X5083S8-2.7 [ROCHESTER]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, SOIC-8;
X5083S8-2.7
型号: X5083S8-2.7
厂家: Rochester Electronics    Rochester Electronics
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, SOIC-8

光电二极管
文件: 总22页 (文件大小:1005K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X5083  
®
Data Sheet  
June 15, 2006  
FN8127.3  
CPU Supervisor with 8Kbit SPI EEPROM  
Features  
This device combines four popular functions, Power-on Reset  
Control, Watchdog Timer, Supply Voltage Supervision, and  
Block Lock Serial EEPROM Memory in one package. This  
combination lowers system cost, reduces board space  
requirements, and increases reliability.  
• Low VCC detection and reset assertion  
- Four standard reset threshold voltages  
4.63V, 4.38V, 2.93V, 2.63V  
- Re-program low VCC reset threshold voltage using  
special programming sequence  
- Reset signal valid to VCC = 1V  
Applying power to the device activates the power-on reset  
circuit which holds RESET active for a period of time. This  
allows the power supply and oscillator to stabilize before the  
processor can execute code.  
• Selectable time out watchdog timer  
• Long battery life with low power consumption  
- <50µA max standby current, watchdog on  
- <1µA max standby current, watchdog off  
- <400µA max active current during read  
The Watchdog Timer provides an independent protection  
mechanism for microcontrollers. When the microcontroller fails to  
restart a timer within a selectable time out interval, the device  
activates the RESET signal. The user selects the interval  
from three preset values. Once selected, the interval does  
not change, even after cycling the power.  
• 8Kbits of EEPROM  
• Save critical data with Block Lockmemory  
- Block lock first or last page, any 1/4 or lower 1/2 of  
EEPROM array  
The device’s low VCC detection circuitry protects the user’s  
system from low voltage conditions, resetting the system  
when VCC falls below the minimum VCC trip point. RESET is  
asserted until VCC returns to the proper operating level and  
stabilizes. Five industry standard VTRIP thresholds are  
available, however, Intersil’s unique circuits allow the threshold  
to be reprogrammed to meet custom requirements or to fine-  
tune the threshold for applications requiring higher precision.  
• Built-in inadvertent write protection  
- Write enable latch  
- Write protect pin  
• SPI Interface - 3.3MHz clock rate  
• Minimize programming time  
- 16 byte page write mode  
- 5ms write cycle time (typical)  
Pinouts  
• SPI modes (0,0 & 1,1)  
8 LD TSSOP  
• Available packages  
RESET  
SCK  
SI  
1
2
3
4
8
7
6
5
- 8 Ld TSSOP, 8 Ld SOIC, 8 Ld PDIP  
V
CC  
X5083  
CS/WDI  
SO  
V
• Pb-free plus anneal available (RoHS compliant)  
SS  
WP  
Applications  
• Communications Equipment  
- Routers, Hubs, Switches  
- Set Top Boxes  
8 LD SOIC, 8 LD PDIP  
V
1
2
3
4
8
7
6
5
CS/WDI  
SO  
CC  
• Industrial Systems  
- Process Control  
RESET  
SCK  
SI  
X5083  
WP  
V
SS  
- Intelligent Instrumentation  
• Computer Systems  
- Desktop Computers  
- Network Servers  
• Battery Powered Equipment  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005-2006. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
X5083  
Typical Application  
2.7-5.0V  
VCC  
uC  
VCC  
X5083  
RESET  
10K  
RESET  
SPI  
CS  
SCK  
SI  
SO  
WP  
VSS  
VSS  
Block Diagram  
POR AND LOW  
VOLTAGE RESET  
GENERATION  
V
+
-
CC  
RESET (X5083)  
V
TRIP  
RESET & WATCHDOG  
TIMEBASE  
X5083  
WATCHDOG  
TIMER  
WATCHDOG  
TRANSITION  
DETECTOR  
STANDARD VTRIP LEVEL  
SUFFIX  
-4.5A  
-4.5  
RESET  
4.63V (+/-2.5%)  
4.38V (+/-2.5%)  
2.93V (+/-2.5%)  
2.63V (+/-2.5%)  
CS/WDI  
SI  
STATUS  
REGISTER  
COMMAND  
DECODE &  
CONTROL  
LOGIC  
-2.7A  
-2.7  
SO  
SCK  
WP  
EEPROM  
ARRAY  
8KBITS  
See “Ordering Information” on page 3 for  
more details  
PROTECT LOGIC  
For Custom Settings, call Intersil.  
FN8127.3  
June 15, 2006  
2
X5083  
Ordering Information  
PART NUMBER RESET  
TEMPERATURE  
RANGE (°C)  
PKG.  
DWG. #  
(ACTIVE LOW)  
PART MARKING  
V
CC RANGE (V) VTRIP RANGE  
PACKAGE  
8 Ld PDIP  
X5083P-4.5A  
X5083P AL  
X5083P ZAL  
X5083P AM  
X5083P ZAM  
X5083 AL  
X5083 ZAL  
X5083 AM  
X5083 ZAM  
583 AL  
4.5-5.5  
4.5-4.75  
0 to 70  
0 to 70  
MDP0031  
MDP0031  
MDP0031  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
M8.173  
X5083PZ-4.5A (Note)  
X5083PI-4.5A  
