TPS78625DCQ [ROCHESTER]

2.5V FIXED POSITIVE LDO REGULATOR, PDSO6, GREEN, PLASTIC, SOT-223, 6 PIN;
TPS78625DCQ
型号: TPS78625DCQ
厂家: Rochester Electronics    Rochester Electronics
描述:

2.5V FIXED POSITIVE LDO REGULATOR, PDSO6, GREEN, PLASTIC, SOT-223, 6 PIN

信息通信管理 光电二极管 输出元件 调节器
文件: 总30页 (文件大小:1910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A  
LOW-DROPOUT LINEAR REGULATORS  
Check for Samples: TPS786xx  
1
FEATURES  
DESCRIPTION  
234  
1.5-A Low-Dropout Regulator With Enable  
The TPS786xx family of low-dropout (LDO)  
low-power linear voltage regulators features high  
power-supply rejection ratio (PSRR), ultralow noise,  
fast start-up, and excellent line and load transient  
responses in small outline, SOT223-6 and DDPAK-5  
packages. Each device in the family is stable, with a  
small 1-mF ceramic capacitor on the output. The  
family uses an advanced, proprietary BiCMOS  
fabrication process to yield extremely low dropout  
voltages (for example, 390 mV at 1.5 A). Each device  
achieves fast start-up times (approximately 50 ms with  
a 0.001-mF bypass capacitor) while consuming very  
low quiescent current (265 mA, typical). Moreover,  
when the device is placed in standby mode, the  
supply current is reduced to less than 1 mA. The  
TPS78630 exhibits approximately 48 mVRMS of output  
voltage at 3.0-V output noise with a 0.1-mF bypass  
capacitor. Applications with analog components that  
are noise sensitive, such as portable RF electronics,  
benefit from the high PSRR, low noise features, and  
the fast response time.  
Available in Fixed and Adjustable (1.2-V to  
5.5-V) Output Versions  
High PSRR (49 dB at 10 kHz)  
Ultralow Noise (48 mVRMS, TPS78630)  
Fast Start-Up Time (50 ms)  
Stable With a 1-mF Ceramic Capacitor  
Excellent Load/Line Transient Response  
Very Low Dropout Voltage (390 mV at Full  
Load, TPS78630)  
3 × 3 SON PowerPAD™, 6-Pin SOT223 and  
5-Pin DDPAK Package  
APPLICATIONS  
RF: VCOs, Receivers, ADCs  
Audio  
Bluetooth® , Wireless LAN  
Cellular and Cordless Telephones  
Handheld Organizers, PDAs  
DRB PACKAGE  
3mm x 3mm SON  
(TOP VIEW)  
TPS78630  
TPS78630  
RIPPLE REJECTION  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
vs  
DCQ PACKAGE  
SOT223-6  
(TOP VIEW)  
IN  
IN  
1
2
3
4
8
7
6
5
EN  
FREQUENCY  
FREQUENCY  
NC  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
OUT  
OUT  
GND  
NR/FB  
V
= 4 V  
V
= 5.5 V  
IN  
IN  
1
2
3
4
EN  
IN  
C
OUT  
= 10 mF  
C
OUT  
= 2.2 mF  
I
= 1 mA  
= 1.5 A  
C
NR  
= 0.01 mF  
OUT  
C
NR  
= 0.1 mF  
6
GND  
OUT  
GND  
I
5
OUT  
NR/FB  
KTT (DDPAK) PACKAGE  
(TOP VIEW)  
I
= 1 mA  
OUT  
EN  
1
2
IN  
GND  
I
= 1.5 A  
OUT  
3
4
OUT  
1
10  
100  
1k  
10k 100k 1M 10M  
100  
1k  
10k  
100k  
NR/FB  
Frequency (Hz)  
5
Frequency (Hz)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
PowerPAD is a trademark of Texas Instruments Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2002–2010, Texas Instruments Incorporated  
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
(2)  
PRODUCT  
VOUT  
TPS786xx yyy z  
XX is nominal output voltage (for example, 28 = 2.8 V, 285 = 2.85 V, 01 = Adjustable).  
YYY is package designator.  
Z is package quantity.  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Output voltages from 1.3 V to 5.0 V in 100-mV increments are available; minimum order quantities may apply. Contact factory for details  
and availability.  
ABSOLUTE MAXIMUM RATINGS  
Over operating temperature (unless otherwise noted)(1)  
VALUE  
VIN range  
–0.3 V to 6 V  
–0.3 V to VIN + 0.3 V  
6 V  
VEN range  
VOUT range  
Peak output current  
ESD rating, HBM  
Internally limited  
2 kV  
ESD rating, CDM  
500 V  
Continuous total power dissipation  
Junction temperature range, TJ  
Storage temperature range, Tstg  
See Thermal Information table  
–40°C to +150°C  
–65°C to +150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
THERMAL INFORMATION  
TPS786xx(3)  
THERMAL METRIC(1)(2)  
DRB  
8 PINS  
47.8  
83  
DCQ  
6 PINS  
70.4  
70  
KTT  
5 PINS  
25  
UNITS  
qJA  
Junction-to-ambient thermal resistance(4)  
Junction-to-case (top) thermal resistance(5)  
Junction-to-board thermal resistance(6)  
Junction-to-top characterization parameter(7)  
Junction-to-board characterization parameter(8)  
Junction-to-case (bottom) thermal resistance(9)  
qJCtop  
qJB  
35  
N/A  
N/A  
N/A  
1.5  
°C/W  
yJT  
2.1  
6.8  
yJB  
17.8  
12.1  
30.1  
6.3  
8.52  
0.4  
qJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953A.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.  
(3) Thermal data for the DRB, DCQ, and DRV packages are derived by thermal simulations based on JEDEC-standard methodology as  
specified in the JESD51 series. The following assumptions are used in the simulations:  
(a) i. DRB: The exposed pad is connected to the PCB ground layer through  
ii. DCQ: The exposed pad is connected to the PCB ground layer through  
a
a
2x2 thermal via array.  
3x2 thermal via array.  
.
. iii. KTT: The exposed pad is connected to the PCB ground layer through a 5x4 thermal via array.  
(b) i. DRB: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper  
coverage.  
.
ii. DCQ: Each of top and bottom copper layers has a dedicated pattern for 20% copper coverage.  
. iii. KTT: The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper  
coverage.  
(c) These data were generated with only a single device at the center of a JEDEC high-K (2s2p) board with 3in × 3in copper area. To  
understand the effects of the copper area on thermal performance, see the Power Dissipation and Estimating Junction Temperature  
sections of this data sheet.  
(4) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(5) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the top of the package. No specific  
JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(6) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(7) The junction-to-top characterization parameter, yJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data to obtain qJA using a procedure described in JESD51-2a (sections 6 and 7).  
(8) The junction-to-board characterization parameter, yJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data to obtain qJA using a procedure described in JESD51-2a (sections 6 and 7).  
(9) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Copyright © 2002–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS786xx  
 
