BA2901YFV-C [ROHM]

Automotive Comparators:Ground Sense; 汽车比较:地感
BA2901YFV-C
型号: BA2901YFV-C
厂家: ROHM    ROHM
描述:

Automotive Comparators:Ground Sense
汽车比较:地感

运算放大器 放大器电路 光电二极管
文件: 总17页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Operational Amplifiers / Comparators  
Automotive Comparators:  
Ground Sense  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
No.11049EBT24  
Description  
Automotive series BA2903Y family and BA2901Y family,  
integrate one, two or four independent high gain voltage  
comparator.  
Some features are the wide operating voltage that is 2 to  
36[V] and low supply current.  
Automotive Series  
Dual  
BA2903Y family  
BA2901Y family  
Quad  
Therefore, this series is suitable for any application  
Features  
1) Operable with a signal power supply  
2) Wide operating supply voltage  
+2.0[V]+36.0[V] (single supply)  
±1.0[V]±18.0[V] (split supply)  
3) Standard comparator pin-assignments  
4) Input and output are operable ground sense  
5) Internal ESD protection  
Human body model (HBM) ± 5000 [V](Typ.)  
6) Wide temperature range  
-40[]+125[]  
Pin Assignment  
14  
1
OUT3  
OUT2  
OUT1  
- IN1  
VCC  
2
3
4
5
13 OUT4  
1
2
3
4
8
7
6
5
OUT1  
12  
VEE  
VCC  
- IN1  
+IN1  
- IN2  
+IN2  
CH1  
OUT2  
- IN2  
CH1  
CH2  
11  
CH4  
CH3  
+IN4  
10  
+IN1  
VEE  
- IN4  
CH2  
6
7
9
8
+IN3  
- IN3  
+ IN2  
SOP8  
SOP14  
MSOP8  
SSOP-B14  
BA2903YF-C  
BA2903YFVM-C  
BA2901YF-C  
BA2901YFV-C  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
1/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Absolute Maximum Ratings (Ta=25[])  
BA2903Y family , BA2901Y family  
Ratings  
Parameter  
Symbol  
VCC-VEE  
Vid  
Unit  
V
BA2903Y family , BA2901Y family  
Supply Voltage  
+36  
36  
Differential Input Voltage (*1)  
V
Input Common-mode Voltage Range  
Operating Temperature Range  
Storage Temperature Range  
Maximum junction Temperature  
Vicm  
(VEE-0.3)(VEE+36)  
-40+125  
-55+150  
+150  
V
Topr  
Tstg  
Tjmax  
Note :Absolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause  
deterioration of characteristics.  
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
2/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Electric Characteristics  
BA2903Y family (Unless otherwise specified VCC=+5[V], VEE=0[V])  
Limits  
Temperature  
Symbol  
Vio  
Unit  
mV  
nA  
Parameter  
Conditions  
range  
Min.  
Typ.  
Max.  
25℃  
Full range  
25℃  
-
-
2
5
VOUT=1.4[V]  
Input Offset Voltage (*2)  
Input Offset Current (*2)  
Input Bias Current (*2)  
-
15  
VCC=536[V],VOUT=1.4[V]  
-
5
50  
Iio  
VOUT=1.4[V]  
Full range  
25℃  
-
-
200  
-
50  
250  
Ib  
nA  
VOUT=1.4[V]  
Full range  
25℃  
-
-
500  
0
0
88  
74  
-
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
Vicm  
AV  
V
-
Full range  
25℃  
VCC-2.0  
100  
-
-
-
VCC=15[V], VOUT=1.411.4[V]  
RL=15[k], VRL=15[V]  
Large Signal Voltage Gain  
Supply Current  
dB  
Full range  
25℃  
0.6  
-
1
VOUT=open  
ICC  
IOL  
mA  
mA  
mV  
μA  
Full range  
-
2.5  
VOUT=open, VCC=36[V]  
VIN+=0[V], VIN-=1[V],  
VOL=1.5[V]  
Output Sink Current (*3)  
25℃  
6
16  
-
25℃  
Full range  
25℃  
-
-
-
-
150  
400  
700  
-
Output Saturation Voltage  
(Low level output voltage)  
VIN+=0[V], VIN-=1[V],  
IOL=4[mA]  
VOL  
Ileak  
Fopr  
-
0.1  
-
VIN+=1[V], VIN-=0[V],  
VOH=5[V]  
Output Leakage Current  
(High level output voltage)  
VIN+=1[V], VIN-=0[V],  
VOH=36[V]  
Full range  
1
VCC=5[V], RL=2[kΩ],  
VIN+=1.5[V], VIN-=5[Vp-p]  
(Duty 50% Rectangular Pulse)  
Operable Frequency  
25℃  
100  
-
-
kHz  
(*2) Absolute value  
(*3) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
