
V
I
(a) NONINVERTING AMPLIFIER  
(b) INVERTING AMPLIFIER  
(c) UNITY-GAIN AMPLIFIER  
Figure 40. Guard-Ring Schemes  
output characteristics  
The output stage of the TLC27L4 and TLC27L9 is designed to sink and source relatively high amounts of current  
(see typical characteristics). If the output is subjected to a short-circuit condition, this high current capability can  
cause device damage under certain conditions. Output current capability increases with supply voltage.  
All operating characteristics of the TLC27L4 and TLC27L9 were measured using a 20-pF load. The devices  
drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole  
occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figure 41). In many  
cases, adding a small amount of resistance in series with the load capacitance alleviates the problem.  
(a) C = 20 pF, R = NO LOAD  
(b) C = 260 pF, R = NO LOAD  
L
L
L
L
2.5 V  
+
V
O
V
I
C
T = 25°C  
A
L
f = 1 kHz  
= 1 V  
V
IPP  
2.5 V  
(d) TEST CIRCUIT  
(c) C = 310 pF, R = NO LOAD  
L
L
Figure 41. Effect of Capacitive Loads and Test Circuit  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
output characteristics (continued)  
Although the TLC27L4 and TLC27L9 possess excellent high-level output voltage and current capability,  
methods for boosting this capability are available, if needed. The simplest method involves the use of a pullup  
resistor (Rb) connected from the output to the positive supply rail (see Figure 42). There are two disadvantages  
to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a  
comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance  
between approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With  
very low values of R , a voltage offset from 0 V at the output occurs. Second, pullup resistor R acts as a drain  
P
P
load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying  
the output current.  
C
V
DD  
V
I
R
P
+
I
P
V
– V  
O
DD  
+ I + I  
P
Rp =  
I
F
V
O
L
V
O
I
= Pullup current  
+
P
I
F
required by the  
operational amplifier  
(typically 500 µA)  
R2  
I
L
R
R1  
L
Figure 43. Compensation for  
Input Capacitance  
Figure 42. Resistive Pullup to Increase V  
OH  
feedback  
Operational amplifier circuits nearly always employ feedback, and since feedback is the first prerequisite for  
oscillation, some caution is appropriate. Most oscillation problems result from driving capacitive loads  
(discussed previously) and ignoring stray input capacitance. A small-value capacitor connected in parallel with  
the feedback resistor is an effective remedy (see Figure 43). The value of this capacitor is optimized empirically.  
electrostatic discharge protection  
The TLC27L4 and TLC27L9 incorporate an internal electrostatic discharge (ESD) protection circuit that  
prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care  
should be exercised, however, when handling these devices, as exposure to ESD may result in the degradation  
of the device parametric performance. The protection circuit also causes the input bias currents to be  
temperature dependent and have the characteristics of a reverse-biased diode.  
latch-up  
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC27L4 and  
TLC27L9 inputs and outputs were designed to withstand 100-mA surge currents without sustaining latch-up;  
however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection  
diodes should not, by design, be forward biased. Applied input and output voltage should not exceed the supply  
voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators.  
Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the  
supply rails as close to the device as possible.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
latch-up (continued)  
The current path established if latch-up occurs is usually between the positive supply rail and ground and can  
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply  
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the  
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of  
latch-up occurring increases with increasing temperature and supply voltages.  
1/4  
TLC27L4  
+
V
O1  
500 kΩ  
5 V  
500 kΩ  
+
V
O2  
1/4  
TLC27L4  
0.1 µF  
500 kΩ  
500 kΩ  
Figure 44. Multivibrator  
100 kΩ  
V
DD  
100 kΩ  
100 kΩ  
Set  
+
V
O
1/4  
TLC27L4  
Reset  
33 kΩ  
NOTE: V  
= 5 V to 16 V  
DD  
Figure 45. Set/Reset Flip-Flop  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
V
DD  
1/4  
TLC27L9  
V
I
+
V
O
90 kΩ  
V
DD  
C
S
S
X1  
1
B
B
1
2
TLC4066  
SELECT  
S
S
2
100  
A
C
1
1
A
V
10  
9 kΩ  
1 kΩ  
X2  
2
Analog  
Switch  
A
2
NOTE: V  
= 5 V to 12 V  
DD  
Figure 46. Amplifier With Digital Gain Selection  
10 kΩ  
V
DD  
20 kΩ  
+
V
I
V
O
1/4  
TLC27L4  
100 kΩ  
NOTE: V  
= 5 V to 16 V  
DD  
Figure 47. Full-Wave Rectifier  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC27L4, TLC27L4A, TLC27L4B, TLC27L4Y, TLC27L9  
LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS  
SLOS053C – OCTOBER 1987 – REVISED AUGUST 1994  
APPLICATION INFORMATION  
0.016 µF  
5 V  
10 kΩ  
10 kΩ  
V
I
+
V
O
0.016 µF  
1/4  
TLC27L4  
NOTE: Normalized to F = 1 kHz and R = 10 kΩ  
C
L
Figure 48. Two-Pole Low-Pass Butterworth Filter  
R2  
100 kΩ  
V
DD  
R1  
10 kΩ  
V
V
IA  
+
V
O
1/4  
TLC27L9  
IB  
R1  
10 kΩ  
R2  
100 kΩ  
NOTE: V  
DD  
= 5 V to 16 V  
R2  
R1  
V
V
V
O
IB  
IA  
Figure 49. Difference Amplifier  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
TLC27L4ACD  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
27L4AC  
TLC27L4ACDG4  
TLC27L4ACDR  
TLC27L4ACDRG4  
TLC27L4ACN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
D
N
N
D
D
D
D
N
N
D
D
D
D
N
50  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27L4AC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27L4AC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27L4AC  
Pb-Free  
(RoHS)  
0 to 70  
TLC27L4ACN  
TLC27L4ACN  
27L4AI  
TLC27L4ACNE4  
TLC27L4AID  
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
TLC27L4AIDG4  
TLC27L4AIDR  
TLC27L4AIDRG4  
TLC27L4AIN  
50  
Green (RoHS  
& no Sb/Br)  
27L4AI  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
27L4AI  
Green (RoHS  
& no Sb/Br)  
27L4AI  
Pb-Free  
(RoHS)  
TLC27L4AIN  
TLC27L4AIN  
27L4BC  
TLC27L4AINE4  