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Over recommended operating temperature range (TJ = –40°C to +125°C), VEN = VIN, VIN = VOUT(nom) + 1 V(1), IOUT = 1 mA,  
COUT = 10 mF, and CNR = 0.01 mF, unless otherwise noted. Typical values are at +25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNIT  
(1)  
Input voltage, VIN  
V
V
A
V
V
Internal reference, VFB (TPS78601)  
Continuous output current IOUT  
1.200  
1.225  
1.250  
0
1.5  
Output voltage range TPS78601  
1.225  
5.5 – VDO  
TPS78601(2) 0 mA IOUT 1.5 A, VOUT + 1 V VIN 5.5 V(1)  
(0.98)VOUT  
VOUT (1.02)VOUT  
+2.0  
Output  
voltage  
Fixed VOUT  
< 5 V  
0 mA IOUT 1.5 A, VOUT + 1 V VIN 5.5 V(1)  
–2.0  
–3.0  
%
%
Accuracy  
Fixed VOUT  
= 5 V  
0 mA IOUT 1.5 A, VOUT + 1 V VIN 5.5 V(1)  
+3.0  
(1)  
Output voltage line regulation (ΔVOUT%/VIN  
)
VOUT + 1 V VIN 5.5 V  
0 mA IOUT 1.5 A  
IOUT = 1.5 A  
5
7
12  
%/V  
mV  
Load regulation (ΔVOUT%/VOUT  
)
TPS78628  
TPS78630  
TPS78633  
TPS78650  
410  
390  
340  
310  
580  
550  
510  
470  
4.2  
385  
1
Dropout voltage(3)  
VIN = VOUT(nom) – 0.1 V  
IOUT = 1.5 A  
mV  
IOUT = 1.5 A  
IOUT = 1.5 A  
Output current limit  
Ground pin current  
Shutdown current(4)  
FB pin current  
VOUT = 0 V  
2.4  
A
0 mA IOUT 1.5 A  
VEN = 0 V, 2.7 V VIN 5.5 V  
VFB = 1.225 V  
260  
mA  
mA  
mA  
0.07  
1
f = 100 Hz, IOUT = 10 mA  
f = 100 Hz, IOUT = 1.5 A  
f = 10 kHz, IOUT = 1.5 A  
f = 100 kHz, IOUT = 1.5 A  
59  
52  
49  
32  
66  
51  
49  
48  
50  
75  
110  
Power-supply ripple rejection  
TPS78630  
dB  
CNR = 0.001 mF  
CNR = 0.0047 mF  
CNR = 0.01 mF  
CNR = 0.1 mF  
BW = 100 Hz to 100 kHz,  
IOUT = 1.5 A  
Output noise voltage (TPS78630)  
Time, start-up (TPS78630)  
mVRMS  
CNR = 0.001 mF  
CNR = 0.0047 mF  
CNR = 0.01 mF  
RL = 2 , COUT = 1 mF  
ms  
High-level enable input voltage  
Low-level enable input voltage  
EN pin current  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
VEN = 0  
1.7  
0
VIN  
0.7  
1
V
V
–1  
mA  
V
UVLO threshold  
VCC rising  
2.25  
2.65  
UVLO hysteresis  
100  
mV  
(1) Minimum VIN = VOUT + VDO or 2.7 V, whichever is greater. The TPS78650 is tested at VIN = 5.5 V.  
(2) Tolerance of external resistors not included in this specification.  
(3) Dropout is not measured for TPS78618 or TPS78625 since minimum VIN = 2.7 V.  
(4) For adjustable version, this applies only after VIN is applied; then VEN transitions high to low.  
4
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSION  
IN  
OUT  
300  
Current  
Sense  
UVLO  
Overshoot  
Detect  
GND  
EN  
ILIM  
SHUTDOWN  
R1  
R2  
FB  
UVLO  
Thermal  
Shutdown  
Quickstart  
External to  
the Device  
Bandgap  
Reference  
1.225 V  
VREF  
VIN  
250 k  
FUNCTIONAL BLOCK DIAGRAM—FIXED VERSION  
IN  
OUT  
300  
Current  
Sense  
UVLO  
Overshoot  
Detect  
GND  
EN  
ILIM  
SHUTDOWN  
R1  
R2  
UVLO  
Thermal  
Shutdown  
R2 = 40 k  
Quickstart  
Bandgap  
Reference  
1.225 V  
VREF  
VIN  
NR  
250 k  
PIN CONFIGURATIONS  
TERMINAL  
KTT  
DCQ  
DRB  
NAME  
(SOT223)  
(DDPAK)  
(SON)  
DESCRIPTION  
Noise-reduction pin for fixed versions only. An external bypass capacitor, connected to this terminal, in  
conjunction with an internal resistor, creates a low-pass filter to further reduce regulator noise.  
NR  
5
5
5
8
The EN terminal is an input that enables or shuts down the device. When EN is a logic high, the device  
is enabled. When the device is a logic low, the device is in shutdown mode.  
EN  
1
1
FB  
GND  
IN  
5
3, 6  
2
5
5
Feedback input voltage for the adjustable device.  
Regulator ground  
3, TAB  
6
2
4
1, 2  
3, 4  
Input supply  
OUT  
4
Regulator output  
Copyright © 2002–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS786xx  
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS  
TPS78630  
TPS78628  
TPS78628  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
GROUND CURRENT  
vs  
vs  
vs  
OUTPUT CURRENT  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.798  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
350  
340  
330  
320  
310  
300  
290  
V
C
= 4 V  
= 10 µF  
OUT  
= 25°C  
V
C
= 3.8 V  
V
= 3.8 V  
IN  
IN  
IN  
= 10 µF  
C
OUT  
= 10 µF  
OUT  
2.794  
T
J
I
= 1 mA  
OUT  
2.790  
I
= 1.5 A  
OUT  
2.786  
I
= 1.5 A  
OUT  
I
= 1 mA  
OUT  
2.782  
2.778  