3/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
BA2901Y family (Unless otherwise specified VCC=+5[V], VEE=0[V])  
Limits  
Temperature  
Symbol  
Vio  
Unit  
mV  
nA  
Parameter  
Conditions  
range  
Min.  
Typ.  
Max.  
25℃  
Full range  
25℃  
-
-
2
5
VOUT=1.4[V]  
Input Offset Voltage (*4)  
Input Offset Current (*4)  
Input Bias Current (*4)  
-
15  
VCC=536[V], VOUT=1.4[V]  
-
5
50  
Iio  
VOUT=1.4[V]  
Full range  
25℃  
-
-
200  
-
50  
250  
Ib  
nA  
VOUT=1.4[V]  
Full range  
25℃  
-
-
500  
0
0
88  
74  
-
-
-
VCC-1.5  
Input Common-mode  
Voltage Range  
Vicm  
AV  
V
-
Full range  
25℃  
VCC-2.0  
100  
-
-
-
VCC=15[V], VOUT=1.411.4[V]  
RL=15[k], VRL=15[V]  
Large Signal Voltage Gain  
Supply Current  
dB  
Full range  
25℃  
0.8  
-
2
VOUT=open  
ICC  
IOL  
mA  
mA  
mV  
μA  
Full range  
-
2.5  
VOUT=open, VCC=36[V]  
VIN+=0[V], VIN-=1[V],  
VOL=1.5[V]  
Output Sink Current (*5)  
25℃  
6
16  
-
25℃  
Full range  
25℃  
-
-
-
-
150  
400  
700  
-
Output Saturation Voltage  
(Low level output voltage)  
VIN+=0[V], VIN-=1[V],  
IOL=4[mA]  
VOL  
Ileak  
Fopr  
-
0.1  
-
VIN+=1[V], VIN-=0[V],  
VOH=5[V]  
Output Leakage Current  
(High level output voltage)  
VIN+=1[V], VIN-=0[V],  
VOH=36[V]  
Full range  
1
VCC=5[V], RL=2[kΩ],  
VIN+=1.5[V], VIN-=5[Vp-p]  
(Duty 50% Rectangular Pulse)  
Operable Frequency  
25℃  
100  
-
-
kHz  
(*4) Absolute value  
(*5) Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
4/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Reference Data BA2903Y family  
BA2903Y family  
BA2903Y family  
BA2903Y family  
1000  
800  
600  
400  
200  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
BA2903YF-C  
-40℃  
BA2903YFVM-C  
36V  
5V  
25℃  
2V  
125℃  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE [V]  
Fig.2  
AMBIENT TEMPERATURE [  
Fig.3  
]
AMBIENT TEMPERATURE [  
Fig.1  
]
Supply Current – Ambient Temperature  
Derating Curve  
Supply Current – Supply Voltage  
BA2903Y family  
BA2903Y family  
BA2903Y family  
200  
150  
100  
50  
2
200  
150  
100  
50  
1.8  
1.6  
1.4  
125℃  
125℃  
1.2  
2V  
1
0.8  
0.6  
0.4  
25℃  
5V  
36V  
-40℃  
-40℃  
0.2  
25℃  
0
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
Fig.4  
OUTPUT SINK CURRENT [mA]  
Fig.6  
SUPPLY VOLTAGE [V]  
Fig.5  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
Output Voltage – Output Sink Current  
(IOL=4[mA])  
(IOL=4[mA])  
(VCC=5[V])  
BA2903Y family  
BA2903Y family  
BA2903Y family  
8
8
6
40  
6
4
30  
4
-40℃  
36V  
2V  
2
0
2
5V  
20  
0
5V  
25℃  
125℃  
36V  
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
2V  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
Fig.7  
]
SUPPLY VOLTAGE [V]  
Fig.8  
AMBIENT TEMPERATURE [  
Fig.9  
]
Output Sink Current – Ambient Temperature  
Input Offset Voltage – Supply Voltage  
Input Offset Voltage – Ambient  
Temperature  
BA2903Y family  
(VOUT=1.5[V])  
BA2903Y family  
BA2903Y family  
160  
160  
50  
40  
30  
20  
140  
120  
140  
120  
100  
80  
-40℃  
25℃  
-40℃  
25℃  
100  
80  
10  
0
36V  
5V  
-10  
-20  
-30  
-40  
-50  
60  
60  
125℃  
40  
40  
2V  
20  
20  
125℃  
0
0
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
Fig.12  
SUPPLY VOLTAGE [V]  
Fig.10  
AMBIENT TEMPERATURE [  
Fig.11  
]
Input Bias Current – Supply Voltage  
Input Bias Current – Ambient Temperature  
Input Offset Current – Supply Voltage  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
5/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
BA2903Y family  
BA2903Y family  
BA2903Y family  
50  
40  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
125℃  
36V  
30  
20  
2V  
5V  
10  
0
15V  
-40℃  
5V  
25℃  
