BA2902YFV-MGE2 [ROHM]

Operational Amplifier, 4 Func, 10000uV Offset-Max, BIPolar, PDSO14, 5 X 6.40 MM, 1.35 MM HEIGHT, ROHS COMPLIANT, SSOP-14;
BA2902YFV-MGE2
型号: BA2902YFV-MGE2
厂家: ROHM    ROHM
描述:

Operational Amplifier, 4 Func, 10000uV Offset-Max, BIPolar, PDSO14, 5 X 6.40 MM, 1.35 MM HEIGHT, ROHS COMPLIANT, SSOP-14

光电二极管
文件: 总29页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Operational Amplifier Series  
AutomotiveGround Sense  
Operational Amplifiers  
BA2904Yxxx-M, BA2902Yxx-M  
General Description  
Key Specifications  
Automotive series BA2904Yxxx-M/BA2902Yxx-M  
integrate two or four independent Op-Amps and  
ground sense input Amplifier on a single chip and  
have some features of high-gain, low power  
consumption, and operating voltage range of 3V to  
32V (single power supply ). BA2904Yxxx-M,  
BA2902Yxx-M are manufactured for automotive  
requirements of car navigation system, car audio, and  
so on.  
Wide operating supply voltage  
single supply :  
+3.0V to +32V  
±1.5V to ±16V  
dual supply :  
low supply current  
BA2904Yxxx-M BA2902Yxx-M  
0.7mA(Typ.)  
input bias current :  
input offset current :  
20nA(Typ.)  
2nA(Typ.)  
Operating temperature range :  
-40to +125℃  
Features  
Operable with a single power supply  
Wide operating supply voltage  
Standard Op-Amp Pin-assignments  
Input and output are operable GND sense  
Low supply current  
High open loop voltage gain  
Internal ESD protection circuit  
Wide temperature range  
Packages  
SOP8  
W(Typ.) x D(Typ.) x H(Max.)  
5.00mm x 6.20mm x 1.71mm  
8.70mm x 6.20mm x 1.71mm  
3.00mm x 6.40mm x 1.35mm  
5.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
SOP14  
SSOP-B8  
SSOP-B14  
MSOP8  
Selection Guide  
Maximum operating temperature  
+125°C  
Output current  
Source/Sink  
supply current  
BA2904YF-M  
BA2904YFV-M  
BA2904YFVM-M  
Dual  
30mA / 20mA  
30mA / 20mA  
0.7mA  
Automotive(-)  
BA2902YF-M  
BA2902YFV-M  
Quad  
0.7mA  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211114001  
1/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Block Diagram  
VCC  
IN  
IN  
VOUT  
VEE  
Fig.1 Simplified schematic (one channel only)  
Pin Configuration  
OUT1  
1
2
3
14 OUT4  
OUT1  
-IN1  
+IN1  
VCC  
+IN2  
-IN2  
OUT2  
VCC  
OUT2  
-IN2  
+IN2  
1
2
3
4
8
7
6
5
13  
12  
-IN4  
+IN4  
VEE  
CH1  
+
CH4  
+ -  
-
CH1  
- +  
-IN1  
+IN1  
VEE  
4
5
11  
10  
+IN3  
-IN3  
OUT3  
CH2  
+ -  
+ -  
CH3  
- +  
CH2  
6
7
9
8
SSOP-B14  
SOP14  
SOP8  
SSOP-B8  
MSOP8  
Package  
MSOP8  
SOP8  
SSOP-B8  
BA2904YFV-M  
SOP14  
SSOP-B14  
BA2902YFV-M  
BA2904YF-M  
BA2904YFVM-M  
BA2902YF-M  
Ordering Information  
B A 2 9 0 x Y x x x  
-
M x x  
Parts Number.  
BA2904Yxxx  
BA2902Yxx  
Package  
: SOP8  
SOP14  
FV : SSOP-B8  
SSOP-B14  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP14/SSOP-B8/SSOP-B14)  
TR: Embossed tape and reel  
(MSOP8)  
F
M: Automotive  
FVM: MSOP8  
Line-up  
2channel  
/4channel  
Ordarable Parts  
Topr  
Supply voltage  
+3 to +32V  
Package  
Number  
SOP8  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
BA2904YF-ME2  
BA2904YFV-ME2  
BA2904YFVM-MTR  
BA2902YF-ME2  
BA2902YFV-ME2  
Dual  
SSOP-B8  
MSOP8  
-40°C to +125°C  
SOP14  
Quad  
SSOP-B14  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
2/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Absolute Maximum Ratings(Ta=25)  
Parameter  
Symbol  
Ratings  
Unit  
V
Supply Voltage  
VCC-VEE  
+36  
780*1*6  
Power Dissipation  
SOP8  
SSOP-B8  
MSOP8  
690*2*6  
590*3*6  
610*4*6  
Pd  
mW  
SOP14  
SSOP-B14  
870*5*6  
Differential Input Voltage *7  
Vid  
+36  
V
V
Input Common-mode Voltage Range  
Vicm  
Vopr  
(VEE-0.3) to (VEE+36)  
+3.0 to +32  
(±1.5 to ±16)  
Operating Supply Voltage  
V
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Topr  
Tstg  
-40 to +125  
-55 to +150  