0.0  
0.3  
0.6  
0.9  
(A)  
1.2  
1.5  
−402510  
5
20 35 50 65 80 95 110 125  
(°C)  
−402510  
5
20 35 50 65 80 95 110 125  
(°C)  
I
T
J
T
J
OUT  
Figure 1.  
Figure 2.  
Figure 3.  
TPS78630  
TPS78630  
TPS78630  
OUTPUT SPECTRAL  
NOISE DENSITY  
OUTPUT SPECTRAL  
NOISE DENSITY  
OUTPUT SPECTRAL  
NOISE DENSITY  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
V
C
C
= 5.5 V  
V
C
C
= 5.5 V  
V
= 5.5 V  
IN  
= 10 µF  
OUT  
= 1.5 A  
IN  
IN  
= 2.2 µF  
= 10 µF  
C
I
OUT  
= 0.1 µF  
OUT  
= 0.1 µF  
NR  
NR  
OUT  
I
= 1.5 A  
OUT  
C
NR  
= 0.1 µF  
C
NR  
= 0.0047 µF  
I
= 1 mA  
C
NR  
= 0.01 µF  
OUT  
C
= 0.001 µF  
NR  
I
= 1 mA  
OUT  
I
= 1.5 A  
OUT  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
Figure 4.  
Figure 5.  
Figure 6.  
6
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
TYPICAL CHARACTERISTICS (continued)  
TPS78630  
ROOT MEAN SQUARED  
TPS78628  
TPS78630  
OUTPUT NOISE  
vs  
DROPOUT VOLTAGE  
vs  
RIPPLE REJECTION  
vs  
BYPASS CAPACITANCE  
JUNCTION TEMPERATURE  
FREQUENCY  
80  
70  
60  
50  
40  
30  
20  
600  
500  
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
C
C
= 4 V  
V
C
= 2.7 V  
= 10 µF  
OUT  
= 1.5 A  
IN  
IN  
= 10 µF  
OUT  
= 0.01 µF  
I
= 1 mA  
I
OUT  
NR  
OUT  
I
= 1.5 A  
OUT  
I
C
= 1.5 A  
= 10 µF  
OUT  
10  
0
OUT  
BW = 100 Hz to 100 kHz  
0.001 µF  
0.0047 µF  
0.01 µF  
(µF)  
0.1 µF  
−402510  
5
20 35 50 65 80 95 110 125  
(°C)  
1
10  
100  
1k 10k 100k 1M 10M  
C
NR  
f (Hz)  
T
J
Figure 7.  
Figure 8.  
Figure 9.  
TPS78630  
TPS78630  
TPS78630  
RIPPLE REJECTION  
RIPPLE REJECTION  
RIPPLE REJECTION  
vs  
vs  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
80  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4 V  
V
C
C
= 4 V  
V
C
C
= 4 V  
IN  
= 2.2 µF  
OUT  
= 0.01 µF  
NR  
IN  
IN  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 2.2 µF  
= 10 µF  
OUT  
= 0.1 µF  
OUT  
= 0.1 µF  
I
= 1 mA  
I
= 1 mA  
I
= 1 mA  
= 1.5 A  
OUT  
OUT  
OUT  
NR  
NR  
I
OUT  
I
= 1.5 A  
OUT  
I
= 1.5 A  
OUT  
0
1
1
10  
100  
1k 10k 100k 1M 10M  
10  
100  
1k 10k 100k 1M 10M  
1
10  
100  
1k 10k 100k 1M 10M  
f (Hz)  
f (Hz)  
f (Hz)  
Figure 10.  
Figure 11.  
Figure 12.  
TPS78618  
TPS78630  
TPS78628  
LINE TRANSIENT RESPONSE  
LINE TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
5
4
3
2
2
1
0
6
5
4
3
V
C
C
= 3.8 V  
I
C
C
= 1.5 A  
IN  
di  
dt  
dv  
dt  
OUT  
1.5 A  
ms  
1 V  
ms  
dv  
dt  
1 V  
ms  
−1  
I
C
C
= 1.5 A  
= 10 µF  
OUT  
= 0.01 µF  
OUT  
+
+
+
= 10 µF  
= 10 µF  
OUT  
= 0.01 µF  
OUT  
= 0.01 µF  
NR  
NR  
60  
30  
150  
75  
80  
40  
NR  
0
0
0
−30  
−60  
−75  
−150  
−40  
−80  
0
20 40 60 80 100 120 140 160 180 200  
0
100 200 300 400 500 600 700 800 900 1000  
0
20 40 60 80 100 120 140 160 180 200  
t (µs)  
t (µs)  
t s)  
Figure 13.  
Figure 14.  
Figure 15.  
Copyright © 2002–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS786xx  
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
TPS78630  
TPS78601  
TPS78625  
POWER-UP/  
POWER-DOWN  
DROPOUT VOLTAGE  
DROPOUT VOLTAGE  
vs  
vs  
OUTPUT CURRENT  
INPUT VOLTAGE  
600  
500  
400  
300  
200  
100  
0
4.0  
3.5  
3.0  
2.5  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
R
C
= 2.5 V  
= 1.6  
= 0.01 µF  
OUT  
L
NR  
T
= 125°C  
J
T
= 125°C  
J
T
J
= 25°C  
T
J
= 25°C  
2.0  
1.5  
1.0  
0.5  
0
T
= −40°C  
J
V
IN  
T
J
= −40°C  
I
C
C
= 1.5 A  
= 10 µF  
OUT  
= 0.01 µF  
OUT  
V
OUT  
NR  
0
0
200 400 600 800 1000 1200 1400  
(mA)  
0
400  
800  
1200  
1600  
2000  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
I
V
Time (µs)  
OUT  
IN  
Figure 16.  
Figure 17.  
Figure 18.  
TPS78630  
TPS78630  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
(ESR)  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
(ESR)  
MINIMUM REQUIRED  
INPUT VOLTAGE  
vs  
vs  
vs  
OUTPUT VOLTAGE  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
10  
5.0  
100  
10  
I
= 1.5 A  
OUT  
C
OUT  
= 1 µF  
C
OUT  
= 2.2 µF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
Region of  
Instability  
Region of  
Instability  
T
= +125°C  
J
1
0.1  
1
0.1  
T
J
= +25°C  
Region of Stability  
Region of Stability  
0.01  
0.01  
1
30  
125  
500  
(mA)  
1000  
1500  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1
30  