-10  
-20  
-30  
-40  
-50  
36V  
80  
80  
70  
70  
60  
60  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
Fig.14  
AMBIENT TEMPERATURE [  
Fig.13  
Input Offset Current  
– Ambient Temperature  
]
AMBIENT TEMPERATURE [  
Fig.15  
]
Large Signal Voltage Gain  
– Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
BA2903Y family  
BA2903Y family  
BA2903Y family  
150  
6
4
2
0
160  
-40℃  
25℃  
125  
100  
75  
50  
25  
0
140  
120  
100  
80  
36V  
125℃  
5V  
2V  
125℃  
-2  
-4  
-6  
-40℃  
25℃  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
-1  
0
1
2
3
4
5
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
Fig.17  
]
SUPPLY VOLTAGE [V]  
Fig.16  
INPUT VOLTAGE [V]  
Fig.18  
Common Mode Rejection Ratio  
– Ambient Temperature  
BA2903Y family  
Input Offset Voltage – Input Voltage  
Common Mode Rejection Ratio  
– Supply Voltage  
(VCC=5V)  
BA2903Y family  
BA2903Y family  
200  
180  
160  
140  
120  
100  
80  
5
4
3
2
1
0
5
4
3
2
1
0
5mV overdrive  
20mV overdrive  
100mV overdrive  
25℃  
-40℃  
125℃  
60  
-100  
-80  
-60  
-40  
-20  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
OVER DRIVE VOLTAGE [V]  
Fig.20  
AMBIENT TEMPERATURE [  
Fig.21  
Response Time (Low to High)  
– Ambient Temperature  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
]
AMBIENT TEMPERATURE [  
Fig.19  
Power Supply Rejection Ratio  
– Ambient Temperature  
]
Response Time (Low to High) – Over Drive Voltage  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
BA2903Y family  
BA2903Y family  
10  
10  
8
8
5mV overdrive  
6
6
20mV overdrive  
100mV overdrive  
4
4
125℃  
-40℃  
25℃  
2
2
0
0
0
20  
40  
60  
80  
100  
-50 -25  
0
25 50 75 100 125 150  
OVER DRIVE VOLTAGE [V]  
Fig.22  
AMBIENT TEMPERATURE [  
Fig.23  
]
Response Time (High to Low)  
Response Time (High to Low)  
– Over Drive Voltage  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
– Ambient Temperature  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
6/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Reference Data BA2901Y family  
BA2901Y family  
BA2901Y family  
BA2901Y family  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
BA2901YFV-C  
25℃  
-40℃  
BA2901YF-C  
36V  
5V  
125℃  
2V  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
-50 -25  
0
25  
50 75 100 125 150  
AMBIENT TEMPERATURE [  
Fig.24  
]
SUPPLY VOLTAGE [V]  
Fig.25  
AMBIENT TEMPERATURE [  
Fig.26  
]
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
Derating Curve  
BA2901Y family  
BA2901Y family  
BA2901Y family  
200  
150  
100  
50  
2
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
125℃  
2V  
1
125℃  
25℃  
0.8  
0.6  
0.4  
5V  
36V  
-40℃  
0.2  
-40℃  
25℃  
0
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
Fig.27  
OUTPUT SINK CURRENT [mA]  
Fig.29  
SUPPLY VOLTAGE [V]  
Fig.28  
Output Voltage – Output Sink Current  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Supply Voltage  
(VCC=5[V])  
(IOL=4[mA])  
(IOL=4[mA])  
BA2901Y family  
BA2901Y family  
BA2901Y family  
8
8
40  
6
6
4
4
30  
36V  
-40℃  
2V  
2
2
0
20  
0
36V  
5V  
125℃  
25℃  
2V  
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
5V  
10  
0
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE [  
Fig.30  
]
SUPPLY VOLTAGE [V]  
Fig.31  
AMBIENT TEMPERATURE [  
Fig.32  
]
Output Sink Current – Ambient Temperature  
Input Offset Voltage – Ambient Temperature  
Input Offset Voltage – Supply Voltage  
(VOUT=1.5[V])  
BA2901Y family  
BA2901Y family  
BA2901Y family  
160  
160  
50  
40  
30  
20  
140  
120  
140  
120  
100  
80  
25℃  
-40℃  
25℃  
-40℃  
100  
80  
60  
40  
20  
0
32V  
10  
0
5V  