TLC27L4BCD  
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
50  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC27L4BCDG4  
TLC27L4BCDR  
TLC27L4BCDRG4  
TLC27L4BCN  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27L4BC  
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27L4BC  
Green (RoHS  
& no Sb/Br)  
0 to 70  
27L4BC  
Pb-Free  
(RoHS)  
0 to 70  
TLC27L4BCN  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC27L4BCNE4  
TLC27L4BID  
ACTIVE  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SO  
N
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
25  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
TLC27L4BCN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
OBSOLETE  
D
D
50  
50  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
27L4BI  
TLC27L4BIDG4  
TLC27L4BIDR  
TLC27L4BIDRG4  
TLC27L4BIN  
Green (RoHS  
& no Sb/Br)  
27L4BI  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
27L4BI  
D
Green (RoHS  
& no Sb/Br)  
27L4BI  
N
Pb-Free  
(RoHS)  
TLC27L4BIN  
TLC27L4BIN  
TLC27L4C  
TLC27L4C  
TLC27L4C  
TLC27L4C  
TLC27L4CN  
TLC27L4CN  
TLC27L4  
TLC27L4  
P27L4C  
TLC27L4BINE4  
TLC27L4CD  
N
25  
Pb-Free  
(RoHS)  
D
50  
Green (RoHS  
& no Sb/Br)  
TLC27L4CDG4  
TLC27L4CDR  
TLC27L4CDRG4  
TLC27L4CN  
D
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
0 to 70  
D
Green (RoHS  
& no Sb/Br)  
0 to 70  
N
Pb-Free  
(RoHS)  
0 to 70  
TLC27L4CNE4  
TLC27L4CNSR  
TLC27L4CNSRG4  
TLC27L4CPW  
TLC27L4CPWG4  
TLC27L4CPWLE  
N
25  
Pb-Free  
(RoHS)  
0 to 70  
NS  
NS  
PW  
PW  
PW  
2000  
2000  
90  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TSSOP  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
0 to 70  
90  
Green (RoHS  
& no Sb/Br)  
0 to 70  
P27L4C  
TBD  
0 to 70  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC27L4CPWR  
TLC27L4CPWRG4  
TLC27L4ID  
ACTIVE  
TSSOP  
TSSOP  
SOIC  
PW  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
P27L4C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PW  
D
2000  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
P27L4C  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLC27L4I  
TLC27L4I  
TLC27L4I  
TLC27L4I  
TLC27L4IN  
TLC27L4IN  
P27L4I  
TLC27L4IDG4  
TLC27L4IDR  
SOIC  
D
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TLC27L4IDRG4  
TLC27L4IN  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
N
Pb-Free  
(RoHS)  
TLC27L4INE4  
TLC27L4IPW  
PDIP  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
90  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TLC27L4IPWG4  
TLC27L4IPWR  
TLC27L4IPWRG4  
90  
Green (RoHS  
& no Sb/Br)  
P27L4I  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
P27L4I  
Green (RoHS  
& no Sb/Br)  
P27L4I  
TLC27L4MFKB  
TLC27L4MJ  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
LCCC  
CDIP  
CDIP  
SOIC  
FK  
J
20  
14  
14  
14  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
-55 to 125  
0 to 70  
TLC27L4MJB  
TLC27L9CD  
J
Call TI  
Call TI  
D
50  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
TLC27L9C  
TLC27L9C  
TLC27L9C  
TLC27L9C  
TLC27L9CDG4  
TLC27L9CDR  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
14  
14  
14  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
TLC27L9CDRG4  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
TLC27L9CN  
TLC27L9CNE4  
TLC27L9CNSR  
TLC27L9CNSRG4  
TLC27L9ID  
ACTIVE  
PDIP  
PDIP  
SO  
N
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
25  
Pb-Free  
(RoHS)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
N / A for Pkg Type  
TLC27L9CN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
N
NS  
NS  
D
25  
2000  
2000  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
TLC27L9CN  
TLC27L9  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
0 to 70  
SO  
Green (RoHS  
& no Sb/Br)  
0 to 70  
TLC27L9  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TLC27L9I  
TLC27L9I  
TLC27L9I  
TLC27L9I  
TLC27L9IN  
TLC27L9IN  
TLC27L9IDG4  
TLC27L9IDR  
D
50  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
25  
Green (RoHS  
& no Sb/Br)  
TLC27L9IDRG4  
TLC27L9IN  
D
Green (RoHS  
& no Sb/Br)  
N
Pb-Free  
(RoHS)  
TLC27L9INE4  
N
25  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TLC27L9MFKB  
TLC27L9MJ  
OBSOLETE  
OBSOLETE  
OBSOLETE  
LCCC  
CDIP  
CDIP  
FK  
J
20  
14  
14  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-55 to 125  
-55 to 125  
-55 to 125  
TLC27L9MJB  
J
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC27L4ACDR  
TLC27L4ACDR  
TLC27L4AIDR  
TLC27L4BCDR  
TLC27L4BIDR  
TLC27L4CDR  
TLC27L4CDR  
TLC27L4CNSR  
TLC27L4CPWR  
TLC27L4IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2000  
2500  
2000  
2500  
2000  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
12.4  
16.4  
12.4  
16.4  
16.4  
16.4  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
8.2  
6.9  
6.5  
6.9  
6.5  
8.2  
6.5  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
10.5  
5.6  
9.0  
5.6  
9.0  
10.5  
9.0  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.5  
1.6  
2.1  
1.6  
2.1  
2.5  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
12.0  
16.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
D
D
D
D
D
NS  
PW  
D
TSSOP  
SOIC  
TSSOP  
SOIC  
SO  
TLC27L4IPWR  
TLC27L9CDR  
TLC27L9CNSR  
TLC27L9IDR  
PW  
D
NS  
D
SOIC  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jul-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC27L4ACDR  
TLC27L4ACDR  
TLC27L4AIDR  
TLC27L4BCDR  
TLC27L4BIDR  
TLC27L4CDR  
TLC27L4CDR  
TLC27L4CNSR  
TLC27L4CPWR  
TLC27L4IDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SO  
D
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2000  
2000  
2500  
2000  
2500  
2000  
2500  
367.0  
333.2  
367.0  
367.0  
367.0  
367.0  
333.2  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
345.9  
367.0  
367.0  
367.0  
367.0  
345.9  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
38.0  
28.6  
38.0  
38.0  
38.0  
38.0  
28.6  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
38.0  
D
D
D
D
D
NS  
PW  
D
TSSOP  
SOIC  
TSSOP  
SOIC  
SO  
TLC27L4IPWR  
TLC27L9CDR  
TLC27L9CNSR  
TLC27L9IDR  
PW  
D
NS  
D
SOIC  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TLC27L4BCJP4