8 Ld PDIP* (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5083PIZ-4.5A (Note)  
X5083S8-4.5A  
8 Ld PDIP* (Pb-free)  
8 Ld SOIC  
X5083S8Z-4.5A (Note)  
X5083S8I-4.5A*  
X5083S8IZ-4.5A* (Note)  
X5083V8-4.5A  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
-40 to 85  
-40 to 85  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld TSSOP  
X5083V8Z-4.5A (Note)  
X5083V8I-4.5A  
583 ZAL  
0 to 70  
8 Ld TSSOP (Pb-free)  
8 Ld TSSOP  
M8.173  
583 AM  
-40 to 85  
-40 to 85  
0 to 70  
M8.173  
X5083V8IZ-4.5A (Note)  
X5083P  
583 ZAM  
X5083P  
8 Ld TSSOP (Pb-free)  
8 Ld PDIP  
M8.173  
4.5-5.5  
4.25-4.5  
MDP0031  
MDP0031  
MDP0031  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
M8.173  
X5083PZ (Note)  
X5083PI  
X5083P Z  
X5083P I  
X5083P ZI  
X5083 I  
0 to 70  
8 Ld PDIP* (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
X5083PIZ (Note)  
X5083SI  
8 Ld PDIP* (Pb-free)  
8 Ld SOIC  
X5083S8  
X5083  
8 Ld SOIC  
X5083S8Z (Note)  
X5083S8I*  
X5083 Z  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
X5083 I  
-40 to 85  
-40 to 85  
0 to 70  
X5083S8IZ* (Note)  
X5083V8  
X5083 ZI  
583  
8 Ld SOIC (Pb-free)  
8 Ld TSSOP  
X5083V8Z (Note)  
X5083V8I  
583 Z  
0 to 70  
8 Ld TSSOP (Pb-free)  
8 Ld TSSOP  
M8.173  
583 I  
-40 to 85  
-40 to 85  
0 to 70  
M8.173  
X5083V8IZ (Note)  
X5083P-2.7A  
583 IZ  
8 Ld TSSOP (Pb-free)  
8 Ld PDIP  
M8.173  
X5083P AN  
X5083P ZAN  
X5083P AP  
X5083P ZAP  
X5083 AN  
X5083 ZAN  
X5083 AP  
X5083 ZAP  
583 AN  
2.7-5.5  
2.85-3.0  
MDP0031  
MDP0031  
MDP0031  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
M8.173  
X5083PZ-2.7A (Note)  
X5083PI-2.7A  
0 to 70  
8 Ld PDIP* (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5083PIZ-2.7A (Note)  
X5083S8-2.7A  
8 Ld PDIP* (Pb-free)  
8 Ld SOIC  
X5083S8Z-2.7A (Note)  
X5083S8I-2.7A  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
-40 to 85  
-40 to 85  
0 to 70  
X5083S8IZ-2.7A* (Note)  
X5083V8-2.7A  
8 Ld SOIC (Pb-free)  
8 Ld TSSOP  
X5083V8Z-2.7A (Note)  
X5083V8I-2.7A  
583 ZAN  
583 AP  
0 to 70  
8 Ld TSSOP (Pb-free)  
8 Ld TSSOP  
M8.173  
-40 to 85  
-40 to 85  
M8.173  
X5083V8IZ-2.7A (Note)  
583 ZAP  
8 Ld TSSOP (Pb-free)  
M8.173  
FN8127.3  
June 15, 2006  
3
X5083  
Ordering Information (Continued)  
PART NUMBER RESET  
TEMPERATURE  
RANGE (°C)  
PKG.  
DWG. #  
(ACTIVE LOW)  
PART MARKING  
X5083P F  
X5083P ZF  
X5083P G  
X5083P ZG  
X5083 F  
V
CC RANGE (V) VTRIP RANGE  
PACKAGE  
8 Ld PDIP  
X5083P-2.7  
2.7-5.5  
2.55-2.7  
0 to 70  
0 to 70  
MDP0031  
MDP0031  
MDP0031  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
M8.173  
X5083PZ-2.7 (Note)  
X5083PI-2.7  
8 Ld PDIP* (Pb-free)  
8 Ld PDIP  
-40 to 85  
-40 to 85  
0 to 70  
X5083PIZ-2.7 (Note)  
X5083S8-2.7*  
8 Ld PDIP* (Pb-free)  
8 Ld SOIC  
X5083S8Z-2.7* (Note)  
X5083S8I-2.7*  
X5083 ZF  
X5083 G  
X5083 ZG  
583 F  
0 to 70  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
-40 to 85  
-40 to 85  
0 to 70  
X5083S8IZ-2.7* (Note)  
X5083V8-2.7  
8 Ld SOIC (Pb-free)  
8 Ld TSSOP  
X5083V8Z-2.7 (Note)  
X5083V8I-2.7  
583 FZ  
0 to 70  
8 Ld TSSOP (Pb-free)  
8 Ld TSSOP  
M8.173  
583G  
-40 to 85  
-40 to 85  
M8.173  
X5083V8IZ-2.7 (Note)  
583 GZ  
8 Ld TSSOP (Pb-free)  
M8.173  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
*Add "-T1" suffix for tape and reel.  
*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.  
Pin Description  
PIN  
(SOIC/  
PDIP)  
PIN  
TSSOP  
NAME  
FUNCTION  
1
3
CS/WDI Chip Select Input. CS HIGH, deselects the device and the SO output pin is at a high impedance state. Unless  
a nonvolatile write cycle is underway, the device will be in the standby power mode. CS LOW enables the  
device, placing it in the active power mode. Prior to the start of any operation after power-up, a HIGH to LOW  
transition on CS is required.  
Watchdog Input. A HIGH to LOW transition on the WDI pin restarts the Watchdog timer. The absence of a  
HIGH to LOW transition within the watchdog time out period results in RESET going active.  
2
5
6
4
7
8
SO  
SI  
Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data out on this pin. The falling edge of the  
serial clock (SCK) clocks the data out.  
Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and memory data on this pin. The rising  
edge of the serial clock (SCK) latches the input data. Send all opcodes (Table 1), addresses and data MSB first.  
SCK  
Serial Clock. The Serial Clock controls the serial bus timing for data input and output. The rising edge of SCK latches  