-10  
-20  
-30  
-40  
-50  
60  
125℃  
40  
3V  
20  
125℃  
0
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
Fig.35  
Input Offset Current – Supply Voltage  
SUPPLY VOLTAGE [V]  
Fig.33  
Input Bias Current – Supply Voltage  
AMBIENT TEMPERATURE [  
Fig.34  
]
Input Bias Current – Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
7/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
BA2901Y family  
BA2901Y family  
BA2901Y family  
50  
40  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
36V  
125℃  
30  
20  
2V  
5V  
10  
0
15V  
25℃  
-40℃  
5V  
-10  
-20  
-30  
-40  
-50  
32V  
80  
80  
70  
70  
60  
60  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
Fig.37  
AMBIENT TEMPERATURE [  
Fig.36  
]
AMBIENT TEMPERATURE [  
Fig.38  
]
Large Signal Voltage Gain  
– Supply Voltage  
Input Offset Current  
Large Signal Voltage Gain  
– Ambient Temperature  
– Ambient Temperature  
BA2901Y family  
BA2901Y family  
BA2901Y family  
150  
125  
100  
75  
6
160  
4
2
140  
120  
100  
80  
-40℃  
25℃  
36V  
125℃  
0
5V  
2V  
125℃  
50  
-2  
-4  
-6  
25℃  
-40℃  
25  
60  
0
40  
-50 -25  
0
25 50 75 100 125 150  
-1  
0
1
2
3
4
5
0
10  
20  
30  
40  
AMBIENT TEMPERATURE [  
Fig.40  
]
SUPPLY VOLTAGE [V]  
Fig.39  
INPUT VOLTAGE [V]  
Fig.41  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Offset Voltage – Input Voltage  
(VCC=5[V])  
– Supply Voltage  
– Ambient Temperature  
BA2901Y family  
BA2901Y family  
BA2901Y family  
200  
180  
160  
140  
120  
100  
80  
5
4
3
2
1
0
5
4
5mV overdrive  
3
20mV overdrive  
3V  
100mV overdrive  
2
125℃  
25℃  
5V  
-40℃  
32V  
1
0
60  
-100  
-80  
-60  
-40  
-20  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
OVER DRIVE VOLTAGE [V]  
Fig.43  
AMBIENT TEMPERATURE [  
Fig.44  
]
AMBIENT TEMPERATURE [  
Fig.42  
]
Response Time (Low to High)  
Power Supply Rejection Ratio  
– Ambient Temperature  
Response Time (Low to High)– Over Drive Voltage  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
– Ambient Temperature  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
BA2901Y family  
BA2901Y family  
10  
10  
8
8
6
6
5mV overdrive  
20mV overdrive  
4
4
100mV overdrive  
125℃  
25℃  
-40℃  
2
2
0
0
0
20  
40  
60  
80  
100  
-50 -25  
0
25 50 75 100 125 150  
OVER DRIVE VOLTAGE [V]  
Fig.45  
AMBIENT TEMPERATURE [  
Fig.46  
]
Response Time (High to Low)  
– Ambient Temperature  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
Response Time (High to Low)  
– Over Drive Voltage  
(VCC=5[V],VRL=5[V],RL=5.1[k])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
8/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Circuit Diagram  
VCC  
VOUT  
+IN  
-IN  
VEE  
BA2903Y / BA2901Y Schematic Diagram  
Fig.47 Schematic Diagram (one channel only )  
Test Circuit 1 Null Method  
VCC,VEE,EK,Vicm Unit[V]  
BA2903Y family  
BA2901Y family  
Parameter  
VF  
S1  
S2  
S3  
Calculation  
Vcc  
536  
5
VEE  
EK  
-1.4  
-1.4  
-1.4  
-1.4  
-1.4  
-11.4  
Vicm  
Input Offset Voltage  
Input Offset Current  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
ON  
OFF  
OFF  
ON  
ON  
OFF  
ON  
ON  
ON  
0
0
0
0
0
0
0
0
0
0
0
0
1
2
5
Input Bias Current  
ON  
ON  
3
4
OFF  
5
15  
Large Signal Voltage Gain  
ON  
ON  
15  
- Calculation -  
1. Input Offset Voltage (Vio)  
| VF1 |  
[V]  
Vio =  
1 + Rf / Rs  
2. Input Offset Current (Iio)  
| VF2 VF1 |  
[A]  
Iio =  
Ri ×(1 + Rf / Rs)  
3. Input Bias Current (Ib)  
| VF4 VF3 |  
[A]  
Ib =  
2×Ri× (1 + Rf / Rs)  
4. Large Signal Voltage Gain (AV)  
EK×(1+Rf /Rs)  
Δ
Av = 20×Log  
[dB]  
|VF5-VF6|  
Fig.48 Test circuit1 (one channel only)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