+150  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature  
environment may cause deterioration of characteristics.  
*1  
*2  
*3  
*4  
*5  
*6  
*7  
To use at temperature above Ta25reduce 6.2mW/.  
To use at temperature above Ta25reduce 5.5mW/.  
To use at temperature above Ta25reduce 4.8mW/.  
To use at temperature above Ta25reduce 7.0mW/.  
To use at temperature above Ta25reduce 4.9mW/.  
Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VEE.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
3/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Electrical Characteristics  
BA2904Yxxx-M (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
2
Temperature  
Range  
Parameter  
Symbol  
Unit  
mV  
Conditions  
VOUT=1.4V  
VCC=5 to 30V, VOUT=1.4V  
Min.  
-
Max.  
7
25℃  
Input Offset Voltage*8  
Input Offset Voltage drift  
Input Offset Current*8  
Input Offset Current drift  
Input Bias Current*8  
Vio  
Vio/T  
Iio  
Full range  
-
-
-
±7  
2
10  
-
-
μV/VOUT=1.4V  
nA VOUT=1.4V  
pA/VOUT=1.4V  
nA VOUT=1.4V  
25℃  
-
50  
200  
-
Full range  
-
-
-
ΔIio/ΔT  
Ib  
-
-
±10  
20  
-
25℃  
250  
250  
1.2  
2
Full range  
25℃  
-
-
0.7  
-
Supply Current  
ICC  
mA RL=, All Op-Amps  
Full range  
25℃  
-
3.5  
27  
-
RL=2kΩ  
-
-
High Level Output Voltage  
VOH  
V
Full range  
Full range  
28  
5
VCC=30V, RL=10kΩ  
-
Low Level Output Voltage  
Large Signal Voltage Gain  
VOL  
AV  
20  
mV RL=, All Op-Amps  
RL2k, VCC=15V  
VOUT=1.4 to 11.4V  
(VCC-VEE)=5V  
VOUT=VEE+1.4V  
25℃  
25℃  
25  
0
100  
-
V/mV  
-
Input Common-mode  
Voltage range  
Vicm  
VCC-1.5  
V
Common-mode Rejection Ratio CMRR  
25℃  
25℃  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
dB VOUT=1.4V  
-
-
-
-
-
-
Power Supply Rejection Ratio  
Output Source Current*9  
PSRR  
dB VCC=5 to 30V  
25℃  
VIN+=1V, VIN-=0V  
mA  
IOH  
VOUT=0V, 1CH is short circuit  
Full range  
25℃  
20  
-
VIN+=0V,VIN-=1V  
VOUT=5V, 1CH is short circuit  
IOL  
mA  
Output Sink Current*9  
Full range  
VIN+=0V, VIN-=1V  
VOUT=200mV  
Isink  
CS  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
μA  
-
-
-
Channel Separation  
Slew Rate  
dB f=1kHz, input referred  
VCC=15V, AV=0dB  
V/μs  
SR  
-
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
VCC=15V, VEE=-15V  
RS=100, Vi=0V, f=1kHz  
Gain bandwidth product  
GBW  
Vn  
0.5  
40  
MHz  
25℃  
25℃  
-
-
-
-
Input Referred Noise Voltage  
nV/ Hz  
*8 Absolute value  
*9 Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
4/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Electrical Characteristics  
BA2902Yxx-M (Unless otherwise specified VCC=+5V, VEE=0V)  
Limits  
Typ.  
2
Temperature  
Range  
25℃  
Parameter  
Symbol  
Unit  
mV  
Conditions  
VOUT=1.4V  
VCC=5 to 30V, VOUT=1.4V  
Min.  
-
Max.  
7
Input Offset Voltage*10  
Input Offset Voltage drift  
Input Offset Current*10  
Input Offset Current drift  
Input Bias Current*10  
Vio  
Vio/T  
Iio  
Full range  
-
-
-
±7  
2
10  
-
-
μV/VOUT=1.4V  
nA VOUT=1.4V  
pA/VOUT=1.4V  
nA VOUT=1.4V  
25℃  
-
50  
200  
-
Full range  
-
-
-
ΔIio/ΔT  
Ib  
-
-
±10  
20  
-
25℃  
250  
250  
2
Full range  
25℃  
-
-
0.7  
-
Supply Current  
ICC  
mA RL=, All Op-Amps  
Full range  
25℃  
-
3
3.5  
27  
-
RL=2kΩ  
-
-
High Level Output Voltage  
VOH  
V
Full range  
Full range  
28  
5
VCC=30V, RL=10kΩ  
-
Low Level Output Voltage  
Large Signal Voltage Gain  
VOL  
AV  
20  
mV RL=, All Op-Amps  
RL2k, VCC=15V  
VOUT=1.4 to 11.4V  
(VCC-VEE)=5V  
VOUT=VEE+1.4V  
25℃  
25℃  
25  
0
100  
-
V/mV  
-
Input Common-mode  
Voltage range  
Vicm  
VCC-1.5  
V
Common-mode Rejection Ratio CMRR  
25℃  
25℃  
50  
65  
20  
10  
10  
2
80  
100  
30  
-
dB VOUT=1.4V  
-
-
-
-
-
-
Power Supply Rejection Ratio  
Output Source Current*11  
PSRR  
dB VCC=5 to 30V  
25℃  
VIN+=1V, VIN-=0V  
mA  
IOH  
VOUT=0V, 1CH is short circuit  