in the opcode, address, or data bits present on the SI pin. The falling edge of SCK changes the data output on the SO  
pin.  
3
5
WP  
Write Protect. When WP is LOW, nonvolatile write operations to the memory are prohibited. This “Locks” the  
memory to protect it against inadvertent changes when WP is HIGH, the device operates normally.  
4
8
7
6
2
1
VSS  
VCC  
Ground  
Supply Voltage  
RESET Reset Output. RESET is an active LOW, open drain output which goes active whenever VCC falls below the  
minimum VCC sense level. It will remain active until VCC rises above the minimum VCC sense level for 250ms.  
RESET goes active if the watchdog timer is enabled and CS remains either HIGH or LOW longer than the  
selectable watchdog time out period. A falling edge of CS will reset the watchdog timer. RESET goes active on  
power-up at about 1V and remains active for 250ms after the power supply stabilizes.  
FN8127.3  
June 15, 2006  
4
X5083  
To set the new VTRIP voltage, apply the desired VTRIP  
threshold voltage to the VCC pin and tie the WP pin to the  
programming voltage VP. Then send a WREN command,  
followed by a write of Data 00h to address 01h. CS going  
HIGH on the write operation initiates the VTRIP programming  
sequence. Bring WP LOW to complete the operation.  
Principles of Operation  
Power-on Reset  
Application of power to the X5083 activates a power-on  
reset circuit. This circuit goes LOW at 1V and pulls the  
RESET pin active. This signal prevents the system  
microprocessor from starting to operate with insufficient  
voltage or prior to stabilization of the oscillator. RESET  
active also blocks communication to the device through the  
SPI interface. When VCC exceeds the device VTRIP value for  
200ms (nominal) the circuit releases RESET, allowing the  
processor to begin executing code. While VCC < VTRIP  
communications to the device are inhibited.  
Note: This operation also writes 00h to array address 01h.  
Resetting the V  
Voltage  
TRIP  
This procedure is used to set the VTRIP to a “native” voltage  
level. For example, if the current VTRIP is 4.4V and the new  
V
V
TRIP must be 4.0V, then the VTRIP must be reset. When  
TRIP is reset, the new VTRIP is something less than 1.7V.  
This procedure must be used to set the voltage to a lower  
value.  
Low Voltage Monitoring  
During operation, the X5083 monitors the VCC level and  
asserts RESET if supply voltage falls below a preset  
minimum VTRIP. The RESET signal prevents the  
microprocessor from operating in a power fail or brownout  
condition and terminates any SPI communication in  
progress. The RESET signal remains active until the voltage  
drops below 1V. It also remains active until VCC returns and  
exceeds VTRIP for 200ms.  
To reset the new VTRIP voltage, apply the desired VTRIP  
threshold voltage to the Vcc pin and tie the WP pin to the  
programming voltage VP. Then send a WREN command,  
followed by a write of data 00h to address 03h. CS going  
HIGH on the write operation initiates the VTRIP programming  
sequence. Bring WP LOW to complete the operation.  
Note: This operation also writes 00h to array address 03h.  
When VCC falls below VTRIP, any communications in  
progress are terminated and communications are inhibited  
until VCC exceeds VTRIP for tPURST  
.
Watchdog Timer  
The watchdog timer circuit monitors the microprocessor activity  
by monitoring the WDI input. The microprocessor must toggle  
the CS/WDI pin periodically to prevent a RESET signal. The  
CS/WDI pin must be toggled from HIGH to LOW prior to the  
expiration of the watchdog time out period. The state of two  
nonvolatile control bits in the status register determine the  
watchdog timer period. The microprocessor can change these  
watchdog bits with no action taken by the microprocessor  
these bits remain unchanged, even after total power failure.  
V
Threshold Reset Procedure  
CC  
The X5083 is shipped with a standard VCC threshold (VTRIP  
voltage. This value will not change over normal operating  
and storage conditions. However, in applications where the  
standard VTRIP is not exactly right, or if higher precision is  
needed in the VTRIP value, the X5083 threshold may be  
adjusted. The procedure is described below, and uses the  
application of a high voltage control signal.  
)
Setting the V  
Voltage  
TRIP  
This procedure is used to set the VTRIP to a higher voltage  