125  
500  
(mA)  
1000  
1500  
I
I
OUT  
OUT  
V
(V)  
OUT  
Figure 19.  
Figure 20.  
Figure 21.  
8
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
TYPICAL CHARACTERISTICS (continued)  
TPS78630  
TYPICAL REGIONS OF STABILITY  
EQUIVALENT SERIES RESISTANCE (ESR)  
vs  
OUTPUT CURRENT  
START-UP  
100  
3
V
C
= 4 V,  
IN  
C
OUT  
= 10 µF  
2.75  
2.50  
2.25  
2
C
=
NR  
= 10 µF,  
OUT  
0.0047 µF  
I
= 1.5 A  
IN  
Region of  
Instability  
10  
Enable  
C
=
NR  
0.001 µF  
1.75  
1.50  
1.25  
1
1
0.1  
C
=
NR  
0.01 µF  
Region of Stability  
0.75  
0.50  
0.25  
0
0.01  
0
100  
200  
300  
400  
500  
600  
1
30  
125  
500  
(mA)  
1000  
1500  
t (µs)  
I
OUT  
Figure 22.  
Figure 23.  
Copyright © 2002–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS786xx  
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
APPLICATION INFORMATION  
order for the regulator to operate properly, the current  
flow out of the NR pin must be at a minimum,  
because any leakage current creates an IR drop  
across the internal resistor, thus creating an output  
error. Therefore, the bypass capacitor must have  
minimal leakage current. The bypass capacitor  
should be no more than 0.1-mF to ensure that it is  
fully charged during the quickstart time provided by  
the internal switch shown in the functional block  
diagram.  
The TPS786xx family of low-dropout (LDO) regulators  
has been optimized for use in noise-sensitive  
equipment. The device features extremely low  
dropout voltages, high PSRR, ultralow output noise,  
low quiescent current (265 mA, typically), and enable  
input to reduce supply currents to less than 1 mA  
when the regulator is turned off.  
A typical application circuit is shown in Figure 24.  
VIN  
VOUT  
For example, the TPS78630 exhibits only 48 mVRMS  
of output voltage noise using a 0.1-mF ceramic  
IN  
OUT  
TPS786xx  
GND  
2.2 mF  
2.2 mF  
bypass capacitor and  
a 10-mF ceramic output  
EN  
NR  
capacitor. Note that the output starts up slower as the  
bypass capacitance increases due to the RC time  
constant at the bypass pin that is created by the  
internal 250-kresistor and external capacitor.  
0.01 mF  
Figure 24. Typical Application Circuit  
BOARD LAYOUT RECOMMENDATIONS TO  
IMPROVE PSRR AND NOISE PERFORMANCE  
EXTERNAL CAPACITOR REQUIREMENTS  
To improve ac measurements like PSRR, output  
noise, and transient response, it is recommended that  
the board be designed with separate ground planes  
for VIN and VOUT, with each ground plane connected  
only at the ground pin of the device. In addition, the  
ground connection for the bypass capacitor should  
connect directly to the ground pin of the device.  
A 2.2-mF or larger ceramic input bypass capacitor,  
connected between IN and GND and located close to  
the TPS786xx, is required for stability and improves  
transient response, noise rejection, and ripple  
rejection. A higher-value input capacitor may be  
necessary if large, fast-rise-time load transients are  
anticipated and the device is located several inches  
from the power source.  
REGULATOR MOUNTING  
Like most low-dropout regulators, the TPS786xx  
requires an output capacitor connected between OUT  
and GND to stabilize the internal control loop. The  
minimum recommended capacitor is 1 mF. Any 1 mF  
or larger ceramic capacitor is suitable.  
The tab of the SOT223-6 package is electrically  
connected to ground. For best thermal performance,  
the tab of the surface-mount version should be  
soldered directly to a circuit-board copper area.  
Increasing the copper area improves heat dissipation.  
The internal voltage reference is a key source of  
noise in an LDO regulator. The TPS786xx has an NR  
pin which is connected to the voltage reference  
through a 250-kinternal resistor. The 250-kΩ  
internal resistor, in conjunction with an external  
bypass capacitor connected to the NR pin, creates a  
low pass filter to reduce the voltage reference noise  
and, therefore, the noise at the regulator output. In  
Solder pad footprint recommendations for the devices  
are presented in Application Report SBFA015, Solder  
Pad Recommendations for Surface-Mount Devices,  
available from the TI web site at www.ti.com.  
10  
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
 