Full range  
25℃  
20  
-
VIN+=0V,VIN-=1V  
VOUT=5V, 1CH is short circuit  
IOL  
mA  
Output Sink Current*11  
Full range  
VIN+=0V, VIN-=1V  
VOUT=200mV  
Isink  
CS  
25℃  
25℃  
25℃  
12  
-
40  
120  
0.2  
μA  
-
-
-
Channel Separation  
Slew Rate  
dB f=1kHz, input referred  
VCC=15V, AV=0dB  
V/μs  
SR  
-
RL=2k, CL=100pF  
VCC=30V, RL=2kΩ  
CL=100pF  
VCC=15V, VEE=-15V  
RS=100, Vi=0V, f=1kHz  
Gain bandwidth product  
GBW  
Vn  
0.5  
40  
MHz  
25℃  
25℃  
-
-
-
-
Input Referred Noise Voltage  
nV/ Hz  
*10 Absolute value  
*11 Under high temperatures, please consider the power dissipation when selecting the output current.  
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
5/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms  
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.  
1. Absolute maximum ratings  
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of  
electrical characteristics or damage to the part itself as well as peripheral components.  
1.1 Power supply voltage (VCC-VEE)  
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without  
causing deterioration of the electrical characteristics or destruction of the internal circuitry.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without  
damaging the IC.  
1.3 Input common-mode voltage range (Vicm)  
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing  
deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the  
common-mode voltage range of the maximum ratings - use within the input common-mode voltage range of the  
electric characteristics instead.  
1.4 Operating and storage temperature ranges (Topr,Tstg)  
The operating temperature range indicates the temperature range within which the IC can operate. The higher the  
ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range  
of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.  
1.5 Power dissipation (Pd)  
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25). For  
packaged products, Pd is determined by the maximum junction temperature and the thermal resistance.  
2. Electrical characteristics  
2.1 Input offset voltage (Vio)  
Indicates the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input  
voltage difference required for setting the output voltage to 0 V.  
2.2 Input offset voltage drift (Vio/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (Iio)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
2.4 Input offset current drift (Iio/T)  
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.  
2.5 Input bias current (Ib)  
Indicates the current that flows into or out of the input terminal, it is defined by the average of the input bias current  
at the non-inverting terminal and the input bias current at the inverting terminal.  
2.6 Circuit current (ICC)  
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.  
2.7 High level output voltage/low level output voltage (VOH/VOL)  
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into  
high-level output voltage and low-level output voltage. High-level output voltage indicates the upper limit of output  
voltage. Low-level output voltage indicates the lower limit.  
2.8 Large signal voltage gain (AV)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage fluctuation) / (Input offset fluctuation)  
2.9 Input common-mode voltage range (Vicm)  
Indicates the input voltage range under which the IC operates normally.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
TSZ2211115001  
6/26  
26.SEP.2012 Rev.002  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
2.10 Common-mode rejection ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the  
fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.11 Power supply rejection ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of  
DC. PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