IC OP-AMP, Operational Amplifier
TI

TLC27L4BCN

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC27L4BCN3

IC OP-AMP, Operational Amplifier
TI

TLC27L4BCNE4

QUAD OP-AMP, 3000uV OFFSET-MAX, 0.11MHz BAND WIDTH, PDIP14, ROHS COMPLIANT, PLASTIC , DIP-14
TI

TLC27L4BCNE4

Operational Amplifier, 4 Func, 3000uV Offset-Max, CMOS, PDIP14, ROHS COMPLIANT, PLASTIC , DIP-14
ROCHESTER

TLC27L4BCNP3

Operational Amplifier
ROCHESTER

TLC27L4BCNS

QUAD OP-AMP, 3000uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDSO14
TI

TLC27L4BCNSG4

QUAD OP-AMP, 3000uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDSO14
TI

TLC27L4BCNSR

QUAD OP-AMP, 3000uV OFFSET-MAX, 0.085MHz BAND WIDTH, PDSO14
TI

TLC27L4BID

LinCMOSE PRECISION QUAD OPERATIONAL AMPLIFIERS
TI

TLC27L4BIDG4

四路、16V、85kHz、低功耗(10μA/通道)、2mV 失调电压、输入接近 V- 的运算放大器 | D | 14 | -40 to 85
TI

TLC27L4BIDR

Quad, 16-V, 85-kHz, low power (10-μA/ch), 2-mV offset voltage, In to V- operational amplifier | D | 14 | -40 to 85
TI