value. For example, if the current VTRIP is 4.4V and the new  
TRIP is 4.6V, this procedure will directly make the change. If  
V
the new setting is to be lower than the current setting, then it  
is necessary to reset the trip point before setting the new  
value.  
FN8127.3  
June 15, 2006  
5
X5083  
VP = 15-18V  
WP  
CS  
0
1
2
3
4
5 6 7  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23  
SCK  
16 Bits  
SI  
06h  
02h  
Write  
00h  
Data  
0001h  
Address  
WREN  
FIGURE 1. SET VTRIP LEVEL SEQUENCE (VCC = DESIRED VTRIP VALUE)  
VP = 15-18V  
WP  
CS  
0
1
2
3
4
5
6 7  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23  
SCK  
16 Bits  
SI  
06h  
WREN  
02h  
Write  
00h  
Data  
0003h  
Address  
FIGURE 2. RESET VTRIP LEVEL SEQUENCE (VCC > 3V. WP = 15-18V)  
4.7K  
VP  
RESET  
µC  
1
8
7
6
5
Adjust  
Run  
2
3
4
X5083  
SCK  
SI  
VTRIP  
Adj.  
SO  
CS  
FIGURE 3. SAMPLE VTRIP RESET CIRCUIT  
FN8127.3  
June 15, 2006  
6
X5083  
V
Programming  
TRIP  
Execute  
Reset V  
TRIP  
Sequence  
Set V = V Applied =  
CC  
CC  
Desired V  
TRIP  
New V Applied =  
CC  
Old V Applied + Error  
CC  
Execute  
Set V  
Sequence  
New V Applied =  
CC  
Old V Applied - Error  
CC  
TRIP  
Apply 5V to V  
Execute  
TRIP  
Sequence  
CC  
Reset V  
Decrement V  
CC  
(V = V - 50mV)  
CC  
CC  
NO  
RESET pin  
goes active?  
YES  
Error  
–Emax  
Error Emax  
Measured V  
-
TRIP  
TRIP  
Desired V  
–Emax < Error < Emax  
DONE  
Emax = Maximum Desired Error  
FIGURE 4. VTRIP PROGRAMMING SEQUENCE  
FN8127.3  
June 15, 2006  
7
X5083  
SPI Serial Memory  
Write Enable Latch  
The memory portion of the device is a CMOS serial EEPROM  
array with Intersil’s block lock protection. The array is  
internally organized as x 8. The device features a Serial  
Peripheral Interface (SPI) and software protocol allowing  
operation on a simple four-wire bus.  
The device contains a Write Enable Latch. This latch must  
be SET before a Write Operation is initiated. The WREN  
instruction will set the latch and the WRDI instruction will  
reset the latch (Figure 7). This latch is automatically reset  
upon a power-up condition and after the completion of a  
valid Write Cycle.  
The device utilizes Intersil’s proprietary Direct Writecell,  
providing a minimum endurance of 100,000 cycles and a  
minimum data retention of 100 years.  
Status Register  
The RDSR instruction provides access to the status register.  
The status register may be read at any time, even during a  
write cycle. The status register is formatted as follows.  
The device is designed to interface directly with the  
synchronous Serial Peripheral Interface (SPI) of many  
popular microcontroller families.  
Status Register/Block Lock/WDT Byte  
The device monitors the bus and asserts RESET output if the  
watchdog timer is enabled and there is no bus activity within  
the user selectable time out period or the supply voltage falls  
7
6
5
4
3
2
1
0
0
0
0
WD1  
WD0  
BL2  
BL1  
BL0  
below a preset minimum VTRIP  
.
Block Lock Memory  
The device contains an 8-bit instruction register. It is  
accessed via the SI input, with data being clocked in on the  
rising edge of SCK. CS must be LOW during the entire  
operation.  
Intersil’s block lock memory provides a flexible mechanism to  
store and lock system ID and parametric information. There  
are seven distinct block lock memory areas within the array  
which vary in size from one page to as much as half of the  
entire array. These areas and associated address ranges are  
block locked by writing the appropriate two byte block lock  
instruction to the device as described in Table 1 and Figure 9.  
Once a block lock instruction has been completed, that block  
lock setup is held in the nonvolatile status register until the  
next block lock instruction is issued. The sections of the  
memory array that are block locked can be read but not  
written until block lock is removed or changed.  
All instructions (Table 1), addresses and data are transferred  
MSB first. Data input on the SI line is latched on the first  
rising edge of SCK after CS goes LOW. Data is output on the  
SO line by the falling edge of SCK. SCK is static, allowing  
the user to stop the clock and then start it again to resume  
operations where left off.  
TABLE 1. INSTRUCTION SET AND BLOCK LOCK PROTECTION BYTE DEFINITION  
INSTRUCTION NAME AND OPERATION  
INSTRUCTION FORMAT  
0000 0110  
WREN: set the write enable latch (write enable operation)  