2.12 Output source current/ output sink current (IOH/IOL)  
The maximum current that can be output under specific output conditions, it is divided into output source current and  
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current  
the current flowing into the IC.  
2.13 Channel separation (CS)  
Indicates the fluctuation of output voltage with reference to the change of output voltage of driven channel.  
2.14 Slew rate (SR)  
SR is a parameter that shows movement speed of operational amplifier. It indicates rate of variable output voltage  
as unit time.  
2.15 Gain Band Width (GBW)  
Indicates to multiply by the frequency and the gain where the voltage gain decreases 6dB/octave.  
2.16 Input referred noise voltage (Vn)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
TSZ2211115001  
7/26  
26.SEP.2012 Rev.002  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Typical Performance Curves  
BA2904Yxxx-M  
1. 0  
0. 8  
0. 6  
0. 4  
0. 2  
0. 0  
1000  
800  
BA2904YF-M  
BA2904YFV-M  
600  
25℃  
BA2904YFVM-M  
40℃  
400  
200  
0
125℃  
0
10  
20  
30  
40  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.2  
Fig.3  
Derating Curve  
Supply Current – Supply Voltage  
40  
30  
20  
10  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
32V  
-40℃  
125℃  
25℃  
5V  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.4  
Fig.5  
Supply Current – Ambient Temperature  
Maximum Output Voltage – Supply Voltage  
(RL=10k)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
8/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2904Yxxx-M  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
Fig.6  
Fig.7  
Maximum Output Voltage – Ambient Temperature  
(VCC=5V, RL=2k)  
Output Source Current – Output Voltage  
(VCC=5V)  
50  
40  
30  
20  
10  
0
100  
10  
3V  
125℃  
5V  
1
-40℃  
25℃  
15V  
0.1  
0.01  
0. 001  
0
0.4  
0.8  
1.2  
1.6  
2
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
Fig.9  
Output Sink Current – Output Voltage  
(VCC=5V)  
Fig.8  
Output Source Current – Ambient Temperature  
(VOUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
9/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2904Yxxx-M  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
15V  
-40℃  
25℃  
20  
5V  
3V  
125℃  
10  
0
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.11  
Fig.10  
Low Level Sink Current – Supply Voltage  
(VOUT=0.2V)  
Output Sink Current – Ambient Temperature  
(VOUT=VCC)  
8
6
80  
70  
60  
50  
40  
30  
20  
10  
0
32V  
4
-40℃  
25℃  
5V  
2
0
3V  
125℃  
-2  
-4  
-6  
-8  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.12  
Low Level Sink Current – Ambient Temperature  
(VOUT=0.2V)  
Fig.13  
Input Offset Voltage – Supply Voltage  
(Vicm=0V, VOUT=1.4V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
10/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2904Yxxx-M  
8
6
4
50  
40  
30  
20  
10  
0
2
3V  
25℃  
-40℃  
0
5V  
32V  
-2  
-4  
-6  
-8  
125℃  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.15  
Fig.14  
Input Bias Current – Supply Voltage  
(Vicm=0V, VOUT=1.4V)  
Input Offset Voltage – Ambient Temperature  
(Vicm=0V, VOUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
32V  
3V  
5V  
-10  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Fig.17  
Fig.16  
Input Bias Current – Ambient Temperature  
(VCC=30V, Vicm=28V, VOUT=1.4V)  
Input Bias Current – Ambient Temperature  
(Vicm=0V, VOUT=1.4V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
11/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2904Yxxx-M  
10  
5
8
6
-40℃  
4
125℃  
25℃  
-40℃  
25℃  
2
0
0
125℃  
-2  
-4  
-6  
-8  
-5  
-10  
-1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.19  
Fig.18  
Input Offset Current – Supply Voltage  
(Vicm=0V, VOUT=1.4V)  
Input Offset Voltage – Input Voltage  
(VCC=5V)  
10  
5
140  
130  
120  