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
PROGRAMMING THE TPS78601  
ADJUSTABLE LDO REGULATOR  
The approximate value of this capacitor can be  
calculated using Equation 3:  
−7  
(3 x 10 ) x (R ) R )  
1
2
The output voltage of the TPS78601 adjustable  
regulator is programmed using an external resistor  
divider as shown in Figure 25. The output voltage is  
calculated using Equation 1:  
C
+
1
(R x R )  
1
2
(3)  
The suggested value of this capacitor for several  
resistor ratios is shown in the table below. If this  
capacitor is not used (such as in a unity-gain  
configuration), then the minimum recommended  
output capacitor is 2.2 mF instead of 1 mF.  
R
ǒ Ǔ  
1
V
+ V  
 
1 )  
OUT  
REF  
R
2
(1)  
where:  
REGULATOR PROTECTION  
VREF = 1.2246 V typ (the internal reference  
voltage)  
The TPS786xx PMOS-pass transistor has a built-in  
back diode that conducts reverse current when the  
input voltage drops below the output voltage (for  
example, during power down). Current is conducted  
from the output to the input and is not internally  
limited. If extended reverse voltage operation is  
anticipated, external limiting might be appropriate.  
Resistors R1 and R2 should be chosen for  
approximately 40-mA divider current. Lower value  
resistors can be used for improved noise  
performance, but the device wastes more power.  
Higher values should be avoided, as leakage current  
at FB increases the output voltage error.  
The TPS786xx features internal current limiting and  
thermal protection. During normal operation, the  
TPS786xx limits output current to approximately  
2.8 A. When current limiting engages, the output  
voltage scales back linearly until the overcurrent  
condition ends. While current limiting is designed to  
prevent gross device failure, care should be taken not  
to exceed the power dissipation ratings of the  
package. If the temperature of the device exceeds  
approximately +165°C, thermal-protection circuitry  
shuts it down. Once the device has cooled down to  
below approximately +140°C, regulator operation  
resumes.  
The recommended design procedure is to choose  
R2 = 30.1 kto set the divider current at 40 mA,  
C1 = 15 pF for stability, and then calculate R1 using  
Equation 2:  
V
ǒ Ǔ  
OUT  
R +  
* 1   R  
1
2
V
REF  
(2)  
In order to improve the stability of the adjustable  
version, it is suggested that a small compensation  
capacitor be placed between OUT and FB.  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
VIN  
VOUT  
IN  
OUT  
TPS78601  
OUTPUT  
VOLTAGE  
R1  
C1  
EN  
R1  
R2  
C1  
2.2 mF  
2.2 mF  
GND  
FB  
1.8 V  
3.6 V  
14.0 kW  
30.1 kW  
33 pF  
R2  
57.9 kW  
30.1 kW  
15 pF  
Figure 25. TPS78601 Adjustable LDO Regulator Programming  
Copyright © 2002–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS786xx  
 