WRDI: reset the write enable latch (write disable operation)  
0000 0100  
0000 0001  
Write status instruction—followed by:  
Block lock/WDT byte: (See Figure 1)  
000WD1 WD2000 --->no block lock: 00h-00h--->none of the array  
000WD1 WD2001 --->block lock Q1: 0000h-00FFh--->lower quadrant (Q1)  
000WD1 WD2010 --->block lock Q2: 0100h-01FFh--->Q2  
000WD1 WD2011 --->block lock Q3: 0200h-02FFh--->Q3  
000WD1 WD2100 --->block lock Q4: 0300h-03FFh--->upper quadrant (Q4)  
000WD1 WD2101 --->block lock H1: 0000h-01FFh--->lower half of the array (H1)  
000WD1 WD2110 --->block lock P0: 0000h-000Fh--->lower page (P0)  
000WD1 WD2111 --->block lock Pn: 03F0h-03FFh--->upper page (PN)  
0000 0101  
0000 0010  
0000 0011  
READ STATUS: reads status register & provides write in progress status on SO pin  
WRITE: write operation followed by address and data  
READ: read operation followed by address  
FN8127.3  
June 15, 2006  
8
X5083  
To write data to the EEPROM memory array, the user then  
issues the WRITE instruction followed by the 16 bit address  
and then the data to be written. Any unused address bits are  
specified to be “0’s”. The WRITE operation minimally takes  
32 clocks. CS must go low and remain low for the duration of  
the operation. If the address counter reaches the end of a  
page and the clock continues, the counter will roll back to the  
first address of the same page and overwrite any data that  
may have been previously written.  
Watchdog Timer  
The watchdog timer bits, WD0 and WD1, select the  
watchdog time out period. These nonvolatile bits are  
programmed with the WRSR instruction. A change to the  
Watchdog Timer, either setting a new time out period or  
turning it off or on, takes effect, following either the next  
command (read or write) or cycling the power to the device.  
The recommended procedure for changing the Watch-dog  
Timer settings is to do a WREN, followed by a write status  
register command. Then execute a soft-ware loop to read  
the status register until the MSB of the status byte is zero. A  
valid alternative is to do a WREN, followed by a write status  
register command. Then wait 10ms and do a read status  
command.  
For a write operation (byte or page write) to be completed,  
CS can only be brought HIGH after bit 0 of the last data byte  
to be written is clocked in. If it is brought HIGH at any other  
time, the write operation will not be completed (Figure 8).  
To write to the status register, the WRSR instruction is  
followed by the data to be written (Figure 9). Data bits 5, 6  
and 7 must be “0”.  
TABLE 2. WATCHDOG TIMER DEFINITION  
STATUS REGISTER BITS  
WATCHDOG TIME OUT  
WD1  
Read Status Operation  
WD0  
(TYPICAL)  
If there is not a nonvolatile write in progress, the read status  
instruction returns the block lock setting from the status  
register which contains the watchdog timer bits WD1, WD0,  
and the block lock bits IDL2-IDL0 (Figure 6). The block lock  
bits define the block lock condition (Table 1). The watchdog  
timer bits set the operation of the watchdog timer (Table 2).  
The other bits are reserved and will return ’0’ when read. See  
Figure 6.  
0
0
1
1
0
1
0
1
1.4s  
600ms  
200ms  
disabled (factory default)  
Read Sequence  
When reading from the EEPROM memory array, CS is first  
pulled low to select the device. The 8-bit READ instruction is  
transmitted to the device, followed by the 16-bit address.  
After the READ opcode and address are sent, the data  
stored in the memory at the selected address is shifted out  
on the SO line. The data stored in memory at the next  
address can be read sequentially by continuing to provide  
clock pulses. The address is automatically incremented to  
the next higher address after each byte of data is shifted out.  
When the highest address is reached, the address counter  
rolls over to address $0000 allowing the read cycle to be  
continued indefinitely. The read operation is terminated by  
taking CS high. Refer to the read EEPROM array sequence  
(Figure 5).  
During an internal nonvolatile write operaiton, the Read  
Status Instruction returns a HIGH on SO in the first bit  
following the RDSR instruction (the MSB). The remaining  
bits in the output status byte are undefined. Repeated Read  
Status Instructions return the MSB as a ‘1’ until the  
nonvolatile write cycle is complete. When the nonvolatile  
write cycle is completed, the RDSR instruction returns a ‘0’  