110  
100  
90  
3V  
0
5V  
32V  
80  
-5  
-10  
70  
60  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.21  
Fig.20  
Large Signal Voltage Gain – Supply Voltage  
Input Offset Current – Ambient Temperature  
(Vicm=0V, VOUT=1.4V)  
(RL=2k)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
12/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2904Yxxx-M  
140  
120  
100  
80  
140  
130  
120  
-40℃  
25℃  
110  
100  
125℃  
90  
80  
70  
60  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.22  
Large Signal Voltage Gain – Ambient Temperature  
(RL=2k)  
Fig.23  
Common Mode Rejection Ratio  
– Supply Voltage  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
32V  
5V  
3V  
80  
60  
70  
40  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Fig.24  
Fig.25  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
13/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2902Yxxx-M  
1000  
2. 0  
1. 6  
1. 2  
0. 8  
0. 4  
0. 0  
800  
BA2902YF-M  
BA2902YFV-M  
600  
400  
200  
0
25℃  
40℃  
125℃  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.26  
Fig.27  
Derating Curve  
Supply Current – Supply Voltage  
40  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
30  
20  
10  
0
-40℃  
32V  
125℃  
25℃  
5V  
3V  
0
10  
20  
30  
40  
-50  
0
50  
100  
150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.28  
Fig.29  
Supply Current – Ambient Temperature  
Maximum Output Voltage – Supply Voltage  
(RL=10k)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
14/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2902Yxxx-M  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-40℃  
25℃  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
Fig.30  
Fig.31  
Maximum Output Voltage – Ambient Temperature  
(VCC=5V, RL=2k)  
Output Source Current – Output Voltage  
(VCC=5V)  
50  
40  
30  
20  
10  
0
100  
10  
3V  
125℃  
5V  
1
-40℃  
25℃  
15V  
0.1  
0.01  
0. 001  
0
0.4  
0.8  
1.2  
1.6  
2
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
Fig.33  
Output Sink Current – Output Voltage  
(VCC=5V)  
Fig.32  
Output Source Current – Ambient Temperature  
(VOUT=0V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
15/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2902Yxxx-M  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
15V  
-40℃  
25℃  
20  
5V  
3V  
125℃  
10  
0
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.35  
Fig.34  
Low Level Sink Current – Supply Voltage  
(VOUT=0.2V)  
Output Sink Current – Ambient Temperature  
(VOUT=VCC)  
8
6
80  
70  
60  
50  
40  
30  
20  
10  
0
32V  
4
-40℃  
25℃  
5V  
2
0
3V  
125℃  
-2  
-4  
-6  
-8  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.36  
Low Level Sink Current – Ambient Temperature  
(VOUT=0.2V)  
Fig.37  
Input Offset Voltage – Supply Voltage  
(Vicm=0V, VOUT=1.4V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
16/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2902Yxxx-M  
8
6
4
50  
40  
30  
20  
10  
0
2
3V  
25℃  
-40℃  
0
5V  
32V  
-2  
-4  
-6  
-8  
125℃  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.39  
Fig.38  
Input Bias Current – Supply Voltage  
(Vicm=0V, VOUT=1.4V)  
Input Offset Voltage – Ambient Temperature  
(Vicm=0V, VOUT=1.4V)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
32V  
3V  
5V  
-10  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Fig.41  
Fig.40  
Input Bias Current – Ambient Temperature  
(VCC=30V, Vicm=28V, VOUT=1.4V)  
Input Bias Current – Ambient Temperature  
(Vicm=0V, VOUT=1.4V)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
17/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2902Yxxx-M  
10  
5
8
6
-40℃  
4
125℃  
25℃  
-40℃  
25℃  
2
0
0
125℃  
-2  
-4  
-6  
-8  
-5  
-10  
-1  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig.43  
Fig.42  
Input Offset Current – Supply Voltage  