 
 
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
THERMAL INFORMATION  
Knowing the maximum RqJA, the minimum amount of  
PCB copper area needed for appropriate heatsinking  
can be estimated using Figure 26.  
POWER DISSIPATION  
Knowing the device power dissipation and proper  
sizing of the thermal plane that is connected to the  
tab or pad is critical to avoiding thermal shutdown  
and ensuring reliable operation.  
160  
DCQ  
140  
DRB  
Power dissipation of the device depends on input  
voltage and load conditions and can be calculated  
using Equation 4:  
KTT  
120  
100  
80  
60  
40  
20  
0
ǒ
Ǔ
PD + VIN * VOUT   IOUT  
(4)  
Power dissipation can be minimized and greater  
efficiency can be achieved by using the lowest  
possible input voltage necessary to achieve the  
required output voltage regulation.  
On the SON (DRB) package, the primary conduction  
path for heat is through the exposed pad to the  
printed circuit board (PCB). The pad can be  
connected to ground or be left floating; however, it  
should be attached to an appropriate amount of  
copper PCB area to ensure the device does not  
overheat. On both SOT-223 (DCQ) and DDPAK  
(KTT) packages, the primary conduction path for heat  
is through the tab to the PCB. That tab should be  
4
5
7
0
1
2
3
6
8
9
10  
Board Copper Area (in2)  
Note: qJA value at board size of 9in2 (that is, 3in ×  
3in) is a JEDEC standard.  
Figure 26. qJA vs Board Size  
Figure 26 shows the variation of qJA as a function of  
ground plane copper area in the board. It is intended  
only as a guideline to demonstrate the effects of heat  
spreading in the ground plane and should not be  
used to estimate actual thermal performance in real  
application environments.  
connected  
to  
ground.  
The  
maximum  
junction-to-ambient thermal resistance depends on  
the maximum ambient temperature, maximum device  
junction temperature, and power dissipation of the  
device and can be calculated using Equation 5:  
O
(
)125 C * TA  
+
)
NOTE: When the device is mounted on an  
application PCB, it is strongly recommended to use  
ΨJT and ΨJB, as explained in the Estimating Junction  
Temperature section.  
R
qJA  
PD  
(5)  
12  
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
 
 
 
 
 
TPS786xx  
www.ti.com  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
ESTIMATING JUNCTION TEMPERATURE  
35  
30  
25  
20  
15  
10  
5
Using the thermal metrics ΨJT and ΨJB, as shown in  
the Thermal Information table, the junction  
temperature can be estimated with corresponding  
formulas (given in Equation 6). For backwards  
compatibility, an older qJC,Top parameter is listed as  
well.  
DCQ  
YJB  
DRB  
KTT  
YJT: TJ = TT + YJT · PD  
YJB: TJ = TB + YJB · PD  
(6)  
DCQ YJT  
DRB YJT  
KTT YJT  
Where PD is the power dissipation shown by  
Equation 5, TT is the temperature at the center-top of  
the IC package, and TB is the PCB temperature  
measured 1mm away from the IC package on the  
PCB surface (as Figure 28 shows).  
0
0
1
2
3
4
5
6
7
8
9
10  
Board Copper Area (in2)  
Figure 27. ΨJT and ΨJB vs Board Size  
NOTE: Both TT and TB can be measured on actual  
application boards using a thermo-gun (an infrared  
thermometer).  
For a more detailed discussion of why TI does not  
recommend using qJC(top) to determine thermal  
characteristics, refer to application report SBVA025,  
Using New Thermal Metrics, available for download  
at www.ti.com. For further information, refer to  
application report SPRA953, IC Package Thermal  
Metrics, also available on the TI website.  
For more information about measuring TT and TB, see  
the application note SBVA025, Using New Thermal  
Metrics, available for download at www.ti.com.  
By looking at Figure 27, the new thermal metrics (ΨJT  
and ΨJB) have very little dependency on board size.  
That is, using ΨJT or ΨJB with Equation 6 is a good  
way to estimate TJ by simply measuring TT or TB,  
regardless of the application board size.  
(1)  
TB  
TT on top of IC  
X
1mm  
TT on top  
of IC  
TB on PCB  
surface  
TB on PCB  
(2)  
TT  
surface  
1mm  
X
1mm  
(c) Example KTT (DDPAK) Package Measurement  
(a) Example DRB (SON) Package Measurement  
(b) Example DCQ (SOT-223) Package Measurement  
(1) TT is measured at the center of both the X- and Y-dimensional axes.  
(2) TB is measured below the package lead on the PCB surface.  
Figure 28. Measuring Points for TT and TB  
Copyright © 2002–2010, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS786xx  
 
 
 