in the MSB position with the remaining bits of the status  
register undefined. Subsequent RDSR instructions return  
the Status Register Contents. See Figure 10.  
RESET Operation  
The RESET output is designed to go LOW whenever VCC  
has dropped below the minimum trip point and/or the  
watchdog timer has reached its programmable time out limit.  
To read the status register, the CS line is first pulled low to  
select the device followed by the 8-bit RDSR instruction.  
After the RDSR opcode is sent, the contents of the status  
register are shifted out on the SO line. Refer to the read status  
register sequence (Figure 6).  
The RESET output is an open drain output and requires a  
pull up resistor.  
Operational Notes  
The device powers-up in the following state:  
Write Sequence  
• The device is in the low power standby state.  
Prior to any attempt to write data into the device, the “Write  
Enable” Latch (WEL) must first be set by issuing the WREN  
instruction (Figure 7). CS is first taken LOW, then the WREN  
instruction is clocked into the device. After all eight bits of the  
instruction are transmitted, CS must then be taken HIGH. If  
the user continues the write operation without taking CS  
HIGH after issuing the WREN instruction, the write operation  
will be ignored.  
• A HIGH to LOW transition on CS is required to enter an  
active state and receive an instruction.  
• SO pin is high impedance.  
• The write enable latch is reset.  
• Reset signal is active for tPURST  
.
FN8127.3  
June 15, 2006  
9
X5083  
Data Protection  
The following circuitry has been included to prevent  
inadvertent writes:  
• A WREN instruction must be issued to set the write enable  
latch.  
• CS must come HIGH at the proper clock count in order to  
start a nonvolatile write cycle.  
• When VCC is below VTRIP, communications to the device  
are inhibited.  
CS  
20 21 22 23 24 25 26 27 28 29 30  
0
1
2
3
4
5
6
7
8
9
SCK  
SI  
Read Instruction  
(1 Byte)  
Byte Address (2 Byte)  
15 14  
Data Out  
3
2
1
0
High Impedance  
7
6
5
4
3
2
1
0
SO  
FIGURE 5. READ OPERATION SEQUENCE  
CS  
0
1
2
3
4
5
6
7
...  
SCK  
Read Status  
Instruction  
...  
...  
SI  
W
D
1
W
D
0
B
L
2
B
L
1
B
L
0
SO  
SO = Status Reg When no Nonvolatile  
Write Cycle  
FIGURE 6. READ STATUS OPERATION SEQUENCE  
FN8127.3  
June 15, 2006  
10  
X5083  
CS  
0
1
2
3
4
5
6
7
SCK  
Instruction  
(1 Byte)  
SI  
High Impedance  
SO  
FIGURE 7. WREN/WRDI SEQUENCE  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
SCK  
Instruction  
16 Bit Address  
15 14 13  
Data Byte 1  
3
2
1
0
7
6
5
4
3
2
1
0
SI  
CS  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
SCK  
SI  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
FIGURE 8. EEPROM ARRAY WRITE SEQUENCE  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
Data Byte  
Instruction  
4
6
5
3
2
1
0
SI  
W
D
1
B
L
2
B
B
W
D
0
L
L
1
0
High Impedance  
SO  
FIGURE 9. STATUS REGISTER WRITE SEQUENCE  
FN8127.3  
June 15, 2006  
11  
X5083  
CS  
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7  
SCK  
READ STATUS  
INSTRUCTION  
READ STATUS  
INSTRUCTION  
SI  
NONVOLATILE WRITE IN PROGRESS  
SO  
SO MSB HIGH while  
in the Nonvolatile write cycle  
SO MSB still HIGH indicates  
Nonvolatile write cycle still in progress  
CS  
0
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7  
SCK  
SI  
READ STATUS  
INSTRUCTION  
READ STATUS  
INSTRUCTION  
NONVOLATILE  
WRITE ENDS  
4
3 2 1 0  
SO  
1st detected SO MSB LOW  
indicates end of Nonvolatile write cycle  
FIGURE 10. READ NONVOLATILE WRITE STATUS  
FN8127.3  
June 15, 2006  
12  
X5083  
t
WC  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
NEXT  
INSTRUCTION  
Non-volatile  
Write  
Operation  
Wait tWC after a write for new operation,  
if not using polling procedure  
FIGURE 11. END OF NONVOLATILE WRITE (NO POLLING)  
Symbol Table  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8127.3  
June 15, 2006  
13  
X5083  
Absolute Maximum Ratings  
Operating Conditions  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . . .-65°C to 135°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to 150°C  
Voltage on Any Pin with Respect To Vss . . . . . . . . . . . . . -1.0V to 7V  
D.C. Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . . .300°C  
Temperature Range  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to 85°C  
V
CC Range  
-2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