9/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Test Circuit 2: Switch Condition  
SW  
1
SW  
2
SW  
3
SW  
4
SW  
5
SW  
6
SW  
7
SW No.  
Supply Current  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
Output Sink Current  
Saturation Voltage  
Output Leakage Current  
Response Time  
VOL=1.5[V]  
IOL=4[mA]  
ON  
OFF  
ON  
VOH=36[V]  
ON  
OFF  
OFF  
OFF  
OFF  
RL=5.1[k], VRL=5[V]  
OFF  
OFF  
VCC  
A
SW1  
SW2  
SW3  
VIN-  
SW4 SW5  
RL  
SW6  
SW7  
VEE  
V
A
VRL  
VIN+  
VOL/VOH  
Fig.49 Test Circuit 2 (one channel only)  
Input wave  
Input wave  
VIN  
+100mV  
VIN  
0V  
overdrive voltage  
overdrive voltage  
0V  
-100mV  
Output wave  
Output wave  
VOUT  
VOUT  
VCC  
VCC  
VCC/2  
VCC/2  
0V  
0V  
Tre (LOW to HIGH)  
Tre (HIGH to LOW)  
Fig.50 Response Time  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
10/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Example of circuit  
Reference voltage is Vin-  
Voltage  
VCC  
Vin  
+
-
Reference voltage  
Vout  
Reference voltage  
Time  
VEE  
Input voltage wave  
Voltage  
High  
While input voltage is bigger than reference voltage,  
output voltage is high. While input voltage is smaller  
than reference voltage, output voltage is low.  
Low  
Time  
Output voltage wave  
Reference voltage is Vin+  
Voltage  
VCC  
Reference voltage  
Reference voltage  
+
Vout  
Vin  
-
Time  
Input voltage wave  
Voltage  
VEE  
High  
While input voltage is smaller than reference voltage,  
output voltage is high. While input voltage is bigger  
than reference voltage, output voltage is low.  
Low  
Time  
Output voltage wave  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
11/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Derating curves  
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature).IC is heated  
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that  
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal  
resistance of package (heat dissipation capability). The maximum junction temperature is typically equal to the maximum  
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame  
of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called thermal  
resistance, represented by the symbol θja[/W].The temperature of IC inside the package can be estimated by this thermal  
resistance. Fig.51(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature  
Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below  
θja = (Tj-Ta) / Pd  
[/W]  
・・・・・ ()  
Derating curve in Fig.51(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that  
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package  
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Fig.52(c),(d) show a derating curve for an example of BA2903Y, BA2901Y.  
Power dissipation of LSI  
[W]  
Pd (max)  
θja = ( Tj Ta ) / Pd  
[
/W]  
P2  
θja2 < θja1  
θ' ja2  
Ta [ ]  
Ambient tem  
pe  
ra  
tu  
re  
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
Chip surface temperature Tj [  
]
0
25  
50  
Ambient tem  
75  
eratu  
100  
Ta [  
125  
150  
Power dissipation  
P [W]  
]
p
re  
(b) Derating curve  
(a) Thermal resistance  
Fig.51 Thermal resistance and derating curve  
1000  
800  
600  
400  
200  
0
1000  
870mW(*8)  
780mW(*6)  
590mW(*7)  
BA2901YFV-C  
800  
600  
400  
200  
0
BA2903YF-C  
610mW(*9)  
BA2901YF-C  
BA2903YFVM-C  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
(c) BA2903Y family  
(d) BA2901Y family  
(*6)  
6.2  
(*7)  
4.8  
(*8)  
7.0  
(*9)  
4.9  
Unit  
[mW/]  
When using the unit above Ta=25[], subtract the value above per degree[].  
Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted.  
Fig. 52 Derating curve  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
12/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Description of electrical characteristics  
Described below are descriptions of the relevant electrical terms.  
Please note that item names, symbols, and their meanings may differ from those on another manufacturer’s documents.  
1.Absolute maximum ratings  
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration  
of electrical characteristics or damage to the part itself as well as peripheral components.  
1.1 Power supply voltage (VCC/VEE)  
Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals  
without causing deterioration of the electrical characteristics or destruction of the internal circuitry.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without  
damaging the IC.  
1.3 Input common-mode voltage range (Vicm)  
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing  
deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the  
input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the  
electric characteristics instead.  
1.4 Operating and storage temperature ranges (Topr, Tstg)  
The operating temperature range indicates the temperature range within which the IC can operate. The higher the  
ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range  
of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.  
1.5 Power dissipation (Pd)  
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25).  
For packaged products, Pd is determined by maximum junction temperature and the thermal resistance.  
2.Electrical characteristics  
2.1 Input offset voltage (Vio)  
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input  
voltage difference required for setting the output voltage to 0V.  
2.2 Input offset current (Iio)  
Indicates the difference of the input bias current between the non-inverting and inverting terminals.  
2.3 Input bias current (Ib)  
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at  
the non-inverting terminal and the input bias current at the inverting terminal.  
2.4 Input common-mode voltage range (Vicm)  
Indicates the input voltage range under which the IC operates normally.  
2.5 Large signal voltage gain (AV)  
The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting  
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.  
AV = (output voltage fluctuation) / (input offset fluctuation)  
2.6 Circuit current (ICC)  
Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.  
2.7 Output sink current (IOL)  
Denotes the maximum current that can be output under specific output conditions.  
2.8 Output saturation voltage low level output voltage (VOL)  
Signifies the voltage range that can be output under specific output conditions.  
2.9 Output leakage current, High level output current (Ileak)  
Indicates the current that flows into the IC under specific input and output conditions.  
2.10 Response time (Tre)  
The interval between the application of input and output conditions.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
13/16  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Notes for use  
1) Unused circuits  
VCC  
When there are unused circuits it is recommended that they be  
connected as in Fig.53, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (VICR).  
+
OPEN  
2) Input terminal voltage  
Please keep this  
potential in Vicm  
Applying VEE + 36V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, irrespective  
of the supply voltage. However, this does not ensure normal circuit  
operation. Please note that the circuit operates normally only when the  