 
TPS786xx  
SLVS389L SEPTEMBER 2002REVISED OCTOBER 2010  
www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision K (August, 2010) to Revision L  
Page  
Corrected typo in Figure 28 ................................................................................................................................................ 13  
Changes from Revision J (May, 2009) to Revision K  
Page  
Replaced the Dissipation Ratings table with the Thermal Information Table ....................................................................... 3  
Revised Thermal Information section ................................................................................................................................. 12  
14  
Submit Documentation Feedback  
Copyright © 2002–2010, Texas Instruments Incorporated  
Product Folder Link(s): TPS786xx  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TPS78601DCQ  
ACTIVE  
SOT-223  
DCQ  
6
78  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
-40 to 125  
PS78601  
TPS78601DCQG4  
TPS78601DCQR  
ACTIVE  
ACTIVE  
SOT-223  
SOT-223  
DCQ  
DCQ  
6
6
TBD  
Call TI  
CU SN  
Call TI  
-40 to 125  
-40 to 125  
2500  
2500  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
PS78601  
PS78601  
OCI  
TPS78601DCQRG4  
TPS78601DRBR  
TPS78601DRBT  
TPS78601KTT  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-223  
SON  
DCQ  
DRB  
DRB  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
6
8
8
5
5
5
5
5
6
6
6
6
5
5
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
SON  
Green (RoHS  
& no Sb/Br)  
OCI  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS78601KTTR  
TPS78601KTTRG3  
TPS78601KTTT  
TPS78601KTTTG3  
TPS78618DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
TPS  
78601  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78601  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
78601  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78601  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
PS78618  
PS78618  
PS78618  
PS78618  
TPS78618DCQG4  
TPS78618DCQR  
TPS78618DCQRG4  
TPS78618KTT  
78  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS78618KTTR  
ACTIVE  
DDPAK/  
TO-263  
500  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
TPS  
78618  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TPS78618KTTRE3  
TPS78618KTTRG3  
TPS78618KTTT  
TPS78618KTTTG3  
TPS78625DCQ  
ACTIVE  
DDPAK/  
TO-263  
KTT  
5
5
5
5
6
6
6
6
5
5
5
5
5
6
6
5
5
5
500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
TPS  
78618  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
KTT  
KTT  
KTT  
500  
50  
Green (RoHS  
& no Sb/Br)  
TPS  
78618  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
78618  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78618  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
PS78625  
PS78625  
PS78625  
PS78625  
TPS78625DCQG4  
TPS78625DCQR  
TPS78625DCQRG4  
TPS78625KTT  
78  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS78625KTTR  
TPS78625KTTRG3  
TPS78625KTTT  
TPS78625KTTTG3  
TPS78628DCQR  
TPS78628DCQRG4  
TPS78628KTT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
TPS  
78625  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78625  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
78625  
DDPAK/  
TO-263  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78625  
SOT-223  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Call TI  
PS78628  
SOT-223  
Green (RoHS  
& no Sb/Br)  
PS78628  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS78628KTTT  
TPS78628KTTTG3  
ACTIVE  
DDPAK/  
TO-263  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
TPS  
78628  
ACTIVE  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78628  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TPS78630DCQ  
TPS78630DCQG4  
TPS78630DCQR  
TPS78630DCQRG4  
TPS78630KTT  
ACTIVE  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
DCQ  
6
6
6
6
5
5
5
6
6
6
6
5
5
5
5
5
78  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
PS78630  
ACTIVE  
ACTIVE  
ACTIVE  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
78  
Green (RoHS  
& no Sb/Br)  
PS78630  
PS78630  
PS78630  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS78630KTTT  
TPS78630KTTTG3  
TPS78633DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
50  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
TPS  
78630  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78630  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Call TI  
PS78633  
PS78633  
PS78633  
PS78633  
TPS78633DCQG4  
TPS78633DCQR  
TPS78633DCQRG4  
TPS78633KTT  
78  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
TPS78633KTTR  
TPS78633KTTRE3  