(Vicm=0V, VOUT=1.4V)  
Input Offset Voltage – Input Voltage  
(VCC=5V)  
10  
5
140  
130  
120  
110  
100  
90  
3V  
0
5V  
32V  
80  
-5  
-10  
70  
60  
4
6
8
10  
12  
14  
16  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig.45  
Fig.44  
Large Signal Voltage Gain – Supply Voltage  
Input Offset Current – Ambient Temperature  
(Vicm=0V, VOUT=1.4V)  
(RL=2k)  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
18/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
BA2902Yxxx-M  
140  
120  
100  
80  
140  
130  
120  
-40℃  
25℃  
110  
100  
125℃  
90  
80  
70  
60  
60  
40  
-50 -25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig.46  
Large Signal Voltage Gain – Ambient Temperature  
(RL=2k)  
Fig.47  
Common Mode Rejection Ratio  
– Supply Voltage  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
32V  
5V  
3V  
80  
60  
70  
40  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
Fig.48  
Fig.49  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The above data is measurement value of typical sample, it is not guaranteed.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
19/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Power Dissipation  
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature). IC is heated  
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that  
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal  
resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum  
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead  
frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called  
thermal resistance, represented by the symbol θja/W.The temperature of IC inside the package can be estimated by this  
thermal resistance. Fig.50(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient  
temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below:  
θja = (Tjmax -Ta) / Pd  
/W  
・・・・・ ()  
Derating curve in Fig.50(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that  
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package  
condition, wind velocity, etc even when the same of package is used.  
Thermal reduction curve indicates a reference value measured at a specified condition. Fig.50(c) show a derating curve for  
an example of BA2904Yxxx-M and BA2902xxY-M.  
[W]  
n of LSI  
Power dissipa  
tio  
Pd (max)  
Ta) / Pd  
[
/W]  
P2  
θja = ( Tjmax  
θja2 < θja1  
θ' ja2  
-
Ta [  
]
Ambient temperature  
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
Tj [  
Chip surface temperature  
]
0
25  
50  
75  
ture  
100  
Ta [  
125  
150  
]
Ambient tempe  
ra  
Power dissipation Pd[W]  
(b) Derating curve  
(a) Thermal resistance  
Fig. 50 Thermal resistance and derating  
1000  
1000  
BA2902YFV-M(15)  
BA2904YF-M(12)  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
BA2904YFV-M(13)  
BA2904YFVM-M(14)  
BA2902YF-M(16)  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
(d) BA2902Yxx-M  
(c) BA2904Yxxx-M  
(12)  
6.2  
(13)  
5.5  
(14)  
4.8  
(15)  
7.0  
(16)  
4.9  
単位  
mW/℃  
When using the unit above Ta=25, subtract the value above per Celsius degree .  
Permissible dissipation is the value when FR4 glass epoxy board 70mm×70mm×1.6mm(cooper foil area below 3%) is mounted.  
Fig. 51 Derating curve  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
20/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Application Information  
Test Circuit1 NULL method  
VCC, VEE, EK, Vicm Unit V  
Parameter  
VF  
S1  
S2  
S3  
Vcc  
VEE  
EK  
Vicm calculation  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
VF1  
VF2  
ON  
ON  
OFF 5 to 30  
0
0
0
-1.4  
-1.4  
-1.4  
0
0
0
1
2
3
4
5
6
OFF OFF  
OFF  
OFF  
ON  
5
5
VF3  
VF4  
VF5  
VF6  
VF7  
VF8  
VF9  
VF10  
OFF  
ON  
ON  
OFF  
15  
15  
5
0
0
0
0
0
0
-1.4  
-11.4  
-1.4  
-1.4  
-1.4  
-1.4  
0
0
Large Signal Voltage Gain  