Blank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 5.5V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
DC Electrical Specifications (Over the recommended operating conditions unless otherwise specified.)  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
VCC Write Current (Active)  
SCK = VCC x 0.1/VCC x 0.9 @ 5MHz,  
SO = Open  
5
mA  
ICC2  
ISB1  
ISB2  
ISB3  
VCC Read Current (Active)  
SCK = VCC x 0.1/VCC x 0.9 @ 5MHz,  
SO = Open  
0.4  
1
mA  
µA  
µA  
µA  
VCC Standby Current WDT = OFF CS = VCC, VIN = VSS or VCC  
VCC = 5.5V  
,
,
,
VCC Standby Current WDT = ON CS = VCC, VIN = VSS or VCC  
VCC = 5.5V  
50  
20  
VCC Standby Current WDT = ON CS = VCC, VIN = VSS or VCC  
V
CC = 3.6V  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS to VCC  
0.1  
0.1  
10  
10  
µA  
µA  
V
ILO  
VOUT = VSS to VCC  
V
IL (Note 1) Input LOW Voltage  
-0.5  
VCC x 0.3  
VCC + 0.5  
0.4  
V
IH (Note 1) Input HIGH Voltage  
VCC x 0.7  
V
VOL1  
VOL2  
VOL3  
VOH1  
VOH2  
VOH3  
VOLRS  
Output LOW Voltage  
Output LOW Voltage  
Output LOW Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Reset Output LOW Voltage  
VCC > 3.3V, IOL = 2.1mA  
2V < VCC 3.3V, IOL = 1mA  
VCC 2V, IOL = 0.5mA  
V
0.4  
V
0.4  
V
VCC > 3.3V, IOH = -1.0mA  
VCC - 0.8  
VCC - 0.4  
VCC - 0.2  
V
2V < VCC 3.3V, IOH = -0.4mA  
VCC 2V, IOH = -0.25mA  
IOL = 1mA  
V
V
0.4  
V
Power-Up Timing  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
tPUR (Note 2) Power-up to read operation  
PUW (Note 2) Power-up to write operation  
1
5
ms  
ms  
t
.
Capacitance TA = +25°C, f = 1MHz, VCC = 5V  
SYMBOL TEST  
OUT (Note 2) Output capacitance (SO, RESET, RESET)  
IN (Note 2) Input capacitance (SCK, SI, CS, WP)  
MAX  
UNIT  
pF  
CONDITIONS  
VOUT = 0V  
VIN = 0V  
C
8
6
C
pF  
NOTES:  
1. VIL min. and VIH max. are for reference only and are not tested.  
2. This parameter is periodically sampled and not 100% tested.  
FN8127.3  
June 15, 2006  
14  
X5083  
Equivalent A.C. Load Circuit at 5V V  
A.C. Test Conditions  
Input pulse levels  
CC  
VCC x 0.1 to VCC x 0.9  
10ns  
5V  
5V  
Input rise and fall times  
Input and output timing level  
3.3k  
V
CC x 0.5  
1.64kΩ  
SO  
OUTPUT  
RESET  
1.64kΩ  
30pF  
100pF  
AC Electrical Specifications (Over recommended operating conditions, unless otherwise specified)  
2.7V-5.5V  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
DATA INPUT TIMING  
fSCK  
tCYC  
tLEAD  
tLAG  
Clock frequency  
0
3.3  
MHz  
ns  
Cycle time  
300  
150  
150  
130  
130  
20  
CS lead time  
ns  
CS lag time  
ns  
tWH  
Clock HIGH time  
Clock LOW time  
Data setup time  
Data hold time  
Input rise time  
Input fall time  
CS deselect time  
ns  
tWL  
ns  
tSU  
ns  
tH  
20  
ns  
t
RI (Note 3)  
2
2
µs  
µs  
ns  
t
FI (Note 3)  
tCS  
100  
0
t
WC (Note 4) Write cycle time  
DATA OUTPUT TIMING  
fSCK Clock frequency  
tDIS  
10  
ms  
3.3  
150  
130  
MHz  
ns  
Output disable time  
Output valid from clock low  
Output hold time  
tV  
ns  
tHO  
0
ns  
t
RO (Note 3)  
Output rise time  
50  
50  
ns  
t
FO (Note 3)  
NOTES:  
3. This parameter is periodically sampled and not 100% tested.  
Output fall time  
ns  
4. tWC is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile write cycle.  
FN8127.3  
June 15, 2006  
15  
X5083  
Serial Output Timing  
CS  
tCYC  
tWH  
tLAG  
SCK  
SO  
tWL  
tV  
tHO  
tDIS  
MSB Out  
MSB–1 Out  
LSB Out  
ADDR  
SI  
LSB IN  
Serial Input Timing  
tCS  
CS  
tLEAD  
tLAG  
SCK  
tSU  
tH  
tRI  
tFI  
SI  
MSB IN  
LSB IN  
High Impedance  
SO  
Power-Up and Power-Down Timing  
VTRIP  
VTRIP  
VCC  
tPURST  
tPURST  
0 Volts  
tF  
tRPD  
tR  
RESET  
FN8127.3  
June 15, 2006  
16  
X5083  
RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VTRIP  
Reset trip point voltage, X5083PT-4.5A (Note 6)  
Reset trip point voltage, X5083PT  
Reset trip point voltage, X5083PT-2.7A  
Reset trip point voltage, X5083PT-2.7  
4.5  
4.63  
4.38  
2.93  
2.63  
4.75  
4.5  
3.00  
2.7  
V
4.25  
2.85  
2.55  
tPURST  
RPD (Note 5)  
tF (Note 5)  
tR (Note 5)  
VRVALID  
Power-up reset time out  
VCC detect to reset/output  
VCC fall time  
100  
200  
280  
500  
ms  
ns  
ns  
ns  
V
t
0.1  
0.1  
1
VCC rise time  
Reset valid VCC  
NOTES:  
5. This parameter is periodically sampled and not 100% tested.  
6. PT = Package/Temperature  
CS vs. RESET Timing  
CS  
tCST  
RESET  
tWDO  
tRST  
tWDO  
tRST  
RESET Output Timing  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tWDO  