TPS78633KTTRG3  
TPS78633KTTT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500  
500  
500  
50  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
TPS  
78633  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78633  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
TPS  
78633  
DDPAK/  
TO-263  
Green (RoHS  
& no Sb/Br)  
CU SN  
-40 to 125  
TPS  
78633  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2013  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS78601DCQRG4  
TPS78601DRBR  
TPS78601DRBT  
TPS78601KTTT  
SOT-223 DCQ  
6
8
8
5
2500  
3000  
250  
50  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
24.4  
7.05  
3.3  
7.45  
3.3  
1.88  
1.1  
1.1  
4.9  
8.0  
8.0  
12.0  
12.0  
12.0  
24.0  
Q3  
Q2  
Q2  
Q2  
SON  
SON  
DRB  
DRB  
KTT  
3.3  
3.3  
8.0  
DDPAK/  
TO-263  
10.6  
15.6  
16.0  
TPS78618DCQR  
TPS78618KTTR  
SOT-223 DCQ  
6
5
2500  
500  
330.0  
330.0  
12.4  
24.4  
6.8  
7.3  
1.88  
4.9  
8.0  
12.0  
24.0  
Q3  
Q2  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
10.6  
15.6  
16.0  
TPS78618KTTRE3  
TPS78618KTTT  
DDPAK/  
TO-263  
5
5
500  
50  
330.0  
330.0  
24.4  
24.4  
10.6  
10.6  
15.6  
15.6  
4.9  
4.9  
16.0  
16.0  
24.0  
24.0  
Q2  
Q2  
DDPAK/  
TO-263  
TPS78625DCQR  
TPS78625KTTR  
SOT-223 DCQ  
6
5
2500  
500  
330.0  
330.0  
12.4  
24.4  
6.8  
7.3  
1.88  
4.9  
8.0  
12.0  
24.0  
Q3  
Q2  
DDPAK/  
TO-263  
KTT  
10.6  
15.6  
16.0  
TPS78625KTTT  
DDPAK/  
TO-263  
KTT  
5
50  
330.0  
24.4  
10.6  
15.6  
4.9  
16.0  
24.0  
Q2  
TPS78628DCQR  
TPS78628KTTT  
SOT-223 DCQ  
6
5
2500  
50  
330.0  
330.0  
12.4  
24.4  
6.8  
7.3  
1.88  
4.9  
8.0  
12.0  
24.0  
Q3  
Q2  
DDPAK/  
TO-263  
KTT  
10.6  
15.6  
16.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS78630DCQR  
TPS78630KTTT  
SOT-223 DCQ  
6
5
2500  
50  
330.0  
330.0  
12.4  
24.4  
6.8  
7.3  
1.88  
4.9  
8.0  
12.0  
24.0  
Q3  
Q2  
DDPAK/  
TO-263  
KTT  
10.6  
15.6  
16.0  
TPS78633DCQR  
TPS78633KTTR  
SOT-223 DCQ  
6
5
2500  
500  
330.0  
330.0  
12.4  
24.4  
6.8  
7.3  
1.88  
4.9  
8.0  
12.0  
24.0  
Q3  
Q2  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
10.6  
15.6  
16.0  
TPS78633KTTRE3  
TPS78633KTTT  
DDPAK/  
TO-263  
5
5
500  
50  
330.0  
330.0  
24.4  
24.4  
10.6  
10.6  
15.6  
15.6  
4.9  
4.9  
16.0  
16.0  
24.0  
24.0  
Q2  
Q2  
DDPAK/  
TO-263  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS78601DCQRG4  
TPS78601DRBR  
TPS78601DRBT  
TPS78601KTTT  
TPS78618DCQR  
TPS78618KTTR  
TPS78618KTTRE3  
TPS78618KTTT  
SOT-223  
SON  
DCQ  
DRB  
DRB  
KTT  
DCQ  
KTT  
KTT  
KTT  
6
8
8
5
6
5
5
5
2500  
3000  
250  
50  
358.0  
367.0  
210.0  
367.0  
358.0  
367.0  
367.0  
367.0  
335.0  
367.0  
185.0  
367.0  
335.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
45.0  
35.0  
45.0  
45.0  
45.0  
SON  
DDPAK/TO-263  
SOT-223  
2500  
500  
500  
50  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS78625DCQR  
TPS78625KTTR  
TPS78625KTTT  
TPS78628DCQR  
TPS78628KTTT  
TPS78630DCQR  
TPS78630KTTT  
TPS78633DCQR  
TPS78633KTTR  
TPS78633KTTRE3  
TPS78633KTTT  
SOT-223  
DDPAK/TO-263  
DDPAK/TO-263  
SOT-223  
DCQ  
KTT  
KTT  
DCQ  
KTT  
DCQ  
KTT  
DCQ  
KTT  
KTT  
KTT  
6
5
5
6
5
6
5
6
5
5
5
2500  
500  
50  
358.0  
367.0  
367.0  
358.0  
367.0  
358.0  
367.0  
358.0  
367.0  
367.0  
367.0  
335.0  
367.0  
367.0  
335.0  
367.0  
335.0  
367.0  
335.0  
367.0  
367.0  
367.0  
35.0  
45.0  
45.0  
35.0  
45.0  
35.0  
45.0  
35.0  
45.0  
45.0  
45.0  
2500  
50  
DDPAK/TO-263  
SOT-223  
2500  
50  
DDPAK/TO-263  
SOT-223  
2500  
500  
500  
50  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TPS78625DCQG4

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625DCQG4

2.5V FIXED POSITIVE LDO REGULATOR, PDSO6, GREEN, PLASTIC, SOT-223, 6 PIN
ROCHESTER

TPS78625DCQR

ULTRALOW-NOISE, HIGH PSRR, FAST RF 1.5 A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625DCQR

2.5V FIXED POSITIVE LDO REGULATOR, PDSO6, GREEN, PLASTIC, SOT-223, 6 PIN
ROCHESTER

TPS78625DCQRG4

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625KTT

ULTRALOW-NOISE, HIGH PSRR, FAST RF 1.5 A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625KTTR

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625KTTR

2.5V FIXED POSITIVE LDO REGULATOR, PSSO5, GREEN, PLASTIC, TO-263, D2PAK-5
ROCHESTER

TPS78625KTTRG3

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625KTTT

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI

TPS78625KTTT

2.5V FIXED POSITIVE LDO REGULATOR, PSSO5, GREEN, PLASTIC, TO-263, D2PAK-5
ROCHESTER

TPS78625KTTTG3

ULTRALOW-NOISE, HIGH-PSRR, FAST, RF, 1.5-A LOW-DROPOUT LINEAR REGULATORS
TI