ON  
ON  
ON  
ON  
ON  
ON  
0
Common-mode Rejection Ratio  
(Input common-mode Voltage Range)  
OFF  
OFF  
5
3.5  
0
5
Power Supply Rejection Ratio  
30  
0
- Calculation -  
1. Input Offset Voltage (Vio)  
| VF1 |  
[V]  
Vio =  
1 + Rf / Rs  
0.1μF  
2. Input Offset Current (Iio)  
| VF2 VF1 |  
Rf=50kΩ  
[A]  
Iio =  
Ri ×(1 + Rf / Rs)  
0.1μF  
500kΩ  
3. Input Bias Current (Ib)  
VCC  
EK  
SW1  
| VF4 VF3 |  
+15V  
[A]  
Ib =  
Rs=50Ω  
Rs=50Ω  
2×Ri× (1 + Rf / Rs)  
500kΩ  
1000pF  
Ri=10kΩ  
Ri=10kΩ  
4. Large Signal Voltage Gain (Av)  
DUT  
VEE  
NULL  
EK×(1+Rf /Rs)  
Δ
SW3  
Av = 20×Log  
[dB]  
V
VF  
Vicm  
|VF5-VF6|  
RL  
SW2  
50kΩ  
5. Common-mode Rejection Ration (CMRR)  
-15V  
Vicm×(1+Rf/Rs)  
|VF8-VF7|  
Δ
CMRR = 20×Log  
[dB]  
6. Power supply rejection ratio (PSRR)  
Fig. 52 Test circuit1 (one channel only)  
Vcc×(1+Rf /Rs)  
|VF10-VF9|  
Δ
PSRR = 20×Log  
[dB]  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
21/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Test Circuit 2 Switch Condition  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14  
SW No.  
1
2
3
4
5
6
7
8
9
Supply Current  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON ON OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON ON OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
High Level Output Voltage  
Low Level Output Voltage  
Output Source Current  
Output Sink Current  
Slew Rate  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
Input voltage  
VH  
VL  
t
Input wave  
Output voltage  
SRΔV/Δt  
90%  
VH  
ΔV  
C
10%  
VL  
t
Δ
t
Output wave  
Fig. 54 Slew Rate Input Waveform  
Fig. 53 Test Circuit 2 (each Op-Amp)  
Measurement Circuit 3 Amplifier To Amplifier Coupling  
VCC  
VCC  
OTHER  
CH  
R1//R2  
R1//R2  
VEE  
VEE  
R1  
VIN  
R2  
R1  
R2  
VOUT1  
=0.5[Vrms]  
V
V
VOUT2  
40dB amplifier  
40dB amplifier  
100 VOUT1  
×
CS 20 log  
×
VOUT2  
(R1=1k, R=100k)  
Fig. 55 Test Circuit 3  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
22/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
VCC  
Operational Notes  
1) Unused circuits  
When there are unused circuits, it is recommended that they are  
connected as in Fig.56, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (Vicm).  
+
-
Connect  
to Vicm  
Vicm  
2) Input voltage  
VEE  
Applying VEE+36V to the input terminal is possible without causing  
deterioration of the electrical characteristics or destruction, irrespective of  
the supply voltage. However, this does not ensure normal circuit operation.  
Please note that the circuit operates normally only when the input voltage  
is within the common mode input voltage range of the electric  
characteristics.  
Fig. 56 The example of  
application circuit for unused op-amp  
3) Power supply (single / dual)  
The op-amp operates when the voltage supplied is between VCC and VEE. Therefore, the single supply op-amp can be  
used as a dual supply op-amp as well.  
4) Power dissipation (Pd)  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise  
in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation  
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating  
curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output  
and the power supply, or the output and GND may result in IC destruction.  
6) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
7) Radiation  
This IC is not designed to withstand radiation.  
8) IC handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical  
characteristics due to piezo resistance effects.  
9) IC operation  
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected  
to the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and  
charging of the output current. Connecting a resistor between the output terminal and GND, and increasing the bias  