input voltage is within the common mode input voltage range of the  
electric characteristics.  
VEE  
(VicmVEE)  
Fig. 53 Disable circuit example  
3) Power supply (signal / dual)  
The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the signal supply op-amp  
can be used as a dual supply op-amp as well.  
4) Power dissipation Pd  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in  
chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation  
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating  
curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and  
the power supply, or the output and GND may result in IC destruction.  
6) Terminal short-circuits  
When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation  
and, subsequently, destruction.  
7) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
8) Radiation  
This IC is not designed to withstand radiation.  
9) IC handing  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical  
characteristics due to piezoelectric (piezo) effects.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the  
power is turned off before inspection and removal. Furthermore, please take measures against ESD in the assembly  
process as well as during transportation and storage  
www.rohm.com  
2011.08 - Rev.B  
14/16  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
Ordering part number  
B A  
2
9
0
1
Y
F
V
-
C
E
2
Automotive  
series  
Part No.  
Part No.  
2903Y  
2901Y  
Package  
: SOP8  
SOP14  
FV : SSOP-B14  
FVM : MSOP8  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/ SSOP-B14)  
TR: Embossed tape and reel  
(MSOP8)  
F
SOP8  
<Tape and Reel information>  
5.0 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
+
6
°
4°  
4
°
Quantity  
2500pcs  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
0.1  
S
1.27  
Direction of feed  
1pin  
0.42 0.1  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
SOP14  
<Tape and Reel information>  
8.7 0.2  
(MAX 9.05 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
14  
8
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
1.27  
0.4 0.1  
0.1  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B14  
<Tape and Reel information>  
5.0 0.2  
Tape  
Embossed carrier tape  
14  
8
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
2011.08 - Rev.B  
15/16  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BA2903YF-C,BA2903YFVM-C,BA2901YF-C,BA2901YFV-C  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
Tape  
Embossed carrier tape  
3000pcs  
(MAX 3.25 include BURR)  
+
6°  
4°  
Quantity  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
0.03  
0.145  
0.475  
S
0.22  
0.04  
0.08  
S
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.65  
Reel  
(Unit : mm)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.08 - Rev.B  
16/16  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BA2901YFV-CE2

Automotive Ground Sense Comparators
ROHM

BA2901YFV-M

车载适用品BA2903Yxxx-M、BA2901Yxx-M是各自独立的高增益比较器,是将2个电路集成于1个芯片的单片IC。尤其是工作范围较大,为+2V~+36V(单电源工作时),且消耗电流较小,可用于汽车导航、汽车音响等用途。
ROHM

BA2901YFV-ME2

Automotive Ground Sense Comparators
ROHM

BA2901YFVC

Automotive Ground Sense Comparators
ROHM

BA2901YFVE2

Automotive Ground Sense Comparators
ROHM

BA2901YFVM-CTR

Operational Amplifier, 15000uV Offset-Max, PDSO8, ROHS COMPLIANT, MSOP-8
ROHM

BA2901YFVMC

Automotive Ground Sense Comparators
ROHM

BA2901YFVME2

Automotive Ground Sense Comparators
ROHM

BA2901YFVMTR

Automotive Ground Sense Comparators
ROHM

BA2901YFVTR

Automotive Ground Sense Comparators
ROHM

BA2902F

GROUND SENSE QUAD OPERATIONAL AMPLIFIERS
ROHM

BA2902F-E2

Ground Sense Operational Amplifiers
ROHM