Watchdog time out period,  
WD1 = 1, WD0 = 1(default)  
WD1 = 1, WD0 = 0  
WD1 = 0, WD0 = 1  
OFF  
200  
600  
1.4  
100  
450  
1
300  
800  
2
ms  
ms  
sec  
WD1 = 0, WD0 = 0  
tCST  
tRST  
CS pulse width to reset the watchdog  
Reset time out  
400  
100  
ns  
200  
300  
ms  
FN8127.3  
June 15, 2006  
17  
X5083  
V
Programming Timing Diagram  
TRIP  
VCC  
VTRIP  
(VTRIP  
)
tTHD  
tTSU  
VP  
VPE  
tVPH  
tVPS  
tVPO  
tPCS  
CS  
tRP  
SCK  
SI  
06h  
WREN  
02h  
Write  
0001h (set)  
0003h (reset)  
Addr.  
00  
Data  
V
Programming Parameters  
TRIP  
PARAMETER  
tVPS  
DESCRIPTION  
MIN  
1
MAX  
UNIT  
µs  
VTRIP program enable voltage setup time  
VTRIP program enable voltage hold time  
VTRIP programming CS inactive time  
VTRIP setup time  
tVPH  
1
µs  
tPCS  
1
µs  
tTSU  
1
µs  
tTHD  
VTRIP hold (stable) time  
10  
ms  
ms  
µs  
tWC  
VTRIP write cycle time  
10  
tVPO  
VTRIP program enable voltage off time (between successive adjustments)  
VTRIP program recovery period (between successive adjustments)  
Programming voltage  
0
tRP  
10  
15  
2.0  
-25  
ms  
V
VP  
18  
5.0  
+25  
VTRAN  
Vtv  
VTRIP programmed voltage range  
V
VTRIP program variation after programming (0-75°C). (programmed at 25°C)  
mV  
NOTES:  
7. VTRIP programming parameters are periodically sampled and are not 100% tested.  
8. For custom VTRIP settings, Contact Factory.  
FN8127.3  
June 15, 2006  
18  
X5083  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. L 2/01  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN8127.3  
June 15, 2006  
19  
X5083  
Plastic Dual-In-Line Packages (PDIP)  
E
N
1
D
PIN #1  
INDEX  
A2  
A
E1  
SEATING  
PLANE  
L
c
A1  
NOTE 5  
2
N/2  
eA  
eB  
e
b
b2  
MDP0031  
PLASTIC DUAL-IN-LINE PACKAGE  
SYMBOL  
PDIP8  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.375  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
8
PDIP14  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
14  
PDIP16  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.750  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
16  
PDIP18  
PDIP20  
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
1.020  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.210  
0.015  
0.130  
0.018  
0.060  
0.010  
0.890  
0.310  
0.250  
0.100  
0.300  
0.345  
0.125  
18  
MIN  
±0.005  
±0.002  
b2  
c
+0.010/-0.015  
+0.004/-0.002  
±0.010  
D
1
2
E
+0.015/-0.010  
±0.005  
E1  
e
Basic  
eA  
eB  
L
Basic  
±0.025  
±0.010  
N
Reference  
Rev. B 2/99  
NOTES:  
1. Plastic or metal protrusions of 0.010” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.  
4. Dimension eB is measured with the lead tips unconstrained.  
5. 8 and 16 lead packages have half end-leads as shown.  
FN8127.3  
June 15, 2006  
20  
X5083  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
M8.173  
N
8 LEAD THIN SHRINK NARROW BODY SMALL OUTLINE  
PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
E1  
-B-  
INCHES  
MIN  
MILLIMETERS  
GAUGE  
PLANE  
SYMBOL  
MAX  
0.047  
0.006  
0.051  
0.0118  
0.0079  
0.120  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
3.05  
4.50  
NOTES  
A
A1  
A2  
b
-
-
1
2
3
0.002  
0.031  
0.0075  
0.0035  
0.116  
0.169  
0.05  
0.80  
0.19  
0.09  
2.95  
4.30  
-
L
0.25  
0.010  
-
0.05(0.002)  
SEATING PLANE  
A
9
-A-  
D
c
-
D
3
-C-  
α
E1  
e
4
A2  
e
A1  
0.026 BSC  
0.65 BSC  
-
c
b
0.10(0.004)  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
0.10(0.004) M  
C
A M B S  
L
0.0177  
0.0295  
6
N
8
8
7
NOTES:  
0o  
8o  
0o  
8o  
-
α
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
Rev. 1 12/00  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8127.3  
June 15, 2006  
21  

相关型号:

X5083S8-2.7A

CPU Supervisor with 9Kbit SPI EEPROM
INTERSIL

X5083S8-2.7A

CPU Supervisor with 8Kbit SPI EEPROM
XICOR

X5083S8-4.5A

CPU Supervisor with 9Kbit SPI EEPROM
INTERSIL

X5083S8-4.5A

CPU Supervisor with 8Kbit SPI EEPROM
XICOR

X5083S8I

CPU Supervisor with 9Kbit SPI EEPROM
INTERSIL

X5083S8I

CPU Supervisor with 8Kbit SPI EEPROM
XICOR

X5083S8I-2.7

CPU Supervisor with 9Kbit SPI EEPROM
INTERSIL

X5083S8I-2.7

CPU Supervisor with 8Kbit SPI EEPROM
XICOR

X5083S8I-2.7

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, SOIC-8
ROCHESTER

X5083S8I-2.7-T1

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, SOIC-8
RENESAS

X5083S8I-2.7A

CPU Supervisor with 9Kbit SPI EEPROM
INTERSIL

X5083S8I-2.7A

CPU Supervisor with 8Kbit SPI EEPROM
XICOR