current for Class A operation will suppress crossover distortion.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the  
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly  
process as well as during transportation and storage.  
11) Output capacitor  
Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE,  
causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation  
due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance  
less than 0.1μF.  
12) Oscillation by output capacitor  
Please pay attention to oscillation by output capacitor, designing application of negative feed back loop circuit with these  
ICs.  
Status of this document  
The Japanese version of this document is formal specification. A customer may use this translation version only for a reference  
to help reading the formal version.  
If there are any differences in translation version of this document formal version takes priority  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
TSZ2211115001  
23/26  
26.SEP.2012 Rev.002  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Physical Dimensions Tape and Reel Information  
SOP8  
<Tape and Reel information>  
5.0 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
+
6
°
4°  
4
°
Quantity  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
0.1  
S
1.27  
Direction of feed  
1pin  
0.42 0.1  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
SOP14  
<Tape and Reel information>  
8.7 0.2  
(MAX 9.05 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
14  
8
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
1.27  
0.4 0.1  
0.1  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B8  
<Tape and Reel information>  
3.0 0.2  
(MAX 3.35 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
8
7 6  
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2 3  
4
0.15 0.1  
S
0.1  
0.22 0.10  
M
0.08  
Direction of feed  
1pin  
(0.52)  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
24/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
SSOP-B14  
<Tape and Reel information>  
5.0 0.2  
Tape  
Embossed carrier tape  
2500pcs  
14  
8
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
MSOP8  
<Tape and Reel information>  
2.9 0.1  
(MAX 3.25 include BURR)  
Tape  
Embossed carrier tape  
+
6°  
4°  
Quantity  
3000pcs  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
1pin  
+0.05  
0.03  
0.145  
0.475  
S
0.22  
0.04  
0.08  
S
Direction of feed  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
25/26  
Datasheet  
BA2904Yxxx-M, BA2902Yxx-M  
Marking Diagram  
SOP8(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B8(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
Product Name  
F-M  
Package Type  
Marking  
Part Number Marking  
SOP8  
04YM  
04YM  
LOT Number  
BA2904Y  
FV-M  
SSOP-B8  
FVM-M MSOP8  
04YM  
F-M  
SOP14  
BA2902YFM  
02YM  
BA2902Y  
FV-M  
SSOP-B14  
1PIN MARK  
www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved.  
TSZ02201-0RAR1G200510-1-2  
26.SEP.2012 Rev.002  
TSZ2211115001  
26/26  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - SS  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  

相关型号:

BA2903

Ground Sense Comparator
ROHM

BA2903F

GROUND SENSE DUAL VOLTAGE COMPARATORS
ROHM

BA2903F-E2

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, SOP-8
ROHM

BA2903FV

GROUND SENSE DUAL VOLTAGE COMPARATORS
ROHM

BA2903FV-E2

Ground Sense Comparator
ROHM

BA2903FV-TR

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, LEAD FREE, SSOP-8
ROHM

BA2903FVM

GROUND SENSE DUAL VOLTAGE COMPARATORS
ROHM

BA2903FVM-TL

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, PDSO8,
ROHM

BA2903FVM-TR

Comparator, 2 Func, 15000uV Offset-Max, 1300ns Response Time, BIPolar, PDSO8, MSOP-8
ROHM

BA2903HF

Comparators : Ground Sense
ROHM

BA2903HFV

Comparators : Ground Sense
ROHM

BA2903HFVM

Comparators : Ground Sense
